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Abstract

Multi-objective Bayesian optimization has been widely adopted in scientific ex-
periment design, including drug discovery and hyperparameter optimization. In
practice, regulatory or safety concerns often impose additional thresholds on cer-
tain attributes of the experimental outcomes. Previous work has primarily fo-
cused on constrained single-objective optimization tasks or active search under
constraints. We propose CMOBO, a sample-efficient constrained multi-objective
Bayesian optimization algorithm that balances learning of the feasible region (de-
fined on multiple unknowns) with multi-objective optimization within the feasible
region in a principled manner. We provide both theoretical justification and em-
pirical evidence, demonstrating the efficacy of our approach on various synthetic
benchmarks and real-world applications.

1 Introduction

Multi-objective Bayesian optimization (MBO) is essential in scientific experiment design, such as
drug discovery [Fromer and Coley, 2023] and hyper-parameter optimization [Gardner et al., 2019],
where efficient exploration of experimental space is crucial. However, real-world applications of-
ten require meeting additional safety or regulatory thresholds. For instance, drug discovery must
balance therapeutic effectiveness with safety standards [Mellinghoff and Cloughesy, 2022], and
hyper-parameter optimization must avoid overfitting or violating constraints [Karl et al., 2023].

Previous studies have focused on single-objective constrained Bayesian optimization, unconstrained
multi-objective Bayesian optimization, or constrained active search, leaving a gap in constrained
multi-objective Bayesian optimization (CMOBO). Research in Constrained Bayesian Optimization
(CBO) has primarily extended unconstrained problems with early work by Schonlau et al. [1998]
and subsequent studies incorporating posterior sampling methods [Eriksson and Poloczek, 2021]
and information-based approaches [Hernández-Lobato et al., 2014, Wang and Jegelka, 2017] to
scale CBO and improve feasibility analysis [Hernández-Lobato et al., 2015, Perrone et al., 2019,
Takeno et al., 2022]. The augmented Lagrangian framework further transformed constrained tasks
into unconstrained ones [Gramacy et al., 2016, Picheny et al., 2016, Ariafar et al., 2019], though it
often lacked guarantees on feasibility and regret. Recent advancements [Zhou and Ji, 2022, Lu and
Paulson, 2022, Xu et al., 2023, Guo et al., 2023] focus on relaxed CBO objectives to ensure theo-
retical convergence. In Constrained Active Search, active learning for the level sets offers sample
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efficiency guarantees [Gotovos et al., 2013] but struggles with multiple unknown functions. Re-
cent approaches [Malkomes et al., 2021, Komiyama et al., 2022] emphasize diversity but fall short
of balancing learning constraints with objective optimization. Multi-objective Bayesian Optimiza-
tion Golovin and Zhang [2020], Daulton et al. [2022], Suzuki et al. [2020] typically relies on the
scalarization of objectives combined and resort to generalized expected improvements. A principled
integrated treatment of the constraints and multiple objectives in Bayesian optimization remains
challenging.

We propose a sample-efficient constrained multi-objective Bayesian optimization (CMOBO) algo-
rithm that balances learning of level sets on multiple unknowns with multi-objective optimization
within feasible regions. The insight is that we constrain the search space to areas with the poten-
tial of being feasible, while the random scalarization [Deng and Zhang, 2019, Golovin and Zhang,
2020] allows an efficient and theoretically justified acquisition within the region. We offer theo-
retical justification, together with empirical evidence on both synthetic benchmarks and real-world
applications, demonstrating the effectiveness and efficiency of the proposed method.

2 Preliminaries and Problem Statement

2.1 Problem Statement

Let [n] denote the set {1, 2, ..., n} and let [x]+ denote function max(0, x). For a vector x, its ℓ2
norm is denoted by ∥x∥. For any two vectors x1,x2, we use x1 ≤ x2 to denote their element-wise
comparisons. To improve the readability of this paper, we utilize the big O notation to omit constant
terms in theoretical results.

Consider a constrained multi-objective optimization problem:

max
x∈X

F (x) = [f1(x), ..., fm(x)],

s.t. G(x) = [g1(x), ..., gc(x)] ≥ 0.

where fi and gj : X → R,∀i ∈ [m],∀j ∈ [c] are black-box functions, X ⊂ Rd is the search space
of F : Rd → Rm, m is the number of objectives and c is the number of constraints. The goal is to
find the Pareto frontier P of F . For the main paper, we assume the search space X to be finite, and
extend our discussion of the continuous and compact search space in Appendix D.
Definition 2.1 (Pareto Front). Define the feasible region of this problem as F = {x|x ∈
X and gi(x) ≥ 0,∀i ∈ [c]}. For points x1,x2, in the context of this problem, x1,x2 ∈ F. x1

is said to dominate x2 if 1) fi(x1) ≥ fi(x2),∀i ∈ [m] and 2) ∃j ∈ [m] s.t. fj(x1) > fj(x2).
Denote X∗ = {x ∈ F|x is not dominated by any point ∈ F}, then the Pareto front is defined as
P = {F (x)|x ∈ X∗}.
Assumption 1 (Gaussian Process). Following Srinivas et al. [2009] (shown in Definition B.5), we
assume that objectives and constraint functions are drawn from their GP priors.

