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ABSTRACT

In Natural Language Processing (NLP) and Computer Vision (CV) as well as myr-
iad other domains, pre-trained models have achieved significant breakthroughs.
However, their advancements in the sphere of general Time Series Analysis (TSA)
has been comparatively limited. The principal challenge lies in the dearth of ex-
tensive training data that is endemic to the field of TSA. This scarcity hampers
the direct application of such pre-training models to time series data, resulting
in unsatisfactory performance. Despite numerous attempts to adapt NLP or CV
models, which have been pre-training on billions of tokens, to TSA to address
this challenge, these pre-training models are not directly suitable for time series
data. In this work, we introduce a new general Pre-Training Encoder specifically
designed for Time Series analysis, called PTE4TS. It is designed to be universal
for any type of time series data, and is easy to adapt to various downstream tasks
such as classification, anomaly detection, and forecasting. First, we revisited the
masking methods in time series and found that patch masking, which was widely
adopted previously, is not necessary. Therefore, we developed an improved mask-
ing model tailored to the characteristics of time series. Additionally, to address
the issue of the Low-Rank structure in conventional bidirectional attention mech-
anisms, which may diminish the model’s expressiveness, we have developed a
straightforward yet efficacious hybrid attention encoder. The combination of this
encoder with our masking methods can improve the representation ability of the
model. Finally, PTE4TS achieved state-of-the-art performance on several real-
world datasets, further validating the potential of Large Model for general time
series analysis. We hope that PTE4TS will not only open new perspectives in the
field of TSA, enhancing feature representation and inferencing capabilities across
various domains, but also lay the foundation for a general artificial intelligence
that is capable of understanding and processing common time series data.

1 INTRODUCTION

The disciplines of Natural Language Processing (NLP) Radford et al. (2018); Devlin et al. (2018)
and Computer Vision (CV) He et al. (2022); Feichtenhofer et al. (2022) have witnessed a surge in
innovation thanks to the development of Large pre-training Models, propelling both fields into an era
of breakthroughs Zhao et al. (2023); Awais et al. (2023). However, the impact of these large models
within the specialized realm of Time Series Analysis (TSA) has been notably subdued. A significant
factor contributing to this disparity is the deficit of large-scale, versatile training datasets tailored to
TSA, which compromises the efficacy of these sophisticated models when applied to the distinctive
nature of time series data Zhou et al. (2023). The scientific community has made concerted efforts to
transpose the success of pre-training NLP and CV models, models that have been honed on extensive
corpora of billions of tokens, to the context of TSA Liu et al. (2023a); Yu et al. (2023); Gruver et al.
(2023). Nevertheless, the challenge remains formidable. The underlying architecture and training
of these models are not inherently compatible with the unique characteristics of time series data.
Therefore, while NLP and CV benefit from transformative advances owing to these large models, the
quest continues to either cultivate TSA-specific models or ingeniously modify existing pre-training
ones to resonate with the complex patterns and dynamics inherent in time series analysisLiu et al.
(2024).
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Time series data is data collected or recorded at multiple points in time, and it is often utilized to
observe or predict phenomena that change over time. This type of data is widely applied across
various fields such as electricity Zhou et al. (2021), weather Wu et al. (2021) , transportation Yin &
Shang (2016), disease prevalence Liu et al. (2018), and more. Time series data can vary significantly
in dimensions, length, and sampling frequency depending on the field of application, presenting
considerable challenges for data integration and cross-disciplinary research. It can be difficult to
align these diverse datasets for training within a single model. Furthermore, since Time series data
typically requires long-term accumulation, some specialized areas may experience a shortage of
data, insufficient for the needs of training complex models Godahewa et al. (2021). The mask task
technique can help mitigate issues related to data scarcity. The fundamental concept behind this
technique is to randomly mask portions of the data within the training set, compelling the model to
learn in the absence of some information, thereby enhancing the model’s adaptability to unseen data
Devlin et al. (2018); He et al. (2022). This approach simulates a more diverse data environment by
presenting slightly different inputs in each iteration of training. Randomly masking the training data
creates a scenario where the input is likely to be different each time, and a high masking ratio can
heighten this probability.
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Figure 1: (a)The results of the Mean Absolute Error (MAE) within the ETTh2 dataset after ap-
plying bidirectional Attention to inputs that have been obscured at various ratios are discussed.
Herein, “Mix” represents the method proposed by us. It is evident that in reconstruction tasks,
our method demonstrates superior detailed performance compared to both Patch-Level and Point-
Level approaches. (b) The output from the Bidirectional Attention after the input has been masked
at Patch-Level. The Reconstruction results showed obvious repetitive patterns that do not exist in
Ground Truth. (c) The Mean Squared Error (MSE) outcomes on the Electricity (ECL) dataset subse-
quent to the application of various proportions of masking on the input at the Patch-Level, followed
by the implementation of distinct types of Attention. Notably, MDMH represents the methodology
we have introduced.

However, in the domain of time series analysis, the masking approach within mask models merely
adopts methodologies from CV, aggregating time steps into sub-sequence level patches and im-
plementing masking at the patch level Tang & Zhang (2022); Nie et al. (2022). However, these
methods fail to consider the unique characteristics of time series data and disregard point-level in-
formation. Furthermore, the commonly utilized bidirectional Attention mechanism in mask models
suffers from the issue of a low-rank structure, which, to a certain extent, restricts the model’s rep-
resentational capacity. This reduction in representational capacity diminishes the model’s ability to
capture complex dependencies between input data, ultimately leading to a loss of information Bho-
janapalli et al. (2020); Dong et al. (2021). However, in the widely used decoder-only architectures of
large models, the unidirectional attention lacks bidirectional interaction capabilities, and the autore-
gressive generation which predicts the next token step-by-step requires more time and computational
resources.

Motivated by the aspects discussed above, we have introduced the PTE4TS model as a novel, general
representation for TSA. The pioneering aspect of this model lies in its unique approach to pre-
training, which deviates from the traditional methods that bypass pre-training and go straight to fine-
tuning using Large Language Model (LLMs). Specifically, our contributions can be summarized into
three aspects:

• We developed a specialized pre-training strategy specifically tailored for time series data,
departing from the conventional, simplistic patch-level masking approaches. Instead, we
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have combined point-level and patch-level processing techniques. This integrative ap-
proach enhances our model’s ability to effectively learn and capture local features and
patterns within time series data. Furthermore, our strategy is adept at accommodating time
series of varying lengths and easily adapts to datasets of different scales.

• To address the diminishing expressive capabilities arising from the Low-Rank structures of
bidirectional attention, and considering the limitations of unidirectional attention in han-
dling masked models, we created a hybrid attention encoder that is both straightforward
and efficient. This innovative encoder adeptly tackles the aforementioned issues, proving
to be highly effective in the context of masked models.

• Our PTE4TS model has achieved outstanding or competitive state-of-the-art performance
across all mainstream time series analysis tasks. These tasks span time series classifica-
tion, long-term forecasting, data imputation, and anomaly detection, among others. The
widespread and comprehensive experimental underpinning the model’s performance fur-
ther substantiates the effectiveness of our proposed methods and its enormous potential for
widespread application.

2 PRELIMINARIES

2.1 MASKING METHODS

In our exploration of the TSA masking models, we’ve focused on the PatchTST method . In the mask
model of time series analysis, most methods opt to borrow from the BERT Devlin et al. (2018) in
NLP and the MAE He et al. (2022) in CV. These approaches are predominantly based on the patch-
based Transformer model. They do not significantly alter the Transformer; instead, they simply add
a patch method or, in some cases, replace the original decoder with a single layer of MLP Nie et al.
(2022); Tang & Zhang (2022). Patch can compress data and reduce the dimensionality of input data,
to a certain extent lowering redundant features. Moreover, patch have a smoothing effect that can
mitigate the impact of outliers and help filter fluctuations and random noise, retaining only more
stable and representative information.

However, as illustrated in Figure 1a, we’ve identified certain limitations in their application. While
patch-level masking does create a more challenging task for the model by increasing the difficulty
of reconstructing the masked data, which can help the model learn local features of the data, this
technique can also lead the model to overemphasize recurrent patterns ( Figure 1b) and neglecting
continuous changes between patches, resulting in difficulty in learning the “bigger picture”, such
as trends. In Figure 1b, we have selected three visualization cases to more clearly demonstrate
how patch-level masking leads the model to overly focus on repeated patterns. The reconstruction
results in the figure clearly show that the model’s output consists almost entirely of repeated patterns,
indicating that the model has not learned detailed local information. On the other hand, tasks with
a higher point-level mask ratio are not only capable of constructing a similar level of difficulty but
also ensure that the model remains sensitive to minor variations. This enables the model to better
learn the original semantics without overlooking the point-level features. Furthermore, due to its
increased uncertainty, point-level masking provides a unique learning environment for the model,
emphasizing a deeper understanding of the data’s intrinsic structure, going beyond simple pattern
recognition.

