
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LLM-EXP: EXPLORING THE POLICY IN REINFORCE-
MENT LEARNING WITH LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Policy exploration is critical in training reinforcement learning (RL) agents, where
existing approaches include the ϵ-greedy method in deep Q-learning, the Gaus-
sian process in DDPG, etc. However, all these approaches are designed based
on prefixed stochastic processes and are indiscriminately applied in all kinds of
RL tasks without considering any environment-specific features that influence
the policy exploration. Moreover, during the training process, the evolution of
such stochastic process is rigid, which typically only incorporates a decay of the
variance. This makes the policy exploration unable to adjust flexibly according
to the agent’s real-time learning status, limiting the performance. Inspired by
the analyzing and reasoning capability of LLM that reaches success in a wide
range of domains, we design LLM-Exp, which improves policy exploration in
RL training with large language models (LLMs). During the RL training in a
given environment, we sample a recent action-reward trajectory of the agent and
prompt the LLM to analyze the agent’s current policy learning status and then
generate a probability distribution for future policy exploration. We update the
probability distribution periodically and derive a stochastic process that is spe-
cialized for the particular environment, which can be dynamically adjusted to
adapt to the learning process. Our approach is a simple plug-in design, which
is compatible with DQN and any of its variants or improvements. Through ex-
tensive experiments on the Atari benchmark, we demonstrate the capability of
LLM-Exp to enhance the performance of RL. Our code is open-source at https:
//anonymous.4open.science/r/LLM-Exp-4658 for reproducibility.

1 INTRODUCTION

In recent decades, reinforcement learning (RL) has achieved unprecedented development and is
proven to be a powerful tool for training smart agents in solving sequential decision-making prob-
lems (Sutton, 2018; François-Lavet et al., 2018). The success of deep RL is especially noteworthy
in tasks with high complexity, such as game playing (Silver et al., 2017; Vinyals et al., 2019; Berner
et al., 2019; Ye et al., 2021), chip design (Mirhoseini et al., 2021), smart city governance (Hao et al.,
2021; 2022; 2023; Zheng et al., 2023; Wang et al., 2024b), and mathematical reasoning (Fawzi et al.,
2022), where deep RL agents now exhibit performance surpassing human professionals in more and
more scenarios. In the training of RL agents, policy exploration plays an indispensable role, which
allows the agents to sample a diverse range of actions and uncover better strategies that may not be
immediately apparent. The explore-exploit trade-off is a critical aspect of reinforcement learning,
where agents must balance exploring new possibilities to improve long-term rewards and exploiting
known strategies to maximize immediate gains.

Various policy exploration approaches have been proposed in existing RL algorithms, including ϵ-
greedy in DQN (Mnih et al., 2015), Gaussian process noise in DDPG (Lillicrap et al., 2016), and
probability distribution sampling in PPO (Schulman et al., 2017). Despite their success, existing
policy exploration methods have notable limitations. First, they are designed based on prefixed
stochastic processes that are applied uniformly across all kinds of tasks without any environment-
specific adaption, neglecting the unique characteristics of different environments that may influence
policy exploration. Besides, the evolution of these stochastic processes during training tends to
be simplistic, which typically merely involves a gradual decay in variance over time. As a result,
these methods fail to flexibly adjust the policy exploration strategy based on the agent’s real-time

1

https://anonymous.4open.science/r/LLM-Exp-4658
https://anonymous.4open.science/r/LLM-Exp-4658


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

learning status, potentially reducing the effectiveness of policy exploration, especially in complex
or non-stationary environments.

There exist several major challenges in addressing these limitations. First of all, RL tasks span di-
verse environments, and the training process involves a vast number of action steps, during which
the agent’s learning status undergoes complex changes. Thus, relying on more fine-grained manual
designs based on prefixed stochastic processes becomes increasingly impractical. Fortunately, the
emergence of large language models (LLMs) (Zhao et al., 2023; Wu et al., 2023) provides an oppor-
tunity to overcome this challenge. Such LLMs are capable of automatically analyzing the agent’s
real-time learning status at a high frequency, enabling more dynamic and intelligent adjustments to
policy exploration without the need for manual intervention. However, the majority of RL tasks
involve environmental states as images, and the training process typically covers millions of frames.
This presents the problem for common multimodal LLMs, which are often limited to processing a
single image per prompt and are computationally expensive.

Facing these challenges, we propose to enhance the policy exploration in RL based on LLMs,
namely LLM-Exp. In LLM-Exp, during the RL training process within a given environment, we
periodically sample recent action-reward trajectories from the agent’s experience and prompt the
LLM to analyze the agent’s current policy learning status based on the trajectories. The LLM then
generates a tailored probability distribution that guides future policy exploration based on the agent’s
learning status and the specific characteristics of the environment. We update the probability dis-
tribution regularly, allowing it to dynamically adapt as the agent progresses through training and
ensuring the exploration strategy evolves in response to changes in learning status. By doing so, we
derive a specialized stochastic process from this dynamically updated distribution, which is uniquely
suited to the environment, and we actually replace the prefixed ones used in traditional methods with
it. In our approach, the LLMs operate entirely with textual inputs and outputs, reducing the com-
putational overhead and making it compatible with various existing types of LLMs. Besides, our
approach is designed to be a simple plug-in, which can be seamlessly integrated with DQN and any
of its variants or improvements (Schaul et al., 2016; Van Hasselt et al., 2016; Wang et al., 2016;
Fortunato et al., 2018; Hessel et al., 2018; Laskin et al., 2020) without the need for any significant
architectural changes, making it a versatile solution for various RL tasks. We conduct extensive
experiments on the Atari benchmark (Bellemare et al., 2013; Kaiser et al., 2019), where the results
demonstrate the capability of LLM-Exp to enhance the performance of various RL algorithms.

In summary, the main contributions of this work include:

• We propose LLM-Exp, a method that leverages LLMs with purely textual inputs and out-
puts to dynamically adjust the policy exploration during RL training, which addresses the
limitations of traditional policy exploration with prefixed stochastic processes.

• Our approach is designed as a simple plug-in, allowing seamless integration with DQN and
any of its variants, enabling enhanced exploration without requiring significant modifica-
tions to existing RL architectures.

• We conduct extensive experiments to validate the effectiveness of our method, demonstrat-
ing its ability to improve the policy exploration across various RL tasks and environments.

2 PRELIMINARIES

2.1 MARKOV DECISION PROCESS (MDP)

Markov decision process (MDP) is the fundamental framework for reinforcement learning, where
an agent solves the decision-making problems in interaction with a dynamic environment. Math-
ematically, an MDP is defined by a tuple (S, ρ,A, P,R) with S representing the state space, and
ρ ∈ ∆(S) denoting the probability distribution of initial state, where ∆(S) is a collection of prob-
ability distribution over S. A denotes the action space, and when executing a specific action in a
given state, P : S × A → ∆(S) and R : S × A → R are the state transition probability function
and the single-step reward function, respectively. At time step t, the agent executes action at ∈ A
under the state of st ∈ S, and then receives a reward of rt and experiences the state transition
to st+1. The agent’s goal in an MDP is to maximize its cumulative reward over time, which is
the sum of discounted single-step rewards. This cumulative reward at time step t is formalized as

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Gt =
∑∞

k=0 γ
krt+k, where γ is the discount factor that determines the importance of future rewards.