2.2 Evaluation Metrics

Definition 2.2 (Simple Hypervolume Regret). Let simple hypervolume (HV) regret at step t, rt be
the difference between the real hypervolume indicator of the Pareto front and the current approxi-
mation of the Pareto front. Define Yt to be a set of observed objectives, s.t. |Yt| = t

rt = HVz(P )−HVz(Yt ∩ F (F))

where F (F) is the range of the objective in feasible area, and HVz(Y ) is defined as vol({y|y ≥
z, y is dominated by some point ∈ Y }). Maximizing HVz(Yt ∩ F (F)) reflects the exploration of
the Pareto Front since it cannot be greater than HVz(P ). We accordingly define the cumulative
hypervolume regret as Rt =

∑T
t=1 rt.

To address the problem of constrained optimization, we introduce the metric simple constraint vio-
lation that evaluates the constraint violation of the algorithm.
Definition 2.3 (Simple Constraint Violation). We define the simple constraint violation of constraint
gj at the tth observation xt as vj,t = [−gj(xt)]

+ where [·]+ = max(0, ·). We also define the
cumulative constraint violation of the j − th constraint as Vj,T =

∑T
t vj,t.
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To assess the ability of the algorithm of simultaneously exploring the Pareto front and keeping a low
constraint violation, based on the above definitions, we define a metric that considers both constraint
violation and Hypervolume Regret as constraint regret at step t as Ct, the minimum of the sum of
simple HV regret and simple constraint violation of all objectives among steps before t, which was
originally proposed in Xu et al. [2023]
Definition 2.4 (Constraint Regret).

Ct = min
τ∈[t]

rτ +

c∑
j=1

vj,τ


In the experiments, we normalize rτ and

∑c
j=1 vj,τ so that they are comparable.

3 Constrained Multi-Objective Bayesian Optimization

Algorithm 1 Constrained Multi-Objective Bayesian Optimization (CMOBO)

1: for t ∈ {1, ..., T} do
2: if maxx∈X{minj∈[c] wj,t(x)} < 0 then
3: Declare infeasibility.
4: end if
5: For scalarization, sample θt uniformly from S+

m−1
6: Optimize acquisition function:

xt ∈ argmaxx∈X sθt(Ut(x))
s.t. wj,t(x) ≥ 0,∀j ∈ [c].

7: Evaluate F at xt.
8: Update GP posterior with the incoming observations.
9: end for

In each step of the algorithm, we apply a random scalarization, sθt , to the upper confidence bound
surrogates of m objectives. We substitute the c constraint functions gj with their upper confidence
bound surrogates, following the approach of Xu et al. [2023], and maximize the scalarized function
subject to the new constraints. In line 2, we solve an auxiliary optimization problem, the solution
of which helps determine whether to declare infeasibility. It can also be used in the subsequent
optimization of the acquisition. See A for further discussion.

Scalarization. In our multi-objective setting, we address the challenge of trading off multiple
acquisition functions by applying a scalarization mapping sθt as defined in (1), parameterized by
a randomly drawn variable θt at each iteration. This hypervolume scalarization, introduced by
Deng and Zhang [2019], Golovin and Zhang [2020], allows for the Monte Carlo estimator of the
hypervolume and its estimation error. This approach enables a principled combination of optimizing
objectives and considering unknown constraints. We extend this scalarization to the constrained
optimization scenario with both theoretical guarantees and comprehensive empirical evidence of its
efficiency. Here, we define the acquisition function in Algorithm 1 with scalarization of UCBs.
Definition 3.1 (Scalarization function, Deng and Zhang [2019], Golovin and Zhang [2020]). The
hypervolume scalarization is defined as

sθ(y) = min
i∈[m]

([yi/θi]
+)m s.t. y, θ ∈ Rm. (1)

Furthermore, it holds that

HVz(Yt) = cmEθ∼S+
k−1

[ max
y∈Yt∩F (F)

sθ(y − z)] (2)

where θ ∼ S+
k−1 denote drawing θ uniformly from S+

k−1 = {y ∈ Rm|∥y∥ = 1, y ≥ 0} and

cm = π
m
2

2mΓ(m
2 +1) .

This scalarization function is derived from the integration in the calculation of hypervolume, offering
an unbiased estimation of the HV. When applying a sample of the random scalarization to the UCBs
of the objectives at a certain time t, we have the following acquisition function.
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Definition 3.2 (Acquisition function). Let the m-dimensional vector Ut(x) denote the UCB of m
objectives fi. We define the acquisition function αt(x) as the value of Ut(x) scalarized by hyper-
volume scalarization (1).

Ut(x) = (uf1,t(x)− z1, ..., ufm,t(x)− zm) (3)

αt(x) = sθt(Ut(x)) (4)
where z = (z1, ..., zm) is a chosen sub-optimal value.

Now, we need to construct an optimistic estimation of the constraint functions to incorporate the
consideration of feasibility.

Constrained optimization. With the optimistic estimation of feasibility discussed above and the
sample from the random scalarization adaptive tradeoff among multiple objectives, we can define
the CMOBO optimization loop. In each iteration, we maximize the scalarized function subject to
the newly defined constraints. In line 2 of Algorithm 1, we solve an auxiliary optimization prob-
lem to determine whether infeasibility should be declared. The solution to this auxiliary problem,
argmaxx∈X minj∈[c] wj(x), can also be leveraged in the optimization of the acquisition function,
as it helps discard inactive constraints. Combined with the optimistic feasibility estimation in line
6 of Algorithm 1, we know that CMOBO iteratively picks the maximizer of the UCB of the Monte
Carlo estimator of the constrained hypervolume. This allows the following theoretical guarantee of
CMOBO.

