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ABSTRACT

Large reasoning models such as DeepSeek-R1 employ reinforcement learning
(RL) to incentivize the reasoning capability. As the context length growth, the
quadratic complexity of self-attention (SA) prohibits scaling to longer
contexts. Recently, hybrid, sparse and linear attention methods aim to reduce the
cost of SA, yet suffer from costly retraining, high complexity or linear memory
growth. To address it, we revisit sliding-window attention (SWA). It
not only offers linear-time complexity and constant memory, enabling faster RL
rollouts, but also facilitates cheap conversion from pretrained transformers. No-
tably, we prove that SWA can handle the reasoning tasks well due to the locality of
thought. In this paper, we introduce Sliding Window Attention for Reinforced
Reasoning (SWARR), a two-stage approach: (1) math-specific supervised fine-
tuning to convert a pretrained SA model into a SWA as cold-start, and (2) RL opti-
mization using DAPO (Yu et al., 2025a) to enhance reasoning capabilities. Under
same settings, our SWARR outperforms SA by 1.78% on 1.5B, while delivering
6.2× higher throughput and 8× larger batch size, and 1.5× longer context under
same memory budget. Our SWARR achieves the competitive performance among
1.5B and 7B models, surpassing the DeepSeek-R1-Distill-Qwen-1.5B and 7B by
1.9% and 3.4% respectively. To our knowledge, this is the first work to show that
trained SWA is a competitive alternative to transformers, enabling efficient and
scalable reasoning.

1 INTRODUCTION

Reinforcement Learning (RL) (Shao et al., 2024; Yu et al., 2025a; Schulman et al., 2017; Ouyang
et al., 2022) offers a promising path for advancing the chain-of-thought (CoT) (Wei et al., 2022)
reasoning (DeepSeek-AI, 2025; Zeng et al., 2025; Team et al., 2025a; Bai et al., 2025) in Large
Language Models (LLMs). However, transformer-based LLMs face significant challenges when
processing long sequences due to the quadratic complexity of self-attention (SA) (Vaswani
et al., 2017; Dao et al., 2022). As the sequence length grows, the SA-based models are constrained
by the quadratic increase in computation complexity and linear escalation in memory usage, making
it hard to scale to longer contexts during RL rollouts.

To address this, prior works explored three major families of efficient attention mechanisms. Hy-
brid attention (Wang et al., 2025b;a; OpenAI, 2025), as in MiniMax-M1 (Chen et al., 2025a) and
Nemotron-H (Blakeman et al., 2025), interleaves SA layers with linear attention like Mamba2 (Gu
& Dao, 2023; Dao & Gu, 2024) or Lightning Attention (Qin et al., 2024a). While this reduces the
fraction of quadratic-cost layers, overall complexity remains bounded by the O(L2) components.
Besides, hybrid attention typically requires costly training from scratch. Sparse attention (Yuan
et al., 2025; Lu et al., 2025; Xiao et al., 2024) like NSA (Yuan et al., 2025) and MOBA (Lu et al.,
2025) reduce the quadratic cost of SA by restricting each query to a subset of keys, but they neces-
sitate training from scratch. Despite these advantages, linear attention models are harder to obtain,
particularly for reasoning. Broadly, there are two approaches: (1) training from scratch, which is
costly and time-consuming; and (2) converting pretrained SA models into linear-attention variants
using Liger (Lan et al., 2025), which requires a post-training process to convert SA to GLA (Yang
et al., 2023). This raises a question: How to retain the strengths of self-attention for reasoning
while making it practical and efficient for RL training?
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Figure 1: CDF of attention scores: 80%
mass within 4k tokens, showing locality
of thought.

For this questions, we revisit the Sliding-Window
Attention (SWA) (Beltagy et al., 2020; OpenAI,
2025) with three key observations: ① SWA can retain
the reasoning ability of SA for Reasoning Tasks due
to Locality of Thought: Recent studies (Prystawski
et al., 2023) reveal the “locality of thought” phenomenon,
which suggests that attention is heavily concentrated on
recently generated tokens in CoT, indicating that SWA can
effectively handle reasoning tasks. We further validate it
by visualizing the cumulative distribution function (CDF)
of attention scores of SA model on reasoning tasks in Fig-
ure 1 and find that around 80% of attention mass is con-
centrated within a 4k token window (refer to Appendix D
for details). This locality bias makes SWA effective for
complex reasoning. Besides, As illustrated in Figure 2,
stacking SWA layers expands the effective receptive field far beyond the individual window size,
enabling the model to capture long-range dependencies. ② SWA is Efficient in RL Training: The
constant memory footprint of SWA leads to significantly reduced memory usage relative to the linear
memory growth of SA. SWA facilitates larger rollout batch sizes or larger group sizes during RL
training under the same memory budget, which in turn allows for more effective policy gradient
estimation. As presented in Sec. 4.3, SWA outperforms SA under equal RL training time budget,
where we can exploit the memory savings to increase batch size, group size or context length. ③
SWA Enables Practical Conversion from Pretrained SA Models: Linear attention requires ex-
tensive retraining or post-training to adapt from pretrained SA models. We choose SWA because it
retains the fundamental structure of SA but confines attention to a local window. It naturally align
with SA. We compare the Liger (Lan et al., 2025) with SA and SWA during SFT stage and find that
Liger is slower to converge as shown in Figure 9. Additionally, SWA is compatible with highly opti-
mized kernels such as FlashAttention (Dao et al., 2022), benefiting from mature, production-grade
GPU acceleration. These observations motivate us to revisit sliding-window attention
(SWA) (Beltagy et al., 2020) for efficient RL reasoning.

Based on the above observations, we propose Sliding Window Attention for Reinforced
Reasoning (SWARR) framework, as illustrated in Figure 3. SWARR consists of two stages: (1)
a supervised fine-tuning (SFT) stage that adapts a pretrained SA into SWA for cold-start initializa-
tion. For SA model, SFT extends the context length (e.g., from 4k to 32k), while for SWA, it enables
efficient conversion. (2) Reinforcement learning optimization using DAPO (Yu et al., 2025a), which
further enhances the reasoning capabilities of the SWA policy.

Extensive experiments on math reasoning benchmarks demonstrate that our SWARR outperforms
SA baselines by 1.78% on 1.5B, while delivering significantly faster rollouts and supporting longer
effective contexts under the same training time. Our SWARR achieves the competitive performance
among 1.5B and 7B models, surpassing the DeepSeek-R1-Distill-Qwen-1.5B and 7B by 1.9% and
3.4% respectively. During training, SWA achieves 1.23× faster for SFT. Under constrains of 65G
memory, SWA achieve 2.7× higher thoughput and 8× larger batch size during RL rollout. To our
knowledge, this is the first work to systematically demonstrate that carefully trained SWA backbones
can serve as competitive alternative to SA.

Our contributions are as follows:
• We propose SWARR, a two-stage framework that successfully adapts a pretrained Self-

Attention (SA) model to a Sliding-Window Attention (SWA) architecture for efficient rein-
forced reasoning. We are the first to systematically demonstrate that SWA can serve as a com-
petitive and highly efficient alternative to SA for complex reasoning tasks.

• We introduce a practical and effective methodology for converting SA models to SWA, consist-
ing of a math-specific supervised fine-tuning (SFT) stage for cold-start adaptation, followed by
RL with DAPO to unlock advanced reasoning capabilities.

• We demonstrate SWA achieves better performance and efficiency than SA. Our 1.5B SWARR
model outperforms its SA counterpart by 1.78% on key benchmarks while achieving 6.2×
higher throughput and supporting 8× larger batch sizes. Furthermore, our SWARR model sur-
passes DeepSeek-R1-Distill-Qwen by 1.9% and 3.4% at 1.5B and 7B scales respectively.
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Figure 2: Sliding-window attention: each layer at-
tends locally, but stacking layers expands the effec-
tive receptive field.

