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ABSTRACT

Among various methods for learning with noisy labels, the transition matrix
method has attracted sustained attention due to its simplicity and statistical consis-
tency. However, estimating the transition matrix for each sample may be unidenti-
fiable and computationally expensive in the case of instance-dependent label noise
and real-world situations. In this paper, we propose a concise method that only
requires estimating a global matrix, combining with implicit regularization, to
replace the estimation of the individual transition matrix for each sample. Specif-
ically, by estimating the transition matrix, we can determine the overall proba-
bility transfer from correct labels to noisy labels and use implicit regularization
to adjust the sparse form representation of the difference between the estimated
posterior probability distribution and the noisy label distribution. This approach
can be applied to diverse types of noise as well as alleviating the problem of inac-
curate posterior probability estimation. We theoretically analyze the consistency
and generalization results of the proposed method and conduct experiments on
synthetic and real-world datasets with different types of label noise. The experi-
mental results show that our method significantly outperforms previous transition
matrix methods and has a wider range of applicability. Additionally, our method
achieves impressive results without the need for additional auxiliary techniques.
Our code will be open source and put on Github.

1 INTRODUCTION

Deep neural networks have achieved remarkable success in various fields in recent years, especially
in classification problems with labeled data (Pouyanfar et al., 2018; Alom et al., 2019). Compared
to traditional methods, deep neural networks have greatly improved performance but their effects
heavily depend on the accuracy of the provided labels. Bringing data with corrupted labels into
the neural network model without special treatment can severely affect the prediction performance
(Daniely & Granot, 2019; Zhang et al., 2021a). However, acquiring accurately annotated data in
reality can be very expensive, so a larger amount of data comes from the Internet or annotations
by non-professional annotators. Therefore, it is currently worth studying and promoting how to
alleviate the damage caused to the model when using noisy labels and make the model more robust,
which is known as the problem of learning with noisy labels (Natarajan et al., 2013; Sukhbaatar
et al., 2014; Han et al., 2018; Xia et al., 2019; 2020a; Algan & Ulusoy, 2021; Song et al., 2022).

Various methods have been proposed for learning with noisy labels. Existing methods can be clas-
sified into several categories. One of them is to design novel loss functions or network structures
(Zhang & Sabuncu, 2018; Wang et al., 2019; Ma et al., 2020), which reduce the impact of noisy
labels to make the model more robust. Another category is sample selection based on sample loss
or feature extracted, dividing samples into the clean dataset and the noisy dataset (Arpit et al., 2017;
Han et al., 2018; Jiang et al., 2018; Li et al., 2020). Then they relabel the noisy labels (Ren et al.,
2018; Kremer et al., 2018), or clear the noisy labels and use semi-supervised methods for learn-
ing (Arazo et al., 2019; Li et al., 2020). These methods are common recently and have achieved
some good results. However, the process of sample selection is relatively subjective, and statistical
consistency is lost after the selection, and most of them lack theoretical support. In contrast, tran-
sition matrix methods (Goldberger & Ben-Reuven, 2016; Xia et al., 2019; Li et al., 2021b; Jiang
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et al., 2021; Zhu et al., 2022) have statistical consistency and usually have corresponding theoretical
analysis as support, attracting continued attention and occupying an important position in various
learning algorithms with noisy labels.

The core idea of transition matrix methods is to use a matrix T (x) measuring the transition prob-
ability from the distribution of true label P (Y |X = x) to the distribution of observed noisy label
P (Ỹ |X = x) for given sample X = x. If an accurate transition matrix can be estimated and
combined with observable data to obtain the noisy class-posterior probability P (Ỹ |X = x), the
distribution of clean label P (Y |X = x) can be inferred for network learning. Therefore, estimat-
ing the transition matrix is the key to this type of method. However, it is infeasible to estimate an
individual transition matrix for each sample without additional conditions (Liu et al., 2023). Previ-
ous methods mostly focus on class-dependent and instance-independent label noise problems (Xia
et al., 2019; Li et al., 2021b; Zhang et al., 2021b), assuming that the transition matrix is fixed for
all samples, i.e., T (x) ≡ T . Even in this case, additional assumptions are still required. Some
methods (Patrini et al., 2017; Xia et al., 2019) assume the existence of anchor points to estimate the
transition matrix, while other methods obtain the optimal estimation by adding a regularization term
for matrix structure to weaken the anchor points assumption (Li et al., 2021b; Zhang et al., 2021b).
However, these methods are not suitable for instance-dependent label noise and complex real-world
data because they estimate only one matrix for all samples. Moreover, when the estimation of noisy
class-posterior distribution is inaccurate, the estimation of the transition matrix may be easily af-
fected (Yao et al., 2020), thereby affecting the estimation of the clean label distribution. Although
some new methods (Xia et al., 2020b; Zhu et al., 2021; Zhang & Sugiyama, 2021; Li et al., 2022)
have recently been designed to use special networks or structures for instance-dependent noise sit-
uations, the estimation errors for them are still large, and the computational cost is too high to lose
the concise characteristic of transition matrix methods.

To address the existing shortcomings of transition matrix methods, in this paper, we propose a
method that only requires estimating a global transition matrix T applicable to various types of
noise. We use this matrix to estimate the overall transfer trend of the real labels to noisy labels and
then attempt to measure the difference between the transfer posterior probability T⊤P (Y |X) and
the noisy class-posterior probability distribution P (Ỹ |X). When a suitable global matrix is applied,
this difference should be relatively small. We use implicit regularization (Patrini et al., 2017; Liu
et al., 2022) to model the sparsity of this residual term P (Ỹ |X)−T⊤P (Y |X), and directly utilize
the gradient method to update model parameters. Compared to traditional transition matrix methods
for class-dependent label noise, our method does not require much additional time consumption.
Compared to methods estimating transition matrices for each sample, it greatly reduces the compu-
tational time and space consumption by reducing the parameters to be estimated. In addition, for
the problem of inaccurate noisy class-posterior estimation, our model can effectively mitigate its
negative impact through the handling of fitting the residual term.

