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Abstract—In this paper we consider the problem of co-adapting
the body and behaviour of agents, a long-standing research
problem in the community of evolutionary robotics. Previous work
has largely focused on the development of methods exploiting
massive parallelization of agent evaluations with large population
sizes, a paradigm which is not applicable to the real world. More
recent data-efficient approaches utilizing reinforcement learning
can suffer from distributional shifts to transition dynamics as
well as to states and action spaces when experiencing new body
morphologies. In this work, we propose a new co-adaptation
method combining reinforcement learning and State-Aligned
Self-Imitation Learning. We show that the integration of a self-
imitation signal improves data-efficiency, behavioural recovery
for unseen designs and performance convergence.

I. INTRODUCTION

Finding an optimal combination of body and morphology
of agents has been a long-standing research problem, finding
its roots in the community of evolutionary robotics [17, 7, 8].
Originally, research in this area largely focused on the use and
development of evolutionary or genetic algorithms adapting
body and control parameters at the same time [17, 27, 2, 5,
15]. More recent research [13, 19] has studied the benefits of
considering the different time-scales on which co-adaptation
of body and behaviour occurs in the real world: adaptation of
the body is costly and time-consuming, as it involves growing
appendices, organs and tissue in nature; likewise in robotics,
where even fast manufacturing methods like 3D-printing require
a considerable amount of work-hours and material.

Recent years have brought forward several works considering
the use of reinforcement learning (RL) methods for the
problem of co-adapting robots [6, 21, 25, 19], usually with
fast behavioural learning and slower morphology adaptation.
This allowed to develop methods capable of being deployed on
real-world robotics due to their data-efficiency. However, data-
efficient co-adaptation processes can suffer considerably from
the problem of distributional shift inherent to the co-adaptation
problem setting. Every new agent morphology the algorithms
experiences brings with it changes to the transition distribution,
as well as to the semantics of state and action spaces.

We propose a novel co-adaptation methodology tackling the
aforementioned problems by combining reward-driven RL and
self-imitation learning (SIL) utilizing Wasserstein distances for

data-efficient adaptation of body and behaviour. Our approach
not only forces the RL algorithm to adapt body and behaviour
for maximizing an objective function, but also to encourages
the imitation of the agent’s own previous behaviours to increase
learning stability and accelerate the learning progress.

In this paper, we present the following contributions:
(C1) An extension of State-Alignment Imitation Learning
(SAIL) [18] for mismatching morphologies to State-Aligned
Self-Imitation Learning for the problem of co-adapting the
morphology and behaviour of agents.
(C2) A novel co-adaptation method, Co-Adaptation with
Self-Imitation Learning (CoSIL), utilizing State-Aligned Self-
Imitation Learning to optimize an agent’s morphology and
behaviour data-efficiently on fewer design iterations.
(C3) We empirically demonstrate the benefits and limitations
of a SIL signal by evaluating CoSIL versus a non-self-imitating
baseline in a range of locomotion tasks.

II. BACKGROUND

a) Multi-Body Reinforcement Learning: We consider an
extension to the classic Markov Decision Process (MDP)
suitable for modelling the fact that both behaviour and morpho-
logical parameters are adapted. The Multi-Body MDP (MB-
MDP) consists of (S,A,Ξ, r, p(st+1|st, at, ξ), p(s0)) with state
space S ∈ Rs and action space A ∈ Rwa. Notably, in a MB-
MDP the set Ξ models the morphological parameter space,
containing individual instances of agent morphologies ξ ∈ Ξ.
Throughout this paper, we will without a loss of generality
consider Ξ ∈ Rd for d continuous design parameters. As
changes to the agent morphology impact its dynamics, the
transition function p(st+1|st, at, ξ) depends on the current
morphology parameter ξ. The reward function r(st, at, ξ) may
also implicitly depend on ξ via the transition function, or
explicitly if the manufacturing costs are taken into account, for
example. The objective is to find a policy πθ(st, ξ) = at which
maximizes the finite-horizon expected discounted reward