To achieve this, the agent needs to balance exploiting known strategies and exploring unknown ones,
where the former one means selecting the action with the largest estimated cumulative reward. In
contrast, the latter one requires trying other possibilities with randomness.

2.2 DEEP Q-LEARNING

One of the most established methods for solving RL tasks is the Deep Q Networks algorithm (Mnih
et al., 2015), which trains a neural network Qθ to approximate the agent’s action-reward mapping.
DQN updates the parameters of Qθ by minimizing the error between predicted reward from Qθ and
its greedily estimated target value:

LDQN
θ =

(
Qθ(st, at)−

(
rt + γmax

a′
Qθ (st+1, a

′)
))2

. (1)

Specifically in DQN, policy exploration is achieved by the ϵ-greedy mechanism, where most of the
time, the agent executes at that maximizes (Qθ(st, at), while with a small probability of ϵ, the agent
randomly selects at from the action space.

Various improvements have been made to improve the original DQN. Prioritized experience re-
play (Schaul et al., 2016) improves data efficiency by adding importance sampling into the
replaying buffer. Double-DQN (Van Hasselt et al., 2016) modifies the target value, namely
(rt + γmaxa′ Qθ(st+1, a

′)), by substituting Qθ with the target network Qθ′ , which is a delayed
copy of Qθ to avoid overestimation. Dueling-DQN (Wang et al., 2016) improves the network struc-
ture of Qθ to decouple the state value from the advantage of taking a given action in that state.
Noisy-DQN (Fortunato et al., 2018) introduces noisy networks, which inject randomness directly
into the network of Qθ, allowing for better policy exploration. Ultimately, Rainbow (Hessel et al.,
2018) consolidates these improvements into a single combined algorithm, and CURL (Laskin et al.,
2020) enhances the performance of Rainbow by adding an unsupervised contrastive learning target.

2.3 LARGE LANGUAGE MODELS (LLMS)

Large language models are sophisticated neural networks with billions of parameters, which
are mainly trained by predicting the probability of the next word in a sequence. Given
{w1, w2, ..., wt−1}, the model output wt to maximize the observation likelihood in the corpus as:

T∏
t=1

P (wt|w1, w2, ..., wt−1). (2)

Over the past few years, LLMs have made significant progress, where notable examples include the
GPT family (Brown et al., 2020; Kalyan, 2023; Achiam et al., 2023), the Llama family (Touvron
et al., 2023; Dubey et al., 2024), the PaLM family Chowdhery et al. (2023), etc. These LLMs have
exhibited strong capability across a wide range of natural language processing tasks, ranging from
text generation and translation to summarization and question answering (Zhao et al., 2023; Chang
et al., 2024).

3 METHODS

3.1 OVERVIEW

In this paper, we propose to improve the policy Exploration in RL based on LLMs, namely Exp-
LLM. As shown in Figure 1, our framework employs two LLMs that collaborate through natural
language communication and guide the policy exploration through a structured process. First, we
introduce the basic task description and sample action-reward trajectories of the agent from the
previous episode, prompting the former LLM to summarize the learning status of the agent and
recommend potential exploration strategies (Section 3.2). Then, we feed the obtained summary and
suggestion to the second LLM, which subsequently generates a probability distribution for policy
exploration in the next K episodes (Section 3.3). Here, K is the hyper-parameter representing the
interval at which the probability distribution is updated. It is worth mentioning that in a substantial

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

number of RL tasks, such as the Atari benchmark, the environmental states are represented by RGB
images, but in our design, we only sample the actions and rewards of the agent and exclude the
states. Therefore, our LLMs only receive textual inputs, reducing the computational consumption
and ensuring compatibility with either multi-modal or text-only LLMs.

Figure 1: Illustration of our Exp-LLM method that enhances policy exploration in RL with LLMs.

3.2 LEARNING STATUS SUMMARIZING

To effectively guide the policy exploration, we design the first LLM to summarize the learning status
of the agent every K episode and provide suggestions on future exploration (Figure 1a). To achieve
this, we first describe the basic elements of the task as {TaskDescription}, ensuring that outputs of
the LLM align with the environmental characteristics.

Task Description: The task is a reinforcement learning problem where an agent {TaskDetails}.
The action space is discrete with {ActionDim} options: {0: {Action0}, 1: {Action1}, ...}.
{ActionDetails}. The observation space consists of raw pixel values representing the game screen,
showing the {ObservationElements}. The agent receives a reward of {RewardDetails}. The game
ends when {EndConditions}. The goal is to {GoalDetails}.

Then, at each time of updating, we sample M actions uniformly from the latest episode, obtaining
{ActionSequence}, where M stands for the sampling density. We also extract the total reward of the
latest episode, obtaining {EpisodeReward}. Combining these, we design a tailored prompt for the
first LLM, as formulated below:

Prompt 1: You are describing the last episode of the training process on a task. {TaskDescription}.
In the last episode, the total reward is {EpisodeReward}, and the action sequence extracted at in-
tervals is {ActionSequence}. Please analyze the data, generate a description, and provide possible
strategy recommendations.

This prompt provides the necessary context for the LLM to summarize the information in the previ-
ous episode and extract meaningful insights into the agent’s learning status. Additionally, it requires
the LLM to offer potential strategy recommendations, aiming at providing more useful information
for the upcoming policy exploration strategy generation process.

3.3 POLICY EXPLORATION STRATEGY GENERATION

To improve policy exploration, we design the second LLM in our framework to generate a probabil-
ity distribution over the action space for future exploration (Figure 1b). This distribution is generated
based on the first LLM’s analysis regarding the learning status of the agent in the previous episode,
as well as its suggestions for future policy exploration. We feed this information into the second
LLM through the prompt structured as follows:

Prompt 2: You are determining the probability distribution for action exploration in reinforce-
ment learning. {TaskDescription}. Here is a description of the situation in the previous episode:

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

{Summary&Suggestions}. Based on the above information, please analyze what kind of actions
should be selected to better improve the task effectiveness. Please output the distribution of the
{ActionDim} action explorations for the next episode based on your analysis in decimal form. Your
output format should be: {1: [probability], 2: [probability], ...}.

Based on this prompt, the LLM analyzes which actions should be selected and outputs a probability
distribution for the next K episode’s policy exploration. This process enables the agent to prioritize
actions that are more likely to improve the performance while also increasing the exploration of
previously underexplored actions to discover new strategies. By periodically updating the strategy
every K episode, we ensure that the policy exploration evolves dynamically to adapt to the agent’s
learning progress.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We evaluate the performance of LLM-Exp on Atari (Bellemare et al., 2013; Kaiser et al., 2019), a
widely used benchmark for evaluating RL algorithms. In the main experiments, we use the Double-
DQN algorithm (Van Hasselt et al., 2016) as the basis and insert our LLM-Exp into it. To verify the
performance of LLM-Exp in enhancing the raw RL algorithm, we selected 15 environments from
the 26 environments in Atari, where the training of the raw Double-DQN algorithm can converge
stably and obtain good rewards. In addition, we set the number of training steps to 100k-500k across
different environments based on how fast the reward increases when training the original Double-
DQN algorithm. In our deployment, we fix a set of hyper-parameters across all environments.
Specially, we use GPT-4o mini1 as the core LLM and set the two key parameters in our design,
namely action sampling density and exploration adjusting interval, as M = 100 and K = 1. For
reproducibility, we provide specific values of all hyper-parameters in Appendix A.1 and list detailed
contents of the prompts in Appendix A.3.