2.2 LOW-RANK IN ATTENTION

In the field of NLP, the construction and optimization of LLMs stand as a key topic of discussion.
These models are typically designed with a Decode-only architecture Radford et al. (2019); Brown
et al. (2020), which has shown significant performance enhancements over Encode-only methods
in multiple studies. However, the Decode-only structure is not always the optimal choice for every
task. We have a particular interest in the role of the Attention mechanism within mask task. As de-
picted in Figure 1c, the unidirectional Attention mechanism inherent in Decode-only architectures
falls short on mask task, while bidirectional Attention, which can potentially perform better, faces
its own set of issues. Specifically, the problems with bidirectional Attention often boil down to the
Low-Rank structure it exhibit. In the Attention mechanism, the Attention matrix is usually produced
through a process of Low-Rank matrix factorization-typically, by dot-product such as L × D with
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Figure 2: Overall structure of PTE4TS. First, multivariate time series from different sources are
treated as univariate time series for separate processing, and then padded to the same length. Next,
the processed sequences are patched into tokens, and Embedding is implemented using a multi-layer
perceptron (MLP). Then, self-attention in various directions is applied to the embedded variable
tokens, allowing for better context consideration and the capture of complex dependencies. Finally,
a projection maps the latent vectors back to patch-level tokens, followed by an MLP that enhances
point-level interactions.

D × L (usually L is the input length, D is the hidden size, D < L), and then normalizing the re-
sultant matrix with a softmax function. Due to its Low-Rank nature, the resulting Attention matrix
may, to a certain degree, diminish the model’s representational capacity. On the other hand, under
the Decode-only architecture, the Attention matrix presents as a lower-triangular matrix. Owing
to the characteristics of the softmax function, which ensures that the elements along the diagonal
are positive, the determinant of this matrix is non-zero, indicating that such an Attention matrix is
Full-Rank. Theoretically, a Full-Rank Attention matrix possesses a broader expressive capability to
capture subtle dependencies across a wider range of tasks and contexts. Because of this Full-Rank
feature, from a theoretical standpoint, the Decode-only architecture offers a more robust learning
framework, particularly adept at handling sequence generation tasks where leveraging historical
information is crucial. Nevertheless, this doesn’t mean that bidirectional attention lacks practical
value. In fact, for many feature extraction or sequence understanding tasks, bidirectional attention
is indispensable due to its ability to integrate context information. Therefore, a potential research
direction is to explore the design of a new Attention mechanism that could either sparsify atten-
tion or combine the representational strength of the Decode-only architecture with the contextual
integration capability of bidirectional attention.

3 PTE4TS

In multivariate time series analysis, it is common to be given historical observations XN =
{x1, · · · , xL} ∈ RL from L time steps, composed of N univariate time series X. Clearly, multivari-
ate time series tasks can also be decomposed into univariate time series tasks. Under this condition,
we are only concerned with the feature within each univariate series, while ignoring the interactions
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across different variables. One of the main reasons for this is that in real-world scenarios, it is possi-
ble that the time points do not contain exactly the same timestamps Liu et al. (2023b), and enforcing
cross-variable alignment in the model can easily lead to the learning of chaotic systems.

We propose the PTE4TS as shown in Figure 2, which utilizes a Transformer Vaswani et al. (2017)
architecture that can be viewed as an Encoder-only structure, but with some simple modifications.
It additionally includes an input process, embedding, and projection. Similar to the previous Mask
Model, we do not use redundant Encoder-Decoder for representation learning. The task of gener-
ating complete series can essentially be handed over to a linear layer, which has also been demon-
strated in previous work, a simple linear layer is sufficient for many tasks Zeng et al. (2023); Chen
et al. (2023).

Our PTE4TS focuses on representation learning and adaptive association. Each time series, driven
by potentially complex processes, is first patched to describe the nature of local features. They are
then subjected to mutual interactions via attention, and processed into patch representations by a
feedforward network. After multiple layers of the Encoder-Block, the original input is gradually
reconstructed.

3.1 INPUT PROCESS AND EMBEDDING

To better focus on point-level attention and create a more challenging masking task, we need to
redesign previous masking methods to suit the characteristics of time series data. First, we apply
instance normalization to the input data to facilitate knowledge transfer. Next, we partition the time
series data into patches. In this stage, we select patches to be masked at the patch level but instead of
simply initializing these parts randomly, we assign the mean value of the patch or randomly shuffle
the order within the patch. We hope this type of masking will enable the model to learn point-level
sequential information within the series, as well as the relationship between the original data and its
mean. For the remaining data that still needs to be masked, we perform point-level masking, with
the selected points being randomly initialized.

Time series data is typically recorded at successive time points and then input into the model. How-
ever, in PatchTST, adjacent and continuous time points are treated as a patch before being input
into the model. For point masking, each time point is considered an individual entity to be masked,
preserving the trend of the time series. In contrast, patch masking treats adjacent and continuous
time points as an entire patch to be masked. This means that primarily consecutive time points are
masked, resulting in the remaining data lacking a continuous trend.

Our specific averaging operation targets the part that needs to be masked by setting this portion of
the data to the mean of the remaining visible data. Random shuffling is also targeted at the part that
needs to be masked, shuffling this portion within the patch. This approach helps the model learn the
relationships between data points.

The input process is responsible for processing time series data into the form required for pre-
training. Subsequently, an embedding projects the data onto the dimensions needed by the pre-
training model. We have chosen the patch embedding method, noting that the patch size in patch
embedding and the patch size in the patch mask can differ. Patch embedding, by aggregating infor-
mation from adjacent time points, forms a patch-based token that can better extract local semantic
information, significantly increasing the temporal scope of the input data and reducing informational
redundancy in the Transformer model.

3.2 MIX ATTENTION ENCODER BLOCK

The original scaled dot-product attention mechanism performs as:

Attention(Q,K,V) = Softmax(
QKT

√
d

)V (1)

i.e., Attention is defined as an operation of ternary matrix, where Q(queries) ∈ RLQ×d,
K(keys) ∈ RLK×d, V(values) ∈ RLV ×d, and d is the feature dimension. Typically, L is greater
than d, resulting in Attention matrices that often have a Low-Rank structure, which can reduce the
representational capacity of the model to some extent.
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Furthermore, we consider unidirectional Attention. Unidirectional Attention matrices take the form
of a triangular matrix, and due to the properties of the softmax function, it ensures that the elements
along the diagonal are all positive, which means the unidirectional Attention matrix is Full-Rank.
Theoretically, a Full-Rank Attention matrix possesses a more diversified expressive capacity, hence
it can capture subtle dependencies in a wider range of tasks and scenarios, providing a more powerful
learning framework. However, for mask tasks, the masked section should consider not only histor-
ical information (Forward Attention) but also future information (Backward Attention) effectively.
Therefore, we extend unidirectional Attention to a multi-head level, truncating half of the Attention
heads into lower triangular matrices (Forward Attention, FA), and the other half into upper triangular
matrices (Backward Attention, BA).

Based on the above considerations, Mixed-Direction Multi-Head (MDMH) Attention can be simply
expressed as follows:

FHi(Q,K, V ) = FA(QWQ
i ,KWK

i , V WV
i )

BHi(Q,K, V ) = BA(QWQ
i ,KWK

i , V WV
i )

MDMH(Q,K, V ) = Concat(FH,BH)WO

(2)

Where the projections are parameter matrices WQ
i ,WK

i ,WV
i ∈ Rdmodel×d, and WO ∈

Rhd×dmodel , 0 ≤ i < h/2 , h is the number of heads. This segmented-style unidirectional at-
tention helps the model to better capture causal relationships and temporal patterns in time series
data. Finally, we combine Multi-Direction Multi-Head (MDMH) Attention with Feedforward Neu-
ral Network (FFN) to ensure that the model effectively considers the Forward-Backward interaction,
taking into account the context comprehensively and capturing complex dependencies.

3.3 MASKED LAYERNORM

Layer normalization (LN) Ba et al. (2016) is a normalization technique commonly used in deep
neural networks to mitigate the issue of internal covariate shift during the training process. In typical
LN, the module computes the mean and variance of all the features within each sample of the input
to that layer. However, for the training data of PTE4TS, in order to make the sequences uniform in
length, we apply padding to supplement the data from shorter sequences, which may result in the
effective data length being much shorter than the length of the input data. These padding values do
not represent effective information in reality, and including these padding parts when calculating the
mean and variance could mistakenly incorporate irrelevant noise into the model’s learning process,
leading to decreased performance and slower convergence. To address this issue, we have designed
a variant called Masked LayerNorm. In this version, we use a mask to identify the padding parts
within the input data. Masked LayerNorm first calculates the mean µ and variance σ2 across all the
outputs of the layer:

µ =
1∑
m

H∑
i=1

(mi · xi)

σ2 =
1∑
m

H∑
i=1

mi · (xi − µ)2

(3)

The output x from a certain layer in the network has dimensions [d1, ..., dk], where di represents
the size of dimension i. The corresponding mask for x is denoted as m, with mi being 0 indicating
the padding part. When calculating the mean and variance, we only consider the valid, non-padded
data to effectively avoid the interference of noise on the normalization process. Then, we use the
computed mean and variance to normalize the layer’s output. After normalization, we introduce two
learnable parameters, γ (scale) and β (shift), so that the model has the ability to restore the original
representation of the data.

x̂i =
xi − µ√
σ2 + ϵ

yi = γx̂i + β

(4)

Here, ϵ is a very small number added for numerical stability to prevent division by zero. Usually,
the value of ϵ is set between 10−5 and 10−8. The final output is yi, while γ and β are the trained
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parameters whose shapes are consistent with the dimensions of x. With this approach, our model
can not only more accurately reflect the statistical properties of the true features when processing
time series data, but it can also significantly improve the robustness and performance of the model
when dealing with sequences of different lengths.

