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Abstract
In this paper, we investigate the existence of on-
line learning algorithms with bandit feedback that
simultaneously guarantee O(1) regret compared
to a given comparator strategy, and Õ(

√
T ) re-

gret compared to any fixed strategy, where T is
the number of rounds. We provide the first af-
firmative answer to this question whenever the
comparator strategy supports every action. In the
context of zero-sum games with min-max value
zero, both in normal- and extensive form, we show
that our results allow us to guarantee to risk at
most O(1) loss while being able to gain Ω(T )
from exploitable opponents, thereby combining
the benefits of both no-regret algorithms and min-
imax play.

1. Introduction
Two-player zero-sum games form one of the most funda-
mental classes studied in game theory, capturing direct
competition between two opposing agents. In a zero-sum
game, Alice and Bob choose mixed strategies µ ∈ P and
ν ∈ P ′, respectively, from some strategy polytopes P
and P ′. Their expected payoffs are specified by a func-
tion V . Alice aims to minimize V (µ, ν), whereas Bob
aims to maximize it. This definition subsumes the classical
normal-form zero-sum games (Von Neumann & Morgen-
stern, 2007) like Rock-Paper-Scissors, as well as the more
complex extensive-form zero-sum games (Osborne & Ru-
binstein, 1994), such as Heads-up Poker. A zero-sum game
is called fair if its min-max value is zero, meaning that
minµ∈P maxν∈P′ V (µ, ν) = 0. This models the fact that
none of the players has a strategic advantage due to the struc-
ture of the game. For instance, a game is always fair if it is
symmetric, i.e. when P = P ′ and V (µ, ν) = −V (ν, µ), as
is the case for many games of interest. Now suppose Alice
repeatedly plays a fair zero-sum game against her unknown
opponent Bob for T consecutive rounds. In each round, she
chooses her next strategy based on all her previous obser-
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vations, and Bob does likewise. Both players then receive
their respective costs in this round prior to moving to the
next round.

To minimize her cumulative cost, Alice could compute an
equilibrium strategy and simply play it in every round (min-
imax play (Von Neumann & Morgenstern, 2007)). This
way, she would be guaranteed to never lose anything to Bob
in expectation. However, she might also not win anything
from Bob even if he plays suboptimal (non-equilibrium)
strategies. A classic example of this dilemma is Rock-Paper-
Scissors, for which the min-max strategy is the uniform
strategy, which wins zero even from an opponent that al-
ways plays Rock. Alternatively, Alice could run a learning
algorithm (regret minimization (Cesa-Bianchi & Lugosi,
2006)). This way, her average cost would approach the one
of the best strategy in hindsight, allowing her to exploit such
opponents. However, by running such an algorithm she
would have to deviate from the equilibrium strategy, thereby
risking incurring a significant amount of costs during learn-
ing. More formally, there are two popular lines of thought
on how Alice could minimize her overall cost over the T
rounds of play:

1) Min-Max Equilibrium: In every round t, Alice
simply selects the min-max strategy µt = µ⋆ ∈
argminµ∈P maxν∈P′ V (µ, ν). She then loses at most
V ⋆ := minµ∈P maxν∈P′ V (µ, ν) units to Bob. For fair
zero-sum games, we have V ⋆ = 0, meaning that she will
not lose anything in expectation. However, for example in
normal-form games, she also never wins any units if µ⋆ is
full-support (Braggion et al., 2020), and even otherwise may
not win anything (Section 5). In summary:

Alice is guaranteed not to lose anything, but might
not win anything even if Bob plays poorly.

2) Regret Minimization: Alice selects µt ∈ P according to
a no-regret algorithm. Then she can guarantee that, no mat-
ter Bob’s strategies ν1, . . . , νT ∈ P ′, the regret compared
to any fixed strategy µ satisfies

T∑
t=1

V (µt, νt)−
T∑

t=1

V (µ, νt) ≤ O(
√
T ).

In fair zero-sum games, plugging in the equilibrium µ = µ⋆,
we have V (µ, νt) ≤ V ⋆ = 0. This means that the above
regret guarantee ensures that Alice might lose at most
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O(
√
T ) units to Bob, which can be a significant amount.

Indeed, one expects there are cases where she does (Sec-
tion 5) since there is a matching regret lower bound. How-
ever, if Bob plays sub-optimally, it may be the case that
minµ∈P

∑T
t=1 V (µ, νt) = −Θ(T ), meaning that Alice

wins Θ(T ) units. As a result:

Alice risks losing O(
√
T ) units, but can win up to

Θ(T ) if Bob plays sub-optimally.

Whether Alice will choose to play 1) a min-max equilibrium
or 2) according to a no-regret algorithm depends on how
risk-averse Alice is — how willing Alice is to risk O(

√
T )

units in the hope of winning Θ(T ). This naturally raises the
question of whether we can have the best of both worlds:

Question 1. In a fair zero-sum game, can Alice risk losing
at most O(1) units, but still be able to win up to Θ(T ) if
Bob plays sub-optimally?

In this paper, we answer this question in the affirmative by
resolving the following fairly more general question from
online learning with adversarial linear costs. We explain the
reduction in Section 2.

Question 2. Is it possible to guarantee O(1) regret com-
pared to a specific strategy while maintaining Õ(

√
T ) regret

compared to any fixed strategy?

Question 2 is known to admit a relatively simple positive
answer in the so-called full-information case (Section 1.1).
Crucially, in this work we are interested in the bandit feed-
back setting, modeling the fact that Alice only observes
the realized cost and not the cost for all actions she could
have taken instead. We formalize this learning goal in Sec-
tions 3.1 and 4.1.

We present our results in the context of fair zero-sum games.
However, they hold far beyond fair, zero-sum, or even two-
player games (Question 2): for any sufficiently explorative
comparator strategy, one can guarantee constant regret com-
pared to it while still having rate-optimal regret compared
to any fixed strategy µ, even under bandit feedback. Our
results may thus be of independent interest to the online
learning community, as we discuss in Section 1.1.

Contributions. Our main contributions are the following:

• We first devise an algorithm for normal-form games
(NFGs) under bandit feedback that interpolates between
playing the min-max equilibrium and no-regret learning.
We prove that if the min-max equilibrium is supported
on the whole action space1, then our algorithm indeed
satisfies the desiderata of our main question (Section 3.2).

1This assumption is also necessary, but can easily be relaxed,
at the cost of slightly weaker guarantees on when Alice can take
advantage of sub-optimal play by Bob. See Remark 3.1.

To the best of our knowledge, this is the first result of its
kind under bandit feedback.

• We complement this regret guarantee with a lower bound
for NFGs, showing that the regret bound cannot be im-
proved significantly (Section 3.3). This illustrates that our
algorithm is close to optimally exploiting weak strategies,
as desired.

• We then transfer our insights to the more challenging
framework of extensive-form games (EFGs). This is
specifically relevant since in stateful games, it is essential
to consider bandit feedback. By proposing a correspond-
ing algorithm for EFGs, we show that even in such interac-
tive games with imperfect information, we can answer our
main question in the affirmative (Section 4.2). We gener-
alize our lower bound to this setting, too (Section 4.3).

Finally, we numerically evaluate our algorithm in simple
EFG environments (Section 5), showing that our results are
not merely of theoretical interest. Indeed, our findings con-
firm our theoretical insights and demonstrate strong results
even when the min-max equilibrium is not full-support.