4.2 OVERALL PERFORMANCE

Table 1: Performance of LLM-Exp on the Atari benchmark, where the results are recorded at the
end of training and averaged across 3 random seeds. The bold fonts indicate the best results.

Environment Double-DQN Double-DQN+LLM-Exp Improvement (%)

Score Human-norm
score (%) Score Human-norm

score (%)

Alien 245.46 0.26 268.44 0.59 126.92
Amidar 22.34 0.97 26.75 1.22 25.77

BankHeist 18.64 0.6 19.51 0.72 20.00
Breakout 2.67 3.36 2.74 3.62 7.74

ChopperCommand 840.63 0.45 868.33 0.87 93.33
CrazyClimber 17070.76 25.11 17694.35 27.6 9.92

Freeway 5.25 17.75 20.64 69.71 292.73
Hero 1439.7 1.38 2689.62 5.58 304.35

Jamesbond 60.84 11.63 77.35 17.66 51.85
Krull 2933.05 125.06 3009.12 132.19 5.70

MsPacman 411.07 1.56 489.9 2.75 76.28
Pong -15.71 14.13 -14.13 18.61 31.71
Qbert 306.07 1.07 301.97 1.04 -2.80

Seaquest 201.58 3.18 196.15 3.05 -4.09
UpNDown 1370.99 7.51 1489.54 8.57 14.11

Total-Mean 1660.89 14.27 1809.35 19.59 37.27
Total-Median 245.46 3.18 268.44 3.62 13.84

1https://platform.openai.com/docs/models/gpt-4o-mini

5

https://platform.openai.com/docs/models/gpt-4o-mini


270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 2: Performance of LLM-Exp on the Atari benchmark. In each experiment, we repeatedly
run the training process with three different random seeds and use the shaded area to indicate the
standard deviations.

We train agents using the Double-DQN algorithm and Double-DQN + LLM-Exp in the aforemen-
tioned environments, where in each environment, we repeat the training process with three different
random seeds and average the results. We show the learning curves for each environment in Figure 2
and summarize the game scores obtained at the end of training in Table 1. To better compare the
games with varying score ranges and difficulty levels, we also normalize the game scores using the
average score of human players (Cagatan & Akgun, 2024; Yarats et al., 2021). The results indicate
that LLM-Exp improves the human-normalized score in 13 out of 15 environments, with an incre-
ment of 37.27% and 13.84%, respectively, on the mean and median score, verifying its ability to
enhance the performance of the existing RL algorithm.

4.3 COMPATIBILITY WITH DIFFERENT RL ALGORITHMS

Table 2: Compatibility of LLM-Exp with various RL algorithms. The human-norm scores (%) are
recorded at the end of training and averaged across 3 random seeds. The underlined results indicate
improvements over the raw RL algorithm, and the bold fonts indicate the best results.

Environment DQN PER-DQN Dueling-DQN Rainbow CURL

Raw LLM-Exp Raw LLM-Exp Raw LLM-Exp Raw LLM-Exp Raw LLM-Exp

Alien 1.00 1.11 0.51 0.55 0.39 0.61 0.24 0.70 3.21 3.62
Freeway 22.41 71.64 12.02 66.42 24.18 60.38 38.05 47.33 75.19 78.9

MsPacman 2.06 2.48 2.12 2.44 1.39 2.09 1.48 1.6 6.08 5.99

In our design, LLM-Exp is a simple plug-in method which can be seamlessly integrated with DQN
and any of its variants or improvements. To verify, besides the Double-DQN algorithm aforemen-
tioned, we selected another five widely applied variants or improvements of DQN, including the
vanilla DQN (Mnih et al., 2015), DQN with prioritized experience replay (PER-DQN) (Schaul et al.,
2016), Dueling-DQN (Wang et al., 2016), Rainbow (Hessel et al., 2018), and CURL (Laskin et al.,
2020). From the above environments, we selected three environments with relatively good training
outcomes as representatives, namely the environments of Alien, Freeway, and MsPacman. In the

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: Compatibility of LLM-Exp with various RL algorithms. In each experiment, we repeatedly
run the training process with three different random seeds and use the shaded area to indicate the
standard deviations.

three environments, we train agents with the original versions of the five RL algorithms, as well as
the versions integrating our LLM-Exp method with each of them. In each experiment, we repeat
the training process with three different random seeds and average the results. We show the learn-
ing curves for the 15 experiments (5 algorithms×3 environments) in Figure 3 and summarize the
game scores obtained at the end of training in Table 2. As the results illustrate, different variants
or improvements of DQN exhibit diverse performance in different environments, while LLM-Exp
consistently improves the human-normalized score of the original algorithms (14 out of 15 experi-
ments). This proves LLM-Exp’s compatibility with various RL algorithms, indicating its potential
in a wide range of applications.

4.4 COMPATIBILITY WITH DIFFERENT LLMS

Table 3: Compatibility of LLM-Exp with various LLMs. The human-norm scores (%) are recorded
at the end of training and averaged across 3 random seeds. The underlined results indicate improve-
ments over the raw RL algorithm, and the bold fonts indicate the best results.

Environment Double-DQN Double-DQN+LLM-Exp

GPT-4o mini GPT-4o GPT-3.5 Llama-3.1-405B Llama-3.1-70B

Alien 0.26 0.59 0.31 0.42 0.67 0.61
Freeway 17.75 69.71 67.27 66.45 60.22 63.7

MsPacman 1.56 2.75 1.63 1.53 1.88 2.01

In the framework work of LLM-Exp, we utilize the LLMs with text-only prompts, leveraging their
text-processing capability to derive smart policy exploration strategies. Instead of relying on some
specific types or versions of LLMs, our design is a general framework that can work with various
types of LLMs. To evaluate this, besides GPT-4o mini used above, we test several other LLMs that

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

are most widely known, including GPT-4o2, GPT-3.53, Llama-3.1-405B, and Llama-3.1-70B4. We
train agents with the original Double-DQN algorithms, and then integrate Double-DQN with our
LLM-Exp method, where the latter is driven by each of these different LLMs. In each experiment,
we repeat the training process with three different random seeds and average the results. We sum-
marize the game scores obtained at the end of training in Table 3 and show the learning curves in
these experiments in Appendix A.2. In the results, our method consistently improves the human-
normalized score of the original algorithms (14 out of 15 experiments) despite the type of LLMs,
indicating its strong compatibility with different LLMs. We observe that GPT-4o mini tends to be
the best choice for LLM-Exp, while the Llama model may outperform others in specific environ-
ments. It is also interesting to note that the performance of LLM-Exp is much worse when driven by
GPT-4o than when driven by GPT-4o mini. The actual reason for this is worth future study, while
one possible speculation is that the super LLMs, like GPT-4o, are too sophisticated, which tend to
greedily fit specific actions instead of providing flexible policy exploration with randomness, thus
limiting the performance.

4.5 PERFORMANCE VS COMPUTATIONAL CONSUMPTION

Table 4: Performance of LLM-Exp with various ablation designs. The human-norm scores (%) are
recorded at the end of training and averaged across 3 random seeds. The underlined results indicate
improvements over the raw RL algorithm, and the bold fonts indicate the best results.