R(ξ, π) = Est+1∼p(st+1|st,at,ξ)
s0∼p(s0|ξ)
at∼π(st,ξ)

[
T∑

t=0

γtr(st, at, ξ)

]
(1)



given an embodiment ξ, the policy π, and discount factor
γ ∈ (0, 1).

b) Co-Adaptation of Agent Body and Behaviour: The
previous formalism allows us to formulate the joint optimization
of behaviour and morphology of agents as

π∗, ξ∗ = argmax
ξ

max
π

R(ξ, π); (2)

in other words, we are interested in finding both the optimal
morphology ξ∗ and optimal policy π∗ given a reward function
r(st, at, ξ). If we consider the semantics of the parameters
and the optimization time-scales (i.e., policy learning can
be done faster than morphology adaptation), this problem
can be considered a bi-level optimization problem. Given the
current morphology of the agent in the inner optimization
problem, we can solve the RL problem using Eq. (1). In the
outer optimization problem, given performances R(ξ, π) of
past morphology-policy pairs (ξi, πi), we can again utilize
optimization methods or reinforcement learning to find new
candidate morphologies ξ to evaluate.

III. CO-ADAPTATION WITH SELF-IMITATION LEARNING

In this section, we will first introduce the individual compo-
nents of Co-Adaptation with Self-Imitation Learning (CoSIL)
using State-Aligned Imitation Learning (SAIL) [18]. We will
end the section with a description of the main algorithm.

A. Self-Imitation Learning on Co-Adaptation Sequences

Assume a MB-MDP (S,A,Ξ, r, p(st+1|st, at, ξ), p(s0)),
as given in Section II-0a. Naturally, a co-adaptation pro-
cess will produce a sequence of morphology-policy tu-
ples {(ξ0, π0), (ξ1, π2), (ξ3, π3), · · · }. Given two morphology-
policy pairs (ξi, πi) and (ξj , πj), we can formulate the trajec-
tory distributions

q(τ i) = p(s0|ξi)
T−1∏
t=0

p(st+1|st, at, ξi)πi(at|st, ξi) (3)

and

p(τ j |πj) = p(s0|ξj)
T−1∏
t=0

p(st+1|st, at, ξj)πj(at|st, ξj). (4)

We will now assume that the pair (ξi, πi) represents our expert.
If we are now currently training on morphology ξj , where
j > i, then we can force the policy πj to imitate the previous
agent by optimizing

min
πj

D(q(τ i), p(τ j |πj)), (5)

for a divergence measure D expressing the distance between
these two probability distributions. Importantly, we consider
here that ξj is fixed and not optimized, otherwise (ξi, πi) is a
trivial solution to this problem. While different choices exist
for this divergence measure, we will follow state alignment-
based imitation learning and use state-distribution matching
via generative adversarial learning.

B. Feature-State-Distribution Self-Imitation Learning

As previously described, a core problem for imitation
learning (IL) between agents with different morphologies is that
the semantic of state and action spaces can shift considerably.
Hence, using the original state and action spaces is not suitable
to use in the IL setting. Therefore, we assume in the following
a function ϕ : S → SF which maps the state of the agent
to a shared feature space SF modelled with motion capture
markers placed on the robot’s body.