1.1. Related Work
In online learning under full information feedback, it is
known that one can achieve constant regret against a cer-
tain comparator strategy while maintaining the near-optimal
worst-case regret guarantee as desired in Question 2 (Hutter
et al., 2005; Even-Dar et al., 2008; Kapralov & Panigrahy,
2011; Koolen, 2013; Sani et al., 2014; Orabona & Pál, 2016;
Cutkosky & Orabona, 2018; Orabona, 2019), one notable
example being the Phased Aggression template of Even-Dar
et al. (2008). This allows us to directly answer Question 1
affirmatively for NFGs if full information is available, via
the reduction in Section 2. While this reduction is direct,
we are not aware of any prior work making this connection,
even under full-information feedback.

In stark contrast, under bandit feedback, Lattimore (2015)
showed that in multi-armed bandits, O(1) regret compared
to a single comparator action (i.e. a deterministic strategy)
implies a worst-case regret of Ω(AT ) compared to some
other action. This rules out a positive answer to our Ques-
tion 2 if the comparator strategy is arbitrary. We show that,
perhaps surprisingly, it is possible to circumvent this lower
bound under the minimal possible assumption that the com-
parator strategy plays each action with non-zero probability
δ > 0 (while maintaining the optimal order of

√
T regret).

Similar to our motivation, Ganzfried & Sandholm (2015)
consider Safe Opponent Exploitation as deviating from the
min-max strategy while ensuring at most the cost of the min-
max value. Different from our work, their algorithms rely
on best-responding to some opponent model whenever the
algorithm has accumulated enough utility to risk losing it
again. While the authors provide safety guarantees, they do
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not provide any theoretical exploitation guarantee. In con-
trast, our algorithm has provably vanishing regret compared
to the best static response against the opponent.

Regarding the extension of our results to EFGs, we leverage
relatively recent theoretical advancements regarding online
mirror descent in EFGs, most notably Kozuno et al. (2021);
Bai et al. (2022). Finally, we refer to Appendix A for an
extended discussion of related work.

2. Preliminaries
In this section, we introduce the relevant notation and ex-
plain how Question 2 answers Question 1.

Notation. As usual, O-notation expresses asymptotic
behavior, and Õ-notation hides poly-logarithmic factors.
We denote the n-dimensional simplex by ∆n and define
[n] := {1, . . . , n}. Moreover, ei denotes the i-th the stan-
dard basis vector of Rn, and ⟨·, ·⟩ the Euclidean inner prod-
uct. Finally, we write 1E for the indicator function of an
event E.

(Safe) Online Linear Minimization. In Protocol 1, we in-
troduce the framework of online linear minimization (Hazan,
2019, OLM) with adversarial costs. In addition to this stan-
dard framework, Alice receives a special comparator strat-
egy µc ∈ P she considers “safe”. The motivation for this is
that we can later choose µc to be a min-max equilibrium µ⋆,
which is safe in the sense of guaranteeing zero expected loss
in fair zero-sum games. Alice would like to be essentially
at least as good as this comparator strategy.

Protocol 1 (Safe) Online Linear Minimization

Require: Special comparator µc ∈ P .
for round t = 1, . . . , T do

Alice chooses her next µt ∈ P .
Bob chooses the cost vector ct.
Alice suffers expected cost ⟨µt, ct⟩.

Goal: R(µc) ≤ O(1) and maxµ∈P R(µ) ≤ Õ(
√
T ).

We define Alice’s expected regret compared to a strategy
µ ∈ P by

R(µ) :=
T∑

t=1

E
[〈
µt − µ, ct

〉]
.

The expected regret maxµR(µ) =
∑T

t=1 E [⟨µt, ct⟩] −
minµ

∑T
t=1 E [⟨µ, ct⟩] then measures the regret compared

to the best fixed strategy µ in hindsight. Under safe OLM
(Question 2), we understand the problem of simultaneously
guaranteeing

R(µc) ≤ O(1), and max
µ∈P
R(µ) ≤ Õ(

√
T ). (OLM)

Question 2 Answers Question 1. Now suppose Alice was
able to guarantee (OLM). As we explain in Sections 3.1
and 4.1, both for NFGs and EFGs, we can write the expected
cost in round t as a linear function of the strategy, i.e.

E
[
V (µ, νt)

]
= E

[〈
µ, ct

〉]
for some cost vector ct. Alice can now set µc =
µ⋆ = argminµ maxν V (µ, ν) to be a min-max equilibrium.
Since V (µc, ν) ≤ V ⋆ = 0 for fair zero-sum games, the first
part of (OLM) implies

T∑
t=1

E
[
V (µt, νt)

]
≤

T∑
t=1

E
[
V (µc, νt)

]
+O(1) ≤ O(1),

no matter Bob’s play. Alice will thus lose at most a constant
amount in expectation. Furthermore, if (for example) Bob
plays a fixed strategy νt = ν ∈ P ′ that is suboptimal in the
sense that minµ V (µ, ν) = −c < 0, then the second part in
(OLM) shows

T∑
t=1

E
[
V (µt, νt)

]
≤ min

µ

T∑
t=1

V (µ, ν) + Õ(
√
T ) ≤ −Θ(T ),

and Alice will linearly exploit Bob.2 We will thus state our
results in terms of safe OLM, keeping in mind that the above
reduction will automatically answer our initial Question 1.

3. Normal-Form Games
Suppose Alice and Bob repeatedly play a normal-form zero-
sum game for T rounds, which means the following. In each
round t, they simultaneously submit actions at ∈ [A], bt ∈
[B] by sampling from mixed strategies µt ∈ ∆A, νt ∈ ∆B ,
respectively. Alice receives cost Uat,bt = ⟨eat , Uebt⟩ and
Bob receives cost −Uat,bt , for some fixed cost matrix U ∈
RA×B with entries in [0, 1]. Alice’s expected cost given
µt, νt is V (µt, νt) := Ea∼µt,b∼νt [Ua,b] = ⟨µt, Uνt⟩. We
consider bandit feedback, meaning that Alice only observes
her cost Uat,bt and not the cost of actions she could have
taken instead.

3.1. From NFGs to Online Linear Minimization
By defining Alice’s cost function as

ct := Uebt ∈ RA,

we see that Alice’s expected cost is E [V (µt, νt)] =
E [Uat,bt ] = E [⟨µt, ct⟩], as at ∼ µt. We are thus in the
setting of OLM (Protocol 1) over P = ∆A. Notably, Alice
does not observe the full cost function ct but only its entry
ct(at) = Uat,bt at the chosen action (bandit feedback). We

2More generally, Bob is exploitable in this sense if he plays
an oblivious sequence of strategies νt with minµ

∑
t V (µ, νt) =

−Θ(T ). We briefly discuss the adaptive case in Appendix A.
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formally consider Protocol 2 for any adversarially picked
cost functions ct. From Section 2 we know that it is now
sufficient to set µc = µ⋆ and guarantee (OLM).

