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Abstract

Attention has been widely adopted in many state-of-the-art deep learning models. While the
significant performance improvements it brings have attracted great interest, the theoretical
understanding of attention remains limited. This paper presents a new perspective on
understanding attention by showing that it can be seen as a solver of a family of estimation
problems. Specifically, we explore a convex optimization problem central to many estimation
tasks prevalent in the development of deep learning architectures. Instead of solving this
problem directly, we address its Fenchel dual and derive a closed-form approximation of
the optimal solution. This approach results in a generalized attention framework, with the
popular dot-product attention used in transformer networks being a special case. We show
that T5 transformer has implicitly adopted the general form of the solution by demonstrating
that this expression unifies the word mask and the positional encoding functions. Finally,
we discuss how these new attention structures can be practically applied in model design
and argue that the underlying convex optimization problem offers a principled justification
for the architectural choices in attention mechanisms.

1 Introduction

Attention-based deep neural networks are now integrated into cutting-edge language models that have revo-
lutionized a broad range of tasks: machine translation (Bahdanau et al., 2014; Luong et al., 2015), sentiment
classification (Wang et al., 2016), image captioning (Xu et al., 2015) and unsupervised representation learn-
ing (Devlin et al., 2019), etc. Especially, attention plays a pivotal role in the construction of the transformer
architecture (Vaswani et al., 2017), which has had a profound impact on the deep learning field.

Despite great empirical success, the design principle of attention has not been well studied in the literature,
and there is no in-depth understanding of why attention-based models (e.g. BERT (Devlin et al., 2019)) have
significantly better performance than other models. This gap in understanding limits practitioners’ ability
to effectively employ attention layers, posing challenges in developing new attention-based architectures.

In this paper, we offer a new perspective for understanding attention by showing that it is in fact a solver for
a certain type of optimization problem that corresponds to an inference task. We give several examples, all of
which can be characterized as follows: given 1) an unreliable estimate of the mean of an unknown distribution
p on Rd and 2) a preference distribution u on Rd encoding beliefs on p’s selection, the inference task is to
get a better estimate of p’s mean given its unreliable estimate and u. We derive a convex optimization
problem that is abstracted from the task and solve it by instead solving its Fenchel dual (Rockafellar, 1970,
p.104). Remarkably, the derived expression of the improved estimate of p gives a generalized attention
structure whose special case is equivalent to the popular dot-product attention (Luong et al., 2015) that is
also applied in the transformer network (Vaswani et al., 2017). In addition, we show that our generalized
attention expression has been implicitly adopted by T5 transformer (Raffel et al., 2020) as the expression
unifies the concept of word masks and its positional encoding functions. Extra examples are given to show
how the generalized attention structures can be used in practice, and a novel optimal transport (OT)-based
attention is derived to show how our framework helps develop more general attention structures. Additionally,
experiments are performed, which validate our theoretical work.
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2 Related work

Since 2019, several authors have investigated the properties and working mechanisms of attention. This series
of works mainly addresses whether the attention mechanism can serve as a proxy of saliency (Michel et al.,
2019; Voita et al., 2019; Jain & Wallace, 2019; Wiegreffe & Pinter, 2019; Serrano & Smith, 2020; Vashishth
et al., 2020). Most of these works obtain insights into the attention mechanism by performing empirical
studies. The related methods include analyzing the behaviours of trained attention-based models (Clark
et al., 2019), pruning a few heads, analyzing the effects of altering the attention weights (Michel et al., 2019;
Voita et al., 2019), or a mixture of these (Jain & Wallace, 2019; Vashishth et al., 2020).

Beyond empirical understanding, theoretical results by Brunner et al. (2019) and Hahn (2020) indicate
that self-attention layers are not identifiable, meaning multiple combinations of attention weights can yield
equally good predictions. This non-uniqueness complicates interpretability. Additionally, Tsai et al. (2019)
reformulated attention using kernel theory, showing it can be viewed as applying a kernel smoother over
the inputs. Recent studies have also explored the expressivity of attention (Dong et al., 2021; Baldi &
Vershynin, 2022; Mahdavi et al., 2024). To understand the underpinning inductive bias of attention, Sahiner
et al. (2022) have investigated convex-relaxations through the lens of convex duality by replacing the softmax
function with element-wise nonlinear functions. While our work views the problem through a similar lens,
the framework covers the unaltered attention architecture and focuses more on the design motivation of
attention and its generalization.

Another important approach to understanding attention is to analyze its asymptotic behaviour when the
number of heads and the network width approach infinity (Yang, 2019; Hron et al., 2020). In this limit, the
entire network behaves as a Gaussian process (Lee et al., 2018) allowing for closed-form characterizations
not available in the finite regime. Since 2021, several theoretical works have explored attention outside
this asymptotic regime. Lu et al. (2021) set up a simple attention-based classification model and derive
a closed-form relationship between the word’s embedding norm and the product of its key and the query.
They empirically show that such a relationship also exists in a more practical configuration. Similarly, Jelassi
et al. (2022); Li et al. (2023); Deora et al. (2024) characterize optimization and generalization properties for
gradient-descent training. Ramsauer et al. (2021) established an equivalence between attention and a newly
proposed Hopfield network with continuous states, demonstrating that the new Hopfield network’s update
rule is equivalent to the attention mechanism used in transformers (Vaswani et al., 2017).

3 Setup of a design problem

We consiser a prediction task: given an input X, predict an output quantity Y = (Y (1), Y (2), . . . , Y (K)),
including K components. We will present several machine-learning problems and show they can be unified
and abstracted into a mean estimation problem. Specifically, the goal is to estimate the mean of a distribution
p, given a prototype of p and a noisy estimate of the discrepancy between their means. By framing the
problem in this way, we can devise a unified convex optimization framework to address these various scenarios.
The solutions derived under this framework yield attention-like structures, which can be used to tackle the
original prediction tasks. Furthermore, plugging in various functions for closeness constraints, we recover
the original dot-product attention (Sec 6) and derive a variant with added properties (Sec 9).

Translation Problem (TP). In this problem, the input X is a sentence, or a sequence of words, in the
source language. Output Y is the sequence of words in the target sentence, where Y (k) is the kth word.

Image Captioning (IC). In this problem, the input X is a raw image and output Y is the sequence of
words in the caption, where Y (k) is the kth word.

Filling in the Blanks Task (FB). This task has been used to train the BERT model (Devlin et al., 2019).
The input X is a sequence of words with a certain percentage of words masked. The output Y are the
predicted masked words, where Y (k) denotes the kth masked one.