Figure 3: Overview of the SWARR pipeline.
For SA, SFT extends the context length; for
SWA, SFT converts SA to SWA.

2 RELATED WORK

Efficient Attention Mechanisms. SA (Vaswani et al., 2017) offers a global receptive field but
at a prohibitive O(L2) computational cost. We group efficient variants by the conversion from
pretrained SA as shown in Table 1: sparse attention (Yuan et al., 2025; Lu et al., 2025; Xiao et al.,
2024) restricts keys via fixed, data-independent patterns and typically requires training from scratch;
linear attention (Choromanski et al., 2020; Peng et al., 2025; Glaeser, 1999) replaces softmax with
kernel mappings ϕ(·) to achieve O(L), but this operator change complicates direct conversion and
often demands post-training procedures (Lan et al., 2025); in contrast, sliding-window attention
(SWA) (Beltagy et al., 2020) retains the original softmax operator and parameterization, achieving
O(wL) by masking to a local window of size w. This compatibility makes SWA a practical, near
drop-in path for adapting pretrained SA backbones.

Table 1: Comparison of efficient attention mechanisms.

Feature Self-Attention (SA) Sparse Attention Linear Attention Sliding-Window (SWA)

Formulation softmax
(

QK⊤
√
dk

)
V softmaxj∈St

(
qtk

⊤
j√

dk

)
vj ϕ(Q)(ϕ(K)⊤V ) softmax

(
QwK⊤

w√
dk

)
Vw

Complexity O(L2) Sub-quadratic O(L) O(wL)
Conversion Baseline Requires new sparsity patterns Requires operator redesign Compatible with fine-tuning
Key Property Global receptive field Fixed sparse patterns Associative property Local receptive field

Self-attention LLMs with RL. Most reasoning models are trained with a self-attention backbone.
Recent work has shown that RL can substantially improve the reasoning capabilities of large lan-
guage models. Notably, DeepSeek-R1 (DeepSeek-AI, 2025) uses GRPO (Shao et al., 2024) for
RL training on a self-attention model and reports strong gains on reasoning benchmarks. Follow-
ing GRPO, methods such as DAPO (Yu et al., 2025b), GRESO (Zheng et al., 2025), SimpleRL-
Zoo (Zeng et al., 2025), and Seed-GRPO (Chen et al., 2025b) have been introduced to further
boost performance. However, due to the limitations of self-attention, RL scaling still suffers from
quadratic computation, limiting scalability for long-context rollouts.

Hybrid Attention LLMs with RL. Recent work has introduced hybrid attention models to im-
prove RL rollout efficiency by combining local or selective attention with standard SA. For example,
MiniMax-M1 (Chen et al., 2025a) uses a 7:1 interleaving of Lightning Attention (Qin et al., 2024a)
and standard SA, optimized with the CISPO (Chen et al., 2025a) RL algorithm, to achieve im-
proved RL rollout efficiency and enhanced performance in sequential decision-making tasks. GPT-
OSS (OpenAI, 2025) uses a 1:1 interleaving of SWA with an attention sink (Xiao et al., 2023) and
standard SA to achieve efficient long-context processing and improved streaming performance in
large-scale language modeling. Although these hybrid designs can partially alleviate KV cache
growth and reduce computation, they do not fully escape the quadratic complexity inherent in the
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SA components. This persistent bottleneck motivates the exploration of architectures with purely
linear complexity that can completely eliminate the quadratic scaling issue.

State-Space LLMs with RL. Beyond self-attention variants, state-space models (SSMs) such as
S4/S5 (Gu et al., 2021), Mamba (Gu & Dao, 2023), and Mamba2 (Dao & Gu, 2024) have emerged
as promising alternatives for handling long sequences with linear complexity. A prevalent trend
involves creating hybrid Mamba-Transformer architectures. However, many of these models neces-
sitate extensive training from scratch. For instance, Nemotron-H (Blakeman et al., 2025), Hunyuan-
Turbo (Team et al., 2025b), and Nemotron-Nano-2 (Basant et al., 2025) all employ hybrid designs
that require significant computational investment. Other approaches, like Jamba (Lieber et al., 2024),
use an interleaved Transformer-Mamba mixture-of-experts architecture, while Jet-Nemotron (Gu
et al., 2025) utilizes neural architecture search to find an optimal combination. More recently,
M1 (Wang et al., 2025b) has aimed to reduce this training burden by first distilling a Transformer
into a hybrid architecture before applying SFT and RL. In contrast to these methods, our SWA offers
a much simpler conversion path, as it does not require a complex distillation process, making it a
more practical alternative for adapting pretrained models.

3 SLIDING-WINDOW ATTENTION FOR REINFORCED REASONING (SWARR)

This section outlines a two-stage methodology for SWARR, which transforms a pretrained trans-
former into a model capable of high-performance reasoning under a fixed computational budget.

3.1 STAGE 1: SUPERVISED FINE-TUNING

The first stage converts an SA model to SWA as a cold-start. We initialize the weights of the new
SWA model directly from a pretrained transformer, reusing the existing parameters of its query, key,
value (QKV), and multi-layer perceptron (MLP) layers. The primary architectural modification is
the replacement of the global attention mechanism with a localized, sliding-window one, which
constrains the receptive field of each token to a fixed number of its immediate neighbors.

This shift in inductive bias necessitates adaptation. To ensure the model learns to reason effectively
within its new limited context length, we perform supervised fine-tuning (SFT) on general mathe-
matical datasets (Liu et al., 2025c). The objective function is the standard cross-entropy loss over
the target sequences:

LSFT(θ) = E(x,y)∼DSFT

[
−

L∑
t=1

log πSWA(yt|x, y<t)

]
(1)

This process acclimates the model to its localized attention pattern and recovers any performance
degradation resulting from the altered attention pattern. For fair comparison, we also conduct SFT
for the SA model to extend its context length (e.g., from 4k to 32k) using the same dataset and
training settings, following the pipeline in Figure 3.

3.2 STAGE 2: REINFORCED REASONING

To further enhance the reasoning abilities of SWA, we employ reinforcement learning (RL) using
the DAPO (Yu et al., 2025a) recipe. Specifically, we use dynamic sampling to filter out uninfor-
mative sample groups, apply token-level policy-gradient updates, and use reward shaping to handle
truncated sequences. The optimization is guided by the following objective:

LDAPO(θ) = E(q,a)∼D,{oi}G
i=1∼πθold

(·|q)

 1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1

πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
Âi,t

 , (2)

where the fraction is the importance-sampling ratio and Âi,t denotes the group-normalized ad-
vantage. To focus the optimization, updates are performed only on groups with meaningful re-
ward signals, and KL regularization is omitted to prioritize reward maximization. We append the
prompt “Please reason step by step, and put your final answer within
\boxed{}.” to each question to elicit chain-of-thought reasoning. The reward is computed from
the final-answer correctness. For more details of RL, please refer to Appendix E.4.
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Table 2: Comparison of RL reasoning models at 1.5B scale on reasoning benchmarks. All models
use Qwen2.5-Math-1.5B as the base. ∗ indicates results measured by us. “-” denotes not available.