Protocol 2 Bandit Feedback over the Simplex (NFGs)

Require: Special comparator µc ∈ ∆A.
for round t = 1, . . . , T do

Alice chooses her next action at ∼ µt ∈ ∆A.
Bob chooses costs ct ∈ RA. ▷ NFG: ct = Uebt
Alice suffers and observes cost ct(at). ▷ NFG: Uat,bt

3.2. Upper Bound
Our first main result shows that if the special comparator
strategy lies in the interior of the simplex, we are able to
guarantee constant regret to it while maintaining low regret
to any strategy at the optimal rate in T . Note that the result
concerns the general Protocol 2 and thus covers any NFG,
which need not be fair or zero-sum (or even two-player).

Theorem 3.1. Let δ ∈ (0, 1/A]. Consider any mixed
strategy µc ∈ ∆A such that µc(a) ≥ δ for all a ∈ [A].
Under bandit feedback (Protocol 2), for any sequence of
ct ∈ [0, 1]A, Algorithm 1 achieves

R(µc) ≤ 1, and max
µ∈∆A

R(µ) ≤ Õ
(
δ−1
√
T
)
.

Now consider any zero-sum NFG with min-max value V ⋆.
If the min-max strategy µ⋆ is full-support, then Alice can
run Algorithm 1. The above theorem and the reduction
from Section 2 guarantee that in expectation: Alice will
lose at most V ⋆T + 1 units while winning Ω(T ) if Bob
plays (oblivious) strategies that are linearly exploitable. In
particular, if the game is fair (V ⋆ = 0), Alice will lose
at most 1 unit in expectation. The latter is guaranteed for
instance if the zero-sum NFG is symmetric (i.e. A = B and
U = −UT ).

Lattimore (2015)’s result implies that the assumption on
µc is also necessary. In addition, we show in Theorem 3.2
that a multiplicative dependence on δ−1 is unavoidable.
We remark that min-max strategies µ⋆ of various zero-sum
games are δ-bounded away from zero. For example in Rock-
Paper-Scissors µ⋆ = (1/3, 1/3, 1/3). More importantly,
even when this is not the case, we remark the following.

Remark 3.1. Alice can apply the result even in zero-sum
games with min-max strategies µ⋆ ∈ ∆A that are not full-
support. Indeed, she can consider the subset of actions
A′ := {a ∈ [A] : µ⋆(a) > 0}. Then, our algorithm run
on A′ still guarantees R(µ⋆) ≤ O(1), meaning that Alice
can lose at most O(1) in fair zero-sum games. At the same
time, our algorithm guarantees that

∑T
t=1 E [V (µt, νt)] ≤

minµ∈∆′
∑T

t=1 E [V (µ, νt)]+Õ(
√
T ), where ∆′ is the sim-

plex restricted to A′. This means that if Bob plays subop-
timally, Alice can still guarantee to win Θ(T ) whenever
these actions allow her to do so (while µ⋆ itself does not
guarantee this), as we indeed observe in Section 5.

Our Algorithm. In this section, we present Algorithm 1
and explain its key steps. Our algorithm is inspired by the
Phased Aggression algorithm, originally proposed by Even-
Dar et al. (2008) for the full-information setting. We briefly
note that a direct application of existing full-information
algorithms is not possible. This is because, in the bandit
setting, Alice only observes her realized cost and not the
cost of the other possible actions she could have chosen. We
will thus combine the phasing idea of Even-Dar et al. (2008)
with appropriately importance-weighted estimators of the
full cost function. Note that the same adaptation would not
yield our result for full-information algorithms other than
Phased Aggression.

We now give an outline of Algorithm 1. In every round t, the
Phased Aggression algorithm plays a convex combination
between the comparator strategy µc and the strategy µ̂t

chosen by a no-regret algorithm (which runs in parallel).
That is, the played strategy is µt = αµ̂t + (1 − α)µc for
some α ∈ (0, 1]. Whenever the algorithm estimates that the
comparator µc is a poor choice, it increases α by a factor
of two (so that it puts less weight on µc and more on the
no-regret iterates) and restarts the no-regret algorithm. We
group all rounds according to these restarts and call them
phases k = 1, 2, . . . . During each phase, α is constant.

Within this phasing scheme, the specifics of our algorithm
are as follows. The no-regret algorithm of our choice is on-
line mirror descent (Hazan, 2019, OMD) with the standard
KL divergence DKL(µ||µ′) :=

∑
a µ(a) log(µ(a)/µ

′(a))
as regularizer. In every round t, the algorithm plays its cur-
rent action at ∼ µt and observes its cost (Line 4). It uses
this to construct an importance-weighted estimator ĉt of the
(unobserved) full cost function (Line 5). The algorithm then
performs one iteration of OMD with the estimated costs
(Line 11). This procedure is repeated until a new phase
is started (Line 6), which happens if the comparator µc is
performing poorly under the estimated ĉt’s of the current
phase.

Regarding computation, the OMD update can be imple-
mented in closed form as µ̂t+1(a) ∝ µ̂t(a) exp(−η′ĉt(a)).
We can check the if-condition in Line 6 by directly comput-
ing the maximum in O(A) time.

Regret Analysis. In this section we provide a proof sketch
of Theorem 1. We defer the full proof to Appendix B.1.

We first introduce some notation. We index the variables
by their respective phase k ≥ 1: Phase k lasts from startk
to startk+1 − 1 and uses linear combinations with αk =
min{1, 2k−1/R} (Lines 7, 9). By design, there are at most
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Algorithm 1 Phased Aggression with Importance-Weighting

Require: Number of rounds T , comparator margin δ, regret upper bound R ← δ−1
√

2T log(A), OMD learning rates
η ←

√
δ2 log(A)/(2T ), τ ←

√
2 log(A)/(AT ).

1: Initialize µ̂1(a) = µ1(a)← 1
A for all a ∈ [A], initialize α← 1/R, start← 1, k ← 1 (counts phase).

2: for round t = 1, . . . , T do
3: Alice chooses µt ∈ ∆A, Bob selects cost ct. ▷ in NFGs: ct = Uebt
4: Alice suffers and observes cost ct(at) for at ∼ µt.
5: Alice builds cost estimator ĉt(a)← ct(at)

µt(a) 1 {a
t = a}.

6: if maxµ∈∆A

∑t
j=start

〈
ĉj , µc − µ

〉
> 2R and α < 1 then

7: k ← k + 1, start← t+ 1. ▷ If comparator performs poorly, new phase
8: µ̂t+1(a)← 1

A for all a ∈ [A]. ▷ Re-initialize OMD
9: Update α← min

{
2k−1/R, 1

}
. ▷ Increase α for upcoming phase

10: else ▷ OMD update
11: µ̂t+1 ← argminµ∈∆A

(η′ ⟨µ, ĉt⟩+DKL(µ||µ̂t)), with η′ = η if α < 1, and η′ = τ if α = 1.
12: µt+1 ← αµ̂t+1 + (1− α)µc. ▷ Play shifted OMD to µc by 1− α

1 + ⌈log2(R)⌉ phases, where R is a known regret upper
bound for OMD input to the algorithm. The overall regret
is at most the sum of regrets across all phases, and we will
thus analyze each phase separately. To this end, let

R̂k(µ) :=

startk+1−1∑
t=startk

〈
ĉt, µt − µ

〉
denote the estimated regret during phase k. By convention,
startk+1 := T + 1 if k is the last phase. The following
lemma bounds this estimated regret for phases with αk < 1.

Lemma 3.1 (During normal phases). Let k be such that
αk < 1. Then for all µ ∈ ∆A,

R̂k(µ) ≤ 2R+ 2 = 2δ−1
√
2T log(A) + 2,

and for the special comparator R̂k(µc) ≤ 2k−1.