The objective of any of these problems and that we address in this paper is to learn a function F , mapping
from the space of X to the space of Y so that Y = F(X). We will denote by F (k) the part of F responsible
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Figure 1: A conceptual graph of the deep
learning model that we work with. The block
g(k) is the one we will investigate. (a) shows
the general structure of a sequence generation
model, with F (k) responsible for the k-th out-
put. Our focus is on the architecture in (b),
where F (k) contains a component g(k) that in-
fers a distribution’s mean h(k) based on its
noisy estimations from two aspects: its pref-
erence (prior) distribution u(k) and a noisy es-
timation of its mean shift z(k) from u(k)’s. We
show that g(k) should implement the expres-
sion in (c), which includes the dot-product at-
tention as a special case (Luong et al., 2015).

for predicting Y (k) (Fig 1a), namely, Y (k) = F (k)(X). Although we here express F as separate functions
(F (1), F (2), . . . , F (K)), we note that it is in fact possible that different F (k)’s share some component in
common. Without loss of generality, we now focus on the design of F (k).

3.1 The Design Problem

In deep learning research, a typical approach to solving the three running tasks is first to use a neural
network to extract vector representations {t(k)

1 , t(k)
2 , . . . , t(k)

M } ⊆ Rd of X, which are referred as templates.
Collectively, we will denote the set {t(k)

1 , t(k)
2 , . . . , t(k)

M } of templates by T(k).1 (If X are words, typical choices
of neural network include RNN, LSTM, etc. If X is an image, a typical choice is CNN.) Let A ⊆ Rd denote
the space containing all templates. For each Y (k), some mechanism g(k) is needed to adaptively combine the
representations of X to obtain h(k), which is then fed into a classifier f

(k)
out to predict Y(k).

To obtain an idea of how to produce h(k), consider TP task, where h(k) corresponds to a vector (also known
as embedding) representing the k-th word in the target sentence, and T(k) = {t(k)

1 , t(k)
2 , . . . , t(k)

M } are the
ones of the source sentence.2 Then, the inference of h(k) corresponds to combining the semantic meanings
encoded in T(k) to produce the k-th word embedding in the target sentence. This can be simply modelled as

h(k) =
∫

Ω
t p(k)(t) dt s.t. p(k)(t) ≥ 0 for all t ∈ T(k) and

∫
Ω

p(k)(t) dt = 1, (1)

where Ω = T(k). That is, h(k) is a convex combination of t ∈ T(k), or equivalently, the mean of an unknown
distribution p(k) on T(k). For generality, our following discussion extends the support of p(k) to all possible
templates by setting Ω = A. In Sec 9, we show that this extension enables optimal transport-based attention,
taking into account words having similar embeddings in T(k). That is, even if a word is not present in the
source sentence, its embedding will still be optimized if it has a similar embedding in T(k).

In practice, the cardinality of A may be huge or infinite; therefore, it is important to design a mechanism
that allows the users to inject prior knowledge to guide the production of h(k). For example, in TP task, A
would be the set of all word embeddings, which could contain more than 10K elements. However, h(k) should
largely depend on the templates associated with the words (in the input sentence) having similar locations
to the k-th word in the target sentence. If we could effectively inject this prior information, the inference
task would be largely simplified. One natural way to do so is to use a neural network module f

(k)
pref to propose

a prototype of p(k), referred to as the preference distribution u(k), and let p(k) be close u(k). Specifically
u(k) puts non-zero probability masses on templates t(k)

1 , t(k)
2 , . . . , t(k)

M , and their probabilities are respectively
u

(k)
1 , u

(k)
2 , . . . , u

(k)
M (which sum to 1). For TP, u(k) is expected to have larger values for the words in a similar

1We add the superscript k to note that the inference of Y (k) does not necessarily share the set of templates.
2We mainly use TP to motivate the design and discussion. In Sec 3.2, we show the same ideas also apply to IC and FB.
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Figure 2: The model architectures of the three running examples. For the f
(k)
evd in (a) and (b), the dashed

links exist throughout the training and are replaced by the dotted ones in the generation stage.

location of the k-th word of the target sentence. The preference distribution u(k) is considered as a good
approximation of p(k), in the sense that the support of p(k) is contained in the set T(k) of templates. Note
that if Rd is the word embedding space for a large vocabulary, and if the size M of the template set T(k) is
relatively small, then restricting the support of p(k) to be within T(k) imposes a strong constraint on p(k).
On the other hand, u(k) is not a sufficiently accurate approximation of p(k), in the sense that u(k) may assign
probabilities to T(k) somewhat differently. For example, in TP, the choice of Y (k) depends on both X and
the already generated words Y (i<k).3 While u(k) provides a strong prior that p(k) should mainly focus on
the words appearing in the source sentence, it is inherently tough for u(k) to capture the semantic evolution
in Y (i<k). The difficulty shifts the mean µ(k) of u(k) from the mean h(k) of p(k).

To alleviate the problem, we need another piece of information z(k) ∈ Rd that is generated by another
network module f

(k)
evd and provides information regarding the mean shift. In TP, z(k) depends on Y (i<k).)

In particular, we assume that z(k) is a noisy version of the shift, more precisely,

z(k) = h(k) − µ(k) + ϵ, (2)

where ϵ ∼ N (0, σ2I) is a spherical Gaussian noise in Rd with covariance σ2I. We refer to z(k) as the evidence.

We summarize the problem setup in Fig 1b. Then the design problem is to construct a function, or a network
block, g, which infers the unknown distribution p(k) and hence its mean h(k) based on the evidence z(k) and
the preference distribution u(k).

3.2 Additional examples

Having demonstrated how the setup applies to the translation problem (TP), we will now illustrate its
applicability to the other two examples.

Image Captioning (IC). The caption generation model in Fig 2b has a similar architecture adopted by Xu
et al. (2015), where f

(k)
pref extracts templates from the image using a CNN. In this task, a word’s position

is independent of the object’s location, so all CNN-extracted templates have the same preference weight.
3We assume the sentence generation process is Markovian. More details are given in Sec 3.2.
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Similar objects in the image have similar CNN features. Allowing non-T templates to influence h(k) could
introduce irrelevant information, harming word inference accuracy. To improve h(k) estimation, we constrain
p(k) to have support only within u(k). As generation progresses, h(k) should evolve to provide relevant image
information for the next word. This semantic evolution is captured by z(k) = f

(k)
evd, which predicts the shift

of µ(k) from h(k). So µ(k) + z(k) estimates h(k) and should be close to it, as should u(k) and p(k).

Filling in the Blanks Task (FB). For filling-in-the-blank tasks, consider a BERT-like model (Fig 2c)
where f

(k)
pref and f

(k)
evd share transformation layers common to NLP tasks. f

(k)
pref applies a linear map V to the

output sequence of the previous layer to form the template set T supporting u(k), with preference weights
specified by positional encoding. Concurrently, z(k) = f

(k)
evd estimates the shift of h(k) from the mean µ(k)

due to local variation. As before, we need µ(k) + z(k) close to h(k) and p(k) close to u(k). Notably, the
formulation of the problem is based on the assumption that the network modules f

(k)
evd and f

(k)
pref are fixed

and generate z(k) and u(k) satisfying the above-assumed properties. In reality, f
(k)
evd and f

(k)
pref are obtained

via training. However, we argue that if g is made to satisfy our design objective, we can at least interpret
f

(k)
evd and f

(k)
pref obtained from training as serving to produce z(k) and u(k) with our desired properties.