Model AIME24 Math500 AMC Olymp Average

1.5B-scale SA models

Qwen2.5-Math-1.5B (Yang et al., 2024) 3.3 35.6 34.7 21.6 23.8
DeepSeek-R1-Qwen-1.5B∗ (DeepSeek-AI, 2025) 27.7 81.2 62.8 52.9 56.2

GRESO-1.5B (DM) (Zheng et al., 2025) 15.0 76.6 61.4 38.5 47.9
GRESO-1.5B (OR1) (Zheng et al., 2025) 20.0 76.1 50.6 39.2 46.5
RLSC (Li et al., 2025) 6.7 62.4 46.2 29.9 36.3
Oat-Zero-1.5B (Liu et al., 2025b) 20.0 74.2 53.0 37.6 46.2
TTRL (Zuo et al., 2025) 15.8 73.0 48.9 - 45.9
TAPO (Wu et al., 2025) 16.7 69.0 55.0 33.6 43.6
Seed-GRPO (Chen et al., 2025b) 23.3 75.4 50.6 41.3 47.7
EDGE-GRPO (Zhang et al., 2025) 10.0 73.2 44.6 37.3 41.3

1.5B-scale Hybrid/SWA models

M1-3B (Wang et al., 2025b) 29.0 82.1 62.8 47.3 55.3
SWARR-1.5B (Ours) 27.7 87.0 61.4 56.1 58.1

3.3 INFRASTRUCTURE

Our infrastructure is built on XTuner (Contributors, 2023) and employs Fully Sharded Data Parallel
(FSDP) (Zhao et al., 2023) for memory-efficient distributed RL training. To accelerate the critical
rollout phase, we adopt a colocation strategy similar to HybridFlow (Sheng et al., 2024), allowing
training and inference on the same devices to eliminate weight-conversion overhead. The inference
engine is further optimized with a centralized request distributor, continuous batching (Yu & Jeong,
2022), and asynchronous rollout (Fu et al., 2025) to maximize throughput and resource utilization.

Moreover, our infrastructure is tailored to SWA architectural properties. Unlike SA, which requires
complex KV-cache management (Kwon et al., 2023), SWA’s fixed-size attention window enables a
more efficient caching mechanism. We implement a ring-based buffer for the KV cache, illustrated
in Figure 11, that maintains a fixed-size memory buffer, overwriting the oldest key–value pairs
circularly once the window capacity is reached.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Model. Experiments are conducted on Qwen2.5-Math models at 1.5B and 7B scales. SA models
are fine-tuned to support extended context length from 4k to 32k tokens. All models are initialized
from pretrained Qwen2.5-Math model with 4k context length. SWA models are converted from SA
models with window sizes of 2k, 4k, and 8k. We denote these models as SWA-2k, SWA-4k, and
SWA-8k respectively. Without specifically noted, we use SWA-4k as the default SWARR model.

Datasets. For SFT, we use the AceReason-1.1-SFT dataset (Liu et al., 2025c), which contains
2,668,741 math and 1,301,591 code samples. The 1.5B models are trained on the math subset (19B
tokens), while the 7B models are trained on both math and code subsets (58B tokens). For RL
training, we utilize the AceReason-Math dataset (Liu et al., 2025c), containing 49,000 challenging
math problems designed to rigorously stimulate the reasoning abilities.

Evaluation. For evaluating mathematical reasoning models, we assess performance on a suite
of competition-level benchmarks: MATH500 (Hendrycks et al., 2021), AIME24 (MAA, 2025),
AMC (MAA, 2023), and OlympiadBench (He et al., 2024). Each benchmark is repeated 2, 32, 8,
and 2 times respectively, resulting in 1000, 960, 664, and 1348 samples to ensure robust and reliable
evaluation. These datasets collectively measure the models’ ability to solve complex mathematical
reasoning problems and provide a comprehensive assessment of reasoning proficiency.

Training Settings. We present two settings. (1) Fair comparison training settings: During the
SFT stage, the learning rate is initialized at 7 × 10−6 and decayed to 7 × 10−7 using a cosine
annealing schedule. Weight decay is set to 0.1. SFT is performed on 4 H800 nodes (32 GPUs total).
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Table 3: Comparison of RL reasoning models at 7B scale on reasoning benchmarks. All models use
Qwen2.5-Math-7B as the base. ∗ indicates results measured by us. “-” denotes not available.

Model AIME24 Math500 AMC Olymp Average

7B-scale SA models

Qwen2.5-Math-7B-Instruct (Yang et al., 2024) 13.3 79.8 50.6 40.7 46.1
DeepSeek-R1-Qwen-7B∗ (DeepSeek-AI, 2025) 50.3 90.9 80.7 67.4 72.3

GRESO-7B (DM) (Zheng et al., 2025) 32.5 82.2 80.7 44.1 59.9
GRESO-7B (OR1) (Zheng et al., 2025) 35.0 82.3 64.5 45.7 56.9
SimpleRL-Zoo-7B (Zeng et al., 2025) 40.0 80.2 70.0 39.0 57.3
PRIME-Zero-7B (Cui et al., 2025) 16.7 83.8 62.7 40.9 51.0
OpenReasoner-Zero-7B @8k (Hu et al., 2025) 13.3 82.4 54.2 47.9 49.5
Oat-Zero-7B (Liu et al., 2025b) 43.3 80.0 62.7 41.0 56.8
RLSC (Li et al., 2025) 26.7 72.6 54.7 35.9 47.5
Eurus-7B (Yuan et al., 2024) 16.7 83.8 62.7 40.9 51.0
GPG-7B (Chu et al., 2025) 33.3 80.0 65.0 42.4 55.2
TTRL-7B (Zuo et al., 2025) 40.2 83.4 68.1 - 63.9
Seed-GRPO (Chen et al., 2025b) 50.0 91.6 78.3 61.5 70.4
rStar-Math-7B (Guan et al., 2025) 26.7 78.4 47.5 47.1 49.9
Eurus-2-7B-PRIME (Cui et al., 2025) 26.7 79.2 57.8 42.1 51.5
Sky-T1-7B-Zero (Team, 2025) 23.8 77.6 65.0 41.3 51.9
Sky-T1-7B-RL (Team, 2025) 24.6 85.6 69.0 49.3 57.1
S1.1-7B (Muennighoff et al., 2025) 19.2 82.0 - 43.1 48.1
Bespoke-Stratos-7B (Labs, 2025) 18.3 81.2 - 45.0 48.2

7B-scale SSM/SWA models

PROMPTCOT-MAMBA-7B (Zhao et al., 2025) 35.2 84.6 - 50.7 56.8
SWARR-7B (Ours) 54.1 94.6 82.4 71.6 75.7

During the RL stage, the learning rate is fixed at 10−6, with a weight decay of 0.1. Training runs
for 400 steps, with one optimization per RL step. The rollout batch size is 128, and the number
of RL groups is 8. The reward is 1 when the output strictly matches the answer. By default, we
employ DAPO for RL training with token-level loss. RL training is conducted on a single node with
8 NVIDIA H800 GPUs. (2) Strong training settings: Building upon the fair comparison settings,
we make the following adjustments for our strongest models. For 1.5B models, we extend the RL
training steps from 400 to 1,400. For 7B models, we use the full AceReason dataset (math and
code), increase the SFT batch size to 16, set the number of RL groups to 16 with a context length of
16k, change token-level loss to sequence-level loss for further stability, and extend the RL training
steps to 600.

4.2 REASONING EVALUATION

We evaluate the reasoning performance of our proposed SWARR framework with other RL-based
methods on Transformer, Hybrid, and Linear architectures at 1.5B and 7B scales. We highlight
M1 (Wang et al., 2025b) and PROMPTCOT-MAMBA (Zhao et al., 2025) for comparison.