4 EXPERIMENTS

We pre-trained our model on the Unified Time Series Dataset (UTSD) Liu et al. (2024) and then ap-
plied the model to unseen new time series data (ETTH, ECL, Traffic, Weather, PEMS03, PEMS04
and so on). UTSD is a dataset containing up to 1 billion time points across seven domains, with
all datasets categorized into seven distinct domains based on their sources: Energy, Environment,
Health, Internet of Things (IoT), Nature, Traffic, and Web, and featuring diverse sampling frequen-
cies. We selected UTSD-12G as our pre-training dataset.

Our proposed method exhibits excellent performance across a range of TSA tasks through fine-
tuning. To demonstrate the effectiveness of our approach, we conducted extensive experiments
on primary types of downstream tasks, including time series classification, anomaly detection, im-
putaion, and long-term forecasting. To ensure a fair comparison, we adhered to the experimental
setup of TimesNet Wu et al. (2022), and the main experimental results were derived from FPT Zhou
et al. (2023). Although there is some overlap between our pre-training tasks and downstream tasks
in terms of datasets, to prevent data leakage, we only use the training set portion of these datasets
for any training, ensuring that the test set and validation set remain unseen during the training phase.
We provide detailed implementations and model configurations for pre-training and fine-tuning in
the appendix.

Baselines: We have selected a representative baseline and cited the results from FPT Zhou et al.
(2023). The baselines include CNN-based models: TimesNet Wu et al. (2022); MLP-based models:
LightTS Zhang et al. (2022) and DLinear Zeng et al. (2023); Transformer-based models: Time Liu
et al. (2024), FPT Zhou et al. (2023), Autoformer Wu et al. (2021), FEDformer Zhou et al. (2022),
Non-stationary Transformer Liu et al. (2022), ETSformer Woo et al. (2022), PatchTST Nie et al.
(2022). Besides, Anomaly Transformer Xu et al. (2021) is used for anomaly detection. XGBoost
Chen & Guestrin (2016), Rocket Dempster et al. (2020), LSTNet Lai et al. (2018), LSSL Gu et al.
(2021), Pyraformer Liu et al. (2021), TCN Franceschi et al. (2019) and Flowformer Huang et al.
(2022) are used for classification.

4.1 FORECASTING

Time series forecasting involves analyzing data points that evolve over time to predict future trends
at a specific timestep or over a period. This process entails forecasting the upcoming values Y of a
univariate time series for T timesteps ahead, based on the known values X. For long-term forecasts,
we expect T to exceed a certain threshold L. In the fine-tuning phase, we replaced the Projection
module with a simple linear layer, which has been proven to perform well in time series forecasting.
Subsequently, we maintained all other components unchanged and proceeded with fine-tuning on
various datasets separately.

4.1.1 FEW-SHOT FORECASTING

To better compare with Timer, we set the context length for pre-training to 1440 and the lookback
length for downstream prediction tasks to 672. The final experimental results are shown as Figure 3,
demonstrating the powerful performance and impressive generalization capabilities of PTE4TS on
previously unseen time series data. Based on the pre-trained PTE4TS model, we gradually reduce
the training data used for fine-tuning in downstream tasks, from the full amount of 100% down to just
1%. We observe that the amount of fine-tuning data does not significantly impact PTE4TS. Overall,
PTE4TS exhibits a trend of slow performance decline as training data decreases, without any sudden
drops in performance. This indicates that for all time series downstream tasks, a pre-trained model
can achieve ideal performance with minimal training.

We observed that the amount of fine-tuning data does not significantly impact PTE4TS. Overall,
PTE4TS exhibits a trend of slow performance decline as training data decreases, without any sudden

7
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Figure 3: Results of PTE4TS and Timer on downstream forecasting tasks obtained by fine-tuning
from the pre-trained model.

drops in performance. In twelve setups across six datasets, we achieved impressive SOTA results. It
can be seen that PTE4TS was 15.66% lower on the Weather dataset at 1% proportion and 15.23%
lower on the PEMS03 dataset at 1% proportion. This strongly demonstrates the powerful few-shot
capability of PTE4TS. This indicates that for all time series downstream tasks, a pre-trained model
can achieve ideal performance with minimal training.

4.1.2 LONG-TERM FORECASTING

Table 1: Long-term forecasting task. All the results are averaged from 4 different prediction lengths,
that is {24, 36, 48, 60} for ILI and {96, 192, 336, 720} for the others. We follow the configurations
of Dlinear, in which the sequence length for the past in ILI is set to 104, while for the other sequences
it is 336. Other models adhere to the results presented in the FPT paper. The best results are
represented in bold, and the appendix displays the complete results.

Methods PTE4TS FPT TimesNet PatchTST DLinear ETSformer LightTS FEDformer Non-Stationary Autoformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.404 0.418 0.427 0.426 0.458 0.450 0.413 0.430 0.423 0.437 0.542 0.510 0.491 0.479 0.440 0.460 0.570 0.537 0.496 0.487

ETTh2 0.322 0.368 0.346 0.394 0.414 0.427 0.330 0.379 0.431 0.447 0.439 0.452 0.602 0.543 0.437 0.449 0.526 0.516 0.450 0.459

ETTm1 0.328 0.360 0.352 0.383 0.400 0.406 0.351 0.387 0.357 0.378 0.429 0.425 0.435 0.437 0.448 0.452 0.481 0.456 0.588 0.517

ETTm2 0.246 0.303 0.266 0.326 0.291 0.333 0.255 0.315 0.267 0.334 0.293 0.342 0.409 0.436 0.305 0.349 0.306 0.347 0.327 0.371

Weather 0.215 0.251 0.237 0.270 0.259 0.287 0.225 0.264 0.249 0.300 0.271 0.334 0.261 0.312 0.309 0.360 0.288 0.314 0.338 0.382

ECL 0.145 0.238 0.167 0.263 0.192 0.295 0.161 0.253 0.166 0.263 0.208 0.323 0.229 0.329 0.214 0.327 0.193 0.296 0.227 0.338

Traffic 0.382 0.255 0.414 0.294 0.620 0.336 0.390 0.264 0.434 0.295 0.621 0.396 0.622 0.392 0.610 0.376 0.624 0.340 0.628 0.379

ILI 1.324 0.721 1.925 0.903 2.139 0.931 1.443 0.798 2.169 1.041 2.497 1.004 7.382 2.003 2.847 1.144 2.077 0.914 3.006 1.101

To assess long-term forecasting, we tested our models on eight popular real-world datasets includ-
ing Electricity, Weather, Traffic, ILI, and the four ETT datasets. In the realm of long-term time
series forecasting, the approach utilizing patches has been validated to exhibit commendable perfor-
mance Nie et al. (2022); Gong et al. (2023); Ekambaram et al. (2023). This technique, including
the application in the FPT, adopts a strategy of patching. Our model perpetuates this strategy by
applying patches to the input data. This methodology effectively enables the model to enhance its
learning of local information and concurrently abbreviates the length of the input sequence. Such an
approach significantly ameliorates the model’s capability to manage long-range dependencies more
efficiently. Table 1 presents the average results for multiple prediction baselines across each dataset,
where it is evident that PTE4TS consistently achieved the best outcomes. Conversely, for the FPT,
which bypassed pre-training and was directly fine-tuned on GPT, the forecasting performance did
not surpass that of PatchTST. This observation clearly suggests that the straightforward approach of
fine-tuning on large language models is not particularly effective.
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4.2 IMPUTATION

In practical applications, time series data can often exhibit gaps due to a variety of reasons, such
as sensor malfunction, data loss, or transmission errors. Time series data is an array of data points
arranged in chronological order, and the effectiveness of their analysis and forecasting hinges on
their integrity and continuity. Therefore, filling in missing values is of great significance. In the
task of time series imputation for each univariate time series, our usual input, X, is incomplete
and contains missing values. The goal of imputation is to restore the data to its original, complete
state. Our experiments spanned across six commonly used,real-world datasets, including four ETT
datasets, Electricity and Weather datasets, where missing data occurrences are not uncommon. To
benchmark the performance of our models across different missing data scenarios, we followed the
TimesNet setup and chose varying masking ratios of 12.5%, 25%, 37.5%, and 50% to randomly
mask timestamps, simulating different levels of data incompleteness.

Table 2: Imputation task. We perform a randomly mask on the time series with an input length of
96 at {12.5%, 25%, 37.5%, 50%}. The results are averaged from 4 different mask ratios. The best
performance is indicated in Blod, and the appendix presents the complete findings.

Methods PTE4TS FPT TimesNet PatchTST ETSformer LightTS DLinear FEDformer Non-Stationary Autoformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.021 0.096 0.028 0.105 0.027 0.107 0.047 0.140 0.120 0.253 0.104 0.218 0.093 0.206 0.062 0.177 0.036 0.126 0.051 0.150

ETTm2 0.015 0.075 0.021 0.084 0.022 0.088 0.029 0.102 0.208 0.327 0.046 0.151 0.096 0.208 0.101 0.215 0.026 0.099 0.029 0.105

ETTh1 0.061 0.164 0.069 0.173 0.078 0.187 0.115 0.224 0.202 0.329 0.284 0.373 0.201 0.305 0.17 0.246 0.094 0.201 0.103 0.314

ETTh2 0.040 0.131 0.069 0.173 0.078 0.187 0.115 0.224 0.202 0.329 0.284 0.373 0.201 0.306 0.117 0.246 0.094 0.201 0.103 0.214

ECL 0.061 0.173 0.090 0.207 0.092 0.210 0.072 0.183 0.214 0.339 0.131 0.262 0.132 0.260 0.130 0.259 0.100 0.218 0.101 0.225

Weather 0.023 0.046 0.031 0.056 0.030 0.054 0.034 0.055 0.076 0.171 0.055 0.117 0.052 0.110 0.099 0.203 0.032 0.059 0.031 0.057

The imputation task bears resemblance to the reconstruction task during the pre-training phase, yet
we have selected a higher mask ratio (75%) during the pre-training phase. The extremely high
masking ratio constructs a task that is challenging to recover from, making it difficult for the model
to restore the masked information from adjacent temporal points. Such a task enhances the model’s
comprehension beyond mere low-level information, fostering an understanding of deeper semantics.
Owing to the similarity of the tasks, we opted not to replace the Projection module during the fine-
tuning phase. Table 2 shows that PTE4TS achieved the best results on all data.