The structure of the following sections is as follows. In Section 2, we give relevant definitions and
propose our method and corresponding algorithm. In section 3 we conduct a theoretical analysis
of the proposed method on a simplified model. In Section 4, we conduct experiments on various
synthetic and real-world noisy datasets, comparing with other methods. We conclude the paper in
Section 5. In addition, we provide a more specific review of related works in Appendix A, algorithm
framework and proofs of theorems in Appendix B, experimental details in Appendix C.

The main contributions of this paper are:

• We propose a novel and concise transition matrix method, which combines with implicit
regularization, to effectively handle learning with various types of label noise data by only
estimating a global matrix.

• Under certain assumptions, we provide theoretical analysis on the consistency and gener-
alization results of the algorithm on a simplified model. We prove the theorems proposed
accordingly, giving support for the effectiveness of the proposed method.

• Our proposed method achieves significant improvements compared to previous transition
matrix methods on both synthetic and real-world noisy label datasets, and produces com-
petitive results without the need for additional auxiliary techniques.
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2 METHODOLOGY

In this section, based on previous transition matrix methods, we propose a novel approach that com-
bines the transition matrix with implicit regularization (TMR) for learning labels. It is a convenient
and end-to-end model that does not rely on assumptions about specific types of label noise. We will
formulate the method in detail and illustrate it theoretically.

2.1 PRELIMINARIES

Let X ⊂ Rd be the feature space, Y = {1, 2, · · · , C} be the label space, where C is the number
of classes. Random variables (X,Y ), (X, Ỹ ) ∈ X × Y denote the underlying data distributions
with true and noisy labels respectively. In general, we can not observe the latent true data samples
D(N) = {(xi, yi)}Ni=1, but can only obtain the corrupted data D̃(N) = {(xi, ỹi)}Ni=1, where ỹ ∈ Y
is the noisy label corrupted from the true label y, while denote corresponding one-hot label as y and
ỹ.

Transition matrix methods use a matrix T (x) ∈ [0, 1]C×C to represent the probability from clean
label to noisy label, where the ij-th entry of the transition matrix is the probability that the instance
x with the clean label i corrupted to a noisy label j. The matrix satisfies the requirement that the
sum of each row

∑C
j=1 Tij(x) is 1, and usually has the requirement for diagonally dominant, i.e.,

Tii(x) > Tij(x),∀j ̸= i. Let P (Y |X = x) = [P (Y = 1|X = x), · · · , P (Y = C|X = x)]⊤ be
the clean class-posterior probability and P (Ỹ |X = x) = [P (Ỹ = 1|X = x), · · · , P (Ỹ = C|X =
x)]⊤ be the noisy class-posterior probability, the formula can be write as:

P (Ỹ |X = x) = T (x)⊤P (Y |X = x). (1)

Though estimating the transition matrix and the noisy class-posterior probability, the clean class-
posterior probability can be inferred by P (Y |X = x) = T (x)−⊤P (Ỹ |X = x). Since it is difficult
to estimate the transition matrix T (x) individually for each sample, the majority of existing methods
(Patrini et al., 2017; Han et al., 2018; Li et al., 2021b) focus on studying the class-dependent and
instance-independent transition matrix, i.e., T (x) = T for ∀x. Although under such conditions, the
transition matrix is still unidentifiable without any additional assumption, due to there are different
T and P (Y |X = x) such that P (Ỹ |X = x) = T⊤

1 P1(Y |X = x) = T⊤
2 P2(Y |X = x).

To solve this problem, some algorithms (Liu & Tao, 2015; Xia et al., 2019) assume that there exist
anchor points for each class, i.e., there exists an instance xi ∈ X such that P (Y = i|X = xi) = 1
for ∀i ∈ {1, 2, · · · , C}. Then they can estimate the transition matrix by:

P
(
Ỹ = j | X = xi

)
=

C∑
k=1

TkjP
(
Y = k | X = xi

)
= Tij . (2)

However, the assumption of anchor points is not always valid, and some methods (Li et al., 2021b;
Zhang et al., 2021b) have been proposed to weaken this assumption through special designs. Among
them, Li et al. (2021b) tries to make the transition matrix identifiable by solving the optimization
problem:

min
T∈T

Vol(T )

s.t. T⊤fθ(X) = P (Ỹ |X),
(3)

where fθ : X → ∆C−1 (∆C−1 ⊂ [0, 1]C is the C-dimensional simplex) is a differentiable function
represented by a neural network with parameters θ to learn the clean class-posterior P (Y |X =

x). T =
{
T ∈ [0, 1]C×C |

∑C
j=1 Tij = 1,Tii > Tij ,∀j ̸= i

}
is the set of diagonally dominant

transition matrices. Vol(T ) denotes a measure that is related to the volume of the simplex formed
by the columns of T , such as Vol(T ) = det(T ) or log det(T ).

According to the KKT condition (Karush, 1939) and adopt Vol(T ) = log det(T ), the optimization
problem 3 become to optimize the following loss function:

L1(θ,T ) =
1

N

N∑
i=1

ℓ
(
T⊤fθ (xi) , ỹi

)
+ λ · log det(T ), (4)
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where ℓ is a loss function usually using cross-entropy(CE) loss, ỹi is the one-hot label corresponding
to ỹi and λ > 0 is a regularization coefficient that balances CE loss versus volume minimization.
This volume minimization transition matrix method is denoted by VolMinNet and it is an end-to-end
framework without the need for identifying anchor points or a second stage for loss correction.