The first part of the theorem establishes a worst-case bound
on the estimated regret. Such a bound would normally not
be possible for importance-weighted cost estimators. In our
case, during phases with αk < 1, we put constant weight on
the comparator strategy µc, which in turn is lower bounded
by δ > 0. Our estimated costs (Line 5) will thus be upper
bounded, which is a key step in the proof. The second part
of the theorem easily follows using the definition of αk.

Next, suppose the algorithm exits a phase k as the if-
condition in Line 6 holds. The following lemma establishes
that exiting the phase is justified in the sense that we per-
form sufficiently well compared to the special comparator,
according to the estimated costs.

Lemma 3.2 (Exiting a phase). Let k be such that αk < 1.
If Algorithm 1 exits phase k, then R̂k(µc) ≤ −2k−1.

We are now ready to prove Theorem 3.1. First, consider
the case that α = 1 is never reached. Note that our cost
estimates are unbiased, i.e. E [ĉt(a)] = ct(a). It is thus suf-
ficient if we can bound R̂k. As there are O(logR) phases,
Lemma 3.1 implies maxµR(µ) ≤ O(R logR). Moreover,
the previous two lemmas geometrically balance the regret
compared to µc to be at most 1, and we conclude. Second,
suppose now that α = 1 is reached. The final phase will
then simply be OMD with standard importance-weighting
(a.k.a. Exp3), as we put no weight on the special compara-
tor µc. While we cannot apply Lemma 3.1, we can directly
bound the remaining expected regret of Exp3 (Orabona,
2019). We can thus use the same argument as before, with
one additional phase.

3.3. Lower Bound
We will now show that regarding the guarantee we provided
in Theorem 3.1, a multiplicative dependence on the inverse
of the “exploration gap” δ is indeed unavoidable.

Theorem 3.2. Let δ ∈ (0, 1/A]. There is a comparator
µc ∈ ∆A with all µc(a) ≥ δ such that for any algorithm
for Protocol 2 there is a sequence c1, . . . , cT ∈ [0, 1]A such
that: IfR(µc) ≤ O(1), then

max
µ∈∆A

R(µ) ≥ Ω(
√
δ−1T − δ−3/4T 1/4).

The key idea of our proof is that any algorithm with low
regret compared to µc = (1− δ, δ) for A = 2 actions will
need to play action 1 most of the time if one can information-
theoretically not detect that action 2 is, in fact, minimally
better. We defer the proof to Appendix B.2. Finally, we
remark that if the cost functions are stochastic rather than
adversarial, we can match this lower bound up to logarithmic
factors, see Appendix B.3.
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4. Extensive-Form Games
In this section, we present our results for EFGs. We start
by giving the definition of EFGs, using the notation that
appeared in Kozuno et al. (2021); Bai et al. (2022); Fiegel
et al. (2023a;b), see Appendix C.1 for a brief discussion. For
clarity, we present the two-player zero-sum case, although
our results readily generalize to arbitrary EFGs.

Definition 4.1. A two-player zero-sum EFG is a tuple
(H,S,X ,Y,A,B, P, x, y, u), where

• there are 2 players, Alice and Bob. A = [A] and B = [B]
denote their respective sets of possible actions.

• S denotes the set of states of the game. H ∈ N is the
horizon of the game. At stage h ∈ [H], Sh ⊆ S denotes
the possible states.

• P := (p0, p) is the transition kernel; the game’s state
is sampled according to sh+1 ∼ p(·|sh, ah, bh) upon ac-
tions (ah, bh) ∈ A× B in state sh ∈ S. The initial state
is sampled according to s1 ∼ p0 ∈ ∆S .

• u(s, a, b) ∈ [−1, 1] is Alice’s random cost (and Bob’s
reward) for actions (a, b) ∈ A× B chosen in state s ∈ S ,
with mean ū(s, a, b).

• Alice observes information sets (infosets) from X (|X | =
X), and Bob from Y . Alice’s infosets are described by a
surjective function x : S → X (resp. y : S → Y for Bob).

The idea behind infosets is that Alice has imperfect infor-
mation about the state of the game: she cannot differentiate
between sates s, s′ ∈ S that belong at the same infoset, i.e.
when x(s) = x(s′). The same holds for Bob with y in lieu
of x. This is reflected in the definition of the policy sets.

Definition 4.2. A policy is a mapping π : X → ∆A. We
denote the set of all such policies by Π. The policy set Π′

for Bob consists of all mappings π′ : Y → ∆B .

We let π(a|x) denote the probability of playing action
a ∈ A in states s ∈ S from infoset x = x(s) ∈ X . As
Alice cannot differentiate between states s, s′ ∈ S from the
same infoset, she must act the same way if x(s) = x(s′).
Similarly, for Bob we write π′(b|y) for y ∈ Y .

Definition 4.3. Given policies (πA, πB) ∈ Π × Π′, the
expected total cost for Alice equals

V (πA, πB) := E

[
H∑

h=1

u(sh, ah, bh)

]
,

where (sh, ah, bh) are the state and actions at stage h ∈ [H]
via ah ∼ πA(·|x(sh)), bh ∼ πB(·|y(sh)), and sh+1 ∼
p(·|sh, ah, bh).

For the remainder of the section, we make the following as-
sumptions, which are standard in the EFG literature (Kozuno
et al., 2021; Bai et al., 2022; Fiegel et al., 2023a;b).

Assumption 4.1. • Tree structure: For any state
sh ∈ Sh, there exists a unique sequence
(s1, a1, b1, . . . , sh−1, ah−1, bh−1) leading to sh.

• Perfect recall: Let s, s′ be such that x(s) = x(s′). Then:
– There exists h ∈ [H] such that s, s′ ∈ Sh.

– Let (s1, a1, . . . , sh−1, ah−1) be the unique path lead-
ing to s and (s′1, a

′
1, . . . , s

′
h−1, a

′
h−1) the unique path

leading to s′. Then for all k ∈ [h− 1] : x(sk) = x(s′k)
and ak = a′k.

The analogous assumption holds for y in lieu of x.

Tree structure states that the game proceeds in rounds dur-
ing which the players cannot loop back to a previous state.
We remark that this also justifies not explicitly indexing
the transitions, rewards, policies, and treeplex strategies by
steps h to cover non-stationary dynamics. Perfect recall
establishes that the players never forget the history of play.
They can only consider two states as the same infoset if
the observations so far have been the same (Hoda et al.,
2010). The latter implies that infosets are partitioned along
the horizon, i.e. X =

⋃· h∈[H] Xh, and the same holds for Y
and the states.

Online Learning in EFGs. Now suppose Alice and
Bob repeatedly play an EFG for T consecutive rounds.
In each round t ∈ [T ], Alice and Bob select a pair
of policies (πt

A, π
t
B) ∈ Π × Π′. Then a trajectory

(st1, a
t
1, b

t
1, u

t
1, . . . , s

t
H , atH , btH , ut

H) is sampled according
to the policies (πt

A, π
t
B) and Alice suffers cost

∑H
h=1 u

t
h, as

summarized in Protocol 3.

