
Regulation of Algorithmic Collusion, Refined:
Testing Worst-case Calibrated Regret

Jason D. Hartline Chang Wang Chenhao Zhang
Northwestern University

hartline@northwestern.edu, {wc, chenhao.zhang.rea}@u.northwestern.edu

Abstract

We study the regulation of algorithmic (non-)collusion amongst sellers in dynamic
imperfect price competition by auditing their data as introduced by Hartline et al.
[22].
We develop an auditing method that tests whether a seller’s worst-case calibrated
regret is low. The worst-case calibrated regret is the highest calibrated regret that
outcomes compatible with the observed data can generate. This method relaxes
the previous requirement that a pricing algorithm must use fully-supported price
distributions to be auditable. This method is at least as permissive as any au-
diting method that has a high probability of failing algorithmic outcomes with
non-vanishing calibrated regret. Additionally, we strengthen the justification for
using vanishing calibrated regret, versus vanishing best-in-hindsight regret, as the
non-collusion definition, by showing that even without side information, the pric-
ing algorithms that only satisfy weaker vanishing best-in-hindsight regret allow
an opponent to manipulate them into posting supra-competitive prices.
We motivate and interpret the approach of auditing algorithms from their data as
suggesting a per se rule. However, we demonstrate that it is possible for algorithms
to pass the audit by pretending to have higher costs than they actually do. For such
scenarios the rule of reason can be applied to bound the range of costs to those that
are reasonable for the domain.

1 Introduction

The prevailing practice of making pricing decisions with algorithms by sellers in competitive mar-
kets has drawn scrutiny from lawmakers and regulators for concerns about price collusion. For
example, the US Department of Justice recently filed a lawsuit against RealPage [11], a company
providing algorithmic pricing software for landlords in the apartment rental market, for allegedly fa-
cilitating price collusion. As Attorney General Merrick Garland stated, “We allege that RealPage’s
pricing algorithm enables landlords to share confidential, competitively sensitive information and
align their rents. Using software as the sharing mechanism does not immunize this scheme from
Sherman Act liability...”, the legal ground of the regulatory action is based on the argument that the
algorithm provided by RealPage enables a covert communication channel for market participants to
coordinate and maintain higher than competitive prices. There is one important reason behind this
argument: In many jurisdictions such as the US, tacit collusion with the absence of communication
is actually not illegal [20, 21].

On the other hand, researchers recently [6, 2, 3] have also discovered a more disturbing fact that
popular reinforcement learning algorithms can learn to collude without explicit communication just
by engaging in repeated market interactions. These forms of implicit collusion pose new challenges
for the regulation of algorithmic collusion.
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There are two doctrines of antitrust analysis in the US legal framework: per se rule and rule of
reason [23]. The per se rule deems certain business practices, like price-fixing or market division,
illegal without requiring further investigation into their actual competitive effects. For example, in
response to the algorithmic collusion concern around RealPage, San Francisco recently enacts the
per se regulation that precludes any use of algorithms in rental pricing [9]. The rule of reason,
on the other hand, involves a more thorough evaluation of business practices, assessing whether
they unreasonably restrain trade by examining their purpose, effects, and the overall context of the
market.

This paper considers the regulation of algorithmic collusion by auditing from pricing data as pro-
posed by Hartline et al. [22]. In their proposal, they argue that it is feasible to require all sellers
deploying pricing algorithms to pass the audit. In other words, sellers do not pass the audit are
automatically deemed illegal. Therefore, we reinterpret this proposal as a per se rule.

They then define a per se rule (see the next paragraph) and propose a non-collusion audit imple-
mented by a statistical test on the data collected during the deployment of a seller’s algorithm.

Based on the ideas and observations from the theory of online learning, Hartline et al. [22] propose
using calibrated regret as a quantitative measure for non-collusion for a seller running pricing algo-
rithms. Informally, given a sequence of market conditions and pricing decisions made by a seller,
calibrated regret measures how much she can be better off by utilizing the information revealed from
her pricing decisions. Low calibrated regret indicates that the seller is close to best responding to the
market environment she faces, which implies that she is not colluding since best responding corre-
sponds to competitive behavior. To empirically audit non-collusion of a seller on the collected data,
they develop a method for statistically efficiently testing low calibrated regret of the seller. Being
unable to pass the test is a violation of their suggested per se rule.

1.1 Our Contributions

We study the framework by Hartline et al. [22] in light of the standard guideline of binary classi-
fication: minimizing the number of false negatives and false positives. This is also suggested by
Harrington [20] when designing a per se rule specifying a prohibited set of algorithms:

false positives “The more that efficiency-enhancing algorithms are included in
the prohibited set, the more harm is created by the associated foregone sur-
plus.”

false negatives “The more that collusion-promoting algorithms are not included
in the prohibited set, the more harm is created because there is collusion that,
instead of being prosecuted and shut down, continues unabated.”

Our main contribution is three-fold. First, we reduce false positives by providing an improved
auditing method that allows algorithms with non-fully supported to be auditable (Section 1.1.1).
Second, we give a stronger argument for the need of calibrated regret by showing pricing algorithms
minimizing the weaker notion of best-in-hindsight regret can be manipulated into collusion. So the
notion of calibrated regret is necessary to reduce false positives (Section 1.1.2). Third, we argue that
rule of reason can also be useful by demonstrating that there exists collusive algorithms that could
pass the audit with a high inferred cost even if configured with the true cost (Section 1.1.3).

1.1.1 Fewer False Positives

First, we improve in the direction of reducing false positives. We note that there is a significant set
of good algorithms that, without modification, is not able to pass the audit of Hartline et al. [22].1

Specifically, Hartline et al. [22] assume that the seller’s algorithm outputs a distribution of prices in
each round. The actual price posted in each round is sampled from the output price distribution. The
auditing method computes an estimated regret from a transcript of the pricing algorithm consisting
of, in each round: 1) the actual price posted, 2) the observed demand for the posted price, and 3) the
distribution of prices, from where the actual posted price is drawn. There is one key requirement:
For any pricing algorithm to be auditable, the price distribution in each round must have full support.

1Note: Hartline et al. [22] give a procedure for modifying these algorithms so that they can pass the audit.
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In other words, in each round, every price level must be posted with at least some probability. We
view full-support requirement as restrictive because:

1. The seller might not want to post some prices. First, the seller could possess some side
information (that the regulator does not know) that makes him prefer to avoid certain prices.
Second, the seller could deliberately avoid some prices due to non-technical reasons (e.g.
posting 2.99 instead of 3.00, or avoiding the number 13, etc.).

2. In practice, the exact price distributions of the seller are often unavailable. Asking the seller
to submit full price distributions can also be problematic due to privacy issues. To apply the
auditing method proposed by Hartline et al. [22], a plausible alternative is to aggregate the
prices in a given time window, and use the empirical distribution as the price distribution
in that window. If the size of the window is appropriately chosen such that the change in
the price distribution is small (for example, when a learning algorithm with small learning
rate is used for pricing), then the empirical distribution can be a good approximation to the
true price distribution. Of course, this empirical distribution need not be fully-supported.

Remark. In Appendix D we present a formal statement of why aggregating prices to approximate
distributions works with small learning rates. An interesting open question is to design a test for
small learning rates from data so that the need of price distributions can be removed for sellers with
such learning rates.

In this work, we propose a refined auditing method that enables the auditing of algorithms that do not
use fully supported price distributions. The refined auditing method continues to use an unbiased
estimator for the counterfactual allocations, but it also maintains a worst-case estimation for the
prices that are not in the support of the price distributions. The new method relaxes the previous
requirement that a pricing algorithm must use fully-supported price distributions to be auditable
and enables the seller to pass the test by demonstrating her worst-case calibrated regret is low. The
worst-case regret is the highest regret that outcomes compatible with the observed data can generate.

1.1.2 Fewer False Negatives

Second, we consider false negatives. The calibrated regret that Hartline et al. [22] propose as the
non-collusion measure is a strong notion of regret. A common weaker notion is best-in-hindsight
regret. Calibrated regret compares the performance of the chosen actions to a counterfactual scenario
where the learner may switch among the actions using an arbitrary mapping. Best-in-hindsight
regret, on the other hand, compares the performance of the chosen actions to the performance of
the best fixed action in hindsight. To establish the indispensability of using the stronger notion of
calibrated regret for measuring non-collusion, they give a simple example where one seller has side
information about buyers’ valuation. The seller can utilize her side information to collude with the
other seller and have non-positive best-in-hindsight regret. However, she would still have positive
calibrated regret in this case.

We give a stronger argument for the need of calibrated regret by showing that a large family of
pricing algorithms that minimize the weaker notion of best-in-hindsight regret can be manipulated
into collusion. In other words, hindsight-regret algorithms can be susceptible to manipulation, thus,
to prevent collusion, a regulator may want to preclude their use.

The argument is inspired by works such as Braverman et al. [5] and Deng et al. [10] showing the
vulnerability to manipulation of best-in-hindsight regret minimization algorithms. We construct an
instance of the imperfect price competition with two sellers. In our example, the process generating
buyers’ valuation is stationary and neither of the sellers has any side information about the valuation
of the buyer. One seller using a mean-based learning strategy for minimizing best-in-hindsight regret
can still be manipulated into maintaining prices above equilibrium level for a significant number of
rounds.