However, this method is limited by the assumption of class-dependence and cannot be applied to
data with instance-dependent label noise. Additionally, its effectiveness closely relies on the ac-
curate estimation of the noisy class-posterior probability. When the estimation is inaccurate, the
algorithm’s performance will be damaged (Yao et al., 2020). Following this method, we improve it
by combining it with implicit regularization to form a new approach called TMR.

2.2 TRANSITION MATRIX WITH IMPLICIT REGULARIZATION

As mentioned in the previous section, although methods like VolMinNet ensure the transition matrix
identifiable, it is not applicable to situations with instance-dependent label noise and the performance
is heavily influenced by the accuracy of the noisy class-posterior probability estimation. The main
reason for this is that the product of the transition matrix T and clean class-posterior probability
P (Y |X), i.e., T⊤P (Y |X) is not always equal to the noisy class-posterior probability P (Ỹ |X).
For instance-dependent label noise, it is not enough to make the equation 1 hold for any X . While
for class-dependent label noise data, it is difficult to obtain an accurate estimation of the noisy
class-posterior probability through the randomness of limited training data, so the estimation of the
transition matrix and clean label distribution based on the second equation of 3 is poorly estimated.

We use a residual vector γ(X) with respect to feature X to measure the distribution difference
between P (Ỹ |X) and T⊤P (Y |X), i.e., as follow:

T⊤P (Y |X) + γ(X) = P (Ỹ |X). (5)
As can be seen from the above formula 5, if a valid transition matrix T and residual term γ(X)
can be estimated, then a clean class-posterior probability can be obtained, regardless of instance-
dependent noise or the noisy class-posterior has estimation error. Therefore, the core of our pro-
posed method lies in using an overall transition matrix and sample residual term to replace the
estimation of a separate transition matrix for each sample. In this way, the number of parameters for
the transition matrix is reduced from O(NC2) to O(NC), which greatly reduces the difficulty of
matrix estimation and computational consumption when C is large. However, it is still unrealistic to
estimate a residual for each sample without other constraints, so additional model assumptions need
to be added to make the problem solvable.

Intuitively, if an overall relatively suitable transition matrix is applied to T⊤P (Y |X), then the
difference between it and the probability P (Ỹ |X) should be small. Therefore, in our work on
probabilistic modeling, we set the difference γ to be sparse for the training data. Inspired by using
implicit regularization to represent sparse structures (Neyshabur et al., 2014; Patrini et al., 2017; Liu
et al., 2022), we exploit this technique to estimate γi as ri = ui ⊙ ui − vi ⊙ vi with respect to
training sample xi, where ⊙ denotes an entry-wise Hadamard product. As usual, we use a deep
neural network fθ(·) to learn the true label probability yi w.r.t xi. So for the noisy label probability
distribution ỹi given by the data, the model use T⊤fθ (xi) + ui ⊙ ui − vi ⊙ vi to fit it. Bring it
into the loss function as:

L2(θ,T , {ui,vi}Ni=1) =
1

N

N∑
i=1

ℓ
(
T⊤fθ(xi) + ui ⊙ ui − vi ⊙ vi, ỹi

)
. (6)

To ensure the transition matrix is identifiable, we add a regularization term of the volume of the
matrix to loss function as Li et al. (2021b) using. The total loss function applied in our proposed
method is:

L(θ,T , {ui,vi}Ni=1) =
1

N

N∑
i=1

ℓ
(
T⊤fθ(xi) + ui ⊙ ui − vi ⊙ vi, ỹi

)
+ λ · log det(T ), (7)

where we estimate parameters according to:
θ̂, T̂ , {ûi, v̂i}Ni=1 = argmin

θ,T ,{ui,vi}N
i=1

L(θ,T , {ui,vi}Ni=1). (8)

We use the gradient descent method to update the parameters to be learned above. The method steps
are summarized in Algorithm 1 in Appendix B.1.
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3 THEORETICAL ANALYSIS

In this section, we want to analyze the effectiveness of the proposed method theoretically. However,
it is difficult to give a direct analysis of the deep neural network model. So we follow the theoretical
analysis method of Liu et al. (2022) to simplify the proposed model and study on an approximately
linear structure.

3.1 MODEL SIMPLIFICATION AND CONSISTENCY ANALYSIS

The first to solve is the construction of an approximate simplified model for theoretical analysis of
our algorithm. Based on Jacot et al. (2018), we use first-order Taylor expansion to approximate the
deep neural network fθ(·), which is highly over-parameterized:

fθ(x) ≈ fθ0(x) +

(
∂f⊤

θ (x)

∂θ

∣∣∣
θ=θ0

)⊤

· (θ − θ0), (9)

where fθ(x) is a C-dimensional vector, θ ∈ Rp (p ≫ N ) denotes the parameters of the neural net-

work, ∂f⊤
θ (x)
∂θ

∣∣∣
θ=θ0

is a p×C matrix, θ0 is the initialization of θ, symbol · represents matrix multi-

plication. For simplicity, we drop the constant term in the derivation and abbreviate ∂f⊤
θ (x)
∂θ

∣∣∣
θ=θ0

as

∇θ0
f(x). The approximate formula becomes:

fθ(x) ≈ ∇θ0
f(x)⊤ · θ. (10)

Through this processing, we simplify the deep neural network into an approximately linear structure,
and we use fθ(x) = ∇θ0

f(x) · θ in the following theoretical analysis. We use a N × C matrix F
to represent the neural network predictions on the overall training dataset {(xi, yi)}Ni=1:

F =

 f⊤
θ (x1)

...
f⊤
θ (xN )

 . (11)

In order to be written in matrix form, we rewrite the formula 10 in vector expansion form:

f⊤
θ (x) = [fθ(x)1, · · · , fθ(x)C ] = vec(∇θ0

f(x))⊤ ·Θ, (12)

where vec(A) denotes matrix expansion of a m× n matrix A by column vectors:

vec(A) = [A1,1, · · · ,Am,1, · · · ,A1,n, · · · ,Am,n]
⊤
, (13)

and Θ is a CP × C matrix, denoting the Kronecker product of C × C identity matrix IC with θ,
i.e.,

Θ = IC ⊗ θ =


θ 0 · · · 0
0 θ · · · 0
...