Protocol 3 Bandit Feedback over Policies (EFGs)

Require: A comparator policy πc ∈ Π.
for round t = 1, . . . , T do

Alice selects πt
A ∈ Π, Bob selects πt

B ∈ Π′.
Alice obtains costs

∑H
h=1 u

t
h and observes trajectory

(xt
1, a

t
1, u

t
1, . . . , x

t
H , atH , ut

H).

We remark that in EFGs, we are naturally in the ban-
dit feedback setting as Alice only observes the trajectory
(xt

1, a
t
1, u

t
1, . . . , x

t
H , atH , ut

H). Under full-information feed-
back, Alice would observe Bob’s actual policy πt

B ∈ Π′.

Remark 4.1 (Importance of bandit feedback in EFGs). In
EFGs, bandit feedback is considerably more natural than
full-information feedback. This is due to the fact that when
playing against Bob, the realized samples are only observed
along one single trajectory in the game tree. Observing full
information would thus mean knowing Bob’s counterfactual
policy in states that have never been visited during play,
which is not realistic.

6



Regret Minimization vs Minimax Play

4.1. From EFGs to Online Linear Minimization
As mentioned, we once more resort to the more general
OLM problem. Yet this time, our strategy polytope will
be the so-called treeplex P = T rather than the simplex.
The following definition provides an equivalent characteri-
zation of a policy. It will allow us to view the expected cost
V (πt

A, π
t
B) as a (bi-)linear function (Hoda et al., 2010).

Definition 4.4. A vector µ ∈ RX·A belongs to the treeplex
T iff for all xh ∈ Xh and a ∈ A,{

µ(xh, a) ≥ 0,∑
ah∈A µ(xh, ah) = µ(xh−1, ah−1),

(1)

where (xh−1, ah−1) is the unique predecessor pair reaching
xh. We consider µ(x0, a0) = 1 for the root by convention.
We define the treeplex T ′ over Bob’s infosets Y analogously.

Remark 4.2. There is the following equivalence between
Definitions 4.2 and 4.4. Given a policy π ∈ Π, we can de-
fine a unique µπ ∈ T by µπ(xh, ah) =

∏h
h′=1 π(ah′ |xh′),

where the (xh′ , ah′) form the unique path to (xh, ah). Vice-
versa, given µ ∈ T , we can recover the corresponding
policy via πµ(a|x) = µ(x, a)/

∑
a′ µ(x, a′). The same

equivalence holds between Bob’s policies Π′ and treeplex
strategies T ′.

By convention, we thus identify policies (πt
A, π

t
B) with

their corresponding treeplex strategies (µt, νt) and write
V (µt, νt) for Alice’s expected cost. The following lemma
(Kozuno et al., 2021) shows that this definition indeed allows
us to view Protocol 3 as a (safe) OLM problem (Protocol 1).

Lemma 4.1. For any state s ∈ Sh, infoset x = x(s) ∈ Xh

and action a ∈ A, let (s1, a1, b1, . . . , sh−1, ah−1, bh−1)
be the unique path leading to s. Let p(s) :=
p0(s1)

∏
1≤h′≤h−1 p(sh′+1|sh′ , ah′ , bh′), and consider

ct(x, a) :=
∑

s : x(s)=x,
b∈B

p(s) · νt(y(s), b) · ū(s, a, b). (2)

Then V (µ, νt) = ⟨µ, ct⟩ for all µ ∈ T .

Alice does not observe the full cost function ct, as we are in
the bandit feedback setting. Yet, this lemma establishes that
Protocol 1 over the treeplex P = T covers EFGs. Thus, it
is sufficient to solve the safe OLM problem (OLM).

4.2. Upper Bound
As in the simplex case, our Algorithm 2 guarantees Equa-
tion (OLM) for any policy µc ∈ T that is δ-bounded away
from the boundary of the strategy polytope. Once more, we
can resort to a restricted action set to relax this assumption
(Remark 3.1). The result itself applies to any EFG with
tree structure and perfect recall and is not restricted to the
zero-sum or two-player case, since we can simply modify
the costs in Equation (2) accordingly.

Theorem 4.1. Let δ ∈ (0, 1/A]. For any special compara-
tor µc ∈ T such that µc(x, a) ≥ δ for all x, a, Algorithm 2
achieves (for any ct’s from Equation (2))

R(µc) ≤ 1, and max
µ∈T
R(µ) ≤ Õ

(
δ−1
√
XH3T

)
.

If the EFG is a fair zero-sum game, Alice can now choose
a min-max equilibrium µc = µ⋆ as the comparator. If µ⋆

has full support, the reduction from Section 2 then shows
that Alice achieves the best of both worlds guarantee from
Question 1.

Remark 4.3. The dependence on X is as good as desired
in the sense that there is a

√
XAT lower bound in the

unconstrained case. The dependence on H is less crucial
for many relevant EFGs, as we often have X ≃ AH and so
H is a logarithmic factor. See Bai et al. (2022).

Our Algorithm. Algorithm 2 is similar to our algorithm
for the simplex. It combines the Phased Aggression scheme
with importance-weighted OMD. However, in the EFG case,
we have to generalize these notions to the treeplex.

In particular, we use OMD with the so-called dilated KL
divergence as regularizer (Line 11). As we will see in the
regret analysis, to this end it is crucial that we use an un-
balanced dilated KL divergence D (Kozuno et al., 2021) in
the phases with α < 1 and a balanced KL divergence Dbal

(Bai et al., 2022) if α = 1 is reached. In Appendix C.2, we
formally define the divergences and confirm that they allow
for an efficient closed-form implementation. This is crucial
as we want to avoid costly projections onto the treeplex by
any means. Moreover, we can efficiently check Line 6 via
standard dynamic programming over the set of policies (or
solving an LP over the treeplex).

Regret Analysis. Our analysis follows a similar argument
as in Section 3 and we defer the proofs to Appendix C.3.
The main technical challenge is to transfer the regret bounds
for importance-weighted OMD from the simplex (with KL)
to the treeplex T (with dilated KL).

In addition, we now require a careful analysis to obtain a
mild dependence on the number of infosets X and actions
A, in the following sense. First, when upper bounding the
estimated regret in analogy to Lemma 3.1 (α < 1), we
analyze OMD with the unbalanced dilated KL divergence
by adapting the argument of Kozuno et al. (2021) to our
importance-weighting. Using the (more sophisticated) bal-
anced KL here would introduce an additional undesired
factor of

√
A. Second, once α = 1 in the final phase, we

analyze the expected regret of balanced OMD instead, by
adapting the argument of Bai et al. (2022) to our cost esti-
mators. Using the unbalanced divergence would introduce
an extra factor of

√
X , which can be prohibitively large.
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Algorithm 2 Phased Aggression with Importance-Weighting for EFGs

Require: Number of rounds T , comparator margin δ, regret bound R ← δ−1
√

8XH3 log(A)T , learning rate η ←√
δ2X log(A)/(8H2T ), balanced learning rate τ ←

√
XA log(A)/(H3T ).

1: Initialize µ̂1(xh, a) = µ1(xh, a)← 1
Ah (h ∈ [H], xh ∈ Xh, a ∈ A), α← 1/R, start← 1, k ← 1 (counts phase).