4 Experiments

Figure 1: CMOBO performance on Penicillin function. From left to right: Hypervolume, Cumula-
tive Hypervolume Regret, Cumulative Constraint Violation, Constraint Regret.

We applied Algorithm 1 to the following five tasks, including Toy Function (d = 2,m = 2, c = 2),
Branin-Currin Function (d = 2,m = 2, c = 2), Penicillin Function (d = 7,m = 3, c = 3)
Liang and Lai [2021], Caco2++ (d = 2175,m = 3, c = 3) adapted from Park et al. [2024] and
ESOL+ (d = 2133,m = 4, c = 4) adapted from Delaney [2004]. Here, the Penicillin Function
simulates penicillin production; the last two contain organic molecules and drug-related properties.
Detailed experimental settings are in Appendix A. We trimmed the initial observations, leading to
unequal starting values. Benchmarks include Parallel Noisy Expected Hypervolume Improvement
Daulton et al. [2021] (qNEHVI), parallel ParEGO Daulton et al. [2020] (qParEGO), Max-value
Entropy Search for Multi-Objective Bayesian Optimization with Constraints Belakaria et al. [2020]
(MESMOC), and Random Search. All experiments except for MESMOC were carried out using
the BoTorch Python library Balandat et al. [2020]. The complete results are in Appendix E.
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Trade-off Between Simple HV Regret and Cumulative Violation. As shown in Figure 2 in Ap-
pendix E, while qNEHVI converges on simple HV regret at a rate comparable to CMOBO and
achieves a higher final value, it incurs significantly more constraint violations. In more complex ob-
jectives, qNEHVI’s simple HV performance is near-random, though its constraint violations remain
sub-random. Scalarization-based qParEGO surpasses random search in Simple HV regret at around
30 steps, with near-random overall constraint violation performance. In this case, the Constraint Vi-
olation performance is dominated by Simple HV regret. This trade-off, measured by constraint
regret (Definition 2.4), reflects the ability to explore the Pareto Front within feasible regions. High
constraint regret indicates a failure to explore or maintain constraints. CMOBO outperforms all
benchmarks, achieving the best balance with faster constraint regret reduction.

5 Theoretical Results

In this section, we provide the theoretical analysis of our algorithm CMOBO. We leverage the max-
imum mutual information gain γi,T of the ithobjective on GP after T iterations, and γT is an upper
bound for γi,T ,∀i ∈ [m] and γj,T ,∀j ∈ [c]. Detailed definitions are shown in B.6. The correspond-
ing upper bounds for common kernels are previously studied by Srinivas et al. [2009].

Case 1: F ̸= ∅. With assumptions stated in Section 2.1, given F ̸= ∅ and the existence of the
Pareto Front, we could bound the cumulative regret and corresponding violation in the following,
with detailed proof deferred to Appendix C.
Theorem 1 (Cumulative HV regret bound). After T iterations, under the conditions in Lemma 1,
for δ ∈ (0, 1) our Algorithm CMOBO satisfies that

RT ≤ O(m2[γTT lnT ]1/2) (5)

with probability at least 1− δ.

Theorem 2 (Cumulative constraint violation bound). Let c denote the number of constraints, then
∀j ∈ [c] and under the conditions in Lemma 1, with probability at least 1 − δ, our Algorithm
CMOBO satisfies that

RT ≤ O(
√
T lnTγj,T ). (6)

Combining Theorem 2 and Theorem 1, we can bound Constraint Regret defined in Definition 2.4
by O(cm2[γT lnT/T ]1/2) by taking the sum of two cumulative terms and taking minimum with
respect to step indexes.

Case 2: F = ∅. Now we assume F = ∅. We conclude that we can declare infeasibility in (1) in
Algorithm 1 within a certain number of steps with high probability.
Theorem 3 (Declaration of infeasibility when the problem is infeasible). With conditions in
Lemma 1, and that limT→∞

√
lnTγT√

T
= 0. If the problem is infeasible, i.e. ∃j ∈ [c],maxx gj(x) =

ϵ < 0 Then, given δ ∈ (0, 1), Algorithm 1 will declare infeasibility within number of steps equivalent
to T̄ = minT∈N+{T |

√
lnTγT√

T
≤ Cϵ} with probability at least 1− δ.

6 Conclusions

We proposed CMOBO, a stochastic scalarization-based Bayesian optimization algorithm based
on stochastic scalarization for multiobjective constrained problems. CMOBO outperforms the
qParEGO in various tests and excels in metrics that account for hypervolume regret and constraint
violations, even if it does not always match qNEHVI in hypervolume regret convergence speed. We
also provide a theoretical analysis of the metrics used. Future improvements include active learning
of the feasible domain and adaptive scalarization parameters. While we have developed a heuristic
to enhance candidate selection efficiency, challenges such as model misspecification remain.
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José Miguel Hernández-Lobato, Michael Gelbart, Matthew Hoffman, Ryan Adams, and Zoubin
Ghahramani. Predictive entropy search for bayesian optimization with unknown constraints. In
International conference on machine learning, pages 1699–1707. PMLR, 2015. 1

Florian Karl, Tobias Pielok, Julia Moosbauer, Florian Pfisterer, Stefan Coors, Martin Binder, Lennart
Schneider, Janek Thomas, Jakob Richter, Michel Lang, et al. Multi-objective hyperparameter
optimization in machine learning—an overview. ACM Transactions on Evolutionary Learning
and Optimization, 3(4):1–50, 2023. 1