Environment Double-DQN
Double-DQN+LLM-Exp

Full design w/o summarize & suggestion w/o environment information

Score Token
in (k)

Token
out (k) Score Token

in (k)
Token
out (k) Score Token

in (k)
Token
out (k)

Alien 0.26 0.59 248.73 179.59 0.51 111.07 112.54 0.38 186.41 165.90
Freeway 17.75 69.71 220.12 138.75 68.97 88.91 69.94 61.26 164.38 134.93

MsPacman 1.56 2.75 291.30 201.22 2.32 129.18 125.22 1.89 222.05 208.31

To facilitate the wide application of our method, it is important to understand the relationship be-
tween its performance and computational consumption. Since LLM-Exp is a simple plug-in design
that does not impact the original computational consumption in RL training, we mainly focus on its
auxiliary consumption in utilizing LLMs.

There exist two major trade-offs between the performance and computational cost of LLM-Exp,
where the first one lies in the design of LLM workflow. To uncover the roles of several key com-
ponents in the LLM workflow, we conduct ablation experiments. In one experiment, we remove
the summarize & suggestion mechanism and allow a single LLM to directly output a probability
distribution for future policy exploration based on the {TaskDescription}, {ActionSequence}, and
{EpisodeReward}. In another experiment, we retain the two-stage design of the LLM workflow
but do not provide the {TaskDescription}, only informing the LLMs of the environment’s name. In
each experiment, we repeat the training process with three different random seeds and average the
results. As shown in Table 4 and Appendix A.1, both ablations continue to improve the performance
of the original Double-DQN algorithm while significantly reducing the token consumption of LLM.
However, the first ablation lacks sufficient analysis of the agent’s learning status, making it less flex-
ible for adjustment during the training process. The second ablation lacks sufficient environmental
information, making it less adaptive to specific environments. As a result, neither of them performs
as well as the full design of LLM-Exp.

The second trade-off lies in the setting of the two key parameters in our design, namely action
sampling density (M ) and exploration adjusting interval (K). By reducing sampling density, i.e.,
smaller M , or reducing the frequency of adjusting the exploration strategy, i.e., larger K, we can
obviously reduce the token consumption of LLM. To evaluate the impact of these, we conduct
experiments and show the results in Table 5 and Appendix A.1. As the results illustrate, LLM-
Exp with either smaller M or larger K keeps improving the performance of the original Double-
DQN algorithm. However, smaller M provides insufficient information about the agent’s real-time

2https://platform.openai.com/docs/models/gpt-4o
3https://platform.openai.com/docs/models/gpt-3-5-turbo
4https://ai.meta.com/blog/meta-llama-3-1

8

https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://ai.meta.com/blog/meta-llama-3-1


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Performance of LLM-Exp with different action sampling density M and exploration ad-
justing interval K. The human-norm scores (%) are recorded at the end of training and averaged
across 3 random seeds. The underlined results indicate improvements over the raw RL algorithm,
and the bold fonts indicate the best results.

Environment Double-DQN Double-DQN+LLM-Exp

M=100,K=1 M=50,K=1 M=200,K=1 M=100,K=2

Alien 0.26 0.59 0.51 0.83 0.38
Freeway 17.75 69.71 64.72 66.52 66.52

MsPacman 1.56 2.75 2.22 2.24 2.07

learning status and larger K limits adjustments on the exploration strategy. As a result, both of them
are less capable of flexibly adapting the policy exploration to the training process, achieving worse
performance than LLM-Exp with the original settings of M and K. Moreover, we also analyze the
impact of increasing the sampling density, i.e., larger M . As the results indicate, although increasing
the token consumption of LLM, a larger M does not consistently improve the performance of LLM-
Exp. This may be because the original settings of M already provide sufficient information about
the agent’s real-time learning status. Therefore, further increasing the sampling density complicates
the LLM’s ability to analyze and summarize the data, which may hinder overall performance.

From these analyses, we demonstrate that the full design and properly configured values of M
and K are critical for achieving the best performance of LLM-Exp. However, we also highlight
the trade-offs between performance and computational consumption in LLM-Exp. Therefore, for
deployments with limited computational resources, it is possible to simplify the design of the LLM
workflow or adjust M and K as above to reduce computational consumption while still maintaining
certain performance improvements over the original RL algorithm. For deployments with sufficient
computational resources, the full design with the original settings of M and K is the optimal choice.

4.6 CASE STUDIES

LLM

We can observe that 

frequent No-Ops indicates 

overly caution or 

uncertainty; Erratic 

Movement Patterns 

suggests a lack of clear 

direction…

We should encourage moving

up to find gaps in the traffic… 

Moving down adds to 

exploratory behavior in case 

there are openings in other 

lanes… The action distribution 

is: {0: 0.2, 1: 0.4, 2: 0.4}.

{𝑇𝑎𝑠𝑘𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛}
𝐴𝑐𝑡𝑖𝑜𝑛𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 :

01112211001101001

00101001201…

{𝐸𝑝𝑖𝑠𝑜𝑑𝑒𝑅𝑒𝑤𝑎𝑟𝑑}:
0.0

We can observe that the 

frequent use of “move up” 

suggests that the agent is 

actively aiming to reach 

the other side of the 

highway… The moments 

of “no operation” (0)

indicate pauses where the 

agent assesses its 

surroundings…

Moving up is crucial as it 

represents the agent‘s primary 

goal of navigating towards the 

other side of the highway. 

While moving down is useful 

for defensive play and 

adjusting position relative to 

traffic, it is less critical than 

moving up. The action 

distribution is: {0: 0.2, 1: 0.6, 

2: 0.2}.

{𝑇𝑎𝑠𝑘𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛}
𝐴𝑐𝑡𝑖𝑜𝑛𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 :

12111211021111101

11101211011...

{𝐸𝑝𝑖𝑠𝑜𝑑𝑒𝑅𝑒𝑤𝑎𝑟𝑑}:
10.0

Freeway

Goal: cross the road

Action: 0-No Ops

1-Move up

2-Move down

Case1

Case2

LLM

LLM LLM

Figure 4: Case study of the operating process of LLM-Exp.

To demonstrate the rationality in determining the policy exploration strategy with LLM-Exp, we
provide an intuitive case study in Figure 4 within the environment of the Freeway. In this environ-
ment, the goal is crossing the busy road safely, while the action space includes three items, namely
no-ops, moving up, and moving down. In case 1, the previous action of the agent involves a large
proportion of ’no ops’, and the LLM in the stage of learning status summarizing points out its overly
caution behavior that lacks clear direction. Subsequently, the latter LLM generates an exploration
strategy that stresses moving up and down. In case 2, the previous action of the agent involves a large
proportion of ’moving up’, and the former LLM reveals that the current learning status of the agent

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

is actively aiming to reach the other side of the highway. Based on this, the latter LLM generates
an exploration strategy that further encourages ’moving up’ to reach the goal while also adding a
small proportion of ’moving down’ to adjust position relative to traffic for safety. Such rational anal-
yses enable our design to generate smart policy exploration strategies that are adaptive to specific
environments and learning processes, enhancing the performance of various RL algorithms.