1.1.3 Unknown Costs: Per Se Rule v.s. Rule of Reason

Third and finally, we consider the effects of not knowing the seller’s cost in the auditing process. In
the framework by Hartline et al. [22], the auditor knows the range of the seller’s cost but not the exact
cost. By their definition, as long as there exists some cost c∗ within the range for which the seller’s
regret is low, the seller is deemed non-collusive. This leads to the following question: Are there
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natural algorithms that when configured with the true cost c, find outcomes that are considered non-
collusive by auditing methods for a higher cost c′, while actually being collusive? We provide an
affirmative answer to the question by examining a seller using Q-learning that converges to collusive
outcomes in simulation environments. The auditing on the seller correctly shows high estimated
calibrated regret when a small and precise range of seller’s cost is given. However, when the cost
range extends beyond seller’s true cost by a significant margin, the estimated regret ends up being
low.

As a legal implication of this result, solely applying the per se rule of auditing to regulate algorithmic
collusion may not be sufficient, particularly when the regulator only has limited information about
seller’s cost. The knowledge of the cost of the seller can be crucial, and this is when a rule of reason
(that investigates the reasonable cost of the seller) can step in.

1.2 Related Work

Calvano et al. [6], Asker et al. [1, 2], Banchio and Skrzypacz [4], Banchio and Mantegazza [3] study
various aspect of algorithmic collusion. In the legal domain, Sawyer [27], Gavil [18], Hovenkamp
[23] discuss other aspect of antitrust law. Harrington [20], Chassang and Ortner [7] consider the
other proposal of regulating algorithmic collusion. Braverman et al. [5], Deng et al. [10] study
the manipulation of learning agents. We postpone the detailed discussion of related work to Ap-
pendix A.

2 Preliminary

We consider a setting where n sellers repeatedly compete for selling a good in T rounds. Seller i has
cost ci ∈ [

¯
c, c̄]. In each round t, seller i posts a price pti ∈ P where P is a k-element set of possible

price levels.

Let p = max{p : p ∈ P} be the maximum possible price level. Given all the sellers’ prices, the
demand (a.k.a. allocation) for seller i is xt

i : Pn → [0, 1]. We assume that fixing the prices p−i

posted by the sellers other than i, the allocation xt
i(pi,p−i) is non-increasing in pi. Seller i’s utility

at round t posting p is ut
i(p) = (p−ci)xt

i(p,p
t
−i). At the end of each round, the seller gets her utility

as the feedback.2 This is known as bandit feedback in the literature of online learning. Moreover,
the demand can be arbitrary and even adversarial under our framework.

The problem seller i faces is an online-learning problem. Seller i’s action in round t can be repre-
sented as a price distribution πt

i ∈ ∆(P), where ∆(P) is the set of distributions over P . She posts
prices pti according to the distribution πt

i and obtains the utility resulted from posting pti.

The seller’s behavior in a sequence of rounds of competitions can be summarized as a transcript. As
is the only feedback the regulator can assume the seller gets at the end of each round, the transcript
contains the allocation xt

i(p
t
i) corresponding to the price the seller posted, but not the full demand

function xt
i(·).

Definition 2.1. Call T t
i = {xs

i (p
s), psi , π

s
i }ts=1 where psi ∼ πs

i a transcript of length t for seller i.
The set of all the length-t transcripts for seller i is denoted asHt.

As an auditor, given the transcript of the seller, we want to test whether the seller is exhibiting
(non-)collusive behavior.

In this work we focus on seller i’s behavior, so we will drop the subscript i whenever possible. We
denote the sequences xT := {xt}Tt=1, pT := {pt}Tt=1, and πT := {πt}Tt=1.

Hartline et al. [22] propose that the seller is non-collusive if the transcript satisfies the vanishing
calibrated regret property. We define calibrated regret and vanishing calibrated regret as follows.
Definition 2.2. Given the ground-truth xT and seller’s cost c, the calibrated regret of the transcript
for a seller with cost c is

RT (xT , c) = max
σ:P→P

1

T

T∑
t=1

E
p∼πt

[
u(σ(pt), xt)− u(p, xt)

]
.

2She might also get other information, but we as auditors cannot directly observe other information.
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The seller’s calibrated regret is called vanishing if limT→∞ RT (xT , c) = 0.

Unless otherwise noted, we call “calibrated regret” as “regret.” Since the auditor does not know the
true cost c, as long as there exists a plausible cost c∗ ∈ [

¯
c, c̄] such that limT→∞ RT (xT , c∗) = 0, the

seller is considered plausibly non-collusive. The auditing method that Hartline et al. [22] provides
is based on estimating the calibrated regret. However, for the auditing method to work properly and
provide a meaningful guarantee, it imposes an auditability requirement that for all 1 ≤ t ≤ T , the
price distribution πt must be fully-supported. Sellers using algorithms that have vanishing calibrated
regret but do not satisfy this requirement are unable to pass the audit without modification.

3 A Framework of Auditing Methods

In this section we present a framework that defines a property called consistency which describes
that an auditing method correctly audits an algorithm (Definition 3.3). Although the auditing method
that Hartline et al. [22] propose satisfies a more restrictive consistency property (Definition 3.4), it
relies on the full support requirement, which means that the pricing algorithm must use every price
with non-zero probability. When auditing algorithms that may not randomize over prices with full
support, there is missing information because outcomes for prices that are posted with zero probabil-
ity cannot be estimated. We show that the more restrictive consistency property cannot be satisfied
with missing information and this is why we relax it to Definition 3.3. We refer to Definition 3.3 as
the one-sided consistency requirement and Definition 3.4 as the two-sided consistency requirement.
Then, under the one-sided consistency requirement, we define the notion of worst-case [counterfac-
tual] regret that uses conservative upper bounds on the allocation when there is missing information
(Definition 3.8). Finally, we show that a correct auditing method under one-sided consistency must
make decisions by considering that the regret of the seller is at least the worst-case regret. This
motivates the design of the improved auditing method in Section 4.

From Auditing Methods to Regret Estimators First, we claim that it is without loss of generality
to focus on regret estimators when studying auditing methods. This is done via a reduction argument.
That is, if we have an approximately correct auditing method, then we also have an approximately
correct regret estimator, and vice versa.

To begin we define auditing methods and regret estimators as follows:
Definition 3.1. Given a cost c and regret threshold r > 0, an auditing method is a mapping A :⋃

t≥0Ht → {G,S}, and the output indicates the regret is greater (G) or smaller (S) than r assuming
the seller’s cost c. A regret estimator is a mapping A :

⋃
t≥0Ht → R, and the output indicates the

estimated regret assuming the seller’s cost c.

Note that the auditing method proposed by Hartline et al. [22] is based on a regret estimator, so it
suffices to reduce regret estimation to auditing.
Proposition 3.2. Suppose we have an auditing method A that correctly outputs whether the regret
of a transcript T T of length T is greater or smaller than r with error probability at most f(T ).3
Then there exists an regret estimator of the regret of T T up to accuracy ε and error probability at
most pf(T )

ε .

The Consistency Requirement From now on we focus on regret estimators. To do a correct
hypothesis testing with the regret estimator, we want the regret estimator to be approximately con-
sistent, defined below:
Definition 3.3 (Consistency, one-sided). A regret estimator A is consistent if for any sequence
{{xt(pt)}Tt=1,p

T ,πT }T≥1 of transcripts, ε > 0, cost c, and sequence of ground-truth sequence of
allocations {xT }T≥1 agreeing with the transcripts,

lim
T→∞

Pr
pT∼πT

[
A(T T ) < RT (xT , c)− ε

]
= 0.

The above definition says that a regret estimator must approximately output at least the true regret
of the transcript in the limit.

3The error probability typically satisfies f(T ) = o(1) so its accuracy increases as T increases.
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Before we study the implication of Definition 3.3, we explain why we only require a regret estimator
to approximate an upper bound of the true regret instead of approximating the true regret itself—The
following definition is tempting:
Definition 3.4 (Consistency, two-sided). A regret estimatorA is consistent for a set of transcripts S
if, for any sequence {{xt(pt)}Tt=1,p

T ,πT }T≥1 of transcripts in S, ε > 0, cost c, and sequence of
ground-truth sequence of allocations {xT }T≥1 agreeing with the transcripts,

lim
T→∞

Pr
pT∼πT

[
|A(T T )−RT (xT , c)| ≥ ε

]
= 0.

Next we explain why Definition 3.4 is not appropriate in the general case (i.e. for sellers with not
fully-supported price distributions). Although the regret estimator in Hartline et al. [22] indeed
satisfies the two-sided consistency property (Proposition 3.5), it only works for transcripts with
fully-supported price distributions. Unfortunately, the two-sided consistency requirement is too
strong for algorithms that accept all the possible transcripts (Proposition 3.6). In other words, there
are pricing algorithms that produce transcripts for which the regret cannot be consistently (according
to Definition 3.4) estimated.
Proposition 3.5. Let ∆(P) be the set of fully-supported price distributions over P . The algo-
rithm in Hartline et al. [22] is consistent (two-sided), for the set of transcripts satisfying πT =
mint≤T,p π

t(p) = ω(T (−1/4)),
Proposition 3.6. No deterministic regret estimator is consistent (two-sided) for the set of all tran-
scripts. In particular, there exists a seller who has vanishing true regret, but her regret cannot be
consistently (two-sided) estimated.

The above proposition shows that it is not possible to get an estimator of the regret satisfying Def-
inition 3.4 in the general case. The auditor could be unable to certify a truly non-collusive seller.
This is why we ask for a relaxed property in Definition 3.3 that the regret estimator must output an
upper bound of the regret with high probability.

We turn back to the discussion of the one-sided consistency requirement in the general case. Recall
that our philosophy is that it is the seller’s responsibility to demonstrate enough information that
she is non-collusive. The one-sided consistency property ensures that missing information is prop-
erly accounted for so that a collusive seller is never deemed as non-collusive because of the regret
estimation.