J. Knowles. Parego: a hybrid algorithm with on-line landscape approximation for expensive multi-
objective optimization problems. IEEE Transactions on Evolutionary Computation, 10(1):50–66,
2006. doi: 10.1109/TEVC.2005.851274. 8

Junpei Komiyama, Gustavo Malkomes, Bolong Cheng, and Michael McCourt. Bridging offline
and online experimentation: Constraint active search for deployed performance optimization.
Transactions on Machine Learning Research, 2022. 2

Qiaohao Liang and Lipeng Lai. Scalable bayesian optimization accelerates process optimization
of penicillin production. In NeurIPS 2021 AI for Science Workshop, 2021. URL https://
openreview.net/forum?id=UVdSYXMNdOe. 4, 8

Congwen Lu and Joel A Paulson. No-regret bayesian optimization with unknown equality and
inequality constraints using exact penalty functions. IFAC-PapersOnLine, 55(7):895–902, 2022.
1

Gustavo Malkomes, Bolong Cheng, Eric H Lee, and Mike Mccourt. Beyond the pareto efficient
frontier: Constraint active search for multiobjective experimental design. In International Con-
ference on Machine Learning, pages 7423–7434. PMLR, 2021. 2

Ingo K Mellinghoff and Timothy F Cloughesy. Balancing risk and efficiency in drug development
for rare and challenging tumors: a new paradigm for glioma. Journal of Clinical Oncology, 40
(30):3510–3519, 2022. 1

Biswajit Paria, Kirthevasan Kandasamy, and Barnabás Póczos. A flexible framework for multi-
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A Experimental Settings

Baselines. We follow the tutorial for qNEHVI and qParEGO in https://botorch.org/
tutorials/constrained_multi_objective_bo to implement the benchmarks.

qNEHVI Daulton et al. [2021] computes the expectation of HVz(Yt) w.r.t. F (xt), expressed
as EF (xt) [HVz(Yt)]. And deals with constraint by taking an conditional expecation: xt =
argmaxEF (x) [HVz(Yt)|x ∈ F].

qParEGO Daulton et al. [2020] applys an random augmented Chebychev scalarization sθt(y) =
mini∈[m] θi,t(yi − zi) in each step to the objectives and uses GP to model the scalarized outcomes
Knowles [2006] denoted as s̄θt(x). Then it applies conditional expected improvement (EI) to sur-
rogate of scalarized objective.

xt = argmaxEF (x)

[
[s̄θt(x)− s∗θt ]

+|x ∈ F
]
= argmaxEF (x)θt

[
[s̄θt(x)− s∗θt ]

+ × I(x ∈ F)
]

where I(x) is an indicator for x being feasible, also approximated by surrogates of gj , s∗θt is the best
observation of scalarized objective in current step.

Inner Loop Optimization when Generalized to Continuous Search Space. Some of the test ob-
jectives has continuous search space, so we can leverage the information of the maxima of auxiliary
function proposed in Line 2 of Algorithm 1. BoTorch uses L-BFGS algorithm to conduct the op-
timization with non-linear constraints in Line 6 if the search space is continuous, which requires
sufficient initial candidates of feasible solutions. The default candidate sampler of BoTorch cannot
always generate sufficient candidates due to the complexity of constraints. We show in the analy-
sis(Theorem 4) that the solutions of the auxiliary problem can be used as the initial candidates for
L-BFGS with high probability. We will provide a discussion in D to show the algorithm could be
applied to general continuous objectives.

To Match The Parallel Settings. Though the benchmark algorithms were designed for batched-
output, we take number of queries q = 1 in each step to make them comparable to our approach,
which is also seen in the experiments in Daulton et al. [2021]. We can still benefit from the parallel
evaluation in optimizing the acquisition function.

Penicillin Function. The objective was proposed in Liang and Lai [2021]. We add a Gaussian
noise with standard deviation 0.05 to the observations. We define the constraint to make penicillin
production ≥ 10, CO2 production ≤ 60 and reaction time ≤ 350.
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We take βj,t = c log(t+ 1), where c = 0.1 or c = 0.05. We used the RBF kernel

kRBF(x1,x2) = a · exp
{
∥x1 − x2∥2

b

}
We fit the GP models’ parameters in each step in all experiments.

Since the distribution of objective is highly skewed, we observed high over-fitting of GP model even
with large training data. To fix this, we apply a filtering trick to the initial samples of the GP model
of each benchmark. We apply Voxel Grid Sampling trick to 64 randomly sampled candidates to
get around 20 samples uniformly distributed in the range of initial candidate set in each trial. That
would make the performances of all benchmarks differentiable to random search.

Toy Function. The objective is defined as:

F (x1,x2) =

(
− 1

x1
− x2,−x1 − x2

2

)
s.t. x1,x2 ∈ [1, 1.5],

− 1

x1
− x2 ≥ −1.9,

−x1 − x2
2 ≥ −2.25

βj,t = 0.4 log (4 · (1 + t)). We used Matérn kernel for the GP model with 0.05 standard deviation
noise. We took 10 random initial candidates in each trial.

kMatérn(x1,x2) =
21−ν

Γ(ν)

(√
2νd

)ν

Kν

(√
2νd

)
• d = (x1−x2)

⊤Θ−2(x1−x2) is the distance between x1 and x2, scaled by the lengthscale
parameter Θ.