...
. . .

...
0 0 · · · θ


CP×C

. (14)

We use a Jacobian matrix G ∈ RN×CP to denote the partial derivatives of the network for each
sample:

G =

 vec(∇θ0f(x1))
⊤

...
vec(∇θ0

f(xN ))⊤

 . (15)

Then, an aggregate form of 10 is:
F = G ·Θ. (16)

Now we give a simplified model assumption that there exists an underlying ground truth param-
eter θ∗ such that corresponding F∗ generated by 16 fits the true label distribution for sample.
Meanwhile, there exist potentially true transition matrix T∗ and sparse residual matrix R∗ =
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[γ(x1), · · · ,γ(xN )]
⊤ made up of the residual terms γ(x) for sample defined in Section 2.2. We

assume that the N × C observed noisy label matrix Ỹ = [ỹ1, · · · , ỹN ]
⊤ is generated by:

Ỹ = F∗ · T∗ +R∗. (17)

Expanded form after bringing in G and θ∗ is:

Ỹ = G · (IC ⊗ θ∗) · T∗ +R∗. (18)

The problem to be studied is transformed into given G and observed Ỹ generated by 18, how to
estimate the underlying θ∗, T∗ and R∗. At this time, our proposed loss function to be optimized 7
transforms into:

L(θ,T ,U ,V ) = L
(
G · (IC ⊗ θ) · T +U ⊙U − V ⊙ V , Ỹ

)
+ λ · log det(T ), (19)

where L is matrix form from ℓ in 7, U = [u1, · · · ,uN ]⊤, V = [v1, · · · ,vN ]⊤, R = U ⊙ U −
V ⊙ V .

Intuitively, the parameters θ,T ,R are unidentifiable without other conditions due to the model 18
is over-parameterized. We need to add some conditional assumptions to ensure the convergence
consistency of parameters. The required conditions are summarized in the Appendix B.2, such as
the low rank condition of G, sparsity of R∗, special small initialization setting, sufficiently scat-
tered assumption (Li et al., 2021b) of clean class-posterior probability distribution, etc. Under these
conditions, we try to analyze the effectiveness of our algorithm. For the simplicity of proof, we
use square loss in 19, which can be analogized to cross-entropy loss. The parameter optimization
problem 8 becomes:

θ̂, T̂ , Û , V̂ = argmin
θ,T ,U ,V

1

2
∥G · (IC ⊗ θ) · T +U ⊙U − V ⊙ V − Ỹ ∥22 + λ · log det(T ). (20)

Based on this, the consistency result of parameters estimation is as follows:

Theorem 1. (Consistency) Under the conditions in B.2, the estimated parameters θ̂, T̂ , R̂ for
optimization problem 20 based on algorithm 1 converge to the ground truth solution θ∗, T∗, R∗.

The proof can be seen in Appendix B.3. Theorem 1 shows that under a simplified linear model and
some conditions, one can use our proposed algorithm to obtain the consistent estimation of network
parameters θ∗ applicable to learning with clean label data. At the same time, we can estimate the
overall transition probability T∗ from the correct label to the noisy label that we observed. Theorem
1 provides theoretical support for the effectiveness of our proposed method.

3.2 GENERALIZATION ANALYSIS

In addition to consistency, the generalization of the proposed result is also worth exploring. It is
finite to the amount of noisy label training data D̃(N) = {(xi, ỹi)}Ni=1 we can observe, which is
considered to be randomly sampled from the overall infinite noisy data D̃. We want to explore how
well the parameters θ̂(N), T̂(N) estimated by the proposed algorithm with finite data D̃(N) fit when
applied to the overall data D̃.

Define the function class beF :=
{
ℓ(T⊤fθ(·) + γ(·), ·) : X × Y → R+,∀θ ∈ Rp,T ∈ T

}
, where

γ(·) is the true residual term for each sample. Each element in F is a function about data sample. It
is worth mentioning that the term of log det(T ) can be ignored in this part of analysis and does not
affect the results. Denote the ϵ-cover of F as NF = N (ϵ,F , ∥ · ∥∞), the average losses on D̃(N)

and D̃ are L(θ(N),T(N),R(N); D̃(N)) and L(θ,T ,R; D̃) respectively. According to Theorem 1, for
any fixed ϵ > 0, there exists estimated parameters θ̂(N), T̂(N), R̂(N) obtained by our algorithm such
that:

L(θ̂(N), T̂(N), R̂(N); D̃(N)) ≤ L(θ(N),T(N),R
∗
(N); D̃(N)),∀θ(N) ∈ Rp,T(N) ∈ T (21)

where R∗
(N) is the true residual terms for D̃(N). If we know the ground truth R∗, we have the

following result:
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Theorem 2. Suppose the loss function is bounded by 0 ≤ ℓ(·, ·) ≤ M . For any δ > 0, then with
probability at least 1− δ we have

L(θ̂(N), T̂(N),R∗; D̃) ≤ inf
θ∈Rp,T∈T

L(θ,T ,R∗; D̃)+M

√
ln(2NF/δ)

2n
+M

√
ln(2/δ)

2n
+3ϵ. (22)

The proof can be found in Appendix B.4, using Theorem 2 in Yong et al. (2022) as a reference.
Looking back at the optimization target 20, we can find that the Theorem 2 states the estimators
θ̂(N), T̂(N) based on finite data D̃(N) can also be applied relatively effectively to wider data D̃ as
long as they are randomly generated from the same pattern. It shows the generalization result of our
algorithm, indicating that the estimation θ̂(N), T̂(N) can be applied to new data and only the residual
terms R need to be estimated separately.