2: for round t = 1, . . . , T do
3: Alice chooses µt ∈ T , Bob selects strategy νt ∈ T ′. ▷ and thus cost ct via Equation (2)
4: Alice obtains costs

∑H
h=1 u

t
h, observes trajectory (xt

1, a
t
1, u

t
1, . . . , x

t
H , atH , ut

H). ▷ V (µt, νt) in expectation

5: Alice builds cost estimator ĉt(xh, a)← 1{(xt
h,a

t
h)=(xh,a)}ut

h

µt(xh,a)
.

6: if maxµ∈T
∑t

j=start

〈
ĉj , µc − µ

〉
> 2R and α < 1 then

7: start← t+ 1, k ← k + 1. ▷ If comparator performs poorly, next phase
8: µ̂t+1(xh, a)← 1

Ah (h ∈ [H], xh ∈ Xh, a ∈ A). ▷ Initialize to uniform policy
9: Update α← min

{
2k−1/R, 1

}
. ▷ Increase α for upcoming phase

10: else ▷ OMD update
11:

µ̂t+1 ←

{
argminµ∈T (η ⟨µ, ĉt⟩+D(µ||µ̂t)) (if α < 1),
argminµ∈T

(
τ ⟨µ, ĉt⟩+Dbal(µ||µ̂t)

)
(if α = 1).

(3)

12: µt+1 ← αµ̂t+1 + (1− α)µc. ▷ Play shifted OMD to µc by 1− α

4.3. Lower Bound
As in the case of NFGs, we show that our guarantees for
Algorithm 2 are close to being tight for EFGs of arbitrary
depth. Our proof reduces an EFG of depth H to the simplex
case from Theorem 3.2. See Appendix C.5 for the proof.

Theorem 4.2. Let A ≥ 2, H ≥ 1, and δ ∈ (0, 1). There
exists an EFG of depth H with X = Θ(AH) such that for
any µc ∈ T with minx,a µ

c(x, a) = δ, there is an adversary
such that for any algorithm: IfR(µc) ≤ O(1), then

max
µ∈T
R(µ) ≥ Ω(

√
δ−1T − δ−3/4T 1/4).

5. Experimental Evaluations
We experimentally compare our Algorithm 2 for EFGs to
the standard OMD algorithm with dilated KL (Kozuno et al.,
2021) as well as to minimax play. Our evaluations con-
firm our theoretical findings, revealing that Algorithm 2 can
achieve the best of both no-regret algorithms and minimax
play. They also show that our motivating question from Sec-
tion 1 is indeed of practical relevance. We provide further
details and evaluations in Appendix D.

Kuhn Poker. We consider Kuhn poker (Kuhn, 1950), which
serves as a simple yet fundamental example of two-player
zero-sum imperfect information EFGs. Kuhn poker is a
common 3-card simplification of standard poker, where
each player selects one card from the deck {Jack, Queen,
King} without replacement and initially bets one unit.3

3https://en.wikipedia.org/wiki/Kuhn_poker

Remark 5.1. The min-max equilibrium of Kuhn Poker is not
full-support (δ = 0 in Theorem 4.1). As seen in Remark 3.1,
we can easily circumvent this issue by considering only the
actions in the support of the equilibrium. For Kuhn Poker,
this results in δ = 1/3. Algorithm 2 is then still guaranteed
not to lose anything while being able to compete with the
best response within the support of the equilibrium.

We consider the following baseline algorithms Alice could
play over T rounds of Kuhn poker:

1) play the Min-Max equilibrium π⋆ in every round; or
2) run OMD with dilated KL; or
3) run Algorithm 2 with comparator policy π⋆.

We consider two types of experiments: First, we run the
three algorithms against each other to check which of the
algorithms risks losing units to others (All vs All). Second,
we evaluate how well each algorithm allows Alice to exploit
exploitable strategies (All vs Exploitable Strategies). We
repeat each experiment 5 times.

All vs All. In Figure 2 we plot the total amount (of units)
each algorithm wins. As Figure 2 shows, both Min-Max and
Algorithm 2 never incur losses while both gain a significant
amount against OMD. Indeed, as (symmetrized) Kuhn poker
is a symmetric zero-sum game, the min-max equilibrium is
guaranteed not to lose. The same holds for our Algorithm 2.
In contrast, a no-regret algorithm such as OMD can lose up
to O(

√
T ) units. Interestingly, it does lose a similar amount

against our Algorithm 2.
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Alg. 2 vs Min-Max OMD vs Min-Max Alg. 2 vs OMD
Figure 2: All vs all comparison for T = 1000 rounds. The x-axis displays the round t, and the y-axis displays how much the
respective algorithm (Min-Max, OMD, Algorithm 2) gained from the other.

All vs BluffJ All vs RaiseKQ All vs RandMinMax
Figure 3: All vs Bob comparison for T = 1000 rounds. The x-axis displays the round t, and the y-axis displays how much
Min-Max, OMD, and Algorithm 2 gained from the second algorithm so far. The y-axes have varying scales for readability.

All vs Exploitable Strategies. We now compare the per-
formance of Min-Max, OMD and Algorithm 2 against the
following reasonable but suboptimal strategies. The goal is
to understand their ability to exploit weak strategies. We
consider:

a) BluffJ: Bob plays the min-max equilibrium, except that
he bets (bluffs) when he has a Jack;

b) RaiseKQ: Bob raises/calls if and only if he has a King
or a Queen, and checks/folds otherwise;

c) RandMinMax: Each round, with probability 0.2, he
plays the uniform strategy, and else the min-max one.

In Figure 3 we present the amount (of units) each algorithm
wins against these exploitable strategies. We first consider
All vs BluffJ & All vs RaiseKQ. Algorithm 2 plays conser-
vatively and gains an amount similar to Min-Max until it
takes off and starts exploiting Bob near-optimally, as OMD
would. OMD, in turn, first loses a certain amount of money
and only matches the gain of Min-Max after exploring suf-
ficiently, then having the same slope as Algorithm 2. The
min-max equilibrium itself does not exploit BluffJ at all
and exploits RaiseKQ sub-optimally. In these cases, our
algorithm suffers neither of the two drawbacks of losing
money or not exploiting the weak strategy. Finally, in All
vs RandMinMax, our Algorithm 2 improves slightly over
Min-Max. OMD gains at the same rate after losing an initial
amount to its opponent.

6. Conclusion
In this paper, we showed how to provably exploit suboptimal
strategies with essentially no expected risk in repeated zero-
sum games by combining regret minimization and minimax
play. More generally, we believe that our novel results
for adversarial bandits leading to these guarantees may be
of independent interest. We hope that our work inspires
future research on safe online learning, including settings
like convex-concave games, learning with feedback graphs,
and establishing no-swap-regret guarantees.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. Further Related Work
Safe Opponent Exploitation. While there have been some approaches to safe learning in games (Ponsen et al., 2011; Farina
et al., 2019; Zhang & Sandholm, 2021; Bernasconi-de Luca et al., 2021; Bernasconi et al., 2022; Ge et al., 2024), all these
works are fairly different from our learning problem. Related to Ganzfried & Sandholm (2015); Ganzfried & Sun (2018),
the works of Damer & Gini (2017); Liu et al. (2022) provide algorithms that interpolate between being safe and exploitive
through a specific parameter. However, these algorithms may incur up to Ω(T ) regret compared to the best fixed strategy in
hindsight. Recently, Maiti et al. (2023) proved the first instance-dependent poly-logarithmic regret bound for noisy 2× 2
NFGs, which naturally relates to our desired regret bound. However, such bounds become vacuous when the game matrix
does not have pairwise distinct entries and assume to observe the opponent’s action (which corresponds to full information
in our feedback model).