4 Formulation of an optimization problem

The discussion made in the previous section implies that the key optimization problem we are about to focus
on should ensure

1. h(k) is not too far from µ(k) + z(k), where h(k) is constructed by p(k) according to (1) and µ(k) is
the mean of the preference distribution u(k).

2. p(k) is close to u(k) while p(k)’s support is a subset of u(k)’s.

These two desiderata prompt us to optimize:

min
p

α

2

∥∥∥∥(µ + z) −
∫
Rd

ap(a) da
∥∥∥∥2

+ K(p, u) (3)

where α > 0 is responsible for the relative strength of the two terms (and can be interpreted as the reliability
of µ + z), K(p, u) denotes the KL divergence of u from p.4 By definition, K(p, u) has a finite value if and
only if p has zero values outside the support of u. Thus, both requirements in the second desideratum are
satisfied by using the KL divergence as a measure for the closeness of p and u. Let p̃ be the minimizer of
(3). The estimate of h is

ĥ =
∫
Rd

ap̃(a) da. (4)

Naturally, this optimization problem can be derived from three different, though related perspectives. Below,
we present a less commonly known view that demonstrates how α affects the optimal solution from a hard
constraint perspective. The maximum likelihood and Bayesian perspectives are included in Appx B.

A Maximum Entropy on the Mean Perspective. Consider a problem that seeks a distribution p such
that the expectation

∫
Rd ap(a) da is not far from µ+z. Namely, we require

∥∥(µ + z) −
∫
Rd ap(a) da

∥∥2 ≤ 1
2α .

Given z, there are infinitely many p’s that satisfy the constraints, making it difficult to select the “best” p.
A technique in information theory, maximum entropy on the mean (MEM) (Rioux et al., 2020; Gamboa,
1989), addresses this by selecting the best guess of the ground truth p∗ that satisfies the constraint and
minimizes the KL divergence:

p̃ = argmin
p

K(p, u) s.t.
∥∥∥∥(µ + z) −

∫
Rd

ap(a) da
∥∥∥∥2

≤ 1
2α

,

which also minimizes (3) according to (Rioux et al., 2020, Eq (18)) and (Borwein & Lewis, 1992, Cor 4.9).
4As we will focus on a single step of sequence predictions, we simplify our notations by omitting superscript (k) in the rest

of our discussions.
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5 A motivating example to find the optimal solution

To better illustrate our method for solving (3), we first examine a special case where the preference distri-
bution u follows a spherical Gaussian distribution, specifically u ∼ N (µ, Id). In this scenario, the convex
problem can be solved in closed form. The derivation provides valuable insights into how the problem can
be approached in a general context, as we will demonstrate in Sec 6.

Let b = µ + z serve as an unreliable observation of hp. Rioux et al. (Rioux et al., 2020) prove, via Fenchel
duality (Rockafellar, 1970, p.104) that the minimizer p∗ of (3) takes the form

p∗(a) = u(a) exp⟨a, λ∗⟩∫
u(a′) exp⟨a′, λ∗⟩ da′ , (5)

where
λ∗ = argmax

λ∈Rd

⟨b, λ⟩ − 1
2α

∥λ∥2 − log
∫

u(a) exp⟨a, λ⟩ da. (6)

Note that
∫

u(a) exp⟨a, λ⟩ da = exp(⟨µ, λ⟩ + 1
2 ∥λ∥2) as it is the moment generating function (MGF) of

u ∼ N (µ, Id). Substituting the expression into (6) followed by setting the derivative with respect to λ to
zero yields λ∗ = α

α+1 (b − µ). By (5), p∗(a) ∝ exp(− 1
2 ∥a − µ∥2 + ⟨a, λ∗⟩) ∝ exp(− 1

2 ∥a − (µ + λ∗)∥2).
Substituting λ∗ = α

α+1 (b − µ) into it implies that p∗ follows a Gaussian distribution N ( 1
1+α µ + α

1+α b, Id).
Thus, our estimate of hp is 1

1+α µ + α
1+α b.

The value α in (3) can also be considered as a measure of the reliability of the noisy observation b, where
a smaller α implies a less reliable b. Then, the estimate of hp should be less affected by b as α approaches
zero, which is well captured by our derived expression 1

1+α µ + α
1+α b. We will also see this relationship in

a more general setting in our subsequent discussions. While a more complicated analysis is involved, the
underlying principles are essentially the same.

In Sec 6, we focus on a similar optimization problem that estimates hp assuming that u is instead a discrete
distribution. By solving the optimization problem, we derive a closed-form approximation for the estimate
of hp, via Fenchel duality. The approximation then gives a generalized attention layer structure as shown in
Fig 1. A special case of it is equivalent to the familiar dot-product attention (Luong et al., 2015) that is also
adopted in transformers (Vaswani et al., 2017). Moreover, we will show that T5 transformer (Raffel et al.,
2020) implicitly adopts our generalized attention expression.

6 Attention as inference via Fenchel duality

Now we present how to solve (3) with general u, where the solution yields the standard attention mechanism.
Rioux et al. proved that the optimization problem stated in (3) has the following Fenchel dual:
Theorem 1. The dual of (3) is given by

max
λ∈Rd

{
⟨λ, µ + z⟩ − 1

2α
∥λ∥2 − log M(λ)

}
, (7)

where

M(λ) =
∫
Rd

u(a) exp⟨a, λ⟩ da. (8)

Given a maximizer λ∗ of (7), one can recover the minimizer p̃ of (3) via

p̃(a) = u(a) exp⟨a, λ∗⟩∫
Rd u(a′) exp⟨a′, λ∗⟩ da′ . (9)
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By Theorem 1, the estimated h defined in (4) can be re-written as

ĥ =
∫
Rd

ap̃(a) da =
∫
Rd

a u(a) exp⟨a, λ∗⟩∫
Rd u(a′) exp⟨a′, λ∗⟩ da′ da, (10)

where λ∗ is a maximizer of (7).