Table 1: Test accuracy with symmetric and flip noise on CIFAR-10/100.
CIFAR-10

Symmetric Flip
20% 50% 20% 45%

GCE 87.83±0.54 79.54±0.23 89.75±1.53 75.75±0.36
Forward 85.20±0.80 74.82±0.78 88.21±0.48 77.44±6.89

Co-teaching 82.27±0.07 75.55±0.07 80.65±0.20 73.02 ±0.23
DMI 87.54±0.20 82.68±0.21 89.89±0.45 73.15±7.31

T-Revision 87.95±0.36 80.01±0.62 90.33±0.52 78.94±2.58
Dual T 88.35±0.33 82.54±0.19 89.77 ±0.25 76.53 ±2.51
TVD 88.89±0.21 83.21±0.13 90.01±0.23 88.15±0.10

VolMinNet 89.58±0.26 83.37±0.25 90.37±0.30 88.54±0.21
ROBOT 92.13±0.07 88.75±0.10 93.70±0.07 92.52±0.16

SOP 93.18±0.57 88.98±0.43 94.02±0.30 89.58±0.86
TMR 94.17±0.22 91.36±0.31 94.45±0.19 93.01±0.62

CIFAR-100
Symmetric Flip

20% 50% 20% 45%
GCE 63.22±0.45 53.16±0.72 64.15±0.44 40.58±0.49

Forward 54.90±0.74 41.85±0.71 56.12±0.54 36.88±2.32
Co-teaching 48.48±0.66 36.77±0.52 42.79±0.79 27.97±0.20

DMI 62.65±0.39 52.42±0.64 59.56±0.73 38.17±2.02
T-Revision 62.72±0.69 49.12±0.22 64.33±0.49 41.55±0.95

Dual T 62.16±0.58 52.49±0.37 67.21±0.43 47.60±0.43
TVD 63.52±0.40 52.54±1.33 67.65±0.89 56.53±0.16

VolMinNet 64.94±0.40 53.89±1.26 68.45±0.69 58.90±0.89
ROBOT 73.03±0.12 65.11±0.53 75.79±0.51 70.20±0.33

SOP 74.42±0.42 66.46±0.65 73.93±0.55 63.32±0.87
TMR 75.90±0.23 70.93±0.44 76.03±0.20 70.86±0.56

4 EXPERIMENTS

In this section, we showcase experimental findings to demonstrate the ability of our proposed method
comparing with other methods on diverse noisy datasets.

4.1 BENCHMARK DATASETS

We evaluate our method using seven image classification datasets: CIFAR-10 and CIFAR-100
(Krizhevsky et al., 2009), CIFAR-10N and CIFAR-100N (Wei et al., 2021), Clothing1M (Xiao et al.,
2015), Webvision and ILSVRC2012 (Li et al., 2017). In addition to common symmetric noise and
pair flipping noise, we also incorporate various other types of noise. Specifically, these noise types
included: (a) symmetric noise at 20% and 50%; (b) label pair-flipping noise at 20% and 45%; (c)
instance-dependent noise. We starte with a 10% noise level and increment it by 10% until reaching
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50%. To simulate instance-dependent noise, we employ the noisy data construction same as Xia
et al. (2020b). Besides, we utilize real noisy datasets to conduct verification experiments as well.
We use ResNet-18 as the backbone network on CIFAR-10 and CIFAR-100, a ResNet-50 pre-trained
on Clothing1M and InceptionResNetV2 on Webvision. For more experimental details, including
hyperparameter settings, please see Appendix C.

4.2 METHOD

We conduct a comparison among the following methods: (1) GCE (Zhang & Sabuncu, 2018), (2)
Forward (Patrini et al., 2017), (3) Co-teaching (Han et al., 2018), train two networks. (4) DMI (Xu
et al., 2019), (5) T-Revision (Xia et al., 2019), (6) Dual-T (Yao et al., 2020), (7) TVD (Zhang et al.,
2021b), (8) VolMinNet (Li et al., 2021b), (9) ROBOT (Yong et al., 2022), (10) SOP (Liu et al., 2022).
In addition, transition matrix methods specially designed for instance-dependent label noise: (11)
TMDNN (Yang et al., 2022), (12) PartT (Xia et al., 2020b), (13) MEIDTM (Cheng et al., 2022a),
and (14) ELR (Liu et al., 2020) on real noisy data. Since our method makes no use of additional
techniques, like data augmentation or semi-supervised training (Li et al., 2020; 2023), we do not
compare methods using these tricks in our experiments.