Exploiting Adaptive Opponents. If Bob is oblivious and plays a fixed sequence of (mixed) strategies, then any regret
Alice incurs is potential utility she could gain by playing a no-regret strategy (e.g., the best-of-both-worlds strategy we
present). However, if Bob is adaptive, switching to a no-regret strategy does not necessarily allow Alice to recover additional
utility (Bob could, for example, react to this by playing his minimax strategy). There is a line of recent work (Deng
et al., 2019; Mansour et al., 2022; Kolumbus & Nisan, 2022b;a; Brown et al., 2023; Cai et al., 2023; Chen & Lin, 2023;
Haghtalab et al., 2024; Ananthakrishnan et al., 2024; Guruganesh et al., 2024; Arunachaleswaran et al., 2024) on how to
play against sub-optimal adaptive strategies (e.g. other learning algorithms) in various settings, although almost all of this
work only pertains to general sum games. It is an interesting open question to understand to what extent we can obtain
similar best-of-both-worlds results for adaptive opponents in zero-sum games.

Comparator-Adaptive OL with Full Information. In online learning (OL) under full information feedback, Hutter et al.
(2005); Even-Dar et al. (2008); Kapralov & Panigrahy (2011); Koolen (2013); Sani et al. (2014) establish (with various
emphases) that safe OLM over the simplex in the sense of Equation (OLM) is possible. Using so-called parameter-free
methods from the online convex optimization literature instead (Orabona & Pál, 2016; Cutkosky & Orabona, 2018; Orabona,
2019, e.g.), one can (after a simple shifting argument) achieve similar guarantees in the full information setting. For our
purposes, the most notable of the above algorithms is the Phased Aggression template of Even-Dar et al. (2008), as it is the
only one we were able to adapt to the bandit feedback setting while maintaining the rate-optimal regret guarantee. While the
application of the above type of algorithms to fair zero-sum (normal-form) games is direct (Section 2), we are not aware of
any prior work making this connection, even under full-information feedback.

Comparator-Adaptive OL with Bandit Feedback. Lattimore (2015) establishes a sharp separation between full informa-
tion and bandit feedback. The author shows that O(1) regret compared to a single comparator action implies a worst-case
regret of Ω(AT ) for some other action. This rules out algorithms that resolve our question even in the simple normal-form
case under bandit feedback. The key to this lower bound is that the algorithm has to play the special comparator essentially
every time, thereby not exploring any other options (as the comparator strategy is deterministic) and thus not knowing
whether it is safe to switch the arm. The minimal assumption we can make on the comparator strategy is thus that it plays
every action with a non-zero probability. In addition to the mentioned works from the online convex optimization literature,
van der Hoeven et al. (2020) remarkably analyzes bandit convex optimization algorithms that adapt to the comparator.
However, unlike in the full information case, it is not possible to turn them into an algorithm for safe OLM (as the shifting
argument one can use for full-information parameter-free methods like Orabona & Pál (2016); Cutkosky & Orabona (2018);
Orabona (2019) does no longer work under bandit feedback).

Relation to Safe Reinforcement Learning. A closely related line of work is that of conservative bandits (Wu et al.,
2016) and conservative RL (Garcelon et al., 2020). In conservative exploration, algorithms are designed to obtain at least a
(1−α)-fraction of the return of a comparator, which in our motivating example, however, means that the algorithm may suffer
a linear loss αT in the worst case. We thus believe that independently of our motivation from a game-theoretic viewpoint,
our results nicely complement existing OL literature. In constrained (or safe) reinforcement learning (Badanidiyuru et al.,
2018; Efroni et al., 2020), both the regret and the cumulative violation of a constraint are considered. However, even in the
stochastic case the goal of constant regret compared to some known strategy can only be realized if there exists a strategy
with a strictly larger return (Liu et al., 2021) for the environment, and in the adversarial case even this reduction fails.

OL in (Extensive-Form) Games. While online learning (OL) in NFGs can readily be reduced to the problem of learning
from experts (Cesa-Bianchi & Lugosi, 2006) (full information) or multi-armed bandits (Lattimore & Szepesvári, 2020), it
becomes more difficult in the case of EFGs (Osborne & Rubinstein, 1994) due to the presence of (imperfectly observed)
states and transitions. State-of-the-art algorithms for no-regret learning in EFGs are based on online mirror descent (OMD)

13
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over the treeplex, which leads to near-optimal regret bounds in the full information setting (Farina et al., 2021; Fan et al.,
2024) and the bandit setting (Farina et al., 2021; Kozuno et al., 2021; Bai et al., 2022; Fiegel et al., 2023a). Alternative
approaches are based on counterfactual regret minimization (Zinkevich et al., 2007; Lanctot et al., 2009), which however do
not guarantee a bound on the actual regret (see Bai et al. (2022, Theorem 7)).

B. Deferred Proofs for Normal-Form Games
B.1. Upper Bound
First, note that our cost estimates are unbiased, i.e. E [ĉt(a)] = E [ct(a)], and E [⟨ĉt, µt⟩] = E [E [⟨ĉt, µt⟩ | Ft−1]] =
E [⟨ct, µt⟩] = E [ct(at)], where Ft−1 is the σ-algebra induced by all random variables prior to sampling at. Further, WLOG
we assume that the cost functions are bounded via ct ∈ [0, 1]A. The reduction from NFGs with matrix entries Ua,b ∈ [−1, 1]
is then simply via ct(a) := (1 + Ua,bt)/2, where the shifting and scaling does not change the regret bound. By convention
startk+1 := T + 1 if k is the last phase.

Theorem 3.1. Let δ ∈ (0, 1/A]. Consider any mixed strategy µc ∈ ∆A such that µc(a) ≥ δ for all a ∈ [A]. Under bandit
feedback (Protocol 2), for any sequence of ct ∈ [0, 1]A, Algorithm 1 achieves

R(µc) ≤ 1, and max
µ∈∆A

R(µ) ≤ Õ
(
δ−1
√
T
)
.

Proof. Case 1: α = 1 is not reached. Suppose first the algorithm ends in phase k < 1 + log2(R) at time step T . By
Lemma 3.1, w.r.t. any comparator

T∑
t=1

〈
ĉt, µt − µ

〉
≤ (2R+ 2) · k ≤ O(R log(R)).

All previous phases must have been exited, so by Lemmas 3.1 and 3.2 we have

T∑
t=1

〈
ĉt, µt − µc

〉
≤ 2k−1 −

k−1∑
i=1

2i−1 = 2k−1 − (2k−1 − 1) = 1.

Taking expectation yields the claim.

Case 2: α = 1 is reached. Next, suppose the phase αk = 1 was reached and simply Exp3 was run in the final phase k. As
before

startk−1∑
t=1

〈
ĉt, µt − µ

〉
≤ (2R+ 2) · k ≤ O(R log(R)).

For the final phase, note that Algorithm 1 plays Exp3 for ≤ T rounds, with uniform initialization. By the standard Exp3
analysis (Orabona, 2019, Sec. 10.1), this phase has expected regret

E

 T∑
t=startk+1

〈
ct, µt − µ

〉 ≤ log(A)

τ
+

τ

2
AT ≤

√
AT log(A)/2 ≤ δ−1

√
2 log(A)T = R. (4)

since τ =
√

2 log(A)
AT and δ ≤ 1/A. Thus for any comparator µ ∈ ∆A we have

E

[
T∑

t=1

〈
ct, µt − µ

〉]
≤ O(R log(R)).