Of course the one-sided consistency requirement does not rule out regret estimators that always
output trivial upper bounds of the regret. In the next section we will provide an algorithm that
outputs the least possible upper bound.

Finally, Definition 3.3 has an important implication: Whenever there is some missing information,
any regret estimator satisfying Definition 3.3 must output at least the worst-case [counterfactual]
regret of the transcript. We first define worst-case [counterfactual] regret (Definition 3.8) and then
show the implication (Proposition 3.9).

Intuitively, the worst-case regret is the highest regret that outcomes compatible with the observed
data can generate. We define such compatibility between outcomes and the observed data as follows.
Definition 3.7 (Indistinguishable allocations). Fix the sequence of price distributions πT , and let
Ct = {p ∈ P : πt(p) > 0} be the set of price levels that have non-zero probability being posted
in round t. Two sequences of allocations xT , zT are called indistinguishable if xt(·) and zt(·) have
the same support Ct for every 1 ≤ t ≤ T and

xt(p) = zt(p) for all p ∈ Ct and 1 ≤ t ≤ T.

The indistinguishable relation is an equivalence relation. If xT , zT are indistinguishable, then there
is no way to separate them from data.

With the definition of indistinguishable (compatible) allocations, we define the worst-case regret.
Definition 3.8 (Worst-case counterfactual regret). Fix the sequence of price distributions πT , and
with a given sequence of allocations xT = {xt}Tt=1, the worst-case [counterfactual] regret is de-
fined as

R
T
(c,xT ) = sup{RT (c, zT ) : zT indistinguishable with xT }.
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The following proposition implies that, by only looking at the transcript, the auditor cannot rule out
the possibility that the true regret is as high as the worst-case regret.
Proposition 3.9. Any one-sided consistent regret estimator A must satisfy

lim
T→∞

Pr
pT∼πT

[
A(T T ) < R

T
(xT , c)− ε

]
= 0,

for any ε > 0, cost c, transcript T T , and sequence of ground-truth sequence of allocations
{xT }T≥1.

Inspired by Proposition 3.9, in the next section we present an auditing method that enables the seller
to pass the test by demonstrating her worst-case regret is low.

4 Testing Worst-case Regret

In this section we present the refined auditing method that estimates the worst-case regret (as defined
in the previous section). We then show the following guarantee: With a sufficient amount of data, if
the seller’s worst-case regret is low, then she passes the audit with high probability, and if the seller’s
worst-case regret is high at every cost in [

¯
c, c̄], then she fails the audit with high probability.

First we do a decomposition of calibrated regret so that we can compute it efficiently. Recall that the
calibrated regret is defined to be the maximum benefit of deviation by doing a price swap σ : P → P .
A useful decomposition of calibrated regret is to first compute the benefit of changing price p to q,
then take the maximum over all possible q ∈ P , and finally sum the result over all p ∈ P . Formally,
let

RT
p,q(c,x

T ) =
1

T

T∑
t=1

πt(p)
[
(q − c)xt(q)− (p− c)xt(p)

]
,

then we have

RT (c,xT ) =
∑
p

max
q

RT
p,q(c,x

T ).

The auditing method estimates the worst-case regret based on the above decomposition and the
worst-case estimation of allocations from data. The steps are described in a high level as follows.4

The input to the general auditing method contains the prices the seller posts in each round {pt}Tt=1,
the allocations (demands) of the posted prices {xt(pt)}Tt=1, seller’s price distributions {(πt)}Tt=1,
and the threshold r. The price distributions need not be fully-supported. The method proceeds in
the following steps:

Step 1 We estimate the allocation every round using the transcript. For each round t, let Ct :=
{p ∈ P : πt(pj) > 0} be the support of the price distribution πt. For every price p ∈ Ct,
the propensity score estimator is used to estimate the allocation

x̂t(p) =

{
xt(p)/πt(p) p = pt,

0 otherwise.

For the prices that are not in the support, we use the estimator of the allocation at the largest
price p′ that is smaller than p while being in the support.

ĥt(p) := xt(p′) where p′ = max{r ≤ p : r ∈ Ct}.
If no such price exists, then the estimation is capped with 1.

Step 2 We estimate the true regret of the worst-case allocation R
T
(c,xT ) with the estimator

R̃T (c,xT ), built up from the estimator R̃T
p,q(c,x

T ) for R
T

p,q(c,x
T ). Specifically, we first

compute the benefit of substituting price p with q

R̃T
p,q(c) =

1

T

T∑
t=1

πt(p)
[
(q − c)ĥt(q)− (p− c)ĥt(p)

]
.

4A formal pseudocode description can be found at the end of the Appendix (Algorithm 1).
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Then the worst-case regret can be estimated by summing the highest benefit of changing
each price

R̃T (c) =
∑
p

max
q

R̃T
p,q(c).

Step 3 We minimize the worst-case regret over all the possible costs to compute the worst-case
plausible regret minc∈[

¯
c,c̄] R̃T (c). Note that this can be done in polynomial time even

with a continuum of costs. In fact, following the observations of Nekipelov et al. [26], for
each p, q, R̃T

p,q(c) is linear in c. Therefore, R̃T (c) =
∑

p maxq R̃
T
p,q(c) is a convex function

of c, which can be efficiently minimized over the closed set [
¯
c, c̄].

Step 4 Finally, we compare the estimated plausible regret plus an additional error margin δT with
the required threshold. The error margin ensures that the seller cannot pass the audit when
the information revealed from the transcript is insufficient to guarantee reliability of the re-
gret estimator. Specifically, if R̃T (c̃)+δT ≤ 2r, then we output PASS, and FAIL otherwise,
where

δT =
kp

T

√√√√2 log

(
2k2

α

)
·

T∑
s=1

(
1

minp∈Cs πs(p)
+ 1

)2

.

The following theorem identifies the sample complexity of testing worst-case calibrated regret.
Theorem 4.1 (Sample complexity of testing worst-case regret). Let c0 be the seller’s true cost
and c∗ = argminc∈[

¯
c,c̄] R

T
(c,xT ) be the plausible cost of the seller. Fix confidence level 1 − α,

threshold r and let π = minp∈Ct,1≤t≤T πt(p). With our refined auditing method, when the number
of rounds

T ≥ log
2k2

α
· 2
(
kp

r

)2

·
(
1

π
+ 1

)2

,

we have

1. if the seller’s true worst-case regret R
T
(c0,x

T ) ≤ r, she passes w.p. at least 1− α; and

2. if her plausible worst-case regret R
T
(c∗,x

T ) ≥ 2r, then she fails w.p. at least 1− α.

A direct corollary of the above theorem (together with Proposition 3.9) is that the regret estimator
in our refined auditing method outputs the least upper bound of the regret of the seller, because
Proposition 3.9 asks the regret estimator to output approximately at least the worst-case regret, and
the following corollary says it outputs approximately at most the worst-case regret. This implies
that our refined auditing method provides the most information about the transcript, given the one-
sided consistency requirement. In other words, our method is at least as permissive as any auditing
methods that have a high probability of failing algorithmic outcomes with non-vanishing calibrated
regret.
Corollary 4.2. Let the regret estimator in our refined auditing method be A. It satisfies

lim
T→∞

Pr
pt∼πt

[
A(T T ) > R

T
(xT , c) + ε

]
= 0,

for any ε > 0, cost c, transcript T T , and sequence of ground-truth sequence of allocations
{xT }T≥1.

Proof. A direct corollary from the proof of Theorem 4.1.

In the following two sections, we study two technical details on the concepts and assumptions used in
our auditing, which have practical implications in law. In Section 5 we provide justifications that the
more stronger calibrated regret must be used instead of weaker best-in-hindsight regret by arguing
that best-in-hindsight regret includes more collusive algorithms and cannot prevent collusion in a
unilateral way. In Section 6, we demonstrate that it is possible for algorithms to pass the audit by
pretending to have higher costs than they actually do. For such scenarios the rule of reason can be
applied to bound the range of costs to those that are reasonable for the domain.
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5 Best-in-hindsight Regret is Manipulable

Much online learning literature develops algorithms to satisfy vanishing best-in-hindsight (a.k.a.
external) regret. [22] argue that the stronger vanishing calibrated regret is essential for non-collusion
by giving an example with side information where a seller colludes while having non-positive best-
in-hindsight regret. In this section, we show a stronger argument by demonstrating that even in
environments without side information, algorithms can have vanishing best-in-hindsight regret while
being susceptible to collusion. This implies

1. If we use the more permissive vanishing best-in-hindsight regret as the definition of non-
collusion, then there could be more collusion promoting algorithms passing the audit (recall
false negatives).

2. A non-collusion definition using vanishing best-in-hindsight regret would not be a uni-
lateral property that an algorithm can satisfy independently of what other algorithms are
doing.

Combining the above argument with the fact that calibrated regret minimization leads to approximate
correlated equilibria [17], and a manipulator of calibrated-regret-minimization algorithm cannot get
more than the payoff of Stackelberg equilibirum [10], it is reasonable to require vanishing calibrated
regret in the definition of non-collusion even when there is no side information.

We construct an instance of imperfect price competition without side information and show that
one seller using a vanishing best-in-hindsight regret minimization algorithm can be manipulated
into posting higher-than-equilibrium prices. In our construction, both sellers (both the manipulator
and the manipulated the seller) have no best-in-hindsight regret, while both have non-vanishing
calibrated regret. Therefore, there exists a scenario where non-collusion definition of vanishing
best-in-hindsight regret fails to identify a collusion.