In our proposed SIL approach for co-adaptation, we are
matching the state distributions between previous expert
behaviour and the current agent, a technique used successfully
in prior work [9, 22]. Similarly, we use the marginal feature-
space state distributions for the expert trajectories from past
morphologies

q(ϕ(s)) = Est+1∼p(st+1|st,at,ξi)
at∼πi(at|st,ξi)
s0∼p(s0|ξi)

[
1

T

T∑
t=0

1(ϕ(st) = ϕ(s))

]
(6)

and for the current agent morphology

p(ϕ(s)|πj) =

Est+1∼p(st+1|st,at,ξi)
at∼πi(at|st,ξi)
s0∼p(s0|ξi)

[
1

T

T∑
t=0

1(ϕ(st) = ϕ(s))

]
, (7)

with 1 being a Kronecker delta function, returning the value 1
iff ϕ(st) = ϕ(s) holds true and 0 otherwise. Using these state
distributions we can now reformulate Eq. (5) with

D(q(ϕ(s)), p(ϕ(s)|πj)), (8)

where we can use divergences such as Kullback-Leibler’s,
the Wasserstein distance, or the Jensen-Shannon divergence.
Eq. (8) will be our main objective for enabling SIL across
morphologies.

C. Imitation Reward and Environmental Reward

CoSIL makes use of two reward functions: rRL for the
environment reward we aim to maximize as the main objective
and rIL for the SIL reward, given a demonstration dataset τE.
We implement rILwas State-Aligned Imitation Learning (SAIL)
using the Wasserstein distance [18] with reward function

rIL(ϕ(st), ϕ(st+1)) = ρ(ϕ(st+1))− Es∼τE [ρ(ϕ(s))] , (9)

where ρ is a learned discriminator function (i.e., a neural
network) modelling the Kantorovich’s potential, assigning
higher values to states similar to those seen in the expert
dataset τE.

D. Policy Learning with Self-Imitation Learning

CoSIL makes use of Soft Actor Critic (SAC) [12] as the
reinforcement learning backbone of the method with a slight
adaptation to the learning rule for policy updates. As we have



two reward functions, we propose to adapt SAC to learn two
Q-functions with

LQRL
k

=
1

2
(QRL

k (st, at, ξ)− (rRL(ϕ(st), ϕ(st+1))+

γ( min
k=1,2

QRL
k (st+1, at+1, ξ)− α log(π(at+1|st+1, ξ))))

2,

(10)

LQIL
k
=

1

2
(QIL

k (st, at, ξ)− (rIL(ϕ(st), ϕ(st+1))+

γ( min
k=1,2

QIL
k (st+1, at+1, ξ)− α log(π(at+1|st+1, ξ))))

2.
(11)

To avoid imbalances during training, we normalize both rewards
using z-score normalization. This leads to the following loss
function for the policy π with two Q-networks:

Lπ =(1− ω) min
k=1,2

QRL
k (st, at, ξ)+

ω min
k=1,2

QIL
k (st, at, ξ)− α log π (at | st, ξ) ,

(12)

in which we optimize the policy for both the objective-driven
Q-function QRL and the SIL Q-function QIL, weighted by ω.
Both critics use the double-Q trick proposed by [14].

E. Morphology Optimization

Similar to the behaviour learning process, we extend the
morphology optimization objective to incorporate SIL. Ac-
cordingly, we supplement the objective introduced in [19] by
adding the Q-function QIL

j with

max
ξ

E
s0∼p(s0|ξ)

[(1− ωopt) min
j=1,2

QRL
j (s0, πpop(a0|s0, ξ), ξ)+

ωopt min
j=1,2

QIL
j (s0, πpop(a0|s0, ξ), ξ)],

(13)

where ωopt is used to weigh the importance of the SIL reward
versus the environment reward function. While in principle
any optimization method can be used, we found the gradient-
free Particle Swarm Optimization (PSO) optimizer [16] to be
the most efficient. Since the distribution p(s0|ξ) is generally
unknown, we replace it in practice with s0 ∼ R0, where R0

is a replay buffer containing only starting states.

IV. EXPERIMENTS

In order to understand the impact of a SIL signal in the co-
adaptation setting, we seek to empirically answer the following
research questions:
(RQ1) Does SIL help to better co-adapt the behaviour and
morphology of agents?
(RQ2) Can SIL help to counter distributional shifts and recover
faster after a morphology change?
(RQ3) What are the limitations of SIL? Is it always beneficial?