Comparison with 1.5 RL reasoning models. We compare our SWARR-1.5B against other RL
algorithms that utilize Qwen2.5-Math-1.5B as the base model in Table 2. SWARR-1.5B achieves the
highest average score (58.10), outperforming GRESO-1.5B (OR1), Oat-Zero-1.5B, and Seed-GRPO
by 11.6%, 11.9% and 10.4%. Our SWARR-1.5B achieves higher performance than DeepSeek-R1-
Distill-Qwen-1.5B by 1.9%. On AIME24, SWARR-1.5B achieves 27.7%, which is higher than Seed-
GRPO and GRESO-1.5B (OR1). For Math500, SWARR-1.5B reaches 87.0%, surpassing all other
methods, including GRESO-1.5B (DM) and Oat-Zero-1.5B. On AMC and Olympiad, SWARR-1.5B
also leads with 61.4% and 56.1%. Notably, Our SWARR-1.5B outperform M1-3B (Wang et al.,
2025b), a hybrid Transformer-Mamba reasoning models with 2× parameters, by 2.8% in average
score, demonstrating the effectiveness of our SWA approach even against larger models.

Comparison with 7B RL reasoning models. We presents a comprehensive comparison between
our SWARR-7B model and other 7B-scale Transformers based on Qwen2.5-Math-7B in Table 3.
Notably, our SWARR-7B outperforms DeepSeek-R1-Distill-Qwen-7B by 3.4%. We also include the
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Table 4: Fair comparison of Self-Attention (SA) and Sliding-Window Attention (SWA) models at
1.5B scale on math-reasoning benchmarks. Both architectures are evaluated after supervised fine-
tuning (SFT) and reinforcement learning (RL) under matched training budgets. Train/Eval time is
reported in GPU hours.

Model Train Time Eval Time AIME24 Math500 AMC Olymp. Avg

Fair Comparison after SFT

SA-1.5B-SFT 306 3.72 18.85 79.50 49.10 47.18 48.66
SWA-4k-1.5B-SFT 249 1.27 16.25 78.20 47.29 47.33 47.27

Fair Comparison after RL

SA-1.5B-SFT-RL 306+413 2.79 22.29 82.50 54.97 50.96 52.68
SWA-4k-1.5B-SFT-RL 249+386 0.91 22.81 85.70 57.53 51.78 54.46

Figure 4: Performance comparison of SA and SWA under the same wall-clock time. (a) Under the
same context length, SWA achieves 600 iterations while SA only completes 400. (b) SWA with a
group size of 16 achieves higher performance than SA. (c) SWA with a batch size of 256 achieves
higher performance than SA. (d) SWA with a longer context of 48k achieves higher performance
than SA.

performance of PROMPTCOT-Mamba-7B (Zhao et al., 2025), a Mamba2 based reasoning model
built upon Codestral (Jiang et al., 2023) and adapted for mathematical reasoning tasks. The results
demonstrate that our SWARR approach surpasses the performance of PROMPTCOT-Mamba-7B by
18.9%, highlighting the effectiveness of SWARR for long-context reasoning in RL training.

4.3 FAIR COMPARISON OF SWA AND SA

To further validate the effectiveness of the SWA architecture, we conduct a fair comparison between
SWA and SA models trained on the same dataset with identical training budgets. Both models are
initialized from Qwen2.5-Math-1.5B and trained with the same time and memory budgets through
both SFT and RL. The SWA model uses a window size of 4k, while the SA model is adapted to
support a 32k context length. We present the results in Table 4 and visualize the performance under
various training settings in Figure 4.

SWA matches SA in SFT performance while being more efficient. During the SFT stage, our
SWA model with a 4k window (SWA-4k-1.5B-SFT) achieves an average accuracy of 47.27%, which
is comparable to the 48.66% of the SA (SA-1.5B-SFT), as shown in Table 4. This demonstrates
that the transition to SWA does not significantly compromise accuracy. Crucially, this comparable
performance is achieved with greater efficiency: the SWA model trains 1.23× faster (249 vs. 306
GPU hours) and evaluates 2.9× faster (1.27 vs. 3.72 GPU hours) than its SA counterpart.

SWA outperforms SA after RL. After the RL stage, the SWA-4k-1.5B-SFT-RL model achieves an
average score of 54.46% under same training time, surpassing the SWARR-1.5B’s score of 52.68%
by 1.78%. This improvement is consistent across individual benchmarks, with SWA outperforming
SA on Math500 (+3.2%), AMC (+2.56%), and AIME24 (+0.52%). These results highlight that SWA
not only maintains strong performance but can leverage its efficiency to achieve superior results after
RL optimization.
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Figure 5: Performance comparison of Self-Attention (SA) and Sliding-Window Attention (SWA)
models. (a) Throughput as a function of context length. (b) Maximum batch size supported under
a 65GB memory constraint. (c) Effect of increasing batch size on throughput. (d) SWA achieves a
6.2× speedup over SA at 32k context length.

SWA achieves greater gains by scaling batch, group, or context under same time budget. The
linear-time and constant-memory properties of SWA enable faster training steps with reduced mem-
ory usage. As shown in Figure 4(a), SWA completes 600 iterations compared to SA’s 400 under
identical 32k context and training time, leading to higher average reasoning accuracy. This effi-
ciency allows SWA to scale (i) the number of DAPO groups, (ii) the mini-batch size, or (iii) the
maximum context length, all within the same wall-clock time as the SA baseline. For instance,
Figure 4(b) demonstrates that doubling DAPO groups from 8 to 16 incurs no latency penalty while
yielding a 0.42% accuracy gain, highlighting the benefits of SWA’s reduced memory footprint for
policy updates. Similarly, Figure 4(c) shows a 1.77% performance gain when increasing the batch
size from 128 to 256, with no additional time cost. Finally, Figure 4(d) illustrates that extending
SWA’s context to 48k tokens results in a 2.13% gains, confirming its linear scalability for long-
context RL under fixed compute budgets.

4.4 ANALYSIS

RL Training Time Breakdown. Figure 7 illustrates the time breakdown of a single RL training
step for both SA and SWA architectures. We show the time spent on Rollout, Logprob computation,
and Training. We observe that the SA model with a 32k context length (SA-32k) is substantially
slower, taking 526.5s per step, whereas the SWA-4k models are significantly more efficient, using
just 287.6s. For SWA models, we present the average time with different window sizes, from 2k,
4k to 8k. As the window size increases, the total training time per step increases from 239.9s to
340s, primarily due to the increased computation in both Rollout and Training phases. Notably,
for both SA and SWA models, the rollout process occupies nearly 87.31% (SA-32k) and 88.08%
(SWA-2k-32k). We find that under the same context length, SWA requires only about half the
rollout time compared to SA.

Decoding Speed Comparison. Decoding plays a critical role in RL rollouts, especially for long-
context reasoning. We conduct a systematic evaluation to compare the efficiency of SWA and SA
architectures in terms of memory consumption and inference latency. Figure 5 illustrates the scaling
behavior of SWA and SA w.r.t. context length and batch size, revealing two key advantages of
SWA over SA: (1) SWA is computationally efficient: As shown in Figure 5(a), SWA
maintains high throughput regardless of context length, owing to its lower computational complexity.
(2) SWA is memory efficient: Under a fixed memory constraint of 65GB, SWA supports
a significantly larger maximum batch size than SA. As illustrated in Figure 5(b), the maximum batch
size for SA decreases by a factor of 8 (from 512 to 64) as context length grows, while SWA remains
largely unaffected. Figure 5(c) demonstrates that SWA’s throughput increases steadily with larger
batch sizes. Furthermore, when comparing throughput at the maximum batch sizes (Figure 5(d)),
SWA achieves a speedup of approximately 6.2×.

4.5 ABLATION STUDY

SFT Convergence Speed Comparison. We compare the loss curves during SFT for SA, SWA, and
Liger (Lan et al., 2025) in Figure 6. All models are initialized from the same 4k pretrained Qwen2.5-
Math-1.5B. The SA model is directly fine-tuned on 32k context, while SWA models are fine-tuned
with 4k windows. Liger (Lan et al., 2025), which linearizes LLMs into gated recurrent structures, is
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Figure 6: SWA converges faster
than Liger and SA during SFT.