• ν is a smoothness parameter that takes values 1
2 , 3

2 , or 5
2 . Smaller values correspond to less

smoothness.
• Kν is a modified Bessel function.

Branin-Currin Function. A 2-D objective consisting of a Branin function and a Currin function.

f1 = 15x2 −
(
5.1 · (15x1 − 5)2

4π2
+

5(15x1 − 5)

π
− 5

)2

+

(
10− 10

8π

)
cos(15x1 − 5)

f2 =

(
1− exp

(
− 1

2x2

))
·
(
2300x3

1 + 1900x2
1 + 2092x1 + 60

100x3
1 + 500x2

1 + 4x1 + 20

)
s.t. x1,x2 ∈ [0, 1]

f1 ≥ −20,

f2 ≥ −6

βj,t = 0.4 log (4 · (1 + t)). We use Matérn kernel with 0.01 standard deviation and 10 random
initial candidates in each trial.

Caco-2++. The original version Caco-2+(d = 2133, m = 3) was proposed in Park et al. [2024],
whose objective contains permeability, an experimentally tested value and 2 extra objectives, Crip-
penClogP, TPSA. The search space contains 906 drug molecules. We modified this dataset to come
up with Caco-2++(d = 2175, m = 3, c = 3). For the domain, we augmented a new feature, mqn fea-
ture, to the domain of Caco-2+. We changed the objectives to permeability, TPSA, drug-likeliness
score(QED). The search space contains 909 molecules. We constrain the objectives so that QED
≥ 0.5, TPSA ≥ 80, permeability ≥ −5.

βj,t = c log (1 + t), c = 0.1 or 0.05. We used Tanimoto kernel specialized for molecule repre-
sentation. We take a 0.01 standard deviation observation noise and 64 initial candidates in each
trial.

kTanimoto(x1,x2) = a · x1 · x2

∥x1∥2 + ∥x2∥2 − x1 · x2
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ESOL+. The original ESOL (Delaney [2004]) dataset contains 1,144 organic molecules and an ex-
perimentally measured metric called log(Solubility). We added three additional objectives—LogP,
TPSA, and QED—to the original objective. For the domain, we use the same molecule representa-
tion, fragprint, as was used by Caco-2+ (d = 2133). We constrain the objectives so that LogP ≥ 2.5,
QED ≥ 0.5, TPSA ≥ 55, and log(Solubility) ≥ −4.

βj,t = c log (1 + t), c = 0.1 or 0.05. We used Tanimoto kernel and a 0.005 standard deviation
observation noise and 64 initial candidates in each trial.

B Definitions

Definition B.1 (Scalarized Regret).
rθ(Xt) = max

x∈F
sθ(F (x)− z)− max

x∈Xt∩F
sθ(F (x)− z) (7)

Definition B.2 (Bayes Regret). is the expectation of scalarized regret over all possible θ ∼ S+
k−1 :

R(Xt) = Eθ[rθ(Xt)] (8)

Definition B.3 (Instantaneous Regret). is defined as:

r(xt, θt) = max
x∈F

sθt(F (x)− z)− sθt(F (xt)− z) (9)

where θt and xt are the parameter and corresponding observation in the tth iteration of our algo-
rithm.
Definition B.4 (Cumulative Regret). is the cumulative sum of instantaneous regret:

RC(T ) =

T∑
t=1

r(xt, θt) (10)

Definition B.5 (Gaussian Process Regression). Assume at time t we query a new instance (xt, yt),
with each entry yti ∈ yt := (yt1, ..., y

t
m), equalsf t

i (x) + δti , where δti
i.i.d∼ Gaussian(0, σ2),∀i ∈

[m] models the noise of observation with fixed variance σ2. Assumefi ∼ GP(0, ki(·, ·)), where
ki(x,x

′) is a kernel function that models the covariance of fi(.) at any two observations x,x′. A
predictive distribution of fi(x) given t observations is the posterior distribution: fi(x)|(y1i , ..., yti) ∼
Gaussian(µi,t(x), σ

2
i,t(x)). Like Srinivas et al. [2009], we further assume k(·, ·) ≤ 1.

• µi,t(x) = ki(x1:t,x)
T (Ki + λI)−1y1:ti

• σ2
i,t(x) = ki(x,x)− ki(x1...t,x)

T (Ki + λI)−1ki(x1...t,x)

• Ki = [ki(x,x
′)x,x′∈{x1,...,xt}] ∈ Rt×t

• ki(x1:t,x) = [ki(x1,x), ..., ki(xt,x)]
T

• λ = σ2

Similarly, we define the posterior mean and variance function for constraint functions gj ,∀j ∈ [c]
as µ′

j,t(x) and σ2
j,t(x).

Definition B.6 (Maximum Mutual Information). The information gain of of a set of newly sampled
points At whose corresponding set of objective values is Yt, is the mutual information of the distri-
bution of fi and the distribution of Yt. Both fi and Yt follow the assumption of noise observation
and Gaussian process with kernel k(·, ·) in B.5.