4.3 ANOMALY DETECTION

The task of time series anomaly detection involves identifying outliers or anomalous segments
within time series data, which deviate from expected patterns and could be indicative of under-
lying issues or significant events. Our study involved a comparative analysis of models on five
standard datasets: SMD, MSL, SMAP, SWaT, and PSM. To ensure a level playing field, all baseline
models were confined to utilizing reconstruction errors, with data preprocessing methods and model
configurations keeping consistent with those employed in the TimesNet approach.

Table 3 presents the F1-scores on five datasets, revealing that PTE4TS still achieves consistent state-
of-the-art performance in this challenging task. This indicates that employing the patching method
on the input not only enhances the model’s ability to learn local features but also does not interfere
with the detection of anomalies.

4.4 CLASSIFICATION

In data science, time series classification refers to the process of pattern recognition by analyzing
sequences of data points that are organized chronologically, and subsequently assigning these se-
quences to predefined categories. This technique has found broad applications across various fields,
such as financial forecasting where it’s used to predict stock price movements, in healthcare for
analyzing electrocardiograms, in industry for detecting machinery faults, and in meteorology for
weather forecasting. To assess the performance in this context, we selected 10 diverse UEA multi-
variate classification datasets and preprocessed them following the approach used in TimesNet, with
each subset having varying lengths of sequences.
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Table 3: Anomaly detection task. We cal-
culate the F1-score (as %) for each dataset.
Blod represents the best, and the appendix
displays the complete results.

Methods SMD MSL SMAP SWaT PSM Average

PTE4TS 87.76 89.44 75.31 94.75 97.70 88.99

FPT 86.89 82.45 72.88 94.23 97.13 86.72

TimesNet 84.61 81.84 69.39 93.02 97.34 85.24

PatchTST 84.62 78.70 68.82 85.72 96.08 82.79

ETSformer 83.13 85.03 69.50 84.91 91.76 82.87

FEDformer 85.08 78.57 70.76 93.19 97.23 84.97

LightTS 82.53 78.85 69.21 93.33 97.15 84.23

DLinear 77.10 84.88 69.26 87.52 93.55 82.46

Non-Stationary 84.72 77.50 71.09 79.88 97.29 82.08

Autoformer 85.11 79.05 71.12 92.74 93.29 84.26

Pyraformer 83.04 84.86 71.09 91.78 82.08 82.57

Anomaly
Transformer

85.49 83.31 71.18 83.10 79.40 80.50

Informer 81.65 84.06 69.92 81.43 77.10 78.83

Reformer 75.32 84.40 70.40 82.80 73.61 77.31

LogTrans. 76.21 79.57 69.97 80.52 76.74 76.60

Transformer 79.56 78.68 69.70 80.37 76.07 76.88

60 62 64 66 68 70 72 74
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Figure 4: Model comparison in classifica-
tion.

The span of sequence lengths within the categorized datasets is considerable, ranging from 29 to
1751. To facilitate more effective application of PTE4TS, we have not only substituted the Projec-
tion module with a simple linear layer for categorization purposes, but we have also adapted the
patch-size for each dataset to ensure compatibility with the input requirements of PTE4TS. Unlike
forecasting and anomaly detection tasks, the datasets employed for classification have not been ex-
posed to the model during the pre-training phase; however, this does not impede the performance of
PTE4TS. As illustrated in Figure 4, it is evident that PTE4TS achieves the highest mean accuracy
rates across the 10 datasets under examination.

5 CONCLUSION

The PTE4TS model proposed in this paper marks an innovative breakthrough in the field of time
series analysis. By adopting a novel pre-training strategy, PTE4TS surpasses traditional methods,
becoming the first general time series analysis model pre-trained from scratch, effectively solving
key issues in processing time series data. Our model not only brings theoretical innovation but also
confirms its superior performance through a series of experiments in practical applications, demon-
strating the effectiveness and vast application potential of our approach. The core innovation of
the PTE4TS model lies in combining point-level and patch-level mask pre-training methods, which
are more conducive to learning local features and overall patterns in time series data. Moreover, to
overcome the limitations of Low-Rank in bidirectional attention and the shortcomings of unidirec-
tional attention in mask models, we designed an efficient hybrid attention encoder that optimizes
the model’s expressive capabilities when dealing with masking issues. In various mainstream time
series analysis tasks, including time series classification, long-term forecasting, data imputation, and
anomaly detection, the PTE4TS model exhibits outstanding performance, on par with or surpassing
existing state-of-the-art technology. Extensive experimental results demonstrate the versatility and
efficiency of the PTE4TS model, further solidifying the leading position of our proposed method.
In summary, the PTE4TS model provides a new perspective and a powerful analytical tool for the
field of time series analysis. We expect it to promote in-depth research in related areas and lay a
solid foundation for building a more general and efficient AI framework for time series analysis. In
the future, we will continue to explore and optimize Large Models in the time series, extending their
application to a broader range of time series tasks, thereby advancing the development of the entire
field.
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A RELATED WORK

A.1 LARGE MODEL IN TIME SERIES

Large Models have advantages in capturing long-term dependencies, handling high-dimensional
data, and combating noise in the field of time series Zhao et al. (2023); Awais et al. (2023). They can
be applied to a variety of specific scenarios including sleep analysis, weather prediction, and traffic
flow forecasting. With the continuous development and innovation of technology, the potential
applications of Large Models will be further unleashed, bringing more possibilities and value to
time series analysis.

PromptCast Xue & Salim (2023) introduces a new paradigm for time series forecasting that lever-
ages language models for prediction. In this paradigm, numerical inputs and outputs are transformed
into prompts, and the forecasting task is constructed in a sentence-to-sentence manner. This allows
for the direct application of language models to make predictions. The Frozen Pretrained Trans-
former (FPT) Zhou et al. (2023) improves time series tasks by utilizing Transformer Blocks from
a pretrained language model, specifically GPT, for time series analysis. Additionally, the authors
have discovered that the self-attention modules exhibit similarity to Principal Component Analy-
sis (PCA) Wold et al. (1987) from both theoretical and empirical perspectives. This observation
is instrumental in explaining how Transformers overcome disparities between domains, and it is a
critical step toward understanding the universality of Transformers. TIME-LLM Jin et al. (2023a)
achieves time series forecasting by repurposing LLMs. This method leverages the powerful pattern
recognition and reasoning capabilities of LLMs on complex sequence data, aligning time series data
with natural language to achieve accurate time series forecasting. LLM4TS Chang et al. (2023)
enhances time series forecasting by leveraging pretrained LLMs. By combining methods of time
series patching and time encoding, it improves the capability of LLMs to process time series data.
TEST Sun et al. (2023) activates the capability of LLMs to process time series data by designing
a time series embedding method suitable for LLMs. It first tokenizes the time series, then encodes
the series through instance-level, feature-level, and text-prototype aligned contrastive learning meth-
ods. Next, it creates prompts to facilitate the LLM’s understanding of the embedded information,
ultimately enabling the execution of time series tasks. TEMPO Cao et al. (2023) introduces a gen-
erative pre-training Transformer model for representation learning and forecasting of time series.
TEMPO decomposes time series into three components: trend, seasonality, and residuals, using lo-
cally weighted scatterplot smoothing. Each component is then mapped to a hidden space to construct
the time series input embeddings for the generative pre-training Transformer. TEMPO uses a pool
of prompts to guide the model’s forecasting task, encoding temporal knowledge through the reuse
of a set of learnable continuous vector representations. Most of these methods focus primarily on
time series forecasting, with little or no attention to other applications within the time series domain.
Although FPT is proposed to improve time series analysis tasks, it explores the application of LLMs
in time series.

A.2 PRE-TRAINING MODELS IN TIME SERIES

In addition to employing LLMs for time series analysis, the development of pre-training models and
associated infrastructure based on time series data also holds significant potential and promise for
application Jin et al. (2023b).