Figure 7: Time breakdown in RL
Training for SA and SWA.

Figure 8: Generation Length
vs. Cumulative Accuracy.

Table 5: Effect of supervised fine-tuning (SFT), RL, and window size on SWA and SA models.
Train/Eval time is reported in GPU hours.

Model Train Time Eval Time AIME24 Math500 AMC Olymp. Avg

SA-1.5B-SFT 306 3.72 18.85 79.50 49.10 47.18 48.66

SFT Window Size Ablation

SWA-2k-1.5B-SFT 227 1.08 11.77 76.20 42.62 42.51 43.27
SWA-4k-1.5B-SFT 249 1.27 16.25 78.20 47.29 47.33 47.27
SWA-8k-1.5B-SFT 284 1.93 17.19 79.90 48.95 46.22 48.06

RL Window Size Ablation

SWA-2k-1.5B-SFT+RL (150 step) 227+102 0.91 14.79 79.90 49.10 44.88 47.17
SWA-4k-1.5B-SFT+RL (100 step) 249+82 1.09 17.81 79.50 50.45 48.52 49.07
SWA-8k-1.5B-SFT+RL (50 step) 284+44 1.62 18.02 78.80 49.40 47.77 48.50

included for reference. We find that SWA achieves substantially faster loss reduction and lower final
loss than both SA and Liger, highlighting its superior convergence speed and adaptation efficiency
for long-context reasoning.

Impact of Window Size of SWA. Window size directly affects model performance and computa-
tional efficiency. As shown in Table 5, increasing the window size from 2k to 4k leads to a substantial
improvement of 4%, and further increasing to 8k yields a smaller gain of 0.79%. However, larger
window size also incur higher training and evaluation times (e.g., 1.22 for 4k vs. 1.67 GPU hours
for 8k). This demonstrates a clear trade-off: while larger windows can marginally improve perfor-
mance, they come at the cost of increased computation. The 4k window size offers a better trade-off
between performance and efficiency and is chosen as the default in our experiments.

Impact of Generation Length. To assess the effect of generation length on model performance,
we conduct an ablation study comparing SWA and SA architectures with generation lengths of 4k,
8k, and 16k tokens. For each setting, we measure the average performance on the four benchmarks.
Figure 8 shows that cumulative accuracy rises quickly with context length, indicating the benefit of
longer contexts for reasoning.

5 CONCLUSION

In this paper, we identify the quadratic complexity of self-attention (SA) as a key bottleneck for
reinforcement learning (RL) training, particularly for long-context rollouts. We introduce Sliding-
Window Attention for Reinforced Reasoning (SWARR), a two-stage framework that efficiently con-
verts a pretrained SA transformer into an SWA model and further optimizes it using the DAPO algo-
rithm. Under identical training conditions, our experiments show that SWARR matches or surpasses
SA models on challenging mathematical reasoning benchmarks and outperforms Transformer and
Hybrid models of comparable size. Importantly, SWARR delivers substantially faster rollout speeds
and lower memory usage, enabling longer training context and more efficient utilization of compu-
tational resources.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

This work does not involve human subjects, personally identifiable information, or sensitive data.
All datasets used are publicly available and comply with relevant privacy and legal standards. The
proposed methods are intended for research purposes in mathematical reasoning and do not pro-
mote harmful, discriminatory, or unethical applications. There are no known conflicts of interest or
sponsorship issues related to this research. We have followed best practices for reproducibility and
research integrity throughout the study.

7 REPRODUCIBILITY STATEMENT

We have taken comprehensive steps to ensure the reproducibility of our results. All experimental
settings, model architectures, training procedures, and evaluation protocols are described in detail in
the main paper, Section 4.1, and Appendix E. The datasets are publicly available on Hugging Face,
as detailed in Section 4.1. We will release the code, model checkpoints, and detailed instructions to
facilitate replication of our experiments upon publication.
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A LIMITATION

Although our proposed SWARR has demonstrated promising results and great potential in RL train-
ing, several limitations and open questions remain:

Domain Generalizability While our approach demonstrates strong efficiency and performance,
its experimental validation is primarily confined to mathematical-reasoning benchmarks. As a re-
sult, the generalizability of SWA-based RNNs to other domains—such as open-ended dialogue,
code generation, or tasks involving multimodal inputs—remains untested. Future work is needed to
systematically evaluate the applicability and robustness of SWA in these broader contexts.

Global Context Limitations Although we have shown that SWA expands the effective receptive
field and can outperform SA under a fair computational budget, its effectiveness may be constrained
on tasks that require truly global context. In particular, SWA may struggle with rare long-range
dependencies that exceed the fixed window size, such as those encountered in long-context under-
standing or document-level reasoning tasks. This limitation is inherent to the local nature of the
sliding-window mechanism.

Potential Mitigations To address the above limitation, techniques such as multi-step inference or
iterative context aggregation could be explored. For example, methods like Smooth Reading (Liu
et al., 2025a) may help the model recover or approximate global context by sequentially processing
overlapping windows or by leveraging external memory. Investigating such strategies is a promising
direction for future research.

Dependence on High-Quality Datasets The performance of SWARR is heavily reliant on
the quality and scale of the datasets used for both SFT and RL. While we utilized extensive
mathematical-reasoning datasets, any inherent biases or gaps in these datasets could limit the
model’s generalization to unseen problem types. Crafting high-quality datasets for complex rea-
soning remains a significant challenge.

B BROADER IMPACTS

The widespread adoption of SWARR as a potential successor to standard self-attention (SA) could
catalyze a paradigm shift in the landscape of large language models. Its linear-time complexity
and constant memory footprint during inference promise to significantly enhance efficiency, making
large-scale deployment more feasible. This architectural advantage may fundamentally reshape
modern inference engines such as vLLM (Kwon et al., 2023) and SGLang (Zheng et al., 2024),
as the need for complex KV-cache management would be obviated, simplifying system design.
Consequently, SWARR could pave the way for practical lifelong-serving scenarios, such as persistent
personal assistants that handle continuous, long-running interactions. Furthermore, by alleviating
the memory burden of the KV cache, SWARR unlocks new potential for on-device models, enabling
them to achieve ultra-low latency and greater capabilities on edge devices.

C DISCUSSION

C.1 CONCURRENT WORKS

Concurrent to our work, M1 (Wang et al., 2025b) explores reinforcement learning on a hybrid
Mamba-Transformer architecture. Similar to other hybrid models such as Nemotron-H (Blakeman
et al., 2025) and MiniMax-M1 (Chen et al., 2025a), M1 aims to balance performance and efficiency.
A key contribution of M1 is its exploration of initializing the Mamba components with limited data,
thereby avoiding costly training from scratch. This aligns with our motivation to efficiently adapt
pretrained models to new architectures. However, a fundamental difference remains: M1 is a hybrid
model that still contains quadratic self-attention layers, whereas our SWARR framework relies on a
pure sliding-window attention mechanism, which offers strictly linear complexity. This distinction
ensures that SWARR maintains a significant advantage in efficiency and scalability, particularly in
scenarios involving extremely long contexts.
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Figure 9: Illustration of the SWARR training pipeline. We present average performance across
reasoning benchmarks. During the SFT stage, SWA achieves comparable results to SA. In the RL
stage, SWA consistently outperforms SA.

Another relevant work is PROMPTCOT-MAMBA (Zhao et al., 2025), which investigates the rea-
soning capabilities of a pure Mamba2 architecture. The authors adapt a Mamba2 model, originally
pretrained on coding data, for mathematical reasoning by applying supervised fine-tuning (SFT) on
relevant corpora. Their work is valuable in demonstrating the potential of pure state-space models
(SSMs) for reasoning tasks. In contrast, our work goes further: while they focus on SFT, we address
the more complex challenge of reinforcement learning. We are the first to successfully apply RL
to an SWA model for reasoning and to demonstrate that it can surpass the performance of its SA
counterpart.