Table 2: Test accuracy with instance-dependent noise on CIFAR-10/100.
CIFAR-10

IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%
GCE 90.82±0.05 88.89±0.08 82.90±0.51 74.18±3.10 58.93±2.67

Forward 91.71±0.08 89.62±0.14 86.93±0.15 80.29±0.27 65.91±1.22
Co-teaching 90.80±0.05 88.43±0.08 86.40±0.41 80.85±0.97 62.63±1.51

DMI 91.43±0.18 89.99±0.15 86.87±0.34 80.74±0.44 63.92±3.92
VolMinNet 89.97±0.57 87.01±0.64 83.80±0.67 79.52±0.83 61.90±1.06
TMDNN 90.45±0.72 88.14±0.66 84.55±0.48 79.71±0.95 63.33±2.75

PartT 90.32±0.15 89.33±0.70 85.33±1.86 80.59±0.41 64.58±2.86
MEIDTM 92.91±0.07 92.26±0.25 90.73±0.34 85.94±0.92 73.77±0.82

SOP 93.58±0.31 93.07±0.45 92.42±0.43 89.83±0.77 82.52±0.97
TMR 94.60±0.20 93.89±0.17 93.04±0.19 91.76±0.26 88.60±0.46

CIFAR-100
IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

GCE 69.18±0.14 68.35±0.33 66.35±0.13 62.09±0.09 56.68±0.75
Forward 67.81±0.48 67.23±0.29 65.42±0.63 62.18±0.26 58.61±0.44

Co-teaching 67.91±0.34 67.40±0.44 64.13±0.43 59.98±0.28 57.48±0.74
DMI 67.06±0.46 64.72±0.64 62.80±1.46 60.24±0.63 56.52±1.18

VolMinNet 67.78±0.62 66.13±0.47 61.08±0.90 57.35±0.83 52.60±1.31
TMDNN 68.42±0.42 66.62±0.85 64.72±0.64 59.38±0.65 55.68±1.43

PartT 67.33±0.33 65.33±0.59 64.56±1.55 59.73±0.76 56.80±1.32
MEIDTM 69.88±0.45 69.16±0.16 66.76±0.30 63.46±0.48 59.18±0.16

SOP 74.09±0.52 73.13±0.46 72.14±0.46 68.98±0.58 64.85±0.86
TMR 76.54±0.32 75.92±0.44 74.74±0.65 72.09±0.70 69.39±0.66

4.3 EXPERIMENTAL RESULT

We perform 5 independent runs for each experimental configuration, then present the mean and
standard deviation values for methods in Tables 1, 2 and 3. Tables 4 and 5 show the results on three
additional real noise datasets. The top-performing methods are indicated in bold in each table.

Table 1 showcases the performance of various contrastive methods on the CIFAR-10 and CIFAR-
100 with synthetic symmetric noise and pair-flipping noise. It is evident that the TMR method
outperforms all other transition matrix methods significantly on these class-dependent noisy sce-
narios. SOP (Liu et al., 2022), as a method that also apply implicit regularization approach based
on sparsity assumptions, does not perform as well as our method especially when the noise rate is
relatively high. Conversely, the proposed TMR method employs the transition matrix to effectively
estimate the overall trend and expand ways to use sparsity, thus exhibiting robustness in the presence
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of higher noise proportions. For example, on the CIFAR-10 and CIFAR-100 datasets with 45% pair
flipping noise, TMR surpasses SOP by 3.03 and 7.54 percentage points, respectively. This clearly
demonstrates the effectiveness of our method in handling various class-dependent noise scenarios,
even at higher proportions.

Table 2 presents the performance of comparative methods on CIFAR-10 and CIFAR-100 datasets
under instance-dependent noise pollution. Many methods based on class-dependent transition ma-
trix fail to provide effective results on instance-dependent noise, like VolMinNet. It can be observed
that as the noise ratio increases, the test accuracy of the privous transition matrix methods signifi-
cantly decreases, even for those specifically designed for instance-dependent noise. Particularly, on
CIFAR-100 with 50% IDN data, the test accuracy of all transition matrix methods is below 60%,
while our proposed TMR achieves a test accuracy of 69.39, demonstrating excellent performance.
Moreover, under high levels of noise, the decline in performance is more pronounced for SOP same
as class-dependent noise, whereas TMR maintains robust performance.

Table 3: Test accuracy on CIFAR-10N and CIFAR-100N.
CIFAR-10N CIFAR-100N

Aggregate Random 1 Random 2 Random 3 Worst Noisy
CE 87.77±0.38 85.02±0.65 86.46±1.79 85.16±0.61 77.69±1.55 50.50±0.66

GCE 87.85±0.70 87.61±0.28 87.70±0.56 87.58±0.29 80.66±0.53 56.73±0.30
Forward 88.24±0.22 86.88±0.50 86.14±0.21 87.04±0.35 79.49±0.46 57.01±1.03

T-Revision 88.52±0.17 88.33±0.32 87.71±1.02 87.79±0.67 80.48±1.20 51.55±0.31
TVD 88.96±0.15 88.41±0.13 88.35±0.11 88.01±0.40 80.15±0.25 56.89±0.32

VolMinNet 89.70±0.12 88.30±0.12 88.27±0.09 88.19±0.41 80.53±0.20 57.80±0.31
ROBOT 91.35±0.03 90.46±0.18 90.37±0.15 90.31±0.21 84.05±0.33 61.25±0.26

SOP 92.36±0.15 91.49±0.17 91.88±0.11 91.93±0.20 86.51±0.30 62.73±0.33
TMR 93.60±0.13 92.96±0.18 93.01±0.09 92.74±0.11 87.38±0.18 64.28±0.27

Table 4: Test accuracy on Clothing1M.
CE Forward Co-teaching DMI T-Revision Dual T
69.1 69.8 69.2 70.9 70.9 71.5
TVD VolminNet ROBOT ELR SOP TMR
71.7 72.4 72.7 72.9 73.5 74.2

Table 5: Test accuracy on WebVision and ILSVRC2012.
Forward Co-teaching VolminNet ELR SOP TMR

WebVision 61.1 63.6 68.3 76.2 76.6 77.5
ILSVRC2012 57.3 61.5 64.2 68.7 69.1 71.6

Tables 3, 4 and 5 display the results obtained on real-world data. Our approach consistently achieves
the best results for real noise, regardless of the type of noisy labels: aggregate, random, or worst for
CIFAR-10N, as well as for noisy labels in CIFAR-100N, which includes a larger number of classes.
When encountering large datasets like Clothing1M and complex image datasets like Webvision,
TMR can also achieve impressive results without additional auxiliary tricks or complex models
required. Through extensive experiments conducted on five real datasets, we empirically confirm
that TMR is suitable for diverse types of noise.