I(Yt; fi) = H(fi)−H(fi|Yt) = H(Yt)−H(Yt|fi) (11)

where H(·) is the Shannon entropy function. The closed form of I(Yt; fi) is given by Srinivas et al.
[2009]: 1

2 log det(I+λ−1Ki,t) where Ki,t = [ki(x,x
′)x,x′∈At

]. Accordingly, the maximum mutual
information for objective fi given t observations is defined as:

γi,t = max
At⊂X s.t. |At|=t

1

2
log det(I + λ−1Ki,t) (12)

Similarly, we define γj,t for constraint functions gj ,∀j ∈ [c].

10



Definition B.7 (Level-Space). for i ∈ [m], j ∈ [c] define

li,t(x) = µi,t−1(x)− β
1
2
i,tσi,t−1(x) (13)

pj,t(x) = µ′
j,t−1(x)− β

1
2
j,tσj,t−1(x) (14)

ui,t(x) = µi,t−1(x) + β
1
2
i,tσi,t−1(x) (15)

wj,t(x) = µ′
j,t−1(x) + β

1
2
j,tσj,t−1(x) (16)

where βi,t, βj,t are defined in Lemma 1.

C Proofs for Finite Discrete Search Space

We assume the search space is finite as stated in Section 2.1.

C.1 Theorems

Proof of Theorem 1. From Lemma 5 in Golovin and Zhang [2020]:

rt = HVz(P )−HVz(Yt ∩ F (F)) = cmR(Xt) (17)

Furthermore, from basic arithmetic relationship:

R(Xt) ≤ Eθt [r(xt, θt)] (18)

Lemma 6 in Golovin and Zhang [2020] shows cmL ≤ m for sθ. Combining with Lemma 2, we
obtain

T∑
t=1

cmR(Xt) =

T∑
t=1

HVz(P )−HVz(YT ) (19)

≤ cmE[RC(T )] (20)

≤ O(m2[γTT ln(T )]1/2) (21)

with probability at least 1− δ.

Proof of Theorem 2.

Vj,T =

T∑
t=1

vj,t (22)

≤
T∑

t=1

2β
1/2
i,t σi,t−1(xt) (23)

≤ 2
√

TMβj,T γj,T (24)

= O(
√
T lnTγj,T ) (25)

The inequality in (23) directly comes from Lemma 3. The last inequality is the conclusion of
Lemma 4.

Proof of Theorem 3. Given iteration T and δ ∈ (0, 1), suppose infeasibility has not yet been de-
clared. It follows that

min
j∈[c]

wj,t(x
′
t) ≥ 0,∀t = 1, ..., T (26)

where x′
t = argmaxx minj∈[c] wj,t(x).

From the infeasibility of the problem, assume j∗ satisfies the condition for j in (3), and assume

x∗
t = argmax

x∈X
gj∗(x) (27)

11



then
gj∗(x

∗
t ) = ϵ (28)

≥ min
j∈[c]

max
x∈X

gj(x) (29)

≥ max
x∈X

min
j∈[c]

gj(x) (30)

≥ max
x∈X

min
j∈[c]

pj,t(x) (31)

(30) comes from the fact that
min
x∈Dx

max
y∈Dy

g(x, y) ≥ max
y∈Dy

min
x∈Dx

g(x, y)

for any function two-side bounded g. (31) holds with probability at least 1− δ (Lemma 1).

Combining (26) and (28) to (31) and the fact that ϵ < 0, we have
min
j∈[c]

wj,t(x
′
t) ≥ 0 > ϵ ≥ max

x∈X
min
j∈[c]

pj,t(x) ≥ min
j∈[c]

pj,t(x
′
t) (32)

with probability at least 1− δ. Furthermore,
0 < −ϵ ≤ min

j∈[c]
wj,t(x

′
t)−min

j∈[c]
pj,t(x

′
t) (33)

By picking
J = arg min

j∈[c]
pj,t(x

′
t) (34)

we have
−ϵ ≤ wJ,t(x

′
t)− pJ,t(x

′
t) = 2β

1/2
J,t σJ,t−1(x

′
t) (35)

What follows is similar to the proof of Theorem 5.1 in Xu et al. [2023], by taking the sum for each
t, and Lemma 4 shows:

−ϵ ≤
2
√

TMβJ,T γJ,T

T
≤ O(

√
lnTγT√

T
) (36)

Here, we leverage the fact βJ,T ∼ O(lnT ). Then, there exists a C̄ > 0 such that

−ϵ ≤ C̄

√
lnTγT√

T
(37)

By taking C = − 1
C̄

,

Cϵ ≤
√
lnTγT√

T
(38)

with probability at least 1 − δ. For now, we have created a necessary condition for infeasibility
not being declared until T steps conditioning on problem itself being infeasible. By argument of
contradiction: if infeasibily is never declared, there must exist a C < 0 such that (38) is true for all
T ∈ N+. However, since limT→∞

√
lnTγT√

T
= 0, such C would never exist.

Theorem 4 (Declaration of Infeasibility in the Feasible Case). With assumptions in Lemma 1, if the
problem is feasible, i.e.

max
x∈X

min
j∈[c]

gj(x) ≥ 0 (39)

then, in each iteration, x′
t = argmaxx∈X minj∈[c] wj(x) in Algorithm 1 is feasible for set

{x|wi,t(x) ≥ 0,∀i ∈ [c]}, which is equivalent to infeasibility not being declared, with probabil-
ity ≥ 1− δ.