C.2 NECESSITY OF THE TWO-STAGE TRAINING PIPELINE

Our framework is built upon a two-stage training pipeline: supervised fine-tuning (SFT) followed
by reinforcement learning (RL). This design is crucial for successfully adapting a pretrained self-
attention model to a sliding-window architecture for complex reasoning tasks. The SFT stage serves
as an essential “cold start” for the model. The architectural shift from global attention (SA) to local
attention (SWA) is significant, and our experiments show that directly applying RL to a freshly con-
verted SWA model results in training instability and a failure to converge. The model’s performance
does not steadily improve, as the policy is not yet adapted to reasoning within a constrained local
window.

Therefore, the SFT phase is indispensable. By fine-tuning on a large corpus of mathematical data,
the model learns to effectively utilize its local receptive field, establishing a robust baseline policy.
Once this foundation is in place, the RL stage can effectively and continuously refine the model’s rea-
soning capabilities. As shown in Table 5, the SWA-4k-1.5B model after both SFT and RL achieves
a significantly higher score (49.07) compared to the model with SFT alone (47.27). This demon-
strates that while SFT provides the necessary initial capabilities, RL is key to unlocking the model’s
full potential, allowing it to surpass the performance of the SFT-only version. Furthermore, our
results indicate that a window size of 4k provides a favorable trade-off between performance and
computational efficiency.

C.3 MORE DISCUSSIONS ON THE LOCALITY OF THOUGHT EXPERIMENTS

In our locality of thought motivation experiment, we also present the accumulated attention score
distributions for both reasoning tasks and long-context understanding tasks. Notably, the local-
ity phenomenon—where most attention is concentrated within a local window—holds strongly for
reasoning tasks but does not generalize to long-context understanding tasks. This explains why
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Figure 10: Comparison of accumulated attention scores for reasoning and long-context understand-
ing tasks.

sliding-window attention (SWA) is highly effective for reasoning, yet may struggle with tasks re-
quiring global context or long-range dependencies. As discussed in the Section A, techniques such
as Smooth Reading (Liu et al., 2025a) could help mitigate this limitation by sequentially aggregating
context or leveraging external memory, potentially extending the applicability of SWA to broader
domains.

D DETAILS OF THE LOCALITY OF THOUGHT EXPERIMENTS

To quantitatively analyze the locality of attention, we define a metric for the accumulated attention
score, following prior work on attention locality Prystawski et al. (2023); Wei et al. (2022). For a
given sequence {xi}, let aij be the attention score between the query token xi and the key token xj .
The attention score of xi with an offset d is denoted as ai,i−d.

The accumulated attention score for a token xi up to an offset d, denoted as Ai,d, is the sum of
attention scores from tokens within a window of size d:

Ai,d =

{∑d
k=0 ai,i−k d ≤ i

1 d > i
(3)

By definition, Ai,d is a monotonically increasing function of d and is upper-bounded by 1.

To study the overall attention locality across different contexts, we average this score over tokens,
layers, heads, and batches. The average accumulated attention score for a given offset d, Ād, is
calculated as:

Ād =
1

B ·NL ·NH

B∑
b=1

NL∑
l=1

NH∑
h=1

 1

W

Lseq∑
i=Lseq−W+1

Ai,d

 (4)

where B is the batch size, NL is the number of layers, NH is the number of heads, and Lseq is the
sequence length.

To ensure a fair comparison and mitigate the influence of varying sequence lengths, we sample
sequences with lengths between 1.5k and 1.6k tokens. We only average the accumulated attention
scores over the last W tokens of the generated response to minimize biases from response length
variations. This formulation allows us to generate the Cumulative Distribution Function (CDF) of
attention scores shown in Figure 1.
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E DETAILS OF EXPERIMENTS

E.1 TRAINING DATASET

SFT Dataset. For supervised fine-tuning, we use AceReason-1.1-SFT (Liu et al., 2025c),
a diverse, high-quality dataset focused on math and code reasoning. All responses in the dataset
were generated by DeepSeek-R1 (DeepSeek-AI, 2025). It contains 2,668,741 math samples and
1,301,591 code samples, sourced from a wide range of datasets including OpenMathReason-
ing, NuminaMath-CoT, OpenCodeReasoning, MagicoderEvolInstruct, opc-sft-stage2, LeetCode,
TACO, and APPS. To ensure the integrity of our evaluation, we perform rigorous data decontami-
nation, filtering out any sample that has a 9-gram overlap with the test sets of our math and coding
benchmarks. For the 1.5B models, we use only the math subset, whereas for the 7B models, we use
both the math and code subsets. For more details, please refer to the AceReason technical report.

RL Dataset. For reinforcement learning, we use AceReason-Math, a high-quality, verifiable,
and challenging math dataset specifically curated for RL. This dataset contains 49,000 math prob-
lems and their corresponding answers, sourced from NuminaMath and DeepScaler-Preview. To
ensure the suitability of the data for RL training, we applied stringent filtering rules to exclude prob-
lems with multiple sub-questions, multiple-choice or true/false formats, overly long and complex
answers, proofs, or those requiring figures. This dataset was instrumental in training the AceReason-
Nemotron models, which have demonstrated strong performance on difficult math benchmarks such
as AIME24 and AIME25.

E.2 EVALUATION BENCHMARKS

To provide a comprehensive assessment of our models’ reasoning capabilities, we evaluate them on
a diverse suite of challenging mathematical benchmarks.

MATH The MATH dataset (Hendrycks et al., 2021) is a widely recognized benchmark for mathe-
matical problem-solving. It comprises 12,500 problems sourced from American high-school math-
ematics competitions, including the AMC 10, AMC 12, and the AIME. The problems span seven
distinct subjects—Pre-Algebra, Algebra, Number Theory, Counting & Probability, Geometry, Inter-
mediate Algebra, and Precalculus—and are categorized into five difficulty levels. For our evaluation,
we use the standard 500-problem test set, referred to as MATH500.

AIME The American Invitational Mathematics Examination (AIME) is a prestigious and highly
challenging mathematics competition for high-school students. It serves as a qualifier for the United
States of America Mathematical Olympiad (USAMO). The problems on the AIME are signifi-
cantly more difficult than those on the AMC and require a deeper level of mathematical insight
and problem-solving skill. We use problems from the 2024 AIME competition (MAA, 2025) to test
the advanced reasoning abilities of our models.

AMC The American Mathematics Competitions (AMC) (MAA, 2023) are a series of nationwide
contests in the United States designed to identify and nurture talent in mathematics. The competition
series includes the AMC 10 (for students in grade 10 or below) and the AMC 12 (for students in
grade 12 or below). The problems cover a wide range of high-school mathematics topics and are
designed to be both challenging and accessible.

OlympiadBench OlympiadBench (He et al., 2024) is a benchmark specifically designed to test the
limits of mathematical reasoning at the level of international olympiads. It consists of problems from
various national and international math olympiads, which are known for their extreme difficulty and
the creative, non-standard solutions they often require. This benchmark serves as a stringent test of
a model’s ability to handle complex, multi-step reasoning and abstract mathematical concepts.