5 RELATED WORKS

5.1 POLICY EXPLORATION IN RL

Plentiful approaches have been proposed and are widely used in existing RL algorithms for policy
exploration. One of the most basic methods is the ϵ-greedy strategy used in DQN (Mnih et al.,
2015), where with a probability of ϵ, the agent randomly samples an action from all possible ac-
tions rather than greedily exploiting the current best one. As an improvement of DQN, Noisy-DQN
introduces noisy networks (Fortunato et al., 2018), which inject randomness directly into the ac-
tion selection process, allowing for better policy exploration. Other methods utilize the randomness
introduced by Gaussian distributions. For example, the actions are sampled from Gaussian distri-
butions in PPO (Schulman et al., 2017), and small Gaussian noises are added to the deterministic
actions in DDPG (Lillicrap et al., 2016). Also, in some implementations of DDPG (Luck et al.,
2019; Zhang et al., 2019; Yoo et al., 2021), the standard white Gaussian noise is replaced with an
Ornstein-Uhlenbeck (OU) process with temporal correlation (Gillespie, 1996; Maller et al., 2009),
leading to smoother and potentially more effective policy exploration. Moreover, extensive algo-
rithms incorporate an entropy term in the reward function (Haarnoja et al., 2018; Zhao et al., 2019;
Pitis et al., 2020), encouraging more diverse action selections to enhance policy exploration. How-
ever, these methods are designed based on prefixed stochastic processes, which can neither adapt to
specific environments nor be flexibly adjusted during the training process. In contrast, we design to
dynamically generate a stochastic process by LLMs to guide policy exploration, which is adaptive
and flexible.

5.2 ENHANCING RL WITH LLMS

As two important directions in current AI research, many studies have explored the use of LLMs
in enhancing the performance of RL (Cao et al., 2024). First, a significant body of work focuses
on leveraging LLMs to design reward functions based on the characteristics of the environment and
tasks, providing feedback for the agent’s policy learning (Colas et al., 2023; Wu et al., 2024; Song
et al., 2023; Xie et al., 2024). Additionally, other research explores using LLMs to design state
representation functions, offering more effective state inputs for the agents (Wang et al., 2024a). On
a macro level, LLMs have been utilized to decompose complex tasks into sub-goals (Colas et al.,
2023) or provide high-level instructions (Zhou et al., 2023) to facilitate RL training. Moreover,
LLMs are employed in human-AI coordination, enabling humans to specify the desired strategies
for RL agents through natural language instructions (Hu & Sadigh, 2023). Despite these works,
it remains largely unexplored how to leverage LLMs to enhance policy exploration in RL remains
largely unexplored, and the paper conducts investigations to bridge such knowledge gap.

6 CONCLUSIONS

In this paper, we propose to improve the policy exploration in RL with LLMs. We design to use
LLMs to analyze the agent’s real-time learning status based on its action-reward trajectory and then
periodically update the probability distribution for policy exploration. By doing so, we are able to
adapt the policy exploration to any specific environment and flexibly adjust it during the training
process, only with the requirement of low-cost text-only prompts. Through extensive experiments
and in-depth analyses in various environments, we verify the validity of our design and illustrate its
compatibility with a wide range of established RL algorithms. One direction worth future studies
lies in further combining our method with RL algorithms in continuous action space. It may be
feasible to prompt the LLMs to generate some offset and stretch parameters and thus flexibly shape
the Gaussian distribution used for policy exploration in algorithms like DDPG and PPO according
to the environmental characteristics and the real-time learning status of the agent.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In NeurIPS, 2020.

Omer Veysel Cagatan and Baris Akgun. Barlowrl: Barlow twins for data-efficient reinforcement
learning. In Asian Conference on Machine Learning, pp. 201–216. PMLR, 2024.

Yuji Cao, Huan Zhao, Yuheng Cheng, Ting Shu, Guolong Liu, Gaoqi Liang, Junhua Zhao, and Yun
Li. Survey on large language model-enhanced reinforcement learning: Concept, taxonomy, and
methods. arXiv preprint arXiv:2404.00282, 2024.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology, 15(3):1–45, 2024.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1–113, 2023.

Cédric Colas, Laetitia Teodorescu, Pierre-Yves Oudeyer, Xingdi Yuan, and Marc-Alexandre Côté.
Augmenting autotelic agents with large language models. In Conference on Lifelong Learning
Agents, pp. 205–226. PMLR, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Moham-
madamin Barekatain, Alexander Novikov, Francisco J R Ruiz, Julian Schrittwieser, Grzegorz
Swirszcz, et al. Discovering faster matrix multiplication algorithms with reinforcement learning.
Nature, 610(7930):47–53, 2022.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Matteo Hessel, Ian Os-
band, Alex Graves, Volodymyr Mnih, Rémi Munos, Demis Hassabis, Olivier Pietquin, Charles
Blundell, and Shane Legg. Noisy networks for exploration. In ICLR. OpenReview.net, 2018.

Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G Bellemare, Joelle Pineau, et al.
An introduction to deep reinforcement learning. Foundations and Trends® in Machine Learning,
11(3-4):219–354, 2018.

Daniel T Gillespie. Exact numerical simulation of the ornstein-uhlenbeck process and its integral.
Physical review E, 54(2):2084, 1996.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Qianyue Hao, Fengli Xu, Lin Chen, Pan Hui, and Yong Li. Hierarchical reinforcement learning for
scarce medical resource allocation with imperfect information. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2955–2963, 2021.

Qianyue Hao, Wenzhen Huang, Fengli Xu, Kun Tang, and Yong Li. Reinforcement learning en-
hances the experts: Large-scale covid-19 vaccine allocation with multi-factor contact network. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 4684–4694, 2022.

Qianyue Hao, Wenzhen Huang, Tao Feng, Jian Yuan, and Yong Li. Gat-mf: Graph attention mean
field for very large scale multi-agent reinforcement learning. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 685–697, 2023.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Hengyuan Hu and Dorsa Sadigh. Language instructed reinforcement learning for human-ai coordi-
nation. In International Conference on Machine Learning, pp. 13584–13598. PMLR, 2023.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

Katikapalli Subramanyam Kalyan. A survey of gpt-3 family large language models including chat-
gpt and gpt-4. Natural Language Processing Journal, pp. 100048, 2023.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representa-
tions for reinforcement learning. In International conference on machine learning, pp. 5639–
5650. PMLR, 2020.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In ICLR,
2016.

Kevin Sebastian Luck, Mel Vecerik, Simon Stepputtis, Heni Ben Amor, and Jonathan Scholz. Im-
proved exploration through latent trajectory optimization in deep deterministic policy gradient. In
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3704–
3711. IEEE, 2019.

Ross A Maller, Gernot Müller, and Alex Szimayer. Ornstein–uhlenbeck processes and extensions.
Handbook of financial time series, pp. 421–437, 2009.

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang,
Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, et al. A graph placement methodol-
ogy for fast chip design. Nature, 594(7862):207–212, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Silviu Pitis, Harris Chan, Stephen Zhao, Bradly Stadie, and Jimmy Ba. Maximum entropy gain
exploration for long horizon multi-goal reinforcement learning. In International Conference on
Machine Learning, pp. 7750–7761. PMLR, 2020.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In
ICLR, 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

Jiayang Song, Zhehua Zhou, Jiawei Liu, Chunrong Fang, Zhan Shu, and Lei Ma. Self-refined
large language model as automated reward function designer for deep reinforcement learning in
robotics. arXiv preprint arXiv:2309.06687, 2023.

Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. nature, 575(7782):350–354, 2019.

Boyuan Wang, Yun Qu, Yuhang Jiang, Jianzhun Shao, Chang Liu, Wenming Yang, and Xi-
angyang Ji. Llm-empowered state representation for reinforcement learning. arXiv preprint
arXiv:2407.13237, 2024a.