In general, λ∗ does not have a closed-form expression in terms of α, u and z, and a standard paradigm is
to search for it using gradient ascent-based methods. In this paper, we will not search for λ∗ in this way;
instead, we will derive a closed-form expression to approximate it. Remarkably, this takes the form of the
generalized attention presented in Fig 1. Note that M(λ) in (8) equals Eu[exp⟨W, λ⟩], the expectation of the
random variable exp⟨W, λ⟩ where W has the probability distribution u. The expectation is just the moment
generating function (MGF) of W , and the value log M(λ) is called the cumulant of W (McCullagh, 1987,
p.26), which has an expansion (McCullagh, 1987, (2.4))

log M(λ) = ⟨µ, λ⟩ + 1
2 ⟨λ, Σλ⟩ + o(∥λ∥2), (11)

with µ=
∫

au(a) da and Σ=
∫

(a − µ) (a − µ)T
u(a)da respectively denote the expectation and the variance-

covariance matrix of W . Note that the expansion implicitly assumes that random variable W following
distribution u has bounded moments. (Derivation of (11) is given in Appx A.)

Now we assume that α is small and we argue that this assumption is justified in practice. For instance, in
the translation task, all words in the dictionary can serve as candidate templates, which could be more than
10,000, but u reduces this size to the length of the source sentence (usually less than tens of words). The
inference of p should strongly anchor around this prior information; consequently the information provided
by z should weigh less. On the other hand, z can hardly provide an accurate estimate of the mean shift, since
the generation of z is often ignorant of the templates selected by u (for example, in the example translation
and image captioning models) or generated by a low-capacity module (as in the example filling-in-the-blank
model). For these reasons, one should de-emphasize the constraint imposed by z and thus choose a small α.

When α is picked to be small enough (see (7)), the optimization of λ gets a large penalty on its L2 norm
and thus, ∥λ∗∥ is close to zero. Then, by (11), we have

log M(λ∗) ≈ ⟨µ, λ∗⟩ + 1
2 ⟨λ∗, Σλ∗⟩. (12)

Note that the approximation becomes exact for any α > 0 if u is Gaussian, which is the case of the motivating
example in Sec 5. Substituting (12) into (7) followed by setting the derivative with respect to λ to zero
yields

λ∗ = α(Id + αΣ)−1z, (13)

where Id denotes the d × d identity matrix.5 As α is assumed close to zero, (13) is further reduced to

λ∗ = αz. (14)

Plugging the expression into (10) gives the result stated as follows:
Theorem 2. Given u with bounded moments, for a small enough α > 0, the estimated h defined in (4) can
be approximated by

ĥ =
∫
Rd

a u(a) exp(α⟨a, z⟩)∫
Rd u(a′) exp(α⟨a′, z⟩) da′ da. (15)

For the case that u is a discrete distribution with support {t1, t2, . . . , tn} and the preference probability
{u1, u2, . . . , un}, (15) becomes simply

ĥ =
n∑

i=1
ti

ui exp (α⟨ti, z⟩)∑n
j=1 uj exp (α⟨tj , z⟩)

. (16)
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Figure 3: The approximation of ĥ for different choices of α. The dots in orange compose the support of
discrete u with the preference weights labelled above. The dark blue arrow starting from the mean µ of u
denotes the evidence z. The red square marks the ĥ constructed by (10) with the λ∗ maximizing (7), while
the purple one marks the ĥ approximated by (16). As we can observe, (16) gives a precise approximation of
ĥ when α is sufficiently small.

In Fig 3, we set d = 2 and visualize the approximation of h for various selections of α. We observe that, as α
decreases, (16) outputs a better approximation of ĥ. Besides, as a decreasing α implies a less reliable µ+z, h
is less affected by µ+z and gets close to µ. Note that our results do not suggest that α should be arbitrarily
close to zero for a perfect approximation (which leaves z useless). Fig 3 shows a good approximation is
achieved when α = 0.5, 1. And for these two choices, ĥ still significantly deviates from µ (corresponding to
the case when α = 0 and z is useless). Thus, z still largely affects the final estimation results.

The derived solution in (16) aligns with the original attention mechanisms discussed by Bahdanau et al.
(2014) and Luong et al. (2015), where u is set to a uniform distribution. These models have incorporated
most of the crucial components of the modern transformer architecture. In Sec 8, we will demonstrate that
(16) also extends to more contemporary architectures, such as the BERT model (Devlin et al., 2019) and T5
(Raffel et al., 2020). Furthermore, we will show that a good approximation can be achieved in practice by
comparing the accurate solution with its approximated counterpart used in these pretrained models.

7 Discussion

In Section 6, we derived an alternative expression of ĥ defined in (4) by solving the Fenchel dual of the
optimization problem (3). Although the expression is not in closed form, as we are only interested in the
case when α is small, a closed-form approximation of ĥ is derived in Theorem 2 and reduced to the form
stated in (16) when considering a discrete distribution u.

As we pointed out, the block g in Fig 2a, Fig 2b and Fig 2c is expected to find the inferred p̃ minimizing (3)
followed by plugging it into (4) to construct ĥ. Thus, one can complete the architecture designs of the three
running examples by replacing g with a network layer implementing (16), namely, the structure in Fig 1c.

The relationship between the optimal solution and attention models. Remarkably, the expression
stated in (16) gives a generalized attention block. In particular, based on our framework, researchers can
customize the implementations of f

(k)
evd and f

(k)
pref to generate z and u and feed them into (16) to get an

attention-like network architecture.6

For instance, by setting ui = 1
n for all i, the expression is equivalent to the well known dot-product attention

(Luong et al., 2015), which is also applied in the transformer network (Vaswani et al., 2017). The equivalence
of the expression of ĥ and the dot-product attention layer tells us: (a) by applying a dot-product attention
layer in a model, we essentially ask the model to perform an optimization task defined in (3) and construct the
output according to (4). (b) the derivation of h depends on two relatively independent pieces of information:
a preference distribution given the global information and an estimate of the output’s deviation from the
preference distribution’s mean according to some local information. This suggests that the design of attention-
based model can be decomposed into two parts that respectively estimate these two values.

5When Σ = Id, (13) becomes λ∗ = α(Id + αId)−1z = α
1+α

z. By (2), b = h + ϵ = z + µ. Thus, λ∗ = α
1+α

(b − µ) recovers
the expression of λ∗ in the motivating example.

6Potential selectionss of f
(k)
evd and f

(k)
pref includes constant functions, fixed formulas and neural networks.
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The model consisting of a stack of attention layers. Although our discussion focuses on the case that
contains a single attention layer, any attention layer L in an attention stack fits our framework (see Fig 1).
In particular, all the attention layers closer to the input X than L can be grouped into the functions fpref
or fevd. For those layers that take the current layer’s output as input, we can group them into fout, where
c may contain the outputs of other attention layers working in parallel.

Multi-head attention. For clarity, our derivation does not account for multi-head attention scenarios. In
essence, an n-head attention structure can be viewed as having n distinct estimations of mean shift estimates.
Consequently, the outputs of n-head attention can be interpreted as the solutions to n underlying convex
problems, which are subsequently stacked together at the end of the inference processes.