A. Experimental Setup

In our experiments, we used variants of the OpenAI Gym
library [4] environments Humanoid and HalfCheetah adapted to
the co-adaptation setting, as previously proposed [22], and also
evaluate on a new adaptable variant of the Walker environment.
These environments are implemented using the MuJoCo engine

[26]. Experiments are conducted on a computing computer with
Nvidia RTX A4500. We employed 32GB of RAM and were
constrained by 72 hours of real time usage per experiment.
The results are averaged across four distinct seeds. In all
experiments, we compare CoSIL to a baseline which does
not include a SIL signal neither in the critic’s update function
nor in the design evolution objective function. In this way, we
can study the effects of a SIL signal in isolation from other
performance factors (RQ1).
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(a) Humanoid (300 episodes per design)

2 4 6 8 10
Morphologies

500

1000

1500

2000

2500
E
p

is
o
d

ic
 E

n
v
ir

o
n
m

e
n
t 

R
e
w

a
rd

CoSIL Co-Adaptation (rRL only)

(b) Humanoid (1000 episodes per design)

Fig. 1: The cumulative episodic rewards of CoSIL (orange)
and the baseline (Co-Adaptation, blue) in the Humanoid task.
Both figures show the average performance of morphologies
in terms of environmental rewards, by averaging the episodic
return of the best 20% of episodes. Experiments were repeated
four times, and morphologies are sorted by their performance
along the x-axis. Figure (a) shows the Humanoid task in
which each morphology was trained for 300 episodes, while
morphologies in Figure (b) were optimzed every 1000 episodes.
It can be seen that the proposed method (CoSIL) shows better
performance than using solely the environmental reward (Co-
Adapt), with comparable perfomance when trained for 300 and
1000 episodes.

The goal of the agent in the morphology-adaptable Humanoid
task is to learn a policy allowing stable but fast forward
locomotion, as proposed in [22]. To achieve this, the following
objective function rRL is used:

rHumanoid
t =1.25(ct − ct−1)− 0.1ctrl2t

−min(0.5× 10−6cfrc ext2t , 10) + 5,
(14)

where ct is the position of the center of mass of the robot
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(a) HalfCheetah
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Fig. 2: The cumulative episodic rewards of CoSIL (orange)
and the baseline (Co-Adaptation, blue) in the HalfCheetah
and Walker task. Figures show the average return and standard
deviation of the environmental reward, averaged over four seeds,
and with morphologies sorted by their performance (worse
performing morphologies left, better performing morphologies
right). While using self-imitation for co-adaptation (CoSIL)
shows considerably better performance in Walker (b), we found
the performance gain in HalfCheetah (a) to be negligible. We
hypothesise this is due to the simplicity of the HalfChetah task.

at timestep t, ctrlt are the actuator activations at timestep t
and cfrc extt are the external forces acting on the body of the
robot at timestep t. In this experiment, we compare CoSIL
(red) using both rRL and rIL versus the standard Co-Adaptation
baseline using only SAC and the objective reward rRL (blue).
We adapt morphology and behaviour over 10,000 episodes, or
10 selected morphologies. For CoSIL, a weight-parameter of
ω = ωopt = 0.2 was used, which was determined via hyper-
parameter optimization through grid-search. From the results
in Fig. 1b, it can be seen that CoSIL outperforms standard
Co-Adaptation without SIL after a handful of designs. Fig.
1a shows a comparison between CoSIL and Co-Adaptation
when training on each morphology for only 300 episodes,
which highlights the ability of CoSIL to find better performing
morphology-policy combinations in a sample-efficient manner.