Voice2Series Yang et al. (2021) framework leverages the representational learning capabilities of
pre-training voice processing models, adeptly converting voice data into univariate time signals for
classification. CLUDA Ozyurt et al. (2022) stands as an innovative unsupervised domain adaptation
framework for time series, employing custom and nearest-neighbor contrastive learning. Through
contrastive learning, CLUDA aims to create a representational space where samples with semantic
similarities are drawn closer together, while those with lesser affinity are distanced from each other,
thereby facilitating the learning of contextual representations for multivariate time series across
domains. STEP Shao et al. (2022) comprises a pre-training model and a spatio-temporal graph neu-
ral network (STGNN), where the pre-training model is focused on effectively capturing temporal
patterns from long-term historical time series, generating segment-level representations to provide
contextual information for short-term time series inputs to the STGNN, and enhancing the modeling
of correlations among time series. MTSMAE Tang & Zhang (2022) is a self-supervised pretraining
method developed from the foundational Masked Autoencoder (MAE) concept, specifically tai-
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lored for multivariate time-series forecasting. The concept behind MTSMAE is straightforward: it
segments the multivariate time series data into patches, then masks random patches from the in-
put, and subsequently attempts to reconstruct the missing patches.The Patch embedding proposed
by MTSMAE is instrumental in reducing memory usage, as it allows the model to handle longer
sequences more efficiently. SimMTM Dong et al. (2023) extends the application of pre-training
masked models to time series by uncovering the local structure of the manifolds. This model re-
constructs masked time points through weighted aggregation of multiple neighbors outside the man-
ifold, thereby improving the quality of sequence reconstruction. PatchTST Nie et al. (2022) is a
Transformer-based model specifically designed for long-term time series forecasting. The model
incorporates a patch mechanism to extract local semantic information, enabling each univariate
sequence within the channel-independent architecture to learn its own attention map for accurate
predictions. TSMixer Ekambaram et al. (2023) is a lightweight MLP-Mixer model tailored for mul-
tivariate time series forecasting. The model integrates two online reconciliation heads that fine-tune
and enhance predictions by exploiting the hierarchical patch aggregation characteristics within the
time series and the inter-channel correlations.

B PRE-TRAINING AND DOWNSTREAM TRAINING SETTINGS

B.1 DATASET

Table 4: Long-term forecasting dataset descriptions.

Dataset Dim Input Length Prediction Length Time Points train/val/test Information (Frequency)

ETTm1
ETTm2 7 336 {96,192,336,720} 69,680 6:2:2 Electricity(15 mins)

ETTh1
ETTh2 7 336 {96,192,336,720} 17,420 6:2:2 Electricity(15 mins)

Electricity 321 336 {96,192,336,720} 26,304 7:1:2 Electricity(Hourly)

Traffic 862 336 {96,192,336,720} 17,544 7:1:2 Transportation(Hourly)

Weather 21 336 {96,192,336,720} 52,696 7:1:2 Weather(10 mins)

Exchange 8 336 {96,192,336,720} 7,588 7:1:2 Exchange rate (Daily)

ILI 7 104 {24,36,48,60} 966 7:1:2 lllness (Weekly)

Timer has curated the Unified Time Series Dataset (UTSD) Liu et al. (2024), which encompasses
seven domains and includes up to 1 billion time points, organized in a hierarchical four-volume
structure to facilitate research and pre-training of large models in the time series field. The Unified
Time Series Dataset (UTSD) is meticulously compiled from a combination of publicly accessible
online data repositories and empirical data derived from real-world machine operations. All datasets
are classified into seven distinct domains by their sources: Energy, Environment, Health, Internet
of Things (IoT), Nature, Transportation, and Web, with diverse sampling frequencies. UTSD is
structured with hierarchical capacities, namely UTSD-1G, UTSD-2G, UTSD-4G, and UTSD-12G,
where each smaller dataset is a subset of the larger ones. A larger subset means greater data difficulty
and diversity. For our pre-training tasks, we directly utilized data from the UTSD-12G.

In Table 4 and Table 5, we present detailed information about each dataset. These include Elec-
tricity, Weather, Traffic, ILI, as well as the ETT family comprising ETTh1, ETTh2, ETTm1, and
ETTm2. Additionally, the framework is pre-trained on five standard time series anomaly detection
datasets, specifically SMD, MSL, SMAP, SWaT, and PSM. Across these diverse datasets, a wide
array of applications is covered, ranging from weather forecasting, traffic analysis, energy con-
sumption, service monitoring, space & earth exploration, and water treatment technologies. Given
the specificity of the downstream tasks associated with these datasets, our pre-training is strictly
conducted on their respective training sets.
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Table 5: Other dataset descriptions. The dataset size is organized in (Train,Validation,Test).

Tasks Dataset Dim Series Length Dataset Size Information (Frequency)

Imputation

ETTm1,ETTm2 7 96 (34465,11521,11521) Electricity(15 mins)

ETTh1,ETTh2 7 96 (8545,2881,2881) Electricity (15 mins)

Electricity 321 96 (18317,2633,5261) Electricity(15 mins)

Weather 21 96 (36792,5271,10540) Weather(10 mins)

Classification
(UEA)

EthanolConcentration 3 1751 (261,0,263) Alcohol Industry

FaceDetection 144 62 (5890,0,3524) Face (250Hz)

Handwriting 3 152 (150,0.850 Handwriting

Heartbeat 61 405 (204,0,205) Heart Beat

JapaneseVowels 12 29 (270,0,370) Voice

PEMS-SF 963 144 (267,0,173) Transportation (Daily)

SelfRegulationSCP1 6 896 (268,0,293) Health(256Hz)

SelfRegulationSCP2 7 1152 (200,0,180) Health(256Hz)

SpokenArabicDigits 13 93 (6599,0,2199) Voice(11025Hz)

UWaveGestureLibrary 3 315 (120,0,320) Gesture

Anomaly
Detection

SMD 38 100 (566724,141681,708420) Server Machine

MSL 55 100 (44653,11664,73729) Spacecraft

SMAP 25 100 (108146,27037,427617) Spacecraft

SWaT 51 100 (396000,99000,449919) Infrastructure

PSM 25 100 (105984,26497,87841) Server Machine

B.2 PRE-TRAINING

Our PTE4TS pre-training framework is illustrated as shown in Figure 2, where we conduct pre-
training across UTSD and performing data augmentation, specifically by downsampling the original
training data to simulate different sampling frequencies.

We developed a 6-layer Encoder Transformer with attention layers(each providing a 256-
dimensional representation of the data it processes and 16 heads). The architecture included
position-wise feed-forward networks with an expansive 2048-dimensional inner state, allowing for
rich internal representations to be formed during the learning process. Each iteration of our training
provides the model with mini-batches composed of 1024 randomly selected small batch data, with
each sequence capable of accepting up to 1440 input tokens. Optimization was carried out using the
Adam scheme Kingma & Ba (2014), with peak learning rates capping at 0.0001. Diverging from
the sine-based position embedding proposed in the foundational literature, we implemented learned
positional embedding, solidifying their contributions to the model’s understanding of sequence by
locking them during fine-tuning stages. By freezing these embedding in downstream tasks, we
ensured their gradients remained untouched, preserving their intrinsic values for consistent perfor-
mance.

In the pre-training task, we did not set a fixed random number seed and conducted experiments on
four NVIDIA V100 16GB GPUs. We selected an exceptionally high mask ratio of 75%. Due to the
absence of a fixed random seed, this can largely guarantee that the data inputted into the model in
each round of the pre-training phase is different.

B.3 DOWNSTREAM TASKS

For our downstream tasks, we’ve tailored the Projection module into a specialized output layer to
cater to diverse tasks while maintaining the rest of the architecture intact. The model will then un-
dergo fine-tuning on specific datasets. Unless otherwise specified, we will adopt the hyperparameter
configuration from the pre-training phase. Our optimization approach for downstream tasks will
align with the protocols set by TimesNet Wu et al. (2022).

We did not set a random seed and each experiment was repeated six times to obtain the mean value;
these were conducted on a single NVIDIA V100 16GB GPU. We employed early stopping, that
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is, training was halted if there was no improvement in performance on the Validation set for five
consecutive epochs.

All experiments were implemented in PyTorch Paszke et al. (2019). For pre-training, long-term
forecasting and imputations, we adopt the mean square error (MSE) and mean absolute error (MAE)
for the metrics. For anomaly detection, we adopt the F1-score, which is the harmonic mean of
Precision and Rrecall. Apart from utilizing cross-entropy as the loss function for classification tasks,
MSE was employed as the loss function for all other tasks.

C MODEL ANALYSIS

C.1 ATTENTION TYPE
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Figure 5: The MSE results in different long-torm forecasting datasets after masking the input at
different scales on Patch-Level and passing through different types of Attention.
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Figure 6: The MSE results in different anomaly detection datasets after masking the input at different
scales on Patch-Level and passing through different types of Attention.

In vanilla Attention, the positional relationship amongst elements is not directly accounted for, re-
sulting in the architecture’s inability to effectively capture the critical information of element se-
quence within the input series. This issue is somewhat alleviated through the use of positional em-
bdedding. However, such sequential information is vital for the analysis of time series data, which
often exhibits a pronounced sequential dependency; that is, the occurrence of one event might be
directly influenced by a preceding event. The employment of lower or upper triangular masks can
serve as a more effective approach to handling positional embdedding information. Essentially,
the triangular mask undermines the permutation invariance characteristic of the Transformer model,
introducing a definitive left-to-right sequence order. Specifically, in the presence of a triangular
mask, subsequent tokens in the sequence can only attend to preceding tokens, not to following ones,
thereby inherently incorporating positional information.

Furthermore, the utilization of a full-rank weight matrix implies that the network can capture a
broader array of input data features, making full use of model parameters to provide a richer rep-
resentational capacity. In the absence of additional restrictive conditions, a full-rank matrix may
exhibit a strong expressive ability, as it can represent a wider range of transformations. Within the
context of attention models, expressive capability generally refers to the model’s capacity to capture
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and utilize information, as well as its ability to model complex relationships. Although the property
of full-rank does not inherently guarantee high expressive capability, it bestows upon the model the
potential for such capacity.