Jingwei Wang, Qianyue Hao, Wenzhen Huang, Xiaochen Fan, Zhentao Tang, Bin Wang, Jianye
Hao, and Yong Li. Dyps: Dynamic parameter sharing in multi-agent reinforcement learning for
spatio-temporal resource allocation. In Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 3128–3139, 2024b.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling
network architectures for deep reinforcement learning. In International conference on machine
learning, pp. 1995–2003. PMLR, 2016.

Jiayang Wu, Wensheng Gan, Zefeng Chen, Shicheng Wan, and S Yu Philip. Multimodal large
language models: A survey. In 2023 IEEE International Conference on Big Data (BigData), pp.
2247–2256. IEEE, 2023.

Yue Wu, Yewen Fan, Paul Pu Liang, Amos Azaria, Yuanzhi Li, and Tom M Mitchell. Read and
reap the rewards: Learning to play atari with the help of instruction manuals. Advances in Neural
Information Processing Systems, 36, 2024.

Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang,
and Tao Yu. Text2reward: Reward shaping with language models for reinforcement learning. In
ICLR. OpenReview.net, 2024.

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. In ICLR. OpenReview.net, 2021.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games
with limited data. Advances in neural information processing systems, 34:25476–25488, 2021.

Haeun Yoo, Boeun Kim, Jong Woo Kim, and Jay H Lee. Reinforcement learning based optimal
control of batch processes using monte-carlo deep deterministic policy gradient with phase seg-
mentation. Computers & Chemical Engineering, 144:107133, 2021.

Zhizheng Zhang, Jiale Chen, Zhibo Chen, and Weiping Li. Asynchronous episodic deep determinis-
tic policy gradient: Toward continuous control in computationally complex environments. IEEE
transactions on cybernetics, 51(2):604–613, 2019.

Rui Zhao, Xudong Sun, and Volker Tresp. Maximum entropy-regularized multi-goal reinforcement
learning. In International Conference on Machine Learning, pp. 7553–7562. PMLR, 2019.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Yu Zheng, Yuming Lin, Liang Zhao, Tinghai Wu, Depeng Jin, and Yong Li. Spatial planning of
urban communities via deep reinforcement learning. Nature Computational Science, 3(9):748–
762, 2023.

Zihao Zhou, Bin Hu, Chenyang Zhao, Pu Zhang, and Bin Liu. Large language model as a policy
teacher for training reinforcement learning agents. arXiv preprint arXiv:2311.13373, 2023.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 IMPLEMENTATION DETAILS

In this section, we provide all implementation details for reproducibility in Table 6. Please refer to
our source code at https://anonymous.4open.science/r/LLM-Exp-4658 for more
details.

Table 6: Implementation details
Module Element Detail

System

OS Ubuntu 22.04.2
CUDA 11.7
Python 3.11.4
Device 8*NVIDIA A100 80G

Double-DQN

Gamma 0.99
Batch Size 256

Interval of target network updating 1000
Optimizer Adam

Learning rate 0.0001
Replay buffer size 10000

Start epsilon 1
Min epsilon 0.1

Epsilon decay per step 0.99999

Learning status
summarizing

Model name gpt-4o-mini-2024-07-18
Temperature 1.0

Policy exploration
strategy generation

Model name gpt-4o-mini-2024-07-18
Temperature 1.0

Test of
different LLMs

Model name for GPT-4o gpt-4o-2024-08-06
Temperature for GPT-4o 1.0
Model name for GPT-3.5 gpt-3.5-turbo-0125
Temperature for GPT-3.5 1.0

Model name for Llama-3.1-405B Llama-3.1-405B-Instruct
Temperature for Llama-3.1-405B 1.0
Model name for Llama-3.1-70B Llama-3.1-70B-Instruct
Temperature for Llama-3.1-70B 1.0

15

https://anonymous.4open.science/r/LLM-Exp-4658


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.2 SUPPLEMENTARY RESULTS

Here, we show the learning curves in the experiments of the main texts.

Figure 5: Compatibility of LLM-Exp with various LLMs. In each experiment, we repeatedly run the
training process with three different random seeds and use the shaded area to indicate the standard
deviations.

In Figure 5, we show the training process with the original Double-DQN algorithms, and then inte-
grating Double-DQN with our LLM-Exp method, where the latter is driven different LLMs. In the
results, our method consistently improves the human-normalized score of the original algorithms (14
out of 15 experiments) despite the type of LLMs, indicating its strong compatibility with different
LLMs.

Figure 6: Performance of LLM-Exp with various ablation designs. In each experiment, we repeat-
edly run the training process with three different random seeds and use the shaded area to indicate
the standard deviations.

In Figure 6, we show the training process with the original Double-DQN algorithms, and then
integrating Double-DQN with our LLM-Exp method, where the latter contains different ablation
designs. In the results, both ablations continue to improve the performance of the original Double-
DQN algorithm while significantly reducing the token consumption of LLM. However, the first
ablation lacks sufficient analysis of the agent’s learning status, making it less flexible for adjustment
during the training process. The second ablation lacks sufficient environmental information, making
it less adaptive to specific environments. As a result, neither of them performs as well as the full
design of LLM-Exp.

In Figure 7, we show the training process with the original Double-DQN algorithms, and then inte-
grating Double-DQN with our LLM-Exp method, where the latter is configured with different values
of M . In the results, LLM-Exp with smaller M keeps improving the performance of the original
Double-DQN algorithm. However, smaller M provides insufficient information about the agent’s
real-time learning status, achieving worse performance than LLM-Exp with the original settings of
M .

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 7: Performance of LLM-Exp with different action sampling density M . In each experiment,
we repeatedly run the training process with three different random seeds and use the shaded area to
indicate the standard deviations.

Figure 8: Performance of LLM-Exp with different exploration adjusting interval K. In each exper-
iment, we repeatedly run the training process with three different random seeds and use the shaded
area to indicate the standard deviations.

In Figure 8, we show the training process with the original Double-DQN algorithms, and then in-
tegrating Double-DQN with our LLM-Exp method, where the latter is configured with different
values of K. In the results, LLM-Exp with larger K keeps improving the performance of the orig-
inal Double-DQN algorithm. However, larger K limits adjustments on the exploration strategy,
achieving worse performance than LLM-Exp with the original settings of K.

In all the figures above, we repeat the training process with three different random seeds in each
experiment and average the results. We use the shaded area to indicate the standard deviations.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.3 DETAILED PROMPTS

Here we list the detailed {TaskDescription} in the prompts for Atari environments.

• Alien: The task is a reinforcement learning problem where an agent controls an astronaut
navigating through a dangerous alien world. The action space is discrete with 18 options:
{0: no operation, 1: fire, 2: move up, 3: move right, 4: move left, 5: move down, 6: move
up-right, 7: move up-left, 8: move down-right, 9: move down-left, 10: move up and fire,
11: move right and fire, 12: move left and fire, 13: move down and fire, 14: move up-right
and fire, 15: move up-left and fire, 16: move down-right and fire, 17: move down-left and
fire}. In the environment, the agent receives +50 points for defeating an alien and +100
points for clearing a level. Small rewards like +10 points are given for collecting power-
ups, while penalties include -50 points for taking damage and -100 points for losing a life.
The game ends when the agent loses all lives, with the goal being to maximize cumulative
rewards through effective combat, exploration, and survival.