B. Limitations of CoSIL

Next, we investigate possible limitations of CoSIL over
reward-driven co-adaptation (RQ3). For this, we evaluate CoSIL
on the environments of varying difficulty, specifically the
relatively simple HalfCheetah task and the harder Walker task.
We selected two variations of the HalfCheetah locomotion task
in MuJoco with the reward function

rRL
t = max(

1.25

∆t
· (ct − ct−1)− 0.1

∑
i

a2t,i, 0), (15)

where at,i is the i-th action taken at timestep t and ct is the
position of the center-of-mass at time step t, and ∆t the time
difference. For Walker we use the reward function

rRL
t = max(

1

∆t
· (ct − ct−1), 0)− 0.1 · |a|2 − 0.1 · |θ|, (16)

where θ is the Euler angle of Walker’s orientation in radians.
In both tasks, we optimize the leg-segment lengths of the agent,
thus resulting in 6 morphology parameters for HalfCheetah
and 4 for Walker. We use again ω = ωopt = 0.2 for both

HalfCheetah and Walker. As we can see in Fig. 2b/d, CoSIL
outperforms standard Co-Adaptation using only rRL in the
Walker task, as also observed in the Humanoid task. However,
we note that CoSIL and Co-Adaptation show a very similar
performance during the first designs. The performance gap
between both approaches closes further if we compare them on
the simpler HalfCheetah task. Fig. 2 (a) clearly show that using
a SIL reward rIL is not helpful in this case. Additionally, this
could indicate that the distributional shift of state and action
spaces in low-complexity tasks is lower, as one would expect.
From this, we can conclude that, especially on simpler and
less complex co-adaptation tasks, the additional use of SIL
should not be preferred, especially given that CoSIL requires in
total more compute due to the deep imitation learning methods
used.

V. RELATED WORK

Evolutionary Robotics: Designing robot hardware with
evolutionary principles has been a long-standing research effort.
Seminal work by [17] explored using genetic algorithms to
co-adapt a simple controller. Earlier works by [24] used compe-
tition as a reward in a genetic algorithm to adapt the bodies of
two robots in a fighting task. Approaches for evolutionary
robotics have been successfully applied in simulation [3],
although recent works have identified that applying them in
real world scenarios remains an open challenge [8]. Recent
work has focused primarily on the fast changeability of robotic
platforms as means to allow real world evolution of robots
[20, 13, 1], although this constrains the range of possible robot
designs considerably.

Co-Adaptation with Reinforcement Learning: Recent
works on co-adaptation have sought to improve data-efficiency
and feasibility by using a RL method as its main component.
Seminal work by [11] employs REINFORCE to jointly co-
adapt the body and behaviour of agents [28]. [23] extended
this approach by proposing a deep RL co-adaptation algorithm.
Increased data-efficiency was achieved by [19] with the
introduction of an off-policy deep RL method using the Q-
value function for design evaluations. Another recent work
[10] employed deep RL with mass-parallelization of agent
populations in simulation.

VI. CONCLUSION

We presented a new co-adaptation method named Co-
Adaptation with Self-Imitation Learning (CoSIL) which intro-
duces the idea of using a SIL reward within a reward-driven
co-adaptation framework using deep reinforcement learning.
To achieve this, we used State-Aligned Imitation Learning
(SAIL) [18], introduced a method to select and match expert
data from previously seen morphology-policy combinations,
and employed separate Q-value functions for the objective and
imitation rewards to increase data-efficiency when optimizing
the morphology parameters. In experiments on morphology-
adaptable agents in simulation, we showed that by imitating
previously seen behaviour we can combat the distributional
shift in dynamics, action and state spaces, as well as recover



faster when switching to a newly selected agent morphology.
However, CoSIL requires a larger amount of computational
effort due to additional deep neural network training, which
makes it not preferable for simple co-adaptation problems.
Nevertheless, with the methodology proposed in this paper
we make a further step towards the useful integration of
imitation learning techniques into co-adaptation techniques.
Several interesting avenues for future work are opened up by
our work, such as the use of quality-diversity approaches for
selection of self-demonstrations, or further investigations of
using a SIL reward during design optimization.
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