Our discussion specifically examines the role of Attention mechanisms of various orientations in
a range of time series tasks. Figure 5 presents the MSE in pre-training tasks after applying dif-
ferent types of Attention mechanisms on three long-term forecasting datasets. It is evident that
although BiDirectional Attention is not full-rank, its consideration of bidirectional interactions ren-
ders it superior to UniDirectional Attention to a certain extent. However, in the ETTm2 dataset,
BiDirectional Attention underperforms compared to UniDirectional Attention, which, to some ex-
tent, demonstrates the advantages of full-rank Attention.

Table 6: The results of fine-tuning and no pre-training using different types of Attention on long-
term forecasting datasets

Methods
MDMH Attention Bidirectional Attention Forward Attention Backward Attention

Fine-tuning Supervised Fine-tuning Supervised Fine-tuning Supervised Fine-tuning Supervised

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h2

96 0.271 0.329 0.280 0.336 0.276 0.334 0.281 0.339 0.282 0.339 0.288 0.343 0.279 0.335 0.282 0.339
192 0.337 0.372 0.351 0.384 0.346 0.379 0.350 0.385 0.346 0.381 0.355 0.386 0.344 0.378 0.347 0.382
336 0.331 0.377 0.343 0.389 0.331 0.380 0.337 0.386 0.336 0.385 0.337 0.388 0.340 0.384 0.342 0.389
720 0.383 0.420 0.393 0.431 0.377 0.419 0.384 0.425 0.382 0.421 0.391 0.431 0.390 0.427 0.393 0.430

Avg 0.331 0.375 0.342 0.385 0.333 0.378 0.338 0.384 0.337 0.382 0.343 0.387 0.338 0.381 0.341 0.385

E
T

T
m

1

96 0.277 0.331 0.286 0.338 0.280 0.333 0.286 0.339 0.282 0.336 0.285 0.338 0.282 0.336 0.288 0.339
192 0.318 0.357 0.325 0.363 0.321 0.359 0.330 0.367 0.324 0.364 0.329 0.367 0.322 0.362 0.326 0.363
336 0.352 0.378 0.360 0.386 0.354 0.381 0.366 0.391 0.358 0.384 0.363 0.390 0.357 0.384 0.360 0.385
720 0.397 0.408 0.407 0.416 0.403 0.412 0.411 0.417 0.406 0.412 0.410 0.419 0.404 0.412 0.410 0.417

Avg 0.336 0.369 0.345 0.376 0.340 0.371 0.348 0.379 0.343 0.374 0.347 0.379 0.341 0.374 0.346 0.376

E
xc

ha
ng

e

96 0.082 0.201 0.090 0.210 0.082 0.203 0.091 0.211 0.085 0.206 0.088 0.207 0.087 0.205 0.089 0.209
192 0.179 0.300 0.192 0.313 0.183 0.305 0.200 0.319 0.187 0.309 0.197 0.318 0.185 0.306 0.194 0.314
336 0.351 0.427 0.372 0.442 0.349 0.428 0.371 0.444 0.353 0.432 0.359 0.436 0.351 0.428 0.369 0.441
720 0.854 0.683 0.916 0.708 0.894 0.707 0.880 0.694 0.870 0.688 0.893 0.700 0.898 0.709 0.955 0.724

Avg 0.367 0.403 0.393 0.418 0.377 0.411 0.386 0.417 0.374 0.409 0.384 0.415 0.380 0.412 0.402 0.422

W
ea

th
er

96 0.148 0.197 0.154 0.204 0.151 0.198 0.158 0.207 0.153 0.201 0.157 0.204 0.151 0.200 0.157 0.207
192 0.191 0.235 0.197 0.243 0.194 0.239 0.198 0.243 0.195 0.24 0.198 0.244 0.195 0.240 0.200 0.246
336 0.241 0.275 0.248 0.282 0.243 0.277 0.249 0.282 0.245 0.279 0.248 0.282 0.246 0.280 0.249 0.284
720 0.313 0.325 0.320 0.333 0.314 0.328 0.321 0.335 0.315 0.329 0.319 0.333 0.317 0.332 0.321 0.335

Avg 0.222 0.257 0.230 0.266 0.226 0.261 0.232 0.267 0.227 0.262 0.231 0.266 0.227 0.263 0.232 0.268

E
C

L

96 0.128 0.224 0.136 0.231 0.131 0.227 0.136 0.232 0.133 0.228 0.138 0.234 0.135 0.230 0.138 0.234
192 0.143 0.234 0.151 0.245 0.146 0.241 0.154 0.248 0.149 0.242 0.152 0.246 0.149 0.243 0.153 0.247
336 0.159 0.253 0.168 0.263 0.162 0.256 0.168 0.262 0.166 0.261 0.170 0.264 0.165 0.260 0.169 0.263
720 0.199 0.286 0.208 0.296 0.202 0.289 0.207 0.295 0.204 0.293 0.207 0.295 0.204 0.292 0.208 0.296

Avg 0.157 0.249 0.166 0.259 0.160 0.253 0.166 0.259 0.163 0.256 0.167 0.260 0.163 0.256 0.167 0.260

Tr
af

fic

96 0.383 0.260 0.390 0.268 0.386 0.265 0.394 0.272 0.396 0.271 0.398 0.275 0.390 0.268 0.393 0.273
192 0.397 0.266 0.406 0.275 0.401 0.272 0.409 0.278 0.407 0.274 0.411 0.279 0.407 0.274 0.409 0.278
336 0.408 0.268 0.416 0.280 0.413 0.276 0.419 0.282 0.417 0.282 0.423 0.285 0.417 0.282 0.421 0.287
720 0.437 0.289 0.445 0.297 0.441 0.294 0.448 0.300 0.444 0.296 0.449 0.301 0.445 0.297 0.450 0.302

Avg 0.406 0.271 0.414 0.280 0.410 0.277 0.418 0.283 0.416 0.281 0.420 0.285 0.415 0.280 0.418 0.285

It is noteworthy that the Multi-Directional Multi-Head (MDMH) Attention we propose not only ac-
counts for bidirectional information input but also possesses full-rank characteristics. Consequently,
it achieves the best results in recovery tasks across all datasets. As shown in Talbe 6, we con-
ducted a detailed analysis of the impact of different directional Attention mechanisms on forecasting
tasks and fine-tuning for forecasts. It is apparent that MDMH continues to achieve state-of-the-art
(SOTA) results across all datasets. Simultaneously, it is observed that there seems to be little dif-
ference between Forward Attention (FA) and Backward Attention (BA), suggesting that causality is
not particularly crucial for predicting time series.

Furthermore, Figure 6 and Table 7 display experimental results of different directional Atten-
tion mechanisms on various tasks within anomaly detection datasets. Figure 7 demonstrates the
classification accuracy of different directional Attention in datasets focused on classification. In re-
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construction tasks, MDMH consistently shows superior performance. In anomaly detection tasks,
MDMH exhibits the best performance in multiple datasets, which can be attributed to the fact that
although MDMH incorporates information in two directions, it lacks the interaction between these
two directions.

Table 7: The results of fine-tuning and no pre-training using different types of Attention on anomaly
detection datasets

Dataset Metric
MDMH Attention Bidirectional Attention Forward Attention Backward Attention

Fine-tuning Supervised Fine-tuning Supervised Fine-tuning Supervised Fine-tuning Supervised

MSL

Accuracy 96.32 96.11 96.55 96.34 96.22 95.75 95.91 95.21
Precision 89.33 88.86 90.01 89.47 89.31 88.67 88.56 86.86

Recall 74.12 72.18 75.23 74.05 71.89 68.42 70.34 64.36
F-score 81.00 79.66 81.99 81.03 79.65 77.24 78.40 73.93

PSM

Accuracy 97.67 97.60 97.54 97.49 97.51 97.41 97.54 97.48
Precision 98.56 98.50 98.40 98.43 98.43 98.33 98.38 98.48

Recall 92.95 92.74 92.66 92.41 92.52 92.23 92.67 92.36
F-score 95.67 95.53 95.44 95.33 95.38 95.18 95.44 95.32

SMAP

Accuracy 93.54 93.21 95.02 94.25 93.87 93.47 93.89 93.48
Precision 90.43 89.91 92.26 91.24 90.45 90.28 90.67 90.33

Recall 55.37 52.85 62.14 60.91 55.25 54.87 55.26 54.94
F-score 68.68 66.57 74.26 73.05 68.59 68.25 69.09 68.32

SMD

Accuracy 98.87 98.51 98.50 98.48 98.48 98.43 98.50 98.49
Precision 88.69 88.27 88.24 88.20 88.24 88.18 88.36 88.23

Recall 74.43 73.84 73.60 73.31 73.20 73.12 73.55 73.49
F-score 80.93 80.47 80.26 80.07 80.02 79.98 80.28 80.19

SWAT

Accuracy 98.48 98.13 98.45 98.11 98.12 98.11 98.14 98.12
Precision 92.84 92.19 92.84 92.12 92.20 92.16 92.23 92.18

Recall 93.01 92.38 92.98 92.36 93.29 92.26 92.39 92.34
F-score 92.97 92.27 92.96 92.24 92.74 92.21 92.31 92.26
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Figure 7: The results of different classification datasets passing through different types of Attention.

C.2 MASK TYPE

The reconstruction task at the patch-level involves masking the input on a patch basis, rendering
large sequences invisible and creating a more challenging recovery scenario. This allows the model
to better learn local information. However, in situations with an exceedingly high mask ratio, too
much information may be lost, causing the model to learn only repetitive patterns rather than global
trends or other relevant data.