• Amidar: The task is a reinforcement learning problem where an agent controls a character
navigating a maze to avoid enemies and complete objectives by marking sections of the
maze. The action space is discrete with 10 options: {0: no operation, 1: fire, 2: move up,
3: move right, 4: move left, 5: move down, 6: move up and fire, 7: move right and fire,
8: move left and fire, 9: move down and fire}. In the environment, the fire action has no
functional effect, as the primary objective is to move through the maze. The observation
space consists of raw pixel values representing the game screen, showing the character,
enemies, and the maze layout. The agent receives +10 points for marking a section of
the maze and +50 points for completing an entire maze level. Additionally, the agent
earns +100 points for capturing an enemy while in a powered-up state, and +20 points for
collecting special bonus items scattered throughout the environment. However, the agent
is penalized with -50 points for being caught by an enemy, and an additional -5 points for
excessive inaction or idling for too long. The game ends when the agent loses all lives
or completes the entire maze. The goal is to maximize the score by navigating the maze
efficiently while avoiding enemies.

• BankHeist: The task is a reinforcement learning problem where an agent controls a char-
acter involved in a bank heist, navigating through a dynamic environment filled with guards
and obstacles. The action space is discrete with 18 options: {0: no operation, 1: fire, 2:
move up, 3: move right, 4: move left, 5: move down, 6: move up-right, 7: move up-left,
8: move down-right, 9: move down-left, 10: move up and fire, 11: move right and fire, 12:
move left and fire, 13: move down and fire, 14: move up-right and fire, 15: move up-left
and fire, 16: move down-right and fire, 17: move down-left and fire}. The observation
space consists of raw pixel values representing the game screen, showing the agent, guards,
and loot. In this environment, the agent receives rewards for successfully stealing loot and
evading or neutralizing guards. The game ends when the agent loses all lives, and the pri-
mary objective is to maximize cumulative rewards through stealthy navigation, effective
shooting, and strategic interactions with the environment.

• Breakout: The task is a reinforcement learning problem where an agent controls a paddle
at the bottom of the screen, aiming to hit a ball and break bricks at the top. The action
space is discrete with 4 options: {0: no operation, 1: fire (launch the ball), 2: move right,
3: move left}. The observation space consists of raw pixel values representing the game
screen, displaying the paddle, the ball, and the bricks. The reward mechanism is designed
to incentivize the destruction of bricks, with the agent earning points each time a brick is
broken. In this reward mechanism, players score points by hitting bricks of various colors
with a ball. Each brick color is assigned a specific point value: red and orange bricks
yield 7 points, yellow and green bricks grant 4 points, while aqua and blue bricks provide
1 point each. The game ends when the agent loses all its lives by failing to catch the ball
with the paddle. The primary objective is to maximize cumulative rewards by strategically
controlling the paddle to keep the ball in play and target higher-value bricks while avoiding
misses.

• ChopperCommand: The task is a reinforcement learning problem where an agent con-
trols a helicopter navigating through a desert environment filled with enemy vehicles and
aircraft. The action space is discrete with 18 options: {0: no operation, 1: fire, 2: move

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

up, 3: move right, 4: move left, 5: move down, 6: move up-right, 7: move up-left, 8: move
down-right, 9: move down-left, 10: move up and fire, 11: move right and fire, 12: move left
and fire, 13: move down and fire, 14: move up-right and fire, 15: move up-left and fire, 16:
move down-right and fire, 17: move down-left and fire}. The observation space consists of
raw pixel values representing the game screen, displaying the helicopter, enemy vehicles,
aircraft, and fuel depots. In this reward design mechanism, players earn points by shooting
down enemy aircraft: 100 points for each enemy helicopter and 200 points for each enemy
jet. A bonus is awarded for destroying an entire wave of hostile aircraft, calculated by
multiplying the number of remaining trucks in the convoy by the wave number (from one
to ten) and then by 100. This system incentivizes players to maximize their score through
both individual kills and strategic gameplay. The game ends when the agent runs out of fuel
or is hit by enemy fire and loses all lives. The primary objective is to maximize cumulative
rewards by skillfully navigating the environment, destroying enemies, collecting fuel, and
avoiding hazards to survive as long as possible.

• CrazyClimber: The task is a reinforcement learning problem where an agent controls a
climber scaling the side of a tall building while avoiding various obstacles. The action
space is discrete with 9 options: {0: no operation, 1: move up, 2: move right, 3: move left,
4: move down, 5: move up-right, 6: move up-left, 7: move down-right, 8: move down-
left}. The observation space consists of raw pixel values representing the game screen,
displaying the climber, the building, windows, and various obstacles such as falling objects.
In the reward mechanism, players earn points in two ways: climbing points for each row of
windows climbed and bonus points for reaching the top of each skyscraper. The climbing
points vary by building, with 100 points per row for Building 1, 200 for Building 2, 300 for
Building 3, and 400 for Building 4. Bonus points serve as a timer; they start at a maximum
value when climbing a new building and decrease by 100 points every ten seconds. To
retain bonus points, players must reach the top and grab the helicopter within 30 seconds,
as bonus points continue to decline until the helicopter is reached. The maximum bonus
points also increase with each building, ranging from 100,000 points for Building 1 to
400,000 points for Building 4. The game ends when the climber falls or loses all lives. The
primary objective is to maximize cumulative rewards by skillfully navigating the vertical
environment, dodging hazards, and climbing as high as possible without falling.

• Freeway: The task is a reinforcement learning problem where an agent controls a charac-
ter attempting to cross a busy highway filled with fast-moving cars. The action space is
discrete with 3 options: {0: no operation, 1: move up, 2: move down}. The observation
space consists of raw pixel values representing the game screen, displaying the character,
various lanes of traffic, and the road. The reward mechanism is designed to incentivize the
successful crossing of the highway. The agent earns points for reaching the other side of
the road, with each successful crossing awarding a fixed number of points. There are no
explicit negative rewards, but the agent loses time and progress when hit by a car, as it is
sent back to the starting point. The game ends when a time limit is reached. The primary
objective is to maximize cumulative rewards by skillfully navigating through the traffic,
avoiding cars, and making as many successful crossings as possible before time runs out.

• Hero: The task is a reinforcement learning problem where an agent controls a hero navi-
gating through an underground cave system filled with enemies and obstacles. The action
space is discrete with 18 options: {0: no operation, 1: fire, 2: move up, 3: move right,
4: move left, 5: move down, 6: move up-right, 7: move up-left, 8: move down-right, 9:
move down-left, 10: move up and fire, 11: move right and fire, 12: move left and fire, 13:
move down and fire, 14: move up-right and fire, 15: move up-left and fire, 16: move down-
right and fire, 17: move down-left and fire}. The observation space consists of raw pixel
values representing the game screen, showing the hero, enemies, environmental hazards,
and collectible items. The reward mechanism is designed to incentivize the exploration of
the cave and the collection of various items, such as treasure. The agent earns points for
defeating enemies and gathering treasures scattered throughout the cave. The hero may
also gain points by rescuing trapped miners. There are penalties for losing health due to
enemy attacks or environmental hazards. The game ends when all lives are lost. The pri-
mary objective is to maximize cumulative rewards by skillfully navigating the cave system,
defeating enemies, avoiding hazards, and collecting valuable items.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