To begin, consider a setting of dynamic imperfect price competitions with 2 sellers. Let V1, V2

be the highest (correlated) equilibrium payoff for seller 1 and seller 2, in which they play a joint
distribution of prices πe. If the equilibrium strategy is pure, then let pe1, p

e
2 be the prices they play.

We define a family of commonly used best-in-hindsight regret minimization algorithms as follows.

Definition 5.1 (γ-mean-based learning, [5]). Fix horizon T and γ = o(1). Let σp,t =
∑t

s=1 up,s

be the cumulative utilities for posting price p in the first t rounds. A seller is γ-mean-based if the
seller posts price p w.p. at most γ as long as there exists another price q such that σq,t > σp,t + γT .

Many vanishing best-in-hindsight-regret algorithms, e.g. EXP3, FTPL, are known to be γ-mean-
based learning algorithms [5]. In the following theorem, we show that a seller running γ-mean-based
learning algorithm is vulnerable to manipulation into collusion. The manipulator can also achieve
no best-in-hindsight when doing such manipulation.

Theorem 5.2. There exists an instance in which the environment is stationary across rounds, both
sellers have no side information, and seller 1 can achieve an outcome with the following properties
against seller 2 who is using any γ-mean-based learning algorithm:

1. (collusion) for Ω(T ) rounds, both play p1 > pe1, p2 > pe2 in each round w.h.p.,5

2. (no loss of payoff) receive expected payoff V ′
1T − o(T ), V ′

2T − o(T ) where constants V ′
1 >

V1, V
′
2 > V2

6, and

3. (no best-in-hindsight regret) both seller 1 and seller 2 have vanishing best-in-hindsight
regret.

In words, Theorem 5.2 says that seller 2 can be manipulated into a significant number (constant
fraction) of rounds with supra-competitive prices, while both sellers have no best-in-hindsight regret
and get higher-than-equilibrium expected payoffs.

5In our construction, the maximum-payoff correlated equilibrium is a pure equilibrium.
6In our construction, the payoffs V1, V2 are also the Stackelberg equilibrium payoffs.
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6 On the Effect of Unknown Costs

In this section, we demonstrate that imprecision in cost information might significantly impact the
efficacy of auditing from pricing data and presents challenges to regulating collusion.

Recall that in the auditing problem we assume that the cost of the seller is unknown and the seller
passes the audit as long as the plausible regret is low (recall that the plausible regret is obtained
by minimizing the regret over [

¯
c, c̄]). Therefore, the seller and/or the algorithm can potentially

manipulate the cost so that the outcome is actually collusive, but is seen as non-collusive with a
higher inferred plausible cost in the auditing method. We now ask, can this really happen? In other
words, is it possible for algorithms to pass the audit by pretending to have higher costs than they
actually do?

Before providing the answer, we need to clarify the formulation of the question. Note that the
following two scenarios are different:

1. A seller deliberately inputs a fake cost to the pricing algorithm, causing the algorithm to
post prices higher than what is optimal for her true cost.

2. A seller truthfully reports her cost to the pricing algorithm, but the algorithm finds a collu-
sive outcome that looks competitive with a higher cost.

Since algorithmic collusion refers to collusion facilitated by the algorithm, Item 1 is not algorithmic
collusion, but Item 2 is. Thus more precisely, our question is

Are there natural algorithms that when configured with the true cost c, find out-
comes that are considered non-collusive by auditing methods for a higher cost c′,
while actually being collusive?

We find an affirmative answer to this question. This has two implications. First, the incomplete
knowledge of the cost of the seller could dramatically affect the result of the audit. Even if configured
with true costs, collusive algorithms might pass the test with a favorable inferred plausible cost.
Second, such behavior is hard to distinguish from genuine competition by only looking at the pricing
data, which is a new challenge for auditing algorithmic collusion.

A mitigation to this problem is applying rule of reason: A further investigation of the sellers and
market contexts is needed to narrow down the cost range.

The details of the simulation experiment leading to our conclusion of this section are described in
Appendix B.

7 Conclusion

In this work, we explore several questions around auditing (non-)collusion for pricing algorithms
from data based on the framework of Hartline et al. [22]. We motivate and interpret our study under
the legal doctrines of antitrust analysis. We develop a refined auditing method that relaxes the previ-
ous requirement that a pricing algorithm must use fully-supported price distributions to be auditable
by testing the worst-case regret, thus allowing more efficiency-enhancing algorithms to be auditable.
We give an example demonstrating that requiring vanishing-calibrated regret as the non-collusion
definition being essential to eliminate more collusion-promoting algorithms and prevent collusion
unilaterally. Our experiment results show that under the current auditing framework, a regulator
with very limited knowledge about a seller’s cost may be unable to detect collusive behavior of the
seller, which suggest a rule of reason can be useful in antitrust analysis. Open questions include de-
signing a test for small learning rates to remove the need of distributions and improving the sample
complexity bound.

References
[1] John Asker, Chaim Fershtman, and Ariel Pakes. Artificial intelligence, algorithm design, and

pricing. In AEA Papers and Proceedings, volume 112, pages 452–456. American Economic
Association 2014 Broadway, Suite 305, Nashville, TN 37203, 2022.

10



[2] John Asker, Chaim Fershtman, and Ariel Pakes. The impact of artificial intelligence design on
pricing. Journal of Economics & Management Strategy, 2023.

[3] Martino Banchio and Giacomo Mantegazza. Adaptive algorithms and collusion via cou-
pling. In Proceedings of the 24th ACM Conference on Economics and Computation, EC
’23, page 208, New York, NY, USA, 2023. Association for Computing Machinery. ISBN
9798400701047. doi: 10.1145/3580507.3597726. URL https://doi.org/10.1145/3580
507.3597726.

[4] Martino Banchio and Andrzej Skrzypacz. Artificial intelligence and auction design. In Pro-
ceedings of the 23rd ACM Conference on Economics and Computation, pages 30–31, 2022.

[5] Mark Braverman, Jieming Mao, Jon Schneider, and Matt Weinberg. Selling to a no-regret
buyer. In Proceedings of the 2018 ACM Conference on Economics and Computation, pages
523–538, 2018.

[6] Emilio Calvano, Giacomo Calzolari, Vincenzo Denicolo, and Sergio Pastorello. Artificial
intelligence, algorithmic pricing, and collusion. American Economic Review, 110(10):3267–
97, 2020.

[7] Sylvain Chassang and Juan Ortner. Regulating Collusion. Annual Review of Economics, 15
(1):177–204, 2023. doi: 10.1146/annurev-economics-051520-021936. URL https:
//doi.org/10.1146/annurev-economics-051520-021936.

[8] Sylvain Chassang, Kei Kawai, Jun Nakabayashi, and Juan Ortner. Robust screens for noncom-
petitive bidding in procurement auctions. Econometrica, 90(1):315–346, 2022.

[9] City and County of San Francisco. Administrative code - ban on automated rent-setting. http
s://sfgov.legistar.com/LegislationDetail.aspx?ID=6789588&GUID=89BA28F7
-B3B8-44D0-806B-FFDC5FC29015, 2024. Accessed: 2024-09-27.

[10] Yuan Deng, Jon Schneider, and Balasubramanian Sivan. Strategizing against no-regret learn-
ers. Advances in neural information processing systems, 32, 2019.

[11] Department of Justice. Justice department sues realpage for algorithmic pricing scheme that
harms millions of american renters. https://www.justice.gov/opa/pr/justice-dep
artment-sues-realpage-algorithmic-pricing-scheme-harms-millions-ameri
can-renters, 2024. Accessed: 2024-08-31.

[12] Addyston Pipe & Steel Co. v. United States, 1899.

[13] Brooke Group Ltd. v. Brown & Williamson Tobacco Corp., 1993.

[14] Chicago Board of Trade v. United States, 1918.

[15] Standard Oil Co. of New Jersey v. United States, 1911.

[16] Sara Fish, Yannai A Gonczarowski, and Ran I Shorrer. Algorithmic collusion by large language
models. arXiv preprint arXiv:2404.00806, 2024.

[17] Dean P Foster and Rakesh V Vohra. Calibrated learning and correlated equilibrium. Games
and Economic Behavior, 21(1-2):40, 1997.

[18] Andrew I Gavil. Moving beyond caricature and characterization: The modern rule of reason
in practice. S. Cal. L. Rev., 85:733, 2011.

[19] Karsten T Hansen, Kanishka Misra, and Mallesh M Pai. Frontiers: Algorithmic collusion:
Supra-competitive prices via independent algorithms. Marketing Science, 40(1):1–12, 2021.

[20] Joseph E Harrington. Developing competition law for collusion by autonomous artificial
agents. Journal of Competition Law & Economics, 14(3):331–363, 2018.

[21] Joseph E Harrington. The effect of outsourcing pricing algorithms on market competition.
Management Science, 68(9):6889–6906, 2022.

11

https://doi.org/10.1145/3580507.3597726
https://doi.org/10.1145/3580507.3597726
https://doi.org/10.1146/annurev-economics-051520-021936
https://doi.org/10.1146/annurev-economics-051520-021936
https://sfgov.legistar.com/LegislationDetail.aspx?ID=6789588&GUID=89BA28F7-B3B8-44D0-806B-FFDC5FC29015
https://sfgov.legistar.com/LegislationDetail.aspx?ID=6789588&GUID=89BA28F7-B3B8-44D0-806B-FFDC5FC29015
https://sfgov.legistar.com/LegislationDetail.aspx?ID=6789588&GUID=89BA28F7-B3B8-44D0-806B-FFDC5FC29015
https://www.justice.gov/opa/pr/justice-department-sues-realpage-algorithmic-pricing-scheme-harms-millions-american-renters
https://www.justice.gov/opa/pr/justice-department-sues-realpage-algorithmic-pricing-scheme-harms-millions-american-renters
https://www.justice.gov/opa/pr/justice-department-sues-realpage-algorithmic-pricing-scheme-harms-millions-american-renters


[22] Jason D Hartline, Sheng Long, and Chenhao Zhang. Regulation of algorithmic collusion. In
Proceedings of the Symposium on Computer Science and Law, pages 98–108, 2024.