In contrast, point-level reconstruction tasks mask inputs on a point basis, which helps preserve the
trend information of sequences. Although subsequent patching can enhance the model’s ability
to learn local features, distinguishing whether local anomalies are due to masking or noise points
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Figure 8: After using different masking methods to obscure the input at various ratios, the MAE
results in different long-torm forecasting datasets are obtained following Bidirectional Attention.

becomes challenging for the model. With a very high mask ratio, the task remains difficult, yet lost
information is relatively easier to recover from neighboring points.

The mix mask approach that incorporates both scrambling within patches and mean replacement,
establishing a patch-level reconstruction task. This approach allows models to learn the order of
local information to some extent, while point-level masking ensures that global trends and other
information are not lost.

Figure 8 demonstrates the results of employing different masking methods in reconstruction tasks
across three long-term prediction datasets. It clearly shows that, despite integrating some aspects
of patch-level masking, the mixed mask approach still outperforms point-level masking. This high-
lights that the mixed strategy enables models to learn global information without neglecting local
details and can, to a certain extent, learn sequential information.

D FULL RESULTS

D.1 FULL RESULTS OF LONG-TERM TIME-SERIES FORECASTING

D.2 FULL RESULTS OF IMPUTATION

D.3 FULL RESULTS OF ANOMALY DETECTION
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Table 8: Full Results of Long-term Time-series Forecasting

Methods PTE4TS FPT DLinear PatchTST TimesNet FEDformer Autoformer Stationary ETSformer LightTS

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er

96 0.139 0.187 0.162 0.212 0.176 0.237 0.149 0.198 0.172 0.220 0.217 0.296 0.266 0.336 0.173 0.223 0.197 0.281 0.182 0.242
192 0.182 0.230 0.204 0.248 0.220 0.282 0.194 0.241 0.219 0.261 0.276 0.336 0.307 0.367 0.245 0.285 0.237 0.312 0.227 0.287
336 0.232 0.268 0.254 0.286 0.265 0.319 0.245 0.282 0.280 0.306 0.339 0.380 0.359 0.395 0.321 0.338 0.298 0.353 0.282 0.334
720 0.306 0.321 0.326 0.337 0.333 0.362 0.314 0.334 0.365 0.359 0.403 0.428 0.419 0.428 0.414 0.410 0.352 0.288 0.352 0.386

Avg 0.215 0.251 0.237 0.270 0.248 0.300 0.225 0.264 0.259 0.287 0.309 0.360 0.338 0.382 0.288 0.314 0.271 0.334 0.261 0.312

E
T

T
h1

96 0.358 0.381 0.376 0.397 0.375 0.399 0.370 0.399 0.384 0.402 0.376 0.419 0.449 0.459 0.513 0.491 0.494 0.479 0.424 0.432
192 0.405 0.413 0.416 0.418 0.405 0.416 0.413 0.421 0.436 0.429 0.420 0.448 0.500 0.482 0.534 0.504 0.538 0.504 0.475 0.462
336 0.413 0.425 0.442 0.433 0.439 0.443 0.422 0.436 0.491 0.469 0.459 0.465 0.521 0.496 0.588 0.535 0.574 0.521 0.518 0.488
720 0.438 0.453 0.477 0.456 0.472 0.490 0.447 0.466 0.521 0.500 0.506 0.507 0.514 0.512 0.643 0.616 0.562 0.535 0.547 0.533

Avg 0.404 0.418 0.427 0.426 0.422 0.437 0.413 0.430 0.458 0.450 0.440 0.460 0.496 0.487 0.570 0.537 0.542 0.510 0.491 0.479

E
T

T
h2

96 0.262 0.324 0.285 0.342 0.289 0.353 0.274 0.336 0.340 0.374 0.358 0.397 0.346 0.388 0.476 0.458 0.340 0.391 0.397 0.437
192 0.330 0.369 0.354 0.389 0.383 0.418 0.339 0.379 0.402 0.414 0.429 0.439 0.456 0.452 0.512 0.493 0.430 0.439 0.520 0.504
336 0.321 0.368 0.373 0.407 0.448 0.465 0.329 0.380 0.452 0.452 0.496 0.487 0.482 0.486 0.552 0.551 0.485 0.479 0.626 0.559
720 0.373 0.413 0.406 0.441 0.605 0.551 0.379 0.422 0.462 0.468 0.463 0.474 0.515 0.511 0.562 0.560 0.500 0.497 0.863 0.672

Avg 0.322 0.368 0.354 0.394 0.431 0.446 0.330 0.379 0.414 0.427 0.437 0.449 0.450 0.459 0.526 0.516 0.439 0.452 0.602 0.543

E
T

T
m

1

96 0.270 0.325 0.292 0.346 0.299 0.343 0.290 0.342 0.338 0.375 0.379 0.419 0.505 0.475 0.386 0.398 0.375 0.398 0.374 0.400
192 0.313 0.348 0.332 0.372 0.335 0.365 0.332 0.369 0.374 0.387 0.426 0.441 0.553 0.496 0.459 0.444 0.408 0.410 0.400 0.407
336 0.343 0.368 0.366 0.394 0.369 0.386 0.366 0.392 0.410 0.411 0.445 0.459 0.621 0.537 0.495 0.464 0.435 0.428 0.438 0.438
720 0.388 0.400 0.417 0.421 0.425 0.421 0.416 0.420 0.478 0.450 0.543 0.490 0.671 0.561 0.585 0.516 0.499 0.462 0.527 0.502

Avg 0.328 0.360 0.352 0.383 0.357 0.378 0.351 0.380 0.400 0.406 0.448 0.452 0.588 0.517 0.481 0.456 0.429 0.425 0.435 0.437

E
T

T
m

2

96 0.155 0.245 0.173 0.262 0.167 0.269 0.165 0.255 0.187 0.267 0.203 0.287 0.255 0.339 0.192 0.274 0.189 0.280 0.209 0.308
192 0.211 0.279 0.229 0.301 0.224 0.303 0.220 0.292 0.249 0.309 0.269 0.328 0.281 0.340 0.280 0.339 0.253 0.319 0.311 0.382
336 0.263 0.315 0.286 0.341 0.281 0.342 0.274 0.329 0.321 0.351 0.325 0.366 0.339 0.372 0.334 0.361 0.314 0.357 0.442 0.466
720 0.353 0.374 0.378 0.401 0.397 0.421 0.362 0.385 0.408 0.403 0.421 0.415 0.433 0.432 0.417 0.413 0.414 0.413 0.675 0.587

Avg 0.246 0.303 0.266 0.326 0.267 0.333 0.255 0.315 0.291 0.333 0.305 0.349 0.327 0.371 0.306 0.347 0.293 0.342 0.409 0.436

IL
I

24 1.207 0.689 2.063 0.881 2.215 1.081 1.319 0.754 2.317 0.934 3.228 1.260 3.483 1.287 2.294 0.945 2.527 1.020 8.313 2.144
36 1.313 0.761 1.868 0.892 1.963 0.963 1.430 0.834 1.972 0.920 2.679 1.080 3.103 1.148 1.825 0.848 2.615 1.007 6.631 1.902
48 1.427 0.725 1.790 0.884 2.130 1.024 1.553 0.815 2.238 0.940 2.622 1.078 2.669 1.085 2.010 0.900 2.359 0.972 7.299 1.982
60 1.351 0.710 1.979 0.957 2.368 1.096 1.470 0.788 2.027 0.928 2.857 1.157 2.770 1.125 2.178 0.963 2.487 1.016 7.283 1.985

Avg 1.324 0.721 1.925 0.903 2.169 1.041 1.443 0.797 2.139 0.931 2.847 1.144 3.006 1.161 2.077 0.914 2.497 1.004 7.382 2.003

E
C

L

96 0.120 0.213 0.139 0.238 0.140 0.237 0.129 0.222 0.168 0.272 0.193 0.308 0.201 0.317 0.169 0.273 0.187 0.304 0.207 0.307
192 0.135 0.225 0.153 0.251 0.153 0.249 0.157 0.240 0.184 0.289 0.201 0.315 0.222 0.334 0.182 0.286 0.199 0.315 0.213 0.316
336 0.145 0.244 0.169 0.266 0.169 0.267 0.163 0.259 0.198 0.300 0.214 0.329 0.231 0.338 0.200 0.304 0.212 0.329 0.230 0.333
720 0.181 0.270 0.206 0.297 0.203 0.301 0.197 0.290 0.220 0.320 0.246 0.355 0.254 0.361 0.222 0.321 0.233 0.345 0.265 0.360

Avg 0.145 0.238 0.167 0.263 0.166 0.263 0.161 0.252 0.192 0.295 0.214 0.327 0.227 0.338 0.193 0.296 0.208 0.323 0.229 0.329

Tr
af

fic

96 0.354 0.244 0.388 0.282 0.410 0.282 0.360 0.249 0.593 0.321 0.587 0.366 0.613 0.388 0.612 0.338 0.607 0.392 0.615 0.391
192 0.374 0.251 0.407 0.290 0.423 0.287 0.379 0.256 0.617 0.336 0.604 0.373 0.616 0.382 0.613 0.340 0.621 0.399 0.601 0.382
336 0.383 0.254 0.412 0.294 0.436 0.296 0.392 0.264 0.629 0.336 0.621 0.383 0.622 0.337 0.618 0.328 0.622 0.396 0.613 0.386
720 0.416 0.271 0.450 0.312 0.466 0.315 0.432 0.286 0.640 0.350 0.626 0.382 0.660 0.408 0.653 0.355 0.632 0.396 0.658 0.407