• Jamesbond: The task is a reinforcement learning problem where an agent controls James
Bond navigating through various action-packed levels filled with enemies and obstacles.
The action space is discrete with 18 options: {0: no operation, 1: fire, 2: move up, 3: move
right, 4: move left, 5: move down, 6: move up-right, 7: move up-left, 8: move down-right,
9: move down-left, 10: move up and fire, 11: move right and fire, 12: move left and fire, 13:
move down and fire, 14: move up-right and fire, 15: move up-left and fire, 16: move down-
right and fire, 17: move down-left and fire}. The observation space consists of raw pixel
values representing the game screen, displaying James Bond, various enemies, vehicles,
and obstacles. In this reward system, players earn points by collecting various targets.
For the reward system, each target has the following point value: a Diamond is worth 50
points, while the Frogman, Space Shuttle, and Submarine each provide 200 points. The
Poison Bomb and Torpedo are worth 100 points each. The Spinning Satellite offers the
highest reward at 500 points, while the Rapid Rocket and Fire Bomb also contribute 100
points each. Completing the mission yields a substantial bonus of 5,000 points. This
design encourages players to explore actively and prioritize collecting high-value targets
to maximize their cumulative score. The game ends when all lives are lost. The primary
objective is to maximize cumulative rewards by skillfully navigating the levels, shooting
enemies, and strategically completing missions while avoiding hazards and enemy attacks.

• Krull: The task is a reinforcement learning problem where an agent controls a character
navigating through a vibrant fantasy world filled with enemies, moving platforms, and
obstacles. The action space is discrete with 18 options: {0: no operation, 1: fire, 2: move
up, 3: move right, 4: move left, 5: move down, 6: move up-right, 7: move up-left, 8:
move down-right, 9: move down-left, 10: move up and fire, 11: move right and fire, 12:
move left and fire, 13: move down and fire, 14: move up-right and fire, 15: move up-left
and fire, 16: move down-right and fire, 17: move down-left and fire}. The observation
space consists of raw pixel values representing the game screen, displaying the character,
various enemies, laser barriers, and collectible items such as gems and keys. The reward
mechanism is designed to incentivize progressing through different rooms by collecting
keys to unlock doors and defeating enemies with laser shots. The agent earns points for
defeating enemies, collecting gems, and clearing levels. The game becomes progressively
more difficult with more enemies and complex rooms to navigate. The game ends when all
lives are lost or when the player completes all levels. The primary objective is to maximize
cumulative rewards by skillfully navigating the environment, defeating enemies, avoiding
hazards, and collecting items to progress through the world.

• MsPacman: The task is a reinforcement learning problem where an agent controls Ms.
Pacman navigating through a maze filled with pellets, power-ups, and enemy ghosts. The
action space is discrete with 9 options: {0: no operation, 1: move up, 2: move right,
3: move left, 4: move down, 5: move up-right, 6: move up-left, 7: move down-right,
8: move down-left}. The observation space consists of raw pixel values representing the
game screen, displaying Ms. Pacman, pellets, power pellets, and ghosts moving around
the maze. The reward mechanism is designed to incentivize the collection of pellets and
the strategic use of power-ups. Ms. Pacman earns points for each pellet collected and
additional points for eating ghosts after consuming a power pellet. However, if she gets
caught by a ghost without the power-up, a life is lost. The game ends when all lives are
lost or when all pellets in the maze are collected. The primary objective is to maximize
cumulative rewards by skillfully navigating the maze, avoiding or chasing ghosts when
appropriate, and collecting as many pellets and power-ups as possible.

• Pong: The task is a reinforcement learning problem where an agent controls a paddle to
hit a ball and score points by getting the ball past the opponent’s paddle. The action space
is discrete with 6 options: {0: no operation, 1: fire, 2: move the paddle up, 3: move the
paddle down, 4: right fire, 5: left fire}. In the environment, the fire action has no functional
effect, as we can only move the paddle up and down. The observation space consists of raw
pixel values representing the game screen. The agent receives a reward of +1 for scoring
and -1 when the opponent scores. The game ends when either side reaches 21 points.

• Qbert: The task is a reinforcement learning problem where an agent controls Qbert, a
character navigating through a pyramid of cubes while avoiding enemies and hazards. The
action space is discrete with 6 options: {0: no operation, 1: fire (jump), 2: move up, 3:
move right, 4: move left, 5: move down}. The observation space consists of raw pixel

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

values representing the game screen, displaying Qbert, enemies, and the pyramid of cubes
that Qbert must jump on to change their color. The reward mechanism is designed to
incentivize jumping on cubes and avoiding enemies. Qbert earns points for each successful
jump that changes the color of a cube, and additional points for completing a level by
changing all cubes to the desired color. Penalties occur if Qbert is hit by enemies or falls
off the pyramid, resulting in a lost life. The game ends when all lives are lost. The primary
objective is to maximize cumulative rewards by skillfully navigating the pyramid, changing
the colors of cubes, avoiding enemies, and completing levels efficiently.

• Seaquest: The task is a reinforcement learning problem where an agent controls a sub-
marine navigating through an underwater world filled with enemy submarines, divers, and
obstacles. The action space is discrete with 18 options: {0: no operation, 1: fire, 2: move
up, 3: move right, 4: move left, 5: move down, 6: move up-right, 7: move up-left, 8: move
down-right, 9: move down-left, 10: move up and fire, 11: move right and fire, 12: move
left and fire, 13: move down and fire, 14: move up-right and fire, 15: move up-left and fire,
16: move down-right and fire, 17: move down-left and fire}. The observation space con-
sists of raw pixel values representing the game screen, displaying the submarine, enemies,
friendly divers, and the underwater environment. The reward mechanism is designed to
incentivize the destruction of enemy submarines and the rescue of divers. The agent earns
points for shooting enemy submarines and other hostile underwater threats, as well as for
rescuing divers and bringing them safely to the surface. Penalties occur if the submarine is
hit by enemy fire or runs out of oxygen, which results in a loss of life. The game ends when
all lives are lost. The primary objective is to maximize cumulative rewards by skillfully
navigating the underwater environment, avoiding enemies, rescuing divers, and managing
oxygen levels effectively.

• UpNDown: The task is a reinforcement learning problem where an agent controls a car
navigating through a colorful, fast-paced world filled with other vehicles and obstacles on
winding roads. The action space is discrete with 6 options: {0: no operation, 1: fire, 2:
move up, 3: move down, 4: move up and fire, 5: move down and fire}. The observation
space consists of raw pixel values representing the game screen, displaying the agent’s
car, other vehicles, and road obstacles. The reward mechanism is designed to incentivize
avoiding collisions and overtaking other vehicles. The agent earns points for passing other
cars on the road and avoiding crashes. Higher rewards are earned by overtaking more cars
and successfully navigating tricky sections of the road. The game ends when the agent
collides with another car or falls off the road, resulting in a loss of life. The primary
objective is to maximize cumulative rewards by skillfully maneuvering the car, avoiding
collisions, overtaking as many vehicles as possible, and progressing through the levels
without losing lives.

21


	Introduction
	Preliminaries
	Markov Decision Process (MDP)
	Deep Q-Learning
	Large Language Models (LLMs)

	Methods
	Overview
	Learning Status Summarizing
	Policy Exploration Strategy Generation

	Experiments
	Experimental Settings
	Overall Performance
	Compatibility with Different RL Algorithms
	Compatibility with Different LLMs
	Performance VS Computational Consumption
	Case Studies

	Related Works
	Policy Exploration in RL
	Enhancing RL with LLMs

	Conclusions
	Appendix
	Implementation Details
	Supplementary Results
	Detailed prompts