[23] Herbert Hovenkamp. The rule of reason. Fla. L. Rev., 70:81, 2018.

[24] In re Text Messaging Antitrust Litigation. F. 3d, 782 (No. 14-2301):867, 2015.

[25] Timo Klein. Autonomous algorithmic collusion: Q-learning under sequential pricing. The
RAND Journal of Economics, 52(3):538–558, 2021.
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A Detailed Discussion on Related Work

Algorithmic Collusion Most papers studying algorithmic collusion from technical perspectives
consider the Q-learning algorithm [28], a common reinforcement learning algorithm. Calvano et al.
[6], Klein [25], Asker et al. [1, 2], Banchio and Skrzypacz [4], Banchio and Mantegazza [3] study Q-
learning under various settings with simulations and theoretical analysis. They consistently report
that Q-learning can find and maintain, without explicit communication, supra-competitive prices
(or infra-competitive bids) when in competition with each other. A few other papers have also
explored algorithmic collusion beyond Q-learning, such as UCB [19] and large language models
[16]. Our simulation in Section 6 follows the setup of Banchio and Skrzypacz [4]. These empirical
and theoretical findings and concerns are one of the main motivations of our work.

Legal Landscape of Anti-collusion Analysis US statues regulating price collusion were enacted
more than a hundred years ago, long before the era of digital markets and algorithmic pricing. They
include the Sherman Act (1890), the Federal Trade Commission Act (1914), and the Clayton Act
(1914). The recent court cases such as [24, 13] interpreting these statues for price collusion have
affirmed the jurisprudence of requiring express agreement as the prerequisite of establishing liability.

The Sherman Act literally prohibits acts that “in restraint of trade and commerce” without clarifying
how it should be applied [27]. In early cases such as [12, 14], the language of the statue is interpreted
as applicable to any restraint of trade, which constitutes the per se mode of analysis. The rule of
reason doctrine in antitrust first appeared in the US Supreme Court ruling of Standard Oil Co. of
New Jersey v. United States [15]. Led by the then Chief Justice Edward White, the court decided that
the Sherman Act should be “construed in the light of reason,” hence only applies to unreasonable
restraints of trade. Over the years, the court has narrowed the domain of per se rules in traditional
antitrust cases while incorporating more analysis informed by economic principles to the application
of rule of reason. Sawyer [27], Gavil [18] discuss the evolution of the two doctrines. Hovenkamp
[23] discuss the scope that rule of reason analysis should be applied in the non-algorithmic antitrust
settings. In light of the new challenges posed by algorithmic collusion, Harrington [20] propose
adding per se prohibition for certain algorithms to competition laws. We motivate and interpret our
work within the legal framework proposed by Harrington [20].

Regulation of Algorithmic Collusion In additional to the auditing approach proposed in Hartline
et al. [22], other work Harrington [20] and Chassang and Ortner [7] discuss alternative proposals of
regulating algorithmic collusion.

Harrington [20] discuss the approaches of static checking an algorithm’s source code and dynamic
testing the algorithm with synthetical input to learn its properties. They consider these approaches
as means of determining whether the algorithm is prohibited. However, they also suggest that to
what extend the prohibition comes from a per se rule or rule of reason depends: Per se rule can be
applied for clear collusion-identifying properties checkable with these approaches. Otherwise, rule
of reason is more appropriate.

Therefore, given the current development of technology and understanding of algorithmic collusion,
applying static checking and dynamic testing on regulating collusion are still more in line of the
rule of reason doctrine. Static checking can be used to partially verify certain properties of some
algorithms, but usually do not scale well enough to handle complicated properties encoding clear
collusive behavior of sophisticated pricing algorithms. On the other hand, the input to pricing al-
gorithms are large in dimension, dynamic, and potentially idiosyncratic across different algorithms.
The choice of synthetical input for dynamic checking introduces a significant amount of variability
in the process. Finally, these approaches all require access to the algorithms for close inspection,
which is a characteristic of rule of reason.

In contrast, the auditing from data approach we consider provides a clear prohibition determination
without requiring access to the algorithms themselves, which closely resembles a per se rule (see
Table 1 for a possible categorization of proposed methods into dichotomy between per se rule and
rule of reason).

Chassang and Ortner [7] propose another regulation based on the relation of regret and collusion
observed in Chassang et al. [8]. The regulation approach they propose requires the seller attaching
a supervisor algorithm to the pricing algorithm to ensure that the composition satisfies no regret
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Regulation Classification
outright ban on algorithms (e.g. City and County of San Francisco [9]) per se

static checking (check the source code)[20] leaning towards rule of reason
dynamic testing [20] leaning towards rule of reason

requiring supervising wrapper [7] per se
requiring passing auditing ([22] and this paper) per se

Table 1: Comparison of different proposed regulation of algorithmic collusion

properties. This approach can also be interpreted as a per se rule as it prohibits using algorithms
without supervisor attached. Chassang et al. [8] consider the problem of screening non-algorithmic
collusion in procurement auctions. Similar to the auditing approach proposed in Hartline et al. [22]
that we consider in this work, Chassang and Ortner [7] estimate the demand functions from data and
use the demand functions to compute regret-like quantities. However, there are several differences.
The framework we consider makes minimal assumptions on the demand functions that a seller faces,
namely, the demand is between [0, 1] and monotonically non-increasing in prices. We estimate the
demand functions that a single seller faces utilizing the randomization of seller’s algorithm without
knowledge of other sellers’ strategy. In comparison, Chassang et al. [8] consider the estimation
problem when the form of the demand functions is known from the auction format and the bids of
all bidders are available in the data. To deal with buyer distributions with imperfect competition,
their approach would need assumptions on the demand while ours does not. Instead of assuming
fixed production cost across rounds, Chassang and Ortner [7] also consider the case when the cost
of a seller can be different for each round. Therefore, when computing the regret, the deviation of
a seller’s strategy has the form of changing the prices across each round proportionally. But in our
framework, the deviation can be arbitrary.

Exploitation of a No-regret Learner Braverman et al. [5] consider the problem of repeated sell-
ing of an item to an agent using no-regret learning algorithms. They propose the notion of mean-
based algorithms and show that mean-based algorithms guaranteeing no best-in-hindsight regret
can be manipulated by a seller to extract full surplus. Deng et al. [10] consider the problem of
manipulating no-best-in-hindsight-regret learner in general 2-player bimatrix games to get beyond
the Stackelberg payoff. Our example in Section 5 is inspired by their work but the construction is
tailored in a dynamic, price competition game.

B Details of the Simulation and Results

We show the answer with the simulation below. The configuration resembles that in Banchio and
Skrzypacz [4]. We consider two sellers with costs c1 = 0.1 and c2 = 0.2, respectively. The grid of
allowable price levels are from 0.05 to 0.95 with step size 0.05. In each round, the buyer’s valuations
of the two sellers’ goods are i.i.d. uniformly distributed over [0, 1] × [0, 1]. The sellers post prices
and the reward of the seller is the expected payment from the buyer, net her own cost. At the end
of each round, each seller records her posted price, the demand, and her price distribution. The
transcript of seller i (i = 1, 2) also contains the price posted by seller −i for evaluating the true
regret (but the auditing method will not use this information). The competition lasts for T = 106

rounds and the experiment with the same setup is repeated 100 times. Sellers compete with each
other using the Q-learning algorithm. We use the same hyper-parameters as those in Banchio and
Skrzypacz [4]. That is, an ε-greedy strategy with optimistic initialization and exploration probability
ε = 0.001. The Q-table is updated according to the standard rule

Qt+1(p) = (1− α)Qt+1(p) + α(ut(p) + γmax
q∈P

Qt(q)) ∀p ∈ P,

where the learning rate α = 0.05 and discount factor γ = 0.99.

In Figure 1 we confirm that Q-learning exhibits collusive behavior. Q-learning converges to strate-
gies that both sellers post prices greater or equal to 0.9 in most cases. The Nash equilibrium of the
game is that the sellers post 0.65 and 0.7, respectively.

After the transcripts are generated, we audit the transcripts. As a baseline, we use the prices posted
by the opponent to compute the true expected regret of the seller. We then audit the transcripts with
our auditing method. The auditing result is shown in Figure 2.
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Figure 1: The frequencies of each pair of strategies in the last 10 rounds of the competition are
shown in the heatmap. Both the x- and y-axis denote the possible price levels.
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Figure 2: The true regret and estimated regret, plotted against different assumed costs of seller
1.7The seller maintains exploration.

In Figure 2 we note that although the true regret eventually increases as the assumed cost of the
seller increases (Panel (a)), the auditing method is unable to discover collusion as the estimated
regret under high costs is low (Panel (b)). The auditing on the seller correctly shows high estimated
calibrated regret when a small and precise range of seller’s cost is given (around 0.1). However,
when the cost range extends beyond seller’s true cost by a significant margin, the estimated regret
ends up being low (around 0.8). This means that, although we know Q-learning algorithm converges
to collusive prices, if we assume that the cost of the seller is greater or equal to approximately 0.8,
then Q-learning algorithm turns out to have a low estimated calibrated regret. In other words, when
configured with a low cost (such as c = 0.1, 0.2), Q-learning algorithm finds outcomes that look
competitive for a higher cost c′ (such as c′ = 0.7, 0.8). This answers the question we raised at the
beginning of this section.