T5 transformer implicitly adopts the generalized attention structure. Recent studies in NLP have
shown that T5 (Raffel et al., 2020) can achieve state-of-the-art performance for many NLP benchmarks, in-
cluding text summarization, classification, question answering, etc. While their transformer implementations
are quite similar to the original transformer architecture (Vaswani et al., 2017; Devlin et al., 2019), they
adopt trainable relative position embeddings to replace the sinusoidal position signals.7 The modification
provides the model with extra flexibility to encode the positional information with little computational cost.

We will see that in comparison to the original transformer implementation, T5 transformer can be seen as a
natural realization of the generalized attention in (16), where the preference weights u unifies the concepts of
word masks and T5’s positional encoding functions. Thus, the usefulness and the validity of our framework
are well-supported by the state-of-the-art performance of T5 in many NLP tasks (Raffel et al., 2020).

Consider the running example: filing in the blanks, with the preference distribution

u(ti) =
{

0 if the ith word is masked
exp(bj−i)/Z otherwise,

(17)

where Z is a normalizing constant and bj−i is a trainable scalar that only depends on the relative position
of word i and word j (which is the kth masked word that we are inferring). Substituting such u into (16)
with α = 1 yields

ĥ =
n∑

i=1
ti

exp (⟨ti, z⟩ + bj−i + 1masked(i))∑n
l=1 exp (⟨tl, z⟩ + bj−l + 1masked(l))

, (18)

where 1masked(i) is an indicator function that equals −∞ if word i is masked and zero otherwise. The
expression in (18) has the same structure as that adopted in T5 transformer, where the indicator function
serves as the mask function to prevent the model from assigning weights to the masked words. In this way,
the concepts of word masks and the positional encoding functions are unified by u in (17). Conversely, T5
transformer is a realization of the generalized attention with the preference weights u specified in (17).

Generalized attention structures suggested by the optimal solution. While T5 transformer has
implicitly adopted the generalized attention, (16) suggests potential for further generalizations. For instance,
in T5 transformer, the function that outputs the template’s preference weights only considers the word masks
and the word’s relative positions. This function could also be generalized to factor in the input sentence
contexts, and the output weights encode the importance of each word before giving the local information
stored in z. The same idea could be applied to the image captioning example to replace the uniform preference
weights. By adding a neural network taking the input image to generate non-uniform preference weights,
we devise a mechanism to estimate the importance of each part of the image before the caption generation.
In this way, the newly added network collects global information from the image to propose a preference
distribution, which could be updated locally based on the current generation stage encoded in z.

Besides, although we mainly focus on the case when u is discrete, we want to emphasize that the analysis
performed in Section 6 also covers continuous u. This hints that a continuous attention mechanism could
also be implemented, which might prove to be useful in some applications.

Moreover, our theoretical work enables the design of more general attention structures; for instance, KL-
divergence in the optimization problem (3) requires estimated distribution to share support with preference

7They also simplified the layer normalization (Lei Ba et al., 2016) for faster training and inference speed.
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Figure 4: The distribution of relative deviations ∥λ∗−αz∥
∥λ∗∥ for the attention in BERT and T5. The red vertical

lines mark the average of the errors.

distribution, which may not be desired in many tasks. (e.g. translation, where the target should be unaffected
if we replace some words in the source sentence with synonyms.) Using our theory, in Sec 9, we show that
this can be achieved by replacing KL divergence with an optimal transport (OT)-based measure that handles
word similarities in their embedding space.

8 Empirical evidence

To show the proposed optimization problem (3) indeed provides a principle justifying the design of attention
modules, we show that the maximizer λ∗ of its dual problem (7) nearly coincides with its approximated
counterpart used in the pretrained BERT model (Devlin et al., 2019) and T5-small (Raffel et al., 2020).
Verification on other popular attention-based models yielded similar results.

Let xi ∈ Rd for i ∈ 1, 2 . . . , n, yj ∈ Rd for i ∈ 1, 2 . . . , m and K, Q, V ∈ Rd′×d. The kth outputs of BERT
attention and T5 are respectively,

BERT :
n∑

i=1
V xi

exp
(

⟨Kxi, Qxk⟩/
√

d′
)

∑n
j=1 exp

(
⟨Kxj , Qxk⟩/

√
d′
) T5 :

n∑
i=1

V xi

ui exp
(

⟨Kxi, Qyk⟩/
√

d′
)

∑n
j=1 exp

(
⟨Kxj , Qyk⟩/

√
d′
) . (19)

Here, T5 has three types of attention, self-attentions in the encoder and the decoder and the cross-attention
connecting them. For the two self-attentions, xi = yi and m = n.

Following the reparameterization method used by Ramsauer et al. (2021), for BERT, setting α = 1, ti = xi√
d′ ,

z = K⊤Qxk, V ′ = V
√

d′, and ui ∝ 1 yields V ′∑n
i=1 ti

ui exp⟨ti,z⟩∑n

j=1
uj exp⟨tj ,z⟩

, where the summation part is the

one derived in (16).8 Likewise, for T5, we use the same setting as BERT except that ui is computed based
on its positional encoding and z = K⊤Qyk for the cross-attention.

We find λ∗ by plugging α, ui’s, ti’s and z into (7) followed by performing gradient ascent. We then calculate
the relative deviation ∥λ∗−αz∥

∥λ∗∥ of its approximated counterpart αz and report its distribution in Fig 4 for
each attention layer by taking the average over the attention heads. We report the distributions for each
head in Appx C. As Fig 4 indicates, λ∗ almost coincides with its approximated counterpart αz inferred by
BERT and T5. As a result, the T5 and BERT’s attention inference can be seen as solving the proposed
convex problem, which corroborates that problem (3) gives a principle justifying the design of attention.

8Templates ti absorb the scaling factor d′− 1
2 so that their norms remain largely unchanged as d′ increases. Thus, u has

bounded moments, and Theorem 2 applies. Note that it is a common practice to scale outputs before performing theoretical
analysis (e.g., see the work of Arora et al. (2019)).
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9 An optimal transport-based attention

In Sec 7, we mentioned that our theoretical work enables the design of more general attention structures.
Let R+ denote the set of non-negative real numbers. In this section, we provide an example by replacing the
KL-divergence in (3) with an entropy-regularized OT-based measure (Cuturi, 2013):

Wγ(p, u; M) = min
X∈U(p,u)

⟨M, X⟩ − γH(X), (20)

where γ > 0, H(X) =
∑N

i,j=1 −Xij log Xij is the entropy of X, U(p, u) = {X ∈ R|A|×|A|
+ ; X1 = p, XT 1 = u}

and M ∈ R|A|×|A|
+ is a cost matrix that measures the similarity between each pair of the templates in A.9

The entropy regularization makes the minimizer X∗ in (20) change smoothly in terms of p, u and M , which
stabilizes and speeds up evaluation of W (Cuturi, 2013). When γ → 0, M(t, t′) = dA(t, t′)ρ, W1/ρ

γ is reduced
to the Wasserstein ρ-distance. We note that, due to the entropy term, for fixed u and M , the true preference
distribution ũ that minimizes Wγ(ũ, u; M) is slightly deviated from u and will approach to u if γ → 0. (see
Appx D for details.) Let µ̃ denote the expectation of ũ. Then we can rewrite (3) as

min
p

α

2

∥∥∥∥(µ̃ + z) −
∫
Rd

ap(a) da
∥∥∥∥2

+ Wγ(p, u; M). (21)

Following a similar procedure presented in Sec 6 (the derivation is given in Appx D), we can derive and solve
its Fenchel dual problem and show that when both α and α

γ are small, the minimizer p∗ takes the form

p∗(t) =
n∑

i=1
ui

exp
( (

αtT z − M(t, ti)
)/

γ
)

Zi
(22)

with Zi =
∑

t′∈A exp
((

α(t′)T z − M(t′, ti)
)/

γ
)
. Substituting (22) into (4), we get the OT-based attention.