5 CONCLUSION

In summary, we combine the transition matrix and implicit regularization to propose the TMR
method. The TMR method overcomes the limitations of the transition matrix in handling instance-
dependent noise and improves upon the shortcomings of ordinary implicit regularization in dealing
with high-proportion noise. This paper provides a thorough theoretical analysis and finds that the
TMR method satisfies statistical consistency and generalization, making it applicable to various
types of noise.
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A RELATED WORKS

A.1 TRANSITION MATRIX METHODS

Most previous transition matrix methods focus on class-dependent label noise to simplify the esti-
mation difficulty. Some of the early methods (Patrini et al., 2017; Xia et al., 2019; Yao et al., 2020)
usually assume the existence of anchor points and make the transition matrix identifiable by finding
anchor points or approximate anchor points. To mitigate the anchor point assumption, VolMinNet
(Li et al., 2021b) and TVD (Zhang et al., 2021b) add different forms of regularization for the tran-
sition matrix respectively to make it identifiable. While other methods (Cheng et al., 2022b; Kye
et al., 2022) try setting up unique network structure to estimate the transition matrix. Besides, Shu
et al. (2020); Yong et al. (2022) utilize structures like meta-learning to estimate the transition ma-
trix, but may require more clean data and computational consumption. Although the above methods
are designed to handle class-dependent label noise, it is not suitable when encountering instance-
dependent noise or real-world noisy data.

However, it is not feasible to estimate a transition matrix individually for each sample without other
assumptions or multiple noisy labels (Liu et al., 2023). In order to achieve an approximate estimation
of the instance-dependent transition matrix, Goldberger & Ben-Reuven (2016) uses an adaptation
layer to estimate the transition matrix based on each sample’s output, but the error is large due to
the influence of the initial value. While Yang et al. (2022) uses a separate network to estimate the
transition matrix based on the Bayesian label. Some methods (Xia et al., 2020b; Wang et al., 2021;
Zhu et al., 2021; 2022) learn a part-dependent or group-dependent matrix through clustering, which
is a compromise estimation method lies between instance-dependent and class-dependent methods.
Other methods (Cheng et al., 2022a; Jiang et al., 2021) utilize similarity in feature space to assist
transition matrix learning. Although these instance-dependent transition matrix methods achieve
identifiability through special treatments, they are usually relatively complex and have larger errors,
which is contrary to the convenient and simple characteristics of transition matrix methods.

A.2 IMPLICIT REGULARIZATION

Implicit regularization can be regarded as a statistical method for sparsity, playing the role of min-
imizing L1 loss in sparse noise learning and being currently used in various models (Zhao et al.,
2019; Vaskevicius et al., 2019; You et al., 2020; Li et al., 2021a; Zhao et al., 2022). Among these
methods, SOP (Liu et al., 2022) is the one worthy of special attention, which is related to our method.
SOP also uses implicit regularization for noisy label learning, which gives a sparse representation of
the residual term between prediction and observed noisy label. However, it does not take advantage
of the overall transfer probability of noise and the noise sparsity assumption does not apply to high
noise rates situation, so its performance on large noise rates data is relatively weak. We will compare
it with our proposed method by experimental results specifically in Section 4.
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B ALGORITHM AND PROOFS

B.1 ALGORITHM

The steps of our TMR algorithm are shown in detail in Algorithm 1

Algorithm 1 Transition Matrix with Implicit Regularization (TMR)

Input: Training data {(xi,yi)}Ni=1, network fθ(·), coefficient λ, learning rate τθ, τu, τv, τT ,
batch size m, epoch number E, transition matrix update frequency k.
Initialization: Transition matrix T with an identity matrix, draw entries of {ui,vi}Ni=1 from i.i.d.
Gaussian distribution with zero-mean and s.t.d. 1e-8.
for t = 1 to E do

for b = 1 to N/m do
Get a sample batch B ⊆ {1, . . . , N} with |B| = m
Calculate loss L by 7 with batch B
for i in B do

Update ui ← ui − τu · ∂L/∂ui

Update vi ← vi − τv · ∂L/∂vi

end for
Update θ ← θ − τθ · ∂L/∂θ
if b/k is 0 then

Update T ← T − τT · ∂L/∂T
end if

end for
end for
Output: Network parameters θ̂, variables {ûi, v̂i}Ni=1 and transition matrix T̂ .

B.2 CONDITIONS

Condition 1. For optimization problem 20, initialize parameters in the algorithm 1 with θ = 0,
ui = t1, v = t1, where 0,1 are vectors of all 0 or 1 respectively, t is a small value scalar. There
exists a given α0 > 0 such that the learning rates of gradient descent satisfy lr(u) = lr(v) =
αlr(θ), α < α0.
Condition 2. Denote the rank of G in 18 as r, the number of sparse nonzero entries of R∗ is k, P
is the matrix of row vectors in SVD decomposition of G. Define s = N

r max1≤i≤N∥P⊤ei∥22. Then
k, r, s satisfy 4k2rs < N .
Condition 3. The row vectors of matrix F in 17 are sufficiently scattered, which is a weakened
requirement of the anchor points assumption can be found in Definition 2 of Li et al. (2021b).