A possible explanation of the phenomenon is to consider the extreme case. Let the highest possible
cost c = 1 and consider a seller posting 1. Then if we assume her true cost is 1, then she always has
no regret, since any deviation results in a non-positive payoff. However, note that the phenomenon in
Figure 2 is not as trivial as the extreme case, because the seller’s lowest plausible regret is achieved
at prices strictly lower than the price she is posting.

7That of seller 2 is similar.
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C Omitted Proofs

C.1 Proof of Proposition 3.2

Proof. Note that the regret of any transcript is bounded by p. We discretize the interval with step
size ε and do ℓ = p/ε audits with thresholds r1 = ε, r2 = 2ε, . . . , rℓ = p simultaneously using A.
Each threshold auditing returns either [0, ri] or [ri, p], indicating which interval the true regret is in.
Call this interval Ji. Let J =

⋂k
i=1 Ji.

Consider the “good event” that all the auditing are correct, then J’s length is at most ε, and in this
case (when |J | ≤ ε) we output the midpoint of J as the estimator. Otherwise, we draw a guess
uniformly random from [0, p]. By union bound, with probability at least 1 − pf(T )

ε the good event
happens, and the estimator is of accuracy at least ε.

C.2 Proof of Proposition 3.5

Proof. From the proof of Lemma A.1 in [22], we have for any ε > 0

PT
≥ε = Pr

pT∼πT

[
|A(T T )−RT (xT , c)| ≥ ε

]
≤ 2k2 exp

(
− ε2

2k2
∑T

t=1 d
2

)
where k = |P| and

d =
1

T

(
1

πT
+ 1

)
p.

By assumption on the transcript, we have

PT
≥ε ≤ 2k2 exp

(
− ε2T

2k2p2(πT + 1)2

)
= o(T ).

Therefore, we have limT→∞ PT
≥ε = 0.

C.3 Proof of Proposition 3.6

Proof. Fix any regret estimator A. Assume for contradiction that two-sided consistency holds. Sort
the prices in P as p1 < p2 < · · · < pk.

Consider the following example. For all 1 ≤ t ≤ T we have πt(pk) = 0 and πt(pk−1) ̸= 0. Pick
an arbitrary positive constant a ≤ 1 and let xT be such that for all 1 ≤ t ≤ T , xt(pi) = a and
xt(pk) = 0 for 1 ≤ i < k. Let zT be another sequence of allocations such that

zt(p) = xt(p) for p = p1, . . . , pk−1 and zt(pk) = xt(pk−1) = a

for all 1 ≤ t ≤ T .

By the assumption that two-sided consistency always holds, we have

A({xt(pt), pt, πt}Tt=1)
P→ RT (c,xT ), A({zt(pt), pt, πt}Tt=1)

P→ RT (c, zT ).

We claim that by construction the random variables A({xt(pt), pt, πt}Tt=1) and
A({zt(pt), pt, πt}Tt=1) are equal w.p. 1. Therefore RT (c,xT ) = RT (c, zT ) holds. In fact,

Pr
pt∼πt

[{xt(pt), pt, πt}Tt=1 ̸= {zt(pt), pt, πt}Tt=1] ≤
T∑

t=1

Pr
pt∼πt

[zt(pt) ̸= xt(pt)]

=

T∑
t=1

Pr[pt = pk] =

T∑
t=1

πt(pk) = 0.

This means the transcripts are the same w.p. 1, so any deterministic algorithm’s outputs are the same
w.p. 1.

16



Next we aim at showing that RT (c, zT ) > RT (c,xT ), so we get a contradiction. Since πt(pk) = 0
and xt(p) = zt(p) for all p ̸= pk and 1 ≤ t ≤ T we have

1

T

T∑
t=1

∑
p

πt(p)(p− c)xt(p) =
1

T

T∑
t=1

∑
p

πt(p)(p− c)zt(p).

So it suffices to show that

max
σ

1

T

T∑
t=1

∑
p

πt(p)(σ(p)− c)zt(σ(p)) > max
σ

1

T

T∑
t=1

∑
p

πt(p)(σ(p)− c)xt(σ(p)). (1)

Note that the optimizer of the LHS is τ(p) = pk for all p ∈ P and the optimizer of the RHS is
ρ(p) = pk−1. Equation (1) follows since

T∑
t=1

∑
p

πt(p)(pk−c)zt(pk)−
T∑

t=1

∑
p

πt(p)(pk−1−c)xt(pk−1) =

T∑
t=1

∑
p

aπt(p)(pk−pk−1) > 0.

This completes the proof.

Remark. We note that this example further implies that there exists an algorithm with vanishing
regret, but from its transcript, there is no two-sided consistent estimator for its regret. In fact,
consider the following simple scenario: Let the opponent always play price pk and the ground truth
allocation be xT . Assume the seller being audited is best responding to her opponent. We cannot
consistently (one-sided) estimate her regret according to the proof.

C.4 Proof of Proposition 3.9

We first observe the following lemma.

Lemma C.1. Fix the sequence of price distributions πT , for any xT ∼πT zT and deterministic
regret estimator A

Pr
pt∼πt

[
A({xt(pt), pt, πt}Tt=1) = A({zt(pt), pt, πt}Tt=1)

]
= 1.

Proof. Similar to the proof of Proposition 3.6

Pr
{pt,πt}T

t=1∼M
[{xt(pt), pt, πt}Tt=1 ̸= {zt(pt), pt, πt}Tt=1]

≤
T∑

t=1

Pr
pt∼πt

[zt(pt) ̸= xt(pt)]

=

T∑
t=1

Pr[pt /∈ Ct] = 0. (because xT ∼πT zT )

So the transcripts are the same conditioned on πT and the result follows.

Proof of Proposition 3.9. Let xT
∗ be a sequence of allocations that achieves R

T
(c,xT ). By the

one-sided consistency requirement

lim
T→∞

Pr
pt∼πt

[A({xt
∗(p

t), pt, πt}Tt=1) < R
T
(c,xT )− ε] = 0.

But Lemma C.1 implies that A({xt(pt), pt, πt}Tt=1) = A({xt
∗(p

t), pt, πt}Tt=1) w.p. 1, and the
proposition follows.
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C.5 Proof of Theorem 4.1

To prove the theorem, we present a few useful lemmas. We first characterize the location of the
worst-case allocations. We then show that the algorithm can consistently estimate the worst-case
regret.

Lemma C.2. Fix any πT . Let [xT ] be an equivalence class under the relation ∼πT . Consider the
following construction: Pick any xT ∈ [xT ] and set

zt∗(p
t) =

{
xt(pt) (if pt ∈ Ct),

xt(p) where p = min{q ≤ pt : q ∈ Ct} (otherwise).

Then zT
∗ is well-defined, zT

∗ ∈ [xT ], and RT (c, zT
∗ ) = supzT∼πT xT RT (c, zT ).

Proof. Since any xT in the equivalence class agrees on the prices that are in Ct for all 1 ≤ t ≤ T ,
and we also set zT

∗ ’s allocation there the same, we have that zT
∗ is well-defined and zT

∗ ∈ [xT ]. To
see that zT

∗ achieves the supremum, note that

1

T

T∑
t=1

∑
p

πt(p)
[
(σ(p)− c)zt∗(σ(p))− (p− c)zt∗(p)

]
≥ 1

T

T∑
t=1

∑
p

πt(p)
[
(σ(p)− c)xt(σ(p))− (p− c)xt(p)

]
(2)

for any xT ∈ [xT ] and any mapping σ. In fact, since zT
∗ ∼πT xT we have

T∑
t=1

∑
p

πt(p)(p− c)zt∗(p)] =

T∑
t=1

∑
p

πt(p)(p− c)xt(p),

and
T∑

t=1

∑
p

πt(p)(σ(p)− c)zt∗(σ(p)) ≥
T∑

t=1

∑
p

πt(p)(σ(p)− c)xt(σ(p))

because zt∗(p) ≥ xt(p) for every p ∈ P and 1 ≤ t ≤ T , by construction of zT .

The lemma now follows from Equation (2) and the fact that if f(σ) ≥ g(σ) everywhere, then
maxσ f(σ) ≥ maxσ g(σ).

Lemma C.3. Given a sequence of allocations xT . Let k = |P| be the number of price levels and p
be the highest price. Given cost c, conditional on observing the sequence of price distributions πT ,
for any fixed sequence of allocations πT ,

Pr[|R̃T
p,q(c,x

T )−R
T

p,q(c,x
T )| ≥ ε] ≤ 2 exp

(
− ε2

2k2
∑T

t=1 d
2
t

)
where

dt =
1

T

(
1

minp′∈Ct πt(p′)
+ 1

)
p.

Now we state the proof of Theorem 4.1.

Proof. 1. Starting from Lemma C.3, we claim that for any fixed c

Pr[R̃T (c,xT )−R
T
(c,xT ) ≥ ε] ≤ 2k2 exp

(
− ε2

2k2
∑T

t=1 d
2
t

)
.

To bound the probability of

Pr
[
R̃T (c,xT )−R

T
(c,xT ) ≥ ε

]
= Pr

[∑
p

max
q

RT
p,q(c,x

T )−
∑
p

max
q

R
T

p,q(c,x
T ) ≥ ε

]
,
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note that

Pr

[∑
p

max
q

R̃T
p,q(c,x

T )−
∑
p

max
q

R
T

p,q(c,x
T ) ≥ ε

]

≤Pr

[
∃p ∈ P,∃p′ ∈ P, R̃T

p,p′(c,xT )−R
T

p,p′(c,xT ) ≥ ε

|P|

]
≤k2 exp

(
− ε2

2k2
∑T

t=1 d
2
t

)
(union bound).