The OT-based attention considers all templates in A. In comparison to the generalized attention
derived in Sec 6, the OT-based one assigns non-zero weights to all templates in A. To see how it works,
consider an extreme case in which the templates are partitioned into several groups. If two templates t, t′

belong to the same group, M(t, t′) = 0; otherwise, M(t, t) = ∞. Moreover, templates within the same
groups are very similar in the sense that their inner products with z are approximately equal. Suppose ti

belongs to a group G and other templates tj ̸=i do not, then for all t ∈ G, we have p∗(t) = ui/|G|. That is,
all templates of G share the weight of ti and thus be potentially trained even if most of them do not appear
in the input. In general, if a template t is similar to some ti ∈ T (i.e., M(t, ti) is small), it will share ti’s
weight although it does not appear in T. In contrast, for regular attention, only templates in T can be
assigned non-zero weights. The peculiar property of OT-based attention is desired in some practical tasks.
For example, in an NLP problem, synonyms intuitively have similar templates. Then, if a word appears in
the input sentence and is trained, its synonyms should be trained in a similar way and thus be assigned a
similar weight (because replacing a word with its synonym does not alter the input in a semantic sense).

Likewise, in the Vision Transformer (ViT) (Dosovitskiy et al., 2021), images are divided into small
patches, each of which is conceptually treated as a word. Consequently, an image composed of these
patches is analogous to a sentence. A multilayer transformer, similar to BERT, is then used to ex-
tract features from these patches. Finally, a special learnable token is incorporated to aggregate these
features (templates) using an attention mechanism, and the aggregated result is fed into a classi-
fier for image classification. Intuitively, images of the same class consist of visually similar patches
and replacing patches in an image with visually similar patches should not alter its class. Thus, it
is reasonable for the last attention layer to share the template sets for images of the same classes
and adopt the OT-based attention to train the templates associated with visually similar patches.

9A smaller Mij implies a larger similarity between ti and tj . While many OT-related problems define M by embedding
templates into a metric space (A, dA) with M(t, t′) = dA(t, t′)ρ, ρ ≥ 1, our discussion makes no assumption on M other than
it is non-negative and symmetric, and M(t, t) < M(t′, t) for all t′ ̸= t.
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LR 3 × 10−3 3 × 10−4 3 × 10−5

ViT 0.228 ± 0.01 0.463 ± 0.01 0.452 ± 0.01
OT-ViT 0.175 ± 0.01 0.491 ± 0.01 0.412 ± 0.01

Table 1: Test accuracies of ViT and OT-ViT on CI-
FAR100 with various learning rates (LR).

Fashion-MNIST CIFAR10 CIFAR100
ViT 0.928 ± 0.01 0.751 ± 0.01 0.463 ± 0.01
OT-ViT 0.937 ± 0.01 0.772 ± 0.02 0.491 ± 0.01

Table 2: Test accuracies of ViT and OT-ViT on
Fashion-MNIST, CIFAR10 and CIFAR100.

To corroborate our claims, we test the ViT and its
OT-based variant on Fashion-MNIST (Xiao et al.,
2017), CIFAR10 and CIFAR100 (Krizhevsky, 2009).
The OT-ViT model is identical to the ViT, except
that the final transformer layer is substituted with
OT-based attention where M(a, b) = −a⊤b + C,
α = 1 and γ =

√
hidden dim. (C is an upper bound

of all possible template pairs’ inner products, which
ensures M is nonnegative.) To improve the train-
ing efficiency, when training OT-ViT, there is a 50%
chance that the set T consists solely of templates ex-
tracted from the input image and a 50% chance that
T also includes templates from another randomly
selected image of the same class. During testing, T
consists only of templates from the input image.

Throughout our experiments, we fixed the patch size to be 4 × 4 and the dropout rate to be 0.2. To ensure a
fair and tractable comparison, we constrained both models to have 3.2M parameters. Under this constraint,
we traded off the number of layers and hidden dimensions of the Vision Transformer (ViT) model to achieve
the best performance on CIFAR100 (Krizhevsky, 2009). The study showed that a six-layer ViT model with
a hidden dimension of 512 had the optimal performance. We then used this setting for both the ViT and
OT-ViT models throughout the remaining experiments. (Note that for a fixed hidden dimension, the OT-
based attention has a nearly identical number of parameters to the regular transformer implementation.)
Similarly, we searched for the optimal learning rate (LR) of both models on CIFAR100 and reported the test
accuracy with the 95% confidence intervals in Table 1. The results indicate that both models achieved the
best performance when the learning rate was set to 3 × 10−4. We, therefore, used this learning rate selection
when training the models on the other datasets.

In Table 2, we compare the performances of ViT and OT-ViT on Fashion-MNIST (Xiao et al., 2017),
CIFAR10 and CIFAR100 (Krizhevsky, 2009) by reporting their test accuracies with the 95% confidence
interval. As demonstrated, OT-ViT consistently outperforms ViT, highlighting the effectiveness of OT-
based attention.

10 Conclusion

This paper presented a new perspective on understanding the attention mechanism by showing that it can
be viewed as a solver of a family of inference tasks. These tasks involve improving the noisy estimate of
a distribution p’s mean by a preference distribution that encodes some beliefs of p’s value. We have used
three running examples with the typical model architectures to show that such tasks naturally exist in
neural network design. We then abstracted a convex optimization problem from these tasks and derived
a closed-form approximation of the optimal solution by solving the problem’s Fenchel dual. We find that
the closed-form approximation can be seen as a generalized attention layer, and one of its special cases
is equivalent to the dot-product attention adopted in transformers. We further analyzed the general form
and showed that T5 transformer implicitly adopts the generalized attention structure with attention weights
unifying the concepts of the word masks and the positional encoding functions. We empirically show that our
framework can well-explain the attention inference in the pretrained BERT and T5 models. To demonstrate
the potential for designing more general attention structures, we replaced the KL divergence with an OT-
based measure, deriving an OT-based attention structure that removes the support constraints on p(k)

mentioned in the examples.