B.3 PROOF OF THEOREM 1

Proof. Denote Q = (IC ⊗ θ) · T , the optimization problem in 20 can be written as:

min
1

2
∥G ·Q+U ⊙U − V ⊙ V − Ỹ ∥22 + λ · log det(T ). (23)

Since implicit regularization can minimize the L1 loss and according to Proposition 3.3 in Liu et al.
(2022), the first half of 23 will converge to a global solution for any fixed T under Condition 1.
Furthermore, it can be converted into the following optimization problem:

min
Q,R

1

2
∥Q∥22 + β∥R∥1, s.t. Ỹ = G ·Q+R, (24)

where β = − log t
2α as defined in 1. When Condition 2 is true, the solution to 24 are Q∗ and R∗, where

Ỹ is produced by G ·Q∗ +R∗. This conclusion can be deduced from the analogy of Proposition
3.5 in Liu et al. (2022). Combining 18, we can get:

Q∗ = (IC ⊗ θ∗) · T∗. (25)

14



Under review as a conference paper at ICLR 2024

Therefore, problem 23 transform into an optimization problem with parameter θ,T :

min
θ,T

log det(T ), s.t. (IC ⊗ θ) · T = Q∗. (26)

The above optimization problem has the same form as optimization problem 3. It can be seen from
the Theorem 1 in Li et al. (2021b), under Condition 3, the solution to problem 26 is:

θ̂ = θ∗, T̂ = T∗. (27)

To sum up, when all conditions in Appendix B.2 are met, we can get the ground truth solution θ∗,
the estimators by our algorithm converge to T∗, R∗ as mentioned in Theorem 1.

B.4 PROOF OF THEOREM 2

Proof. We use the inequality we use Hoeffding inequality (Hoeffding, 1994) to help us complete
the proof. Since θ̂(N), T̂(N) are not independent of the samples, we use ϵ-cover as mentioned in
Section 3.2 to deal with the problem. In addition, the parameter R is omitted in the following proof
for convenience and does not affect the understanding of the results.

According to the definition of ϵ covering, We can find a pair of parameters θk,Tk in the covering
set such that:

|ℓ (θk,Tk;X,Y )− ℓ(θ̂(N), T̂(N);X,Y )| ≤ ϵ, ∀(X,Y ) ∈ X × Y. (28)

Average the loss over samples, we have:

L(θ̂(N), T̂(N); D̃) ≤ L(θk,Tk; D̃) + ϵ. (29)

To meet the requirement of probability 1− δ in Theorem 2, we take the probability value as δ/2NF
in Hoeffding inequality due to the randomness of k. Thus, with probability at least 1− δ/2NF ,

L(θk,Tk; D̃) ≤ L(θk,Tk; D̃(N)) +M

√
ln(2NF/δ)

2n
. (30)

By the definition of 28,

L(θk,Tk; D̃(N)) ≤ L(θ̂(N), T̂(N); D̃(N)) + ϵ. (31)

According to the property of θ̂(N), T̂(N) in 21, for any θ ∈ Rp,T ∈ T,

L(θ̂(N), T̂(N); D̃(N)) ≤ L(θ,T ; D̃(N)) + ϵ. (32)

Using the Hoeffding inequality again with probability δ/2, with probability at least 1−δ/2 we have:

L(θ,T ; D̃(N)) ≤ L(θ,T ; D̃) +M

√
ln(2/δ)

2n
. (33)

Combining inequalities 29, 30, 31, 32, 33 and adding the probability values, we get the conclusion
that with probability at least 1− δ,

L(θ̂(N), T̂(N); D̃) ≤ L(θ,T , ; D̃)+M

√
ln(2NF/δ)

2n
+M

√
ln(2/δ)

2n
+3ϵ, ∀θ ∈ Rp,T ∈ T. (34)

C EXPERIMENT DETAILS

C.1 EXPERIMENTAL SETUP

We conduct experiments on a single NVIDIA 3090Ti graphics card. For software, we use Python
3.11 and PyTorch 1.10 to build the models. Throughout the training process, transition matrix up-
dates are carried out using the Adam optimization method, while updates for other parameters are
performed using the stochastic gradient descent (SGD) optimization method. The experimental
setup involves a few training hyper-parameters, including the backbone network used, batch size,
learning rate for parameters, and weight of the regularization term. For specific experimental con-
figurations, please refer to Table 6 in Appendix C.2.
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C.2 HYPER-PARAMETERS SETTING

The backbone network and hyper-parameters of the experiments on each dataset are listed in the
table 6.

Table 6: Hyper-parameters on CIFAR-10/100, Clothing-1M and Webvision.
CIFAR-10 CIFAR-100 Clothing1M Webvision

Network ResNet18 ResNet18 ResNet-50 InceptionResNetV2
Batch size 128 128 64 32

Training samples 50,000 50,000 1,000,000 65,944
Epochs 300 300 10 100

Learning rate(lr) for network 0.05 0.05 0.002 0.02
lr decay for network Cosine Cosine 5th 50th

Weight decay for network 5e-4 5e-4 1e-3 5e-4
lr for T 0.0005 0.0002 0.0001 0.0005

lr decay for T 30th, 60th 30th, 60th 5th 50th
Initialization for T -2 -4.5 -2.5 -4

lr for u,v 10, 10 1, 100 0.1, 1 0.1, 1
lr decay for u,v Cosine Cosine 5th 50th

Coefficient λ 0.001 0.001 0.001 0.001
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