Plug in the lower bound of T , ε = δT and c = c0, and δT , we have Pr[R̃T (c0,x
T ) −

R
T
(c0,x

T ) ≥ δT ] ≤ α. By definition of c̃ and c0, we have R̃T (c̃,xT ) ≥ R̃T (c0,x
T ).

When the seller satisfies minp∈Ct,1≤t≤T πt(p) ≥ π, we have δT ≤ r/2. Therefore, when

R
T
(c0,x

T ) ≤ r, we have

Pr[R̃T (c̃,xT ) + δT ≥ 2r]

≤Pr[R̃T (c̃,xT ) + δT ≥ r + 2δT ]

≤Pr[R̃T (c̃,xT ) + δT ≥ R
T
(c0,x

T ) + 2δT ]

≤Pr[R̃T (c̃,xT )−R
T
(c0,x

T ) ≥ δT ]

≤α

and the seller passes with probability at least 1− α.

2. Note that since c̃ is a random variable, we can not use the same argument for fixed c0 to
bound the probability Pr[R̃T (c̃,xT ) − R

T
(c∗,x

T ) ≤ −r] by plugging c = c̃. Instead,
observe that

Pr
[
R̃T (c̃,xT )−R

T
(c̃,xT ) ≤ −r

]
≤Pr

[
∃c, R̃T (c,xT )−R

T
(c,xT ) ≤ −r

]
=Pr

[
∃c,
∑
p

max
q

R̃T
p,q(c,x

T )−
∑
p

max
q

R
T

p,q(c,x
T ) ≤ −r

]

=Pr

[
∃c,
∑
p

max
q

R
T

p,q(c,x
T )−

∑
p

max
q

R̃T
p,q(c,x

T ) ≥ r

]

≤Pr

[
∃c, ∃p ∈ P,∃p′ ∈ P, RT

p,p′(c,xT )− R̃T
p,p′(c,xT ) ≥ r

|P|

]
=Pr

[
∃c, ∃p ∈ P,∃p′ ∈ P, R̃T

p,p′(c,xT )−R
T

p,p′(c,xT ) ≤ − r

|P|

]
.

Taking union bound over p ∈ P and q′ ∈ P , we have

Pr

[
∃c,∃p ∈ P,∃q′ ∈ P, R̃T

p,p′(c,xT )−R
T

p,p′(c,xT ) ≤ − r

|P|

]
≤
∑
p∈P

∑
p′∈P

Pr

[
∃c, R̃T

p,p′(c,xT )−R
T

p,q′(c,x
T ) ≤ − r

|P|

]
.

Observe that R̃T
p,p′(c,xT )−R

T

p,p′(c,xT ) is linear in c hence, when c ∈ [
¯
c, c̄],

Pr

[
∃c, R̃T

p,p′(c,xT )−R
T

p,p′(c,xT ) ≤ − r

|P|

]
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≤Pr

[
R̃T

p,q′(¯
c,xT )−R

T

p,q′(¯
c,xT ) ≤ − r

|P|
∪ R̃T

p,q′(c̄,x
T )−R

T

p,q′(c̄,x
T ) ≤ − r

|P|

]
≤Pr

[
R̃T

p,q′(¯
c,xT )−R

T

p,q′(¯
c,xT ) ≤ − r

|P|

]
+ Pr

[
R̃T

p,q′(c̄,x
T )−R

T

p,q′(c̄,x
T ) ≤ − r

|P|

]
.

Combining Lemma C.3, we get

Pr
[
R̃T (c̃,xT )−R

T
(c̃,xT ) ≤ −r

]
≤ 2k2 exp

(
− ε2

2k2
∑T

t=1 d
2
t

)
.

Plug in the bound of T and ε = δT , we have Pr
[
R̃T (c̃,xT )−R

T
(c̃,xT ) ≤ −δT

]
≤ α. Therefore

when R
T
(c∗,x

T ) ≥ 2r, by definition of c∗ and c̃, we have

Pr
[
R̃T (c̃,xT ) + δT ≤ 2r

]
≤Pr

[
R̃T (c̃,xT )− 2r ≤ −δT

]
≤Pr

[
R̃T (c̃,xT )−R

T
(c∗,x

T ) ≤ −δT
]

≤α.

Hence the seller fails with probability at least 1− α.

C.5.1 Proof of Lemma C.3

Proof. Let

r̃tp,q =
1

T

(
πt(p)

[
(q − c)ĥt(q)− (p− c)ĥt(p)

])
, rtp,q =

1

T

(
πt(p)

[
(q − c)xt

∗(q)− (p− c)xt
∗(p)

])
,

we claim that Ept∼πt

[
r̃tp,q
]
= rtp,q . In fact, by definition of ĥt, we have

ĥt(p) = x̂t(p′) where p′ = max{r ≤ p : r ∈ Ct}. (3)

We have ĥt(p′) = x̂t(p′), which implies that Ept∼πt

[
ĥt(p′)

]
= xt(p′). By definition of xt

∗, we

have xt(p′) = xt
∗(p). Apply the same reasoning we also have Ept∼πt

[
ĥt(q)

]
= xt

∗(q). Hence,

by linearity of expectation we get Ept∼πt

[
r̃tp,q
]
= rtp,q . Since p ≤ p, q ≤ pmax, and x̂t(p′) ≤

1/πt(p′) for all p′ ∈ Ct, we also have that

|r̃tp,q − rtp,q| ≤
1

T

(
1

minp′∈Ct πt(p′)
+ 1

)
p.

Note that

R̃T
p,q(c,x

T )−R
T

p,q(c) =

T∑
t=1

(r̃tp,q − rtp,q).

Applying Azuma’s inequality, we get

Pr[R̃T
p,q(c,x

T )−R
T

p,q(c,x
T ) ≥ ε] ≤ k2 exp

(
− ε2

2k2
∑T

t=1 d
2
t

)
.

By a similar argument on the other side we also have

Pr[R̃T
p,q(c,x

T )−R
T

p,q(c,x
T ) ≤ −ε] ≤ k2 exp

(
− ε2

2k2
∑T

t=1 d
2
t

)
.

We get the desired result by combining two sides of the inequality.
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v1/v2 0 1 2 3
0 0 0 0 67

600 + 1
3ε

1 0 0 0 1
30 −

4
3ε

2 0 0 0 1
100 + ε

3 1
40

9
25 0 23

50
Table 2: No-best-in-hindsight-regret playing is not enough: value distribution

C.6 Proof of Theorem 5.2

Proof. Fix γ = o(1). Let ε =
√
γ. To prove the theorem we first provide the construction.

Example C.4. There are (1 + 1.1)T rounds of interaction. The buyer’s valuation (vt1, v
t
2) is sup-

ported on {0, 1, 2, 3} × {0, 1, 2, 3} and the two sellers can post any price pti ∈ P = {0, 1, 2, 3}.
Both sellers have cost c1 = c2 = 0. The joint distribution of (vt1, v

t
2) is shown in Table 2 and is i.i.d.

across rounds. We also assume that the buyer break ties randomly and he chooses to buy if buying
gets utility 0.

We first note that with such a valuation, the buyer never chooses to buy nothing because either
vt1 = 3 or vt2 = 3 with probability 1. It follows that

Claim C.5. Given prices (p1, p2), the buyer buys good 1 if and only if v1−v2 > p1−p2, buys good
2 if and only if v1−v2 < p1−p2, and chooses randomly between seller 1 and 2 if v1−v2 = p1−p2.

Proof. If the buyer buys good 1 then v1 − v2 > p1 − p2 is necessary. If v1 − v2 > p1 − p2 but he
does not buy good 1, this means 0 > v1− p1 > v2− p2 so he buys nothing. But by construction the
buyer never does this.

The claim enables us to write the demand function only using the distribution of v1 − v2:

x1(p1, p2) = Pr[v1 − v2 > p1 − p2] +
1

2
Pr[v1 = v2], x2(p1, p2) = 1− x1(p1, p2). (4)

Using Equation (4) we construct the ex-ante payoff matrix in Table 3 (note that playing price 0 is
a dominated action so we omit it here). The highest payoff correlated equilibrium of this game is a

p1/p2 1 2 3
1 0.615, 0.385 0.85 + ε

2 , 0.3− ε 523
600 + ε

3 , 0.385− ε

2 0.77, 0.615 1.23, 0.77 1.7 + ε, 0.45− 3ε
2

3 0.615, 0.795 1.155, 1.23 1.845, 1.155
Table 3: No-best-in-hindsight-regret playing is not enough: payoff matrix

pure NE where they play (p1, p2) = (2, 2). The equilibrium payoff is (1 + 1.1)T · (1.23, 0.77) =
(2.583T, 1.617T ).

We claim there exists a manipulation such that the sellers play (p1, p2) = (1, 1) in each round with
high probability for T − o(T ) rounds, and then switch to collude by playing (p1, p2) = (3, 3) in
each round with high probability for 1.1T − o(T ) rounds .

We first assume the claim is true. Then:

1. Since 1.845 > 1.23, 1.155 > 0.77, for Ω(T ) rounds, both play p1 > pe1, p2 > pe2 in each
round with high probability. This shows the first point of the theorem.