This paper also presents a principled justification for the design of attention modules in neural networks.
Specifically, there is a general assumption that because attention in humans narrows the search space, a
similar phenomenon is at play in transformers. In this paper, we have shown that the mechanism corresponds
to proposing a preference distribution over the templates, followed by adjusting it using a noisy mean shift
estimation. The generalized attention structure presented potentially opens the door to a wide design
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space. For example, the preference weights need not be derived from the positional encoding functions; they
could integrate a variety of information provided by other network components. Additionally, this research
successfully demonstrates a novel approach to analyze the functioning of a neural network component,
namely, via isolating the component from the complex network structure and asking: is there a “local
problem” that is solved by the design of this component?

Broader impact. This paper presents a new perspective on understanding attention and derives a gener-
alized attention structure. Our work is foundational, which we believe does not have direct negative societal
impacts. Due to the very wide range of applications of attention, such as self-driving (Kim & Canny, 2017),
healthcare (Ma et al., 2017) and protein interaction prediction (Tsubaki et al., 2018), we expect our works
can facilitate the algorithm developments in these areas, which may have unexpected impacts.
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A Derivation of (11) for preference distributions of bounded moments

Assume a preference distribution u has bounded moments. Then its moment generating function

M(λ) =
∫
Rd

⟨a, λ⟩u(a)da = 1 + ⟨M ′(0), λ⟩ + 1
2 ⟨λ, M ′′(0)λ⟩ + o(∥λ∥2), (23)

where

M ′(0) =
∫

au(a)da = µ, (24)

M ′′(0) =
∫

aa⊤u(a)da. (25)

Notice that

log(1 + x) = t − t2

2 + t3

3 − t4

4 + · · · = t − t2

2 + o(t2). (26)

Thus,

log(M(λ)) =
(

⟨M ′(0), λ⟩ + 1
2 ⟨λ, M ′′(0)λ⟩ + o(∥λ∥2)

)
− 1

2

(
⟨M ′(0), λ⟩ + 1

2 ⟨λ, M ′′(0)λ⟩ + o(∥λ∥2)
)2

+ o

((
⟨M ′(0), λ⟩ + 1

2 ⟨λ, M ′′(0)λ⟩ + o(∥λ∥2)
)2
)

=⟨M ′(0), λ⟩ + 1
2

(
⟨λ, M ′′(0)λ⟩ − ⟨M ′(0), λ⟩2

)
+ o
(

∥λ∥2 )
=⟨µ, λ⟩ + 1

2λ⊤Σλ + o
(

∥λ∥2 )
,

where

Σ = M ′′(0) − M ′(0)M ′(0)⊤ =
∫

(a − µ) (a − µ)T
u(a)da.
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B Other perspectives to derive (3)

A Maximum Likelihood Perspective. The optimization problem in (3) can be derived using the max-
imum log likelihood method by treating the KL-divergence term as a regularizer. According to (2), the
difference (µ + z) − h follows a Gaussian distribution N (0, σ2I). This implies the log likelihood function
ℓ(z) ∝ − 1

2σ2 ∥(µ + z) − h∥2. Maximizing it with the KL-divergence term as a regularizer is the same as
minimizing

1
2σ2 ∥(µ + z) − h∥2 + ηK(p, u), (27)

where η > 0 controls the strength of the regularization. Substituting (1) into (27) followed by rearrangement
yields

min
p

1
2ησ2

∥∥∥∥(µ + z) −
∫
Rd

ap(a) da
∥∥∥∥2

+ K(p, u), (28)

which is equivalent to (3) by setting α−1 = ησ2.

A Bayesian perspective. Given observed data and prior belief about the distribution of parameters,
Bayesian inference allows us to update this distribution to reflect the new knowledge. Assume that the
distribution p is specified by parameters θ. By considering µ + z as the observed data, we will show that
picking the pθ that minimizes (3) is the same as choosing the θ∗ that maximizes the posterior density of θ
given the observed data.

Let ϑ be the parameters of the preference distribution uϑ and suppose the prior distribution f(θ|ϑ) of θ
satisfies

f(θ|ϑ) ∝ exp
(

− ηK(pθ, uϑ)
)

, (29)

where η > 0 is a hyper-parameter that controls the decaying speed of the probability density as pθ deviates
from uϑ.

In (2), we have assumed that given θ, (µ+z)−hθ follows a spherical Gaussian distribution N (0, σ2I), where
hθ is the mean of pθ. Therefore, given its parameter θ, the probability density function of µ + z is

f(µ + z|θ) = f(µ + z|hθ) ∝ exp
(

− 1
2σ2 ∥(µ + z) − hθ∥2

)
. (30)

Then the posterior distribution of θ satisfies

f(θ|µ + z, ϑ) ∝ f(µ + z|θ) f(θ|ϑ)

∝ exp
(

− 1
2σ2 ∥(µ + z) − hθ∥2 − ηK(pθ, uϑ)

)
.

Finding θ∗ that maximizes the posterior f(θ|µ + z, ϑ) is the same as finding

p∗
θ = argmin

pθ

{
1

2σ2 ∥(µ + z) − hθ∥2 + ηK
(
pθ, uϑ

)}
= argmin

pθ

{
1

2ησ2 ∥(µ + z) − hθ∥ + K(pθ, uϑ)
}

,

which is equivalent to (3) by setting α−1 = ησ2.
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C Extra experimental results
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Figure 5: The distribution of relative errors ∥λ∗−αz∥
∥λ∗∥ for the attention in BERT. The red vertical lines mark

the average of the errors.
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Figure 6: The distribution of relative errors ∥λ∗−αz∥
∥λ∗∥ for the self-attention of the encoder in T5. The red

vertical lines mark the average of the errors.
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vertical lines mark the average of the errors.
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Figure 8: The distribution of relative errors ∥λ∗−αz∥
∥λ∗∥ for the cross-attention in T5. The red vertical lines

mark the average of the errors.