Proof of Theorem 4. Until the T th iteration, given δ ∈ (0, 1) from Lemma 1, we conclude that the
following holds with probability at least 1− δ

wj,t(x) ≥ gj(x) (40)
∀x ∈ X,∀t ∈ {1, ..., T},∀i ∈ [c]

then, it follows that
max
x∈X

min
j∈[c]

wj,t(x) ≥ max
x∈X

min
j∈[c]

gj,t(x) ≥ 0 (41)

with probability at least 1 − δ. Then, let x′
t = argmaxx∈X minj∈[c] wj,t(x), we have wj,t(x

′
t) ≥

0,∀j ∈ [c].

12



C.2 Lemmas

Lemma 1 (Lemma 5.1, Srinivas et al. [2009] ). Let cardinality of X, |X| < ∞. Then, ∀δ ∈ (0, 1)

|µi,t−1(x)− fi(x)| ≤ β
1/2
i,t σi,t−1(x) (42)

|µ′
j,t−1(x)− gj(x)| ≤ β

1/2
j,t σj,t−1(x) (43)

∀x ∈ F,∀i ∈ [m],∀j ∈ [c],∀t ∈ {1, ..., T}
with probability ≥ 1−δ. µi,t−1, µ

′
j,t, σi,t−1, σj,t−1 and σ, are defined in B.5. µ0,0 and σ0,0 are prior

mean and standard deviation. βi,t, βj,t are defined as 2 log ((m+ c)|X|πt/δ) ,∀i ∈ [m], j ∈ [c].
And πt =

π2t2

6 .
Lemma 2 (Modified version of Theorem 7 in Golovin and Zhang [2020]). In our algorithm, suppose
sθ(y) is L-Lipschitz for all possible θ. With conditions in Lemma 1, the expected cumulative regret
(10) is bounded

E[RC(T )] = O(Lm[γTT ln(T )]
1/2) (44)

with probability at least 1− δ for any δ ∈ (0, 1). where γT is an upper bound for γk,T .

Proof of Lemma 2. The unconstrained and definite version of this lemma was directly used in
Golovin and Zhang [2020] and was proved by Paria et al. [2019]. Define Ft = {x | wj,t(x) ≥
0,∀j ∈ [c]}. Let’s pick x∗

t = argmaxx∈Ft
sθt(F (x)) and xt = argmaxx∈Ft

sθt(Ut(x)) in our
problem. Then it follows that

E[RC(T )] = E

[
T∑

t=1

(
max
x∈F

sθt(F (x))− sθt(F (xt))

)]
(45)

≤ E

[
T∑

t=1

sθt(Ut(xt))− sθt(F (xt))

]
︸ ︷︷ ︸

B1

(46)

+ E

[
T∑

t=1

sθt(F (x∗
t ))− sθt(Ut(x

∗
t ))

]
︸ ︷︷ ︸

B2

(47)

(46) holds if sθt(Ut(xt)) − sθt(Ut(x
∗
t )) > 0 and sθt(F (x∗

t )) −maxx∈F sθt(F (x)) > 0. The first
condition is always true by the definition of xt. From Lemma 1, we know wj,t(x) ≥ gj(x),∀j ∈
[c], t ∈ {1, ..., T},x ∈ X with probability at least 1− δ, then Ft ⊂ F with probability at least 1− δ,
which means the second condition holds with the same probability.

Given (46), for finite X: Lemma 3 in Paria et al. [2019] shows

B1 ≤ O(L
[
m2TβT γT

]1/2
) +O(Lm

T∑
t=1

exp(−βi,t

2
)) (48)

where βT is an upper bound for βi,T ,∀i ∈ [m]. Lemma 2 in Paria et al. [2019] shows

B2 ≤ O(Lm

T∑
t=1

∑
x∈X

exp(−βi,t

2
)) (49)

The final bound comes from the fact that βi,t ∼ O(ln t) and exp(
−βi,t

2 ) ∼ O( 1
t2 ) and that∑T

t=1
1
t2 = π2

6 .

Lemma 3 (Lemma 4.1 in Xu et al. [2023]). With the conditions in Lemma 1. With probability 1− δ,

vj,t ≤ 2β
1/2
j,t σj,t−1(xt), ∀j ∈ [c],∀t ∈ {1, ..., T} (50)

Lemma 4 (A corollary of Lemma 5.4 in Srinivas et al. [2009]). ∀j ∈ [c], with x1, ...,xT selected
by our algorithm,

T∑
t=1

2β
1/2
j,t σj,t−1(xt) ≤ 2

√
TMβj,T γj,T (51)

where M = 1
log(1+σ−2) , σ2 is the variance of the gaussian noise defined in Definition B.5.
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D Discussion of Continuous and Compact Search space

D.1 Assumptions

We now consider X to be continuous and compact. WLOG, X := [0, 1]d. We keep the assumptions
for GPs in Assumption 1.

D.2 Generalized CMOBO

In order to provide theoretical justification for our algorithm CMOBO with continuous X, we pro-
vide a modified algorithm which is theoretical sound for both finite and infinite search space.

In each step t, we consider X̄t as a finite discretization of X. X̄t constains points evenly distributed
in X with τ−1

t being the distance between any two adjacent points in X̄t. Denote [x]t as the closest
point in X̄t to x.

We also re-define the upper and lower confidence bounds for fi and gj in Definition B.7.