Avg 0.382 0.255 0.414 0.294 0.433 0.295 0.390 0.263 0.620 0.336 0.610 0.376 0.628 0.379 0.624 0.340 0.621 0.396 0.622 0.392
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Table 9: Full Results of Imputation

Methods PTE4TS FPT DLinear PatchTST TimesNet FEDformer Autoformer Stationary ETSformer LightTS

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

12.5% 0.011 0.075 0.017 0.085 0.023 0.101 0.041 0.130 0.096 0.229 0.093 0.206 0.080 0.193 0.052 0.166 0.032 0.119 0.046 0.144
25% 0.015 0.088 0.022 0.096 0.023 0.101 0.044 0.135 0.096 0.229 0.093 0.206 0.080 0.193 0.052 0.166 0.032 0.119 0.046 0.144

37.5% 0.025 0.104 0.029 0.111 0.029 0.111 0.049 0.143 0.133 0.271 0.113 0.231 0.103 0.219 0.069 0.191 0.039 0.131 0.057 0.161
50% 0.034 0.115 0.040 0.128 0.036 0.124 0.055 0.151 0.186 0.323 0.134 0.255 0.132 0.248 0.089 0.218 0.047 0.145 0.067 0.174

Avg 0.021 0.096 0.028 0.105 0.027 0.107 0.047 0.140 0.120 0.253 0.104 0.218 0.093 0.206 0.062 0.177 0.036 0.126 0.051 0.150

E
T

T
m

2

12.5% 0.010 0.062 0.017 0.076 0.018 0.080 0.026 0.094 0.108 0.239 0.034 0.127 0.062 0.166 0.056 0.159 0.021 0.088 0.023 0.092
25% 0.016 0.073 0.020 0.080 0.020 0.085 0.028 0.099 0.164 0.294 0.042 0.143 0.085 0.196 0.080 0.195 0.024 0.096 0.026 0.101

37.5% 0.015 0.079 0.022 0.087 0.023 0.091 0.030 0.104 0.237 0.356 0.051 0.159 0.106 0.222 0.110 0.231 0.027 0.103 0.030 0.108
50% 0.019 0.084 0.025 0.095 0.026 0.098 0.034 0.110 0.323 0.421 0.059 0.174 0.131 0.247 0.156 0.276 0.030 0.108 0.035 0.119

Avg 0.015 0.075 0.021 0.084 0.022 0.088 0.029 0.102 0.208 0.327 0.046 0.151 0.096 0.208 0.101 0.215 0.026 0.099 0.029 0.105

E
T

T
h1

12.5% 0.036 0.132 0.043 0.140 0.057 0.159 0.093 0.201 0.126 0.263 0.240 0.345 0.151 0.267 0.070 0.190 0.060 0.165 0.074 0.182
25% 0.046 0.148 0.054 0.156 0.069 0.178 0.107 0.217 0.169 0.304 0.265 0.364 0.180 0.292 0.106 0.236 0.080 0.189 0.090 0.203

37.5% 0.064 0.174 0.072 0.180 0.084 0.196 0.120 0.230 0.220 0.347 0.296 0.382 0.215 0.318 0.124 0.258 0.102 0.212 0.109 0.222
50% 0.097 0.204 0.107 0.216 0.102 0.215 0.141 0.248 0.293 0.402 0.334 0.404 0.257 0.347 0.165 0.299 0.133 0.240 0.137 0.248

Avg 0.061 0.164 0.069 0.173 0.078 0.187 0.115 0.224 0.202 0.329 0.284 0.373 0.201 0.306 0.117 0.246 0.094 0.201 0.103 0.214

E
T

T
h2

12.5% 0.036 0.119 0.039 0.125 0.040 0.130 0.057 0.152 0.187 0.319 0.101 0.231 0.100 0.216 0.095 0.212 0.042 0.133 0.044 0.138
25% 0.037 0.124 0.044 0.135 0.046 0.141 0.061 0.158 0.279 0.390 0.115 0.246 0.127 0.247 0.137 0.258 0.049 0.147 0.050 0.149

37.5% 0.039 0.136 0.051 0.147 0.052 0.151 0.067 0.166 0.400 0.465 0.126 0.257 0.158 0.276 0.187 0.304 0.056 0.158 0.060 0.163
50% 0.047 0.147 0.059 0.158 0.060 0.162 0.073 0.174 0.602 0.572 0.136 0.268 0.183 0.299 0.232 0.341 0.065 0.170 0.068 0.173

Avg 0.040 0.131 0.048 0.141 0.049 0.146 0.065 0.163 0.367 0.436 0.119 0.250 0.142 0.259 0.163 0.279 0.053 0.152 0.055 0.156

E
C

L

12.5% 0.042 0.150 0.080 0.194 0.085 0.202 0.055 0.160 0.196 0.321 0.102 0.229 0.092 0.214 0.107 0.237 0.093 0.210 0.089 0.210
25% 0.057 0.171 0.087 0.203 0.089 0.206 0.065 0.175 0.207 0.332 0.121 0.252 0.118 0.247 0.120 0.251 0.097 0.214 0.096 0.220

37.5% 0.067 0.179 0.094 0.211 0.094 0.213 0.076 0.189 0.219 0.344 0.141 0.273 0.144 0.276 0.136 0.266 0.102 0.220 0.104 0.229
50% 0.080 0.190 0.101 0.220 0.100 0.221 0.091 0.208 0.235 0.357 0.160 0.293 0.175 0.305 0.158 0.284 0.108 0.228 0.113 0.239

Avg 0.061 0.173 0.090 0.207 0.092 0.210 0.072 0.183 0.214 0.339 0.131 0.262 0.132 0.260 0.130 0.259 0.100 0.218 0.101 0.225

W
ea

th
er

12.5% 0.016 0.042 0.026 0.049 0.025 0.045 0.029 0.049 0.057 0.141 0.047 0.101 0.039 0.084 0.041 0.107 0.027 0.051 0.026 0.047
25% 0.021 0.044 0.028 0.052 0.029 0.052 0.031 0.053 0.065 0.155 0.052 0.111 0.048 0.103 0.064 0.163 0.029 0.056 0.030 0.054

37.5% 0.025 0.042 0.033 0.060 0.031 0.057 0.035 0.058 0.081 0.180 0.058 0.121 0.057 0.117 0.107 0.229 0.033 0.062 0.032 0.060
50% 0.030 0.055 0.037 0.065 0.034 0.062 0.038 0.063 0.102 0.207 0.065 0.133 0.066 0.134 0.183 0.312 0.037 0.068 0.037 0.067

Avg 0.023 0.046 0.031 0.056 0.030 0.054 0.060 0.144 0.076 0.171 0.055 0.117 0.052 0.110 0.099 0.203 0.032 0.059 0.031 0.057

Table 10: Full Results of Anomaly Detection

Methods SMD MSL SMAP SWaT PSM

Metrics Precision Recall F-score Precision Recall F-score Precision Recall F-score Precision Recall F-score Precision Recall F-score

PTE4TS 91.23 84.54 87.76 91.64 87.34 89.44 92.56 63.48 75.31 93.42 96.11 94.75 99.23 96.21 97.70
FPT 88.89 84.98 86.89 82.00 82.91 82.45 90.60 60.95 72.88 92.20 96.34 94.23 98.62 95.68 97.13

TimesNet 87.91 81.54 84.61 89.54 75.36 81.84 90.14 56.40 69.39 90.75 95.40 93.02 98.51 96.20 97.34
PatchTST 87.26 82.14 84.62 88.34 70.96 78.70 90.64 55.46 68.82 91.10 80.94 85.72 98.84 93.47 96.08

ETSformer 87.44 79.23 83.13 85.13 84.93 85.03 92.25 55.75 69.50 90.02 80.36 84.91 99.31 85.28 91.76
FEDformer 87.95 82.39 85.08 77.14 80.07 78.57 90.47 58.10 70.76 90.17 96.42 93.19 97.31 97.16 97.23

LightTS 87.10 78.42 82.53 82.40 75.78 78.95 92.58 55.27 69.21 91.98 94.72 93.33 98.37 95.97 97.15
DLinear 83.62 71.52 77.10 84.34 85.42 84.88 92.32 55.41 69.26 80.91 95.30 87.52 98.28 89.26 93.55

Stationary 88.33 81.21 84.62 68.55 89.14 77.50 89.37 59.02 71.09 68.03 96.75 79.88 97.82 96.76 97.29
Autoformer 88.06 82.35 85.11 77.27 80.92 79.05 90.40 58.62 71.12 89.85 95.81 92.74 99.08 88.15 93.29
Pyraformer 85.61 80.61 83.04 83.81 85.93 84.86 92.54 57.71 71.09 87.92 96.00 91.78 71.67 96.02 82.08

Anomaly Transformer 88.91 82.23 85.49 79.61 87.37 83.31 91.85 58.11 71.18 72.51 97.32 83.10 68.35 94.72 79.40
Informer 86.60 77.23 81.65 81.77 86.48 84.06 90.11 57.13 69.92 70.29 96.75 81.43 64.27 96.33 77.10
Reformer 82.58 69.24 75.32 85.51 83.31 84.40 90.91 57.44 70.40 72.50 96.53 82.80 59.93 95.38 73.61

LogTransformer 83.46 70.13 76.21 73.05 87.37 79.57 89.15 57.59 69.97 68.67 97.32 80.52 63.06 98.00 76.74
Transformer 83.58 76.13 79.56 71.57 87.37 78.68 89.37 57.12 69.70 68.84 96.53 80.37 62.75 96.56 76.07
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