D Details on the derivation of OT-based attention

According to the discussion in Sec 9, we consider the optimization problem

p∗ = argmin
p

α

2

∥∥∥∥(µ̃ + z) −
∫
Rd

ap(a) da
∥∥∥∥2

+ Wγ(p, u; M) (31)

where µ̃ denotes the mean of the true preference distribution ũ that minimizes f(p) = Wγ(p, u; M). We will
show in Prop 1 that

µ̃ =
∑

t,t′∈A×A
u(t′) exp (−M(t, t′)/γ)∑

t′′ ∈A exp (−M(t′′ , t′)/γ)t. (32)

Cuturi and Peyre Cuturi & Peyre (2016) proved that the Fenchel dual of Wγ(d; r, M) is

W∗
γ (p; u, M) = γ

(
H(u) +

∑
t∈A

u(t) log
[∑

t′∈A
exp

(
γ−1(p(t) − M(t, t′)

))])
(33)

for p ∈ RN ; and, for t ∈ A

[
∇pW∗

γ (p; u, M)
]

t =
∑
t′∈A

u(t′) exp
(

γ−1(p(t) − M(t, t′)
))

∑
t′′∈A exp

(
γ−1

(
p(t′′) − M(t′, t′′)

)) , (34)

where
[
∇pW∗

γ (p; u, M)
]

t denote the entry in
[
∇pW∗

γ (p; u, M)
]

that is associated to template t. By the
Fenchel’s duality theorem, we know that p∗ in (31) takes the form

p∗(t) =
∑
t′∈A

u(t′) exp
(

γ−1(t⊤λ∗ − M(t, t′)
))

∑
t′′∈A exp

(
γ−1

(
(t′′)⊤λ∗ − M(t′, t′′)

)) , (35)
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where

λ∗ = arg max
λ∈Rd

⟨µ̃ + z, λ⟩ − 1
2α

∥λ∥2 − W∗
γ

(
[tT λ|t ∈ A]; u, M

)
= arg max

λ∈Rd
⟨µ̃ + z, λ⟩ − 1

2α
∥λ∥2 − γ

∑
t∈A

u(t) log
[∑

t′∈A
exp

(
(t′)⊤λ − M(t, t′)

γ

)]
. (36)

The true preference distribution. The Fenchel dual perspective allows us to derive a closed-form
expression for the minimizer of f(p) = Wγ(p, u; M), which we refer as the true preference distribution ũ in
the main text. We will also show that ũ approaches to the preference u as γ → 0.

Notice that, by definition, ũ → p∗ when α → 0 in (31). In this case, the optimization of λ in (36) gets an
infinite penalty on its L2 norm and thus ∥λ∗∥2 = 0. Therefore, we have
Proposition 1. Wγ(p; u, M) has the minimizer ũ(t) taking the form

ũ(t) =
∑
t′∈A

u(t′) exp (−M(t, t′)/γ)∑
t′′∈A exp (−M(t′, t′′)/γ) , (37)

for t ∈ A. Besides, its mean

µ̃ =
∑

t,t′∈A×A
u(t′) exp (−M(t, t′)/γ)∑

t′′ ∈A exp (−M(t′′ , t′)/γ)t. (38)

When γ → 0, exp(−M(t,t′)/γ)∑
t′′∈A

exp(−M(t′,t′′)/γ)
approaches to 1 if t = t′ and 0 otherwise. Therefore, ũ(t) → u(t) for

all t ∈ A.

The derivation of (22). Then we show how to derive (22) when α and α
γ are assumed small.

Within the summation term of (36), for a fixed t

log
[∑

t′∈A
exp

(
(t′)⊤λ − M(t, t′)

γ

)]
= log

[∑
t′∈A

exp
(

−M(t, t′)
γ

)
exp

(
(t′)⊤λ

γ

)]

= log
[∑

t′∈A
qt(t′)Z(t) exp

(
(t′)⊤λ

γ

)]
= log

[∑
t′∈A

qt(t′) exp
(

(t′)⊤λ

γ

)]
+ log Z(t)

= log Mt(λ/γ) + log Z(t), (39)

where
qt(t′) = exp

(
−M(t, t′)

γ

)/
Z(t),

Z(t) =
∑
t′∈A

exp
(

−M(t, t′)
γ

)
,

and Mt denotes the MGF of qt.

Note that log Mt(λ/γ) is called the cumulant of qt and has the expansion

log Mt(λ/γ) = µ⊤
t (λ/γ) + 1

2 (λ/γ)⊤ Σt (λ/γ) + O(∥λ/γ∥3), (40)

where
µt =

∑
t′∈A

qt(t′) t′ (41)
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and
Σt =

∑
t∈A

qt(t′) (t′ − µt)(t′ − µt)⊤ (42)

respectively denote the mean and the variance-covariance matrix of qt.

Substituting (39) and (40) into (36) yields

λ∗ = arg max
λ∈Rd

⟨µ̃ + z, λ⟩ − 1
2α

∥λ∥2

− γ

[(∑
t∈A

u(t)µt

)⊤
(λ/γ) + 1

2
∑
t∈A

u(t)
(
(λ/γ)⊤Σt(λ/γ)

)
+ O(∥λ/γ∥3) +

∑
t∈A

u(t) log Z(t)
]

= arg max
λ∈Rd

⟨µ̃ + z, λ⟩ − 1
2α

∥λ∥2

− γ

[
(
∑
t∈A

u(t)µt)⊤(λ/γ) + 1
2
∑
t∈A

u(t)
(
(λ/γ)T Σt(λ/γ)

)
+ O(∥λ/γ∥3)

]

= arg max
λ∈Rd

⟨µ̃ + z, λ⟩ − 1
2α

∥λ∥2

−

[(∑
i

u(t)µt
)⊤

λ + 1
2γ

∑
t∈A

u(t)
(
λ⊤Σtλ

)
+ γO(∥λ/γ∥3)

]
.

When α is assumed to be small, the optimization of λ gets a large penalty on its L2 norm and thus, ∥λ∗∥2

is close to zero. So we have

λ∗ ≈ arg max
λ∈Rd

⟨µ̃ + z, λ⟩ − 1
2α

∥λ∥2

−

[(∑
t∈A

u(t)µt

)⊤
λ + 1

2γ

∑
t∈A

u(t)
(
λ⊤Σtλ

)]

Taking the derivative in terms of λ and setting it to zero yields

(µ̃ + z) − 1
α

λ∗ −
∑
t∈A

u(t)µt − 1
γ

∑
t∈A

u(t)Σtλ∗ = 0.

As ∑
t∈A

u(t)µt =
N∑

i=1
u(t)

∑
t′∈A

qt(t′)t′ =
∑

t,t′∈A×A
u(t) exp (−M(t, t′)/γ)∑

t′′∈A exp (−M(t, t′′)/γ)t′ = µ̃, (43)

we also have

z −

(
1
α

Id + 1
γ

∑
t∈A

u(t)Σt

)
λ∗ = 0.

That is,

λ∗ =
(

1
α

Id + 1
γ

∑
t∈A

u(t)Σt

)−1

z

=
(

Id + α

γ

∑
t∈A

u(t)Σt

)−1

(αz).

When α
γ is small, the expression becomes simply

λ∗ = αz.
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Plugging it into (35), we get

p∗(t) =
∑
t′∈A

u(t′) exp
(

γ−1(αt⊤z − M(t, t′)
))

∑
t′′∈A exp

(
γ−1

(
α(t′′)⊤z − M(t′, t′′)

)) , (44)

which is (22).
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