E.3 TRAINING HYPERPARAMETERS

SFT: The learning rate is initialized at 7×10−6 and decayed to 7×10−7 using a cosine-annealing
schedule. Weight decay is set to 0.1. Training is performed on 4 nodes (32 GPUs in total).
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RL: The RL phase uses a modified DAPO algorithm Yu et al. (2025a;b). The learning rate is fixed
at 10−6, with weight decay of 0.1. Training runs for 1 600 steps, with one optimization per RL step.
The rollout batch size is 128, and the number of RL groups is 8. Asymmetric clipping uses h-clip
at 0.28 and l-clip at 0.2. The reward is based on strict match, with an over-length penalty
enabled. RL training is conducted on a single node with 8 NVIDIA H800 GPUs.

Figure 11: SWA ring-based buffer mechanism. The diagram illustrates the operational lifecycle of
the fixed-size ring buffer for KV-cache management in three steps. (1) Initial population: the buffer
is filled sequentially, and the attention window covers the active KV pairs. (2) Buffer full: once
capacity is reached, the write pointer wraps around to the beginning of the buffer. (3) Overwriting
oldest data: a new KV pair (KV9) replaces the oldest entry (KV1), ensuring the buffer always
contains the most recent tokens while maintaining a constant memory footprint.

E.4 DAPO MODIFICATIONS FOR SWARR

We adapt the DAPO algorithm Yu et al. (2025a;b) for SWA training with several targeted modifica-
tions to address the unique characteristics of sliding-window attention:

Clip-Higher: In contrast to standard DAPO, we employ strict on-policy training, which inher-
ently mitigates the entropy-collapse issue that Clip-Higher was designed to address. The on-policy
constraint ensures sufficient exploration, eliminating the need for asymmetric clipping ranges.

Dynamic Sampling: DAPO’s dynamic sampling strategy typically resamples rollout batches
whose rewards are all 0 or all 1 until the desired batch count is achieved. In our approach, we
simply filter out such batches without resampling, streamlining the sampling process.

Overlength Penalty: We refine the overlength penalty mechanism by leveraging finish-reason
information. The model may terminate generation because of a natural stop, reaching the length
limit, or encountering an error. We explicitly encourage natural stops by applying a penalty to the
reward when the finish reason is not as expected, discouraging truncation by length limits.

KL-Divergence Removal: Consistent with DAPO (Yu et al., 2025b), we remove the KL-
divergence term from the GRPO objective. This simplification is especially advantageous for SWA
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training, as it enables the model to diverge more freely from the initial policy and better adapt to the
constrained attention pattern.

F DETAILS OF THE INFRASTRUCTURE

Ring-based Cache Management for SWA: The SWA cache-management strategy is visualized
in Figure 11, which details the operation of the ring-based buffer. Initially, the buffer of size N is
populated sequentially with key–value (KV) pairs corresponding to incoming tokens. As the system
processes the sequence, the attention window of size K slides to cover the most recent entries.
Once the buffer’s capacity is reached, its circular nature is activated: the write pointer wraps around
from the end to the beginning. The core overwrite mechanism is shown when the next KV pair
(KV9) arrives; it replaces the oldest data (KV1) in the buffer. This process effectively implements
a circular queue, ensuring that the cache always holds the K most recent KV pairs within a fixed
memory allocation. This design maintains a constant memory footprint and facilitates efficient,
constant-time read/write operations, eliminating the overhead associated with traditional dynamic
KV-cache management for long sequences.

Distributed RL Training Framework Our RL training pipeline is built upon the XTuner (Con-
tributors, 2023) framework, which is designed for efficient fine-tuning of large language models. To
handle the substantial memory requirements of RL training, we employ Fully Sharded Data Parallel
(FSDP) (Zhao et al., 2023), which shards model parameters, gradients, and optimizer states across
multiple GPUs. This allows us to train large models that would otherwise not fit into a single de-
vice’s memory. Furthermore, to minimize the overhead associated with switching between training
and inference (rollout), we adopt a colocation strategy inspired by HybridFlow (Sheng et al., 2024).
This approach allows both training and inference processes to run concurrently on the same set of
devices, eliminating the need for costly weight transfers and conversions between different formats,
thereby accelerating the overall RL loop.

Optimized Inference Engine for Rollout The efficiency of the rollout phase is critical for RL
training throughput. Our inference engine is heavily optimized to maximize performance. It fea-
tures a centralized request distributor that manages incoming generation requests and batches them
dynamically. We implement continuous batching (Yu & Jeong, 2022), which allows new requests
to be added to a running batch, improving GPU utilization by avoiding idle time between batches.
Additionally, we use asynchronous rollout (Fu et al., 2025), where the generation of sequences is
decoupled from the main training loop, allowing the model to continuously produce experiences
without blocking the policy optimization step. These optimizations work in concert to ensure a
high-throughput, low-latency rollout process, which is essential for effective and scalable RL train-
ing.

G DETAILS OF RELATED WORKS

In this section, we provide a more detailed discussion of related works on efficient attention mech-
anisms and their application to reinforcement learning for reasoning tasks. We expand on the com-
parison presented in the main paper, categorizing methods by their architectural approach and eval-
uating them across multiple dimensions, including computational complexity, memory usage, ease
of conversion from pretrained self-attention models, performance in RL settings, and training costs.

G.1 EFFICIENT ATTENTION MECHANISMS

G.1.1 SELF-ATTENTION AND ITS VARIANTS

Standard self-attention (Vaswani et al., 2017) remains the cornerstone of modern Transformers. By
materializing an L×L score matrix, it offers a global receptive field, yet its O(L2) time and memory
footprint quickly becomes the bottleneck when long contexts or many roll-outs are required, e.g., in
reasoning-oriented RL systems such as DeepSeek-R1 (DeepSeek-AI, 2025).
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Figure 12: Comparison of self-attention variants in terms of memory and computational efficiency.

Figure 13: Attention mask patterns in Sparse Attention. (1) Causal, (2) Sliding Window, (3) Atten-
tion Sink, (4) Causal with Document Mask.

Multi-Head Attention (MHA) As illustrated in Figure 12, MHA (Vaswani et al., 2017) employs
a separate key (K) and value (V) head for each query (Q) head. This design parallelizes h inde-
pendent attention heads, each operating on a fraction of the model’s dimensions (dqk = dmodel/h).
While this allows the model to jointly attend to information from different representation subspaces,
it is computationally expensive. The KV-cache, which stores the key and value matrices, scales
linearly with the number of heads, consuming O(h ·L · dmodel) space. The time complexity remains
quadratic at O(L2 · dmodel) due to the full attention matrix calculation, making it a bottleneck for
long sequences.

Grouped-Query Attention (GQA) GQA (Ainslie et al., 2023) offers a compromise between
MHA and MQA by grouping query heads to share a single key and value head. As shown in the fig-
ure, this reduces the number of K and V heads from h to g (where g < h). This significantly reduces
the size of the KV-cache to O(g · L · dmodel), leading to lower memory usage and faster inference.
The time complexity is still dominated by the quadratic attention calculation, but the constant factor
is reduced.

Multi-Query Attention (MQA) MQA (Shazeer, 2019) represents a more aggressive optimization
where all query heads share a single key and value head. This drastically reduces the KV-cache size
to O(L · dmodel), making it the most memory-efficient variant among MHA and GQA. While the
computational complexity remains quadratic at O(L2 · dmodel), the reduction in memory bandwidth
requirements for loading the keys and values leads to significant speedups in practice, especially
during autoregressive decoding. However, this aggressive sharing can sometimes lead to a drop in
model quality due to the reduced capacity of the attention mechanism.