2. By linearity of expectation, the total expected payoff is now (T − o(T )) · (0.615 + 1.1 ×
1.845, 0.385 + 1.1× 1.155) = (2.6445T − o(T ), 1.6555T − o(T )) > (2.583T, 1.617T ),
which is higher than the equilibrium payoff by Ω(T ). This shows the second point of the
theorem.
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3. Consider seller 1’s best fixed action in hindsight:

(a) If she plays price 1, the expected payoff is (T −o(T )) ·0.615+(1.1T −o(T )) ·( 523600 +
ε
3 ) < 1.574T − o(T ).

(b) If she plays price 2, the expected payoff is (T−o(T ))·0.77+(1.1T−o(T ))·(1.7+ε) =
2.64T − o(T ).

(c) If she plays price 3, the expected payoff is (T−o(T ))·0.615+(1.1T−o(T ))·1.845 =
2.6445T − o(T ).

The best-in-hindsight price is 3 with expected payoff 2.6445T − o(T ). But we just showed
seller 1’s total expected payoff in the manipulation is also 2.6445T − o(T ), thus she has
vanishing regret o(T ).

Consider seller 2’s best fixed action in hindsight:

(a) If she plays price 1, the expected payoff is (T−o(T ))·0.385+(1.1T−o(T ))·0.795 <
1.26T − o(T ).

(b) If she plays price 2, the expected payoff is (T−o(T ))·(0.3−ε)+(1.1T−o(T ))·1.23 =
1.653T − o(T ).

(c) If she plays price 3, the expected payoff is (T − o(T )) · (0.385− ε)+ (1.1T − o(T )) ·
1.155 = 1.6555T − o(T ).

The best-in-hindsight price is 3 with expected payoff 1.6555T − o(T ). But we just showed
seller 2’s total expected payoff in the manipulation is also 1.6555T − o(T ), thus she has
vanishing regret o(T ).

Note that seller 1 has non-vanishing calibrated regret because the best response to price 1 is price 2,
and seller 2 has non-vanishing calibrated regret because the best response to price 3 is price 2.

Next we show the claim: How to manipulate a γ-mean-based seller 2 into a collusion under this
setting.

Seller 1 manipulates as follows: He first plays p1 = 1 for T rounds, and then switch to playing
p1 = 3 for the remaining 1.1T rounds.

The following claim follows the definition of γ-mean-based strategy.

Claim C.6. With a γ-mean-based algorithm:

1. For each T ≥ t ≥ O(εT ), seller 2 posts p2 = 1 in round t w.p. at least 1− γ.

2. For each T +O(εT ) ≤ t ≤ T + 1.1T , seller 2 posts p2 = 3 in round t w.p. at least 1− γ.

Proof. We write the cumulative reward of playing prices 1, 2, and 3 as follows:

r1(t) =

{
0.385t t ≤ T

0.385T + 0.795(t− T ) t ≥ T
,

r2(t) =

{
(0.3− ε)t t ≤ T

(0.3− ε)T + 1.23(t− T ) t ≥ T
,

r3(t) =

{
(0.385− ε)t t ≤ T

(0.385− ε)T + 1.155(t− T ) t ≥ T
.

It follows that between t = ε(1 + 1.1)T and t = T we have r1(t) ≥ max(r2(t), r3(t)) + γT .
Just after t = T price 1 has an advantage of εT but price 3 quickly comes as the best choice after
T+εT/(1.155−0.795) ≤ T+3εT . Price 3 still dominates until t = 0.085T/(1.23−1.155) < 1.1T
(this is when price 2 becomes the best). Therefore, for each T ≥ t ≥ O(

√
γT ) seller 2 posts p2 = 1

w.p. at least 1 − γ, and for each T + O(εT ) ≤ t ≤ 1.1T + T seller 2 posts p2 = 3 w.p. at least
1− γ.

Remark. Although the above argument suffices for our purposes, we remark that the claim still
holds even if the sellers only gets a realization of the buyer’s decision each round (instead of getting
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the expected reward of her strategy) by using a concentration argument and the length of the time
window where the sellers are collusive only suffer an o(T ) loss.

This ends the proof.

Remark. In the example provided above, a calibrated no-regret algorithm will not be manipulated
into collusion.

To see this, first note the Stackelberg outcome of the game is the same as the highest-payoff cor-
related equilibrium (CE). By [10] the manipulator cannot get more than the Stackelberg payoff,
therefore she cannot get more than the CE payoff in our example. But the outcome that both sellers
post prices higher than the CE prices have a higher payoff than the CE for the manipulator. Therefore
this cannot happen.

D Aggregating Prices to Approximate Distributions

Recall from Section 1.1.1 the motivations of designing the refined auditing method that we describe
in the introduction. One of the motivations is to allow testing aggregated empirical distributions
when price distribution data is not available. We provide a formal statement of why this is feasible
for our auditing method.

Proposition D.1. Consider T rounds and k price levels bounded in [0, 1]. In round i the seller posts
price pi ∼ πi. Suppose ∥πi − πi+1∥∞ ≤ ε for all 1 ≤ i ≤ T − 1.8 Then there exists an algorithm
that uses only price samples p1, . . . , pT and outputs estimated price distributions π̃1, . . . , π̃T such
that, with probability at least 1− δ

∥π̃i − πi∥∞ ≤
3

√
4ε log

2Tk

δ
,

for all 1 ≤ i ≤ T .

Hence when the price distributions are not available and the rate of change in price distributions are
low, it is possible to use the aggregated price distributions as the input to the auditing method and
the following steps are the same.

Proof. Let the price set be P where |P| = k. We use the aggregation method as stated in the
introduction. Let the window length be L. For each πi, we use the empirical distribution of prices
in the window centered at round i to approximate πi. Let the price distributions in the window be
F1, . . . , FL and p1 ∼ F1, . . . , pL ∼ FL. Then for any fixed p ∈ P and j we have E[1{pj≤p}] =
Fj(p). Azuma–Hoeffding now gives

Pr

∣∣∣∣∣∣ 1L
L∑

j=1

(1{pj≤p} − Fj(p))

∣∣∣∣∣∣ ≥ t

 ≤ 2 exp(−2Lt2).

With a union bound over all price levels, with probability at least 1−2k exp(−2Lt2) the aggregated
empirical distribution F̃ satisfies ∥F̃ − 1

L

∑L
j=1 Fj∥∞ ≤ t. By the assumption of the lemma and the

triangle inequality we have ∥Fi− 1
L

∑L
j=1 Fj∥∞ ≤ Lε for all i. This implies ∥F̃−Fi∥ ≤ t+Lε w.p.

at least 1−2k exp(−2Lt2). With a union bound on all T rounds, w.p. at least 1−2kT exp(−2Lt2),
the aggregated estimator is (t+ Lε)-close to the true distribution in the ℓ∞ distance in every round.
Setting δ = 2kT exp(−2Lt2) gives the error bound

log 2Tk
δ

2t2
ϵ+ t.

The lemma follows by setting log 2Tk
δ

2t2 ϵ = t and solving for the optimal t.
8For example, the multiplicative weights update (MWU) algorithm with learning rate ε satisfies the condi-

tion. See the ending remark of the proof of this lemma for details. Designing a test for such a condition is left
as an open question.
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Remark. We provide an example application of the lemma. We show that the multiplicative weights
update (MWU) algorithm with reward in [0, 1] satisfies the condition. Let V1, . . . , Vk be the current
cumulative reward for actions 1, . . . , k. Now, the maximum change in the probability of playing
action 1 occurs when the reward of action 1 is 1 and those for the other actions are 0. We bound the
change as follows:

(1 + ε)V1+1

(1 + ε)V1+1 + (1 + ε)V2 + · · ·+ (1 + ε)Vk
− (1 + ε)V1

(1 + ε)V1 + (1 + ε)V2 + · · ·+ (1 + ε)Vk

≤ (1 + ε)V1+1

(1 + ε)V1+1 + (1 + ε)V2 + · · ·+ (1 + ε)Vk
− (1 + ε)V1

(1 + ε)V1+1 + (1 + ε)V2 + · · ·+ (1 + ε)Vk

=
(1 + ε)V1+1 − (1 + ε)V1

(1 + ε)V1+1 + (1 + ε)V2 + · · ·+ (1 + ε)Vk
≤ (1 + ε)V1+1 − (1 + ε)V1

(1 + ε)V1+1 + k − 1

=
ε

1 + ε+ k−1
(1+ε)V1

≤ ε

ε+ 1
≤ ε.

Therefore, the lemma can be used with MWU sellers (this includes a lot of MWU-style algorithms,
such as EXP3).

Algorithm 1: Auditing (non)-collusion via testing the worst-case regret

Data: {pt}Tt=1, {xt(pt)}Tt=1, {(πt)}Tt=1
1 for t ∈ [T ] do
2 Ct ← {p ∈ P : πt(pj) > 0};
3 for p ∈ Ct do

4 x̂t(p)←
{
xt(p)/πt(p), p = pt,

0, otherwise
;

5 end
6 for p ∈ P do
7 ĥt(p)← x̂t(p′) where p′ = max{r ≤ p : r ∈ Ct};
8 end
9 end

10 Solve the following programming and let the solution be c̃, defined as estimated plausible cost:

min
c∈[

¯
c,c̄]

R̃T (c)

where

R̃T (c) =
∑
p

max
q

R̃T
p,q(c),

R̃T
p,q(c) =

1

T

T∑
t=1

πt(p)
[
(q − c)ĥt(q)− (p− c)ĥt(p)

]
.

11 Let

δT =
kp

T

√√√√2 log

(
2k2

α

)
·

T∑
s=1

(
1

minp∈Cs πs(p)
+ 1

)2

.

12 if R̃T (c̃) + δT ≤ 2r then
13 Output PASS;
14 else
15 Output FAIL;
16 end
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