Definition D.1 (Modified confidence bound). for i ∈ [m], j ∈ [c] define

li,t(x) = µi,t−1([x]t)− β
1
2
i,tσi,t−1([x]t)−

1

t2
(52)

pj,t(x) = µ′
j,t−1([x]t)− β

1
2
j,tσj,t−1([x]t)−

1

t2
(53)

ui,t(x) = µi,t−1([x]t) + β
1
2
i,tσi,t−1([x]t) +

1

t2
(54)

wj,t(x) = µ′
j,t−1([x]t) + β

1
2
j,tσj,t−1([x]t) +

1

t2
(55)

µi,t−1, µ
′
j,t, σi,t−1, σj,t−1 are defined in B.5. µ0,0 and σ0,0 are prior mean and

standard deviation. βi,t = 2 log
(
2πt(m+ c)/δ [dtbi log (2dai(m+ c)/δ)]

d
)

, βj,t =

2 log
(
2πt(m+ c)/δ [dtbj log (2daj(m+ c)/δ)]

d
)

for some constants ai, aj , bi, bj > 0 and πt =

π2t2

6 . τt = dt2B
√
log(2dA(m+ c)/δ). Detailed definition of A,B are in Paria et al. [2019], B.2.

We use a new lemma with equal function to Lemma 1.

Lemma 5 (Lemma 5.7 in Srinivas et al. [2009]). Under the assumptions stated in Section D.1 (the
following discussions are also based on these two assumptions), ∀δ ∈ (0, 1),

|µi,t−1([x]t)− fi(x)| ≤ β
1
2
i,tσi,t−1([x]t) +

1

t2
(56)

|µ′
j,t−1([x]t)− gj(x)| ≤ β

1
2
i,tσj,t−1([x]t) +

1

t2
(57)

∀x ∈ F,∀i ∈ [m],∀j ∈ [c],∀t ∈ {1, ..., T}

with probability ≥ 1− δ. The parameters follow D.1.

We will show a modified Lemma 2 still holds with Definition B.7 replaced by Definition D.1 and
Lemma 1 replaced by Lemma 5.

Lemma 6 (A modified version of Lemma 2). In our algorithm, suppose sθ(y) is L-Lipschitz for all
possible θ. With the conditions in Definition D.1, Lemma 5. For δ ∈ (0, 1), the expected cumulative
regret (10) is bounded with probability at least 1− δ

E[RC(T )] = O(Lmd1/2[γTT ln(T )]
1/2) (58)

where γT is defined in Definition B.6.
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Proof of Lemma 6. We take a different approach to split the target into three parts:

E[RC(T )] = E

[
T∑

t=1

(
max
x∈F

sθt(F (x))− sθt(F (xt))

)]
(59)

≤ E

[
T∑

t=1

sθt(Ut(xt))− sθt(F (xt))

]
︸ ︷︷ ︸

B1

(60)

+ E

[
T∑

t=1

sθt(F ([x∗
t ]t))− sθt(Ut([x

∗
t ]t))

]
︸ ︷︷ ︸

B2

(61)

+ E

[
T∑

t=1

sθt(F (x∗
t ))− sθt(F ([x∗

t ]t))

]
︸ ︷︷ ︸

B3

(62)

if sθt(Ut(xt)) ≥ sθt(Ut(x
∗
t )) and sθt(Ut(xt)) ≥ sθt(Ut([x

∗
t ]t)) and maxx∈Ft sθt(F (x)) ≥

maxx∈F sθt(F (x)). The first two conditions are definitely true by definition of xt and x∗
t in The-

orem 2. The last one holds if F ⊂ Ft. With a similar argument, that still holds with probability at
least 1− δ. Take βT as an upper bound of βi,T ,∀i ∈ [m]. By Lemma 3 in Paria et al. [2019],

B1 ≤ O(Lm (TβT γT )
1/2

) +O(Lm

T∑
t=1

exp(−βi,t/2)) (63)

By Lemma 2 in Paria et al. [2019]

B2 ≤ O(Lm

T∑
t=1

exp(−βi,t/2)) (64)

By result in Ghosal and Roy [2006], if kernel k is stationary and 4th-differentiable, fi, gj ∼
GPi,GPj respectively. ∃ai, bj > 0 s.t. ∀k ∈ {1, ..., d},∀Q > 0

P
(
sup
x

∣∣∣∣ dfidxk

∣∣∣∣ > Q

)
≤ ai exp

(
(−Q/bi)

2
)

(65)

P
(
sup
x

∣∣∣∣ dgjdxk

∣∣∣∣ > Q

)
≤ aj exp

(
(−Q/bj)

2
)

Here we define A,B in Lemma 5: A = max
{
supi∈[m] ai, supj∈[c] aj

}
, B =

max
{
supi∈[m] bi, supj∈[c] bj

}
. From equation 16 of Paria et al. [2019]

B3 ≤ O(

T∑
t=1

Lm
dAB

√
π

2τt
) (66)

With Lemma 6, we can follow the idea of proof of Theorem 1 to bound the cumulative HV regret
with continuous and compact search space by O(m2d1/2[γTT lnT ]1/2). Note that the cumulative
HV regret bound for continuous and compact search space additionally considers the size of instance
vector d, which arises from a dynamic discretization density τt defined in Definition D.1.

E Supplementary Experimental Results
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(a) Penicillin Function

(b) Toy Function

(c) Branin-Currin Function

(d) Caco-2++

(e) ESOL+

Figure 2: CMOBO performance on other objectives. From left to right: Hypervolume, Cumulative
Hypervolume Regret, Cumulative Constraint Violation, Constraint Regret. Curves are shaded by
area between ± 0.1 standard error.
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