Multi-head Latent Attention (MLA) MLA (DeepSeek-AI et al., 2024) introduces a further op-
timization by compressing the key and value pairs into a shared, low-rank latent space before the
attention operation. As depicted in the figure, this involves a projection to a “Compressed Latent
KV.” This reduces the memory footprint of the KV-cache from O(L · dmodel) to O(L · r), where r
is the rank of the latent space and r ≪ dmodel. While an extra matrix multiplication is introduced,
the overall time complexity remains O(L2 · dmodel), but with a smaller constant factor, especially for
long sequences. This makes MLA a drop-in replacement for MHA that can significantly improve
efficiency with minimal impact on performance.
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G.1.2 SPARSE ATTENTION PATTERNS

Figure 14: Recurrent update rules for linear-attention mechanisms: (a) gated vector recurrence, (b)
optimization-based update, (c) outer-product state with decay, (d) delta-rule controlled forgetting.
Each panel shows state update and readout for a representative architecture.

This section details various sparse attention mechanisms, many of which are supported by libraries
such as FlashAttention (Dao et al., 2022). Figure 13 illustrates four common patterns.

(1) Causal Attention This is the standard attention mechanism in autoregressive models. Each
token can attend to itself and all preceding tokens, as shown in Figure 13(1). Its computational
complexity is O(n2), where n is the sequence length. The memory complexity is O(n2) to store
the attention matrix during training and O(n · d) for the KV-cache during inference, where d is the
model dimension.

(2) Sliding-Window Attention (SWA) SWA, depicted in Figure 13(2), restricts each query to
attend only to keys within a local window of fixed size w. This reduces the computational complexity
from O(n2) to O(nw) (Beltagy et al., 2020), with a corresponding memory complexity of O(nw)
for the attention matrix. During inference, a ring-buffer KV-cache can maintain a constant memory
footprint of O(w ·d). While this pattern is static and requires no additional training, the rigid locality
bias can limit the capture of long-range dependencies.

(3) Attention Sinks As observed by StreamingLLM (Xiao et al., 2023), keeping the first few
“sink” tokens plus the most recent window of tokens is often sufficient to maintain attention quality.
This pattern is shown in Figure 13(3). It caches s sink tokens and a sliding window of w recent
tokens, resulting in a computational complexity of O(n(s+ w)) for training. During inference, the
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time per token is constant, and the KV-cache size is fixed at O((s+w) · d), independent of the total
sequence length.

(4) Causal with Document Mask This pattern (Figure 13(4)) is a variant of causal attention in
which attention is restricted to certain blocks or segments, such as documents in a long context.
This can be useful for tasks involving multiple documents, preventing cross-document attention
while maintaining causality within each document. The computational and memory complexity
depends on the specific block structure; for k documents of average length n/k, the complexity is
approximately k · O((n/k)2) = O(n2/k), offering a significant reduction if k is large.

G.1.3 LINEAR ATTENTION

Recent advances in efficient attention mechanisms have produced models expressible as recurrent
neural networks (RNNs). These achieve linear-time complexity and constant memory at inference,
suiting long sequences. Figure 14 group them by state-update mechanisms:

Table 6: Recurrent update rules for efficient architectures. d is the hidden-state dimension.

Model Update rule (St) Read-out (ot) Complexity
Vector-valued hidden state (classical/gated RNNs)

HGRN (Qin et al., 2022) ht = αt ⊙ ht−1 + (1− αt)⊙ vt ot = ht ⊙ qt O(d)
Hawk (RG-LRU) (Deo et al., 2024) ht = rtht−1 + it ⊙ xt ot = ht ⊙ qt O(d)

Optimization-based update

TTT (Sun et al., 2024a) St = St−1 − ηt∇St−1L(St−1;xt) ot = Stqt O(d2)

Matrix-valued state via outer products

Linear Attention (Katharopoulos et al., 2020) St = St−1 + vtk
⊤
t ot = Stqt O(d2)

+ Kernel St = St−1 + vtϕ(kt)
⊤ ot = Stϕ(qt) O(d2)

+ Normalization St = St−1 + vtϕ(kt)
⊤, zt = zt−1 + ϕ(kt) ot = Stϕ(qt)/(z

⊤
t ϕ(qt)) O(d2)

RetNet/Lightning (Sun et al., 2023; 2024b) St = γSt−1 + vtk
⊤
t ot = Stqt O(d2)

GLA (Yang et al., 2023) St = St−1 ⊙ (1α⊤
t ) + vtk

⊤
t ot = Stqt O(d2)

Mamba-2 (Dao & Gu, 2024) St = γtSt−1 + vtk
⊤
t ot = Stqt O(d2)

RWKV-6 (Peng et al., 2024) St = St−1Diag(αt) + vtk
⊤
t ot = (St−1 + (d⊙ vt)k

⊤
t )qt O(d2)

HGRN-2/MetaLA (Qin et al., 2024b; Zhang et al., 2024) St = St−1Diag(αt) + vt(1− αt)
⊤

ot = Stqt O(d2)

Delta-rule / controlled-forgetting family

Longhorn (Liu et al., 2024) St = St−1(I− βtktk
⊤
t

1+βtk⊤
t kt

) +
βtvtk

⊤
t

1+βtk⊤
t kt

ot = Stqt O(d2)

DeltaNet (Li et al., 2023) St = St−1(I− βtktk
⊤
t ) + βtvtk

⊤
t ot = Stqt O(d2)

Gated DeltaNet (Li et al., 2023) St = αtSt−1(I− βtktk
⊤
t ) + βtvtk

⊤
t ot = Stqt O(d2)

Vector-valued Hidden State (Classical/Gated RNNs) This family includes models like
HGRN (Qin et al., 2022) and Hawk (Deo et al., 2024), which use a vector-valued hidden state
updated through gating mechanisms. The update rule is typically of the form ht = αt ⊙ ht−1 +
(1−αt)⊙vt, where αt is a data-dependent gating vector. These models are reminiscent of classical
RNNs but with modern architectural designs that allow for efficient, parallelizable training.

Optimization-based Update This family of models, including TTT (Sun et al., 2024a), formu-
lates the state update as an optimization process. The state St is updated by taking a gradient
descent step on a local loss function L(St−1;xt), as shown in the update rule St = St−1 −
ηt∇St−1

L(St−1;xt). This perspective frames sequence modeling as a continuous optimization
problem, where the model’s state evolves to minimize a loss at each timestep.

Matrix-valued State via Outer Products This family, which includes RetNet/Lightning (Sun
et al., 2023; 2024b), GLA (Yang et al., 2023), Mamba-2 (Dao & Gu, 2024), RWKV-6 (Peng et al.,
2024), and HGRN-2/MetaLA (Qin et al., 2024b; Zhang et al., 2024), maintains a matrix-valued state
St that is updated via outer products. The general update rule is St = γSt−1 + vtk

⊤
t , where γ can

be a scalar or a diagonal matrix, combining a decay factor with a rank-1 update. This formulation
allows for parallel training like standard transformers while enabling recurrent inference.

Delta-Rule / Controlled-Forgetting Family This family, featuring DeltaNet (Li et al., 2023) and
Gated DeltaNet (Li et al., 2023), employs a “controlled forgetting” mechanism inspired by the delta
learning rule. The state is updated by selectively erasing information along a specific direction
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before writing new information. The update rule is St = St−1(I − βtktk
⊤
t ) + βtvtk

⊤
t , where βt

controls the forgetting and writing rates. Gated versions add an additional gating term αt.

While these recurrent formulations offer significant efficiency gains, adapting pre-trained self-
attention models to these architectures is often non-trivial, typically requiring complex distillation
processes or training from scratch. This has limited their application in RL, where leveraging large
pre-trained models is crucial.

Our SWA approach stands out for its balance of efficiency, ease of conversion, and strong RL perfor-
mance, making it particularly suitable for practical deployment in reasoning tasks where pretrained
models need adaptation without extensive retraining.

H USE OF LLMS

Large language models (LLMs) were used to polish, grammar-check, and refine the language to im-
prove the readability of this paper. The core ideas, experimental design, and results were developed
without the use of LLMs.
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