Finally, for the special comparator note that all phases k′ < k have been left and thus by Lemma 3.2 and Equation (4)

E

[
T∑

t=1

〈
ct, µt − µc

〉]
≤ R−

k−1∑
k′=1

2k
′−1 = R− (2k−1 − 1) ≤ 1,

where the last step used that αk = min{1, 2k−1/R} = 1 and thus R ≤ 2k−1.
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Recall that

R̂k(µ) :=

startk+1−1∑
t=startk

〈
ĉt, µt − µ

〉
= αk

startk+1−1∑
j=startk

〈
ĉt, µ̂t − µ

〉
+ (1− αk)

startk+1−1∑
t=startk

〈
ĉt, µc − µ

〉
(5)

measures Alice’s estimated regret.

Lemma 3.1 (During normal phases). Let k be such that αk < 1. Then for all µ ∈ ∆A,

R̂k(µ) ≤ 2R+ 2 = 2δ−1
√
2T log(A) + 2,

and for the special comparator R̂k(µc) ≤ 2k−1.

Proof. WLOG suppose that R = 2r is a power of 2, else we can run the algorithm for T such that R is the next largest
power of two and pay a constant factor in the regret. For the first term in Equation (5), we analyze OMD to bound∑startk+1−1

t=startk ⟨ĉt, µ̂t − µ⟩ almost surely, making use of the fact that ĉt is bounded. Indeed, recall

ĉt(a) =
ct(at)

µt(a)
1
{
at = a

}
≤ 1

µt(a)
.

We have αk = 2k−1/R ≤ 2log2(R)−1/R = 1/2, so

ĉt(a) ≤ 1

µt(a)
=

1

αkµt(a) + (1− αk)µc(a)
≤ 1

1
2µ

c(a)
≤ 2

δ
.

Moreover, ĉt is zero outside the visited at. Thus, by Lemma B.1, almost surely for the first term in Equation (5)

startk+1−1∑
t=startk

〈
ĉt, µ̂t − µ

〉
≤ log(A)

η
+ 2ηTδ−2 ≤ δ−1

√
2T log(A) = R. (6)

For the second term in Equation (5), note that since the if condition may only hold at t′ := startk+1 − 1,

startk+1−1∑
t=startk

〈
ĉt, µc − µ

〉
≤ 2R+

ct
′
(at

′
)

1
2µ

c(at′)
µc(at

′
) ≤ 2R+ 2. (7)

Linearly combining Equations (6) and (7),

R̂k(µ) :=αk

startk+1−1∑
t=startk

〈
ĉt, µ̂t − µ

〉
+ (1− αk)

startk+1−1∑
t=startk

〈
ĉt, µc − µ

〉
≤ 2R+ 2

for any µ. For the special comparator, by Equation (6)

Rk(µc) = αk

startk+1−1∑
t=startk

〈
ĉt, µ̂t − µc

〉
+ (1− αk)

startk+1−1∑
t=startk

〈
ĉt, µc − µc

〉
≤ (2k−1/R)R = 2k−1.

Lemma B.1 (OMD with bounded surrogate costs). Let η > 0, and L > 0. Let (ĉt)t be cost functions such that for all t,
0 ≤ ĉt(a) ≤ L (for all a), and moreover ĉt(a) = 0 if a ̸= at for some arbitrary at. Set µ̂1(a) = 1/A and consider the
scheme µt+1 = argminµ∈∆A

⟨µ, ĉt⟩+ 1
ηD(µ||µ̂t) for t ≤ T ′. Then we have for all µ ∈ ∆A

T ′∑
t=1

〈
µ̂t − µ, ĉt

〉
≤ log(A)

η
+

η

2
L2T ′.
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Proof. From Orabona (2019, Sec. 10.1), we find that a.s.

T ′∑
t=1

〈
µ̂t − µ, ĉt

〉
≤ log(A)

η
+

η

2

T ′∑
t=1

∑
a

µ̂t(a)(ĉt(a))2 ≤ log(A)

η
+

η

2

T ′∑
t=1

µ̂t(at)L2 ≤ log(A)

η
+

η

2
L2T ′.

Lemma 3.2 (Exiting a phase). Let k be such that αk < 1. If Algorithm 1 exits phase k, then R̂k(µc) ≤ −2k−1.

Proof. At t = startk+1 − 1 the if condition implies maxµ∈∆A

∑startk+1−1
j=startk

〈
ĉj , µc − µ

〉
> 2R, so when we let µ⋆ be a

maximizer, we find

startk+1−1∑
t=startk

〈
ĉt, µt − µc

〉
=αk

startk+1−1∑
t=startk

〈
ĉt, µ̂t − µc

〉
=αk

startk+1−1∑
t=startk

〈
ĉt, µ̂t − µ⋆

〉
+ αk

startk+1−1∑
t=startk

〈
ĉt, µ⋆ − µc

〉
≤αkR+ αk(−2R)

=− 2k−1,

where we used Equation (6) in the last inequality.

B.2. Lower Bound
Theorem 3.2. Let δ ∈ (0, 1/A]. There is a comparator µc ∈ ∆A with all µc(a) ≥ δ such that for any algorithm for
Protocol 2 there is a sequence c1, . . . , cT ∈ [0, 1]A such that: IfR(µc) ≤ O(1), then

max
µ∈∆A

R(µ) ≥ Ω(
√
δ−1T − δ−3/4T 1/4).

Our lower bound becomes vacuous in the regime where δ ≤ O(T−1), which is when a direct application of Lattimore
(2015) shows a trivial Ω(T ) lower bound.

Proof. It is sufficient to prove the lower bound for A = 2 actions as we can assign the same distribution to all but one action.
We prove a lower bound for stochastic cost functions, which immediately implies the same bound for adversarially chosen
costs. Consider the following setup with two different environments. The first action deterministically gives cost c1 = 1/2 in
both environments. In the first environment (−), action two samples costs according to a Ber( 12 − γT−1/2) distribution with
expected cost c− = 1

2 − γT−1/2. We will choose γ > 0 later and for now, only require γ < 1
2T

1/2 in order for the sampling
to be well-defined. Symmetrically, in the second environment (+), action two samples costs according to a Ber( 12 +γT−1/2)

distribution with expected cost c+ = 1
2 +γT−1/2. We consider the case that the special comparator is µc = (1−δ, δ) ∈ ∆2.

In the following, R(µ) denotes the regret compared to µ ∈ ∆A in the worst case environment. We fix an arbitrary
algorithm and index regret and expectation with + or− to indicate which probability space (environment) we are referring to.

Now let N2 be the number of times action two is chosen during the T interactions. The requirement on the regret w.r.t. the
special comparator (together with the standard regret decomposition (Lattimore & Szepesvári, 2020, Sec. 4.5)) shows

1 ≥ R(µc) ≥ R+(µ
c) = E+ [N2] (+γT−1/2)− δT (+γT−1/2),

and thus

E+ [N2] ≤γ−1T 1/2 + δT.
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Plugging this into Lemma B.2, we have (if γ < 1
2
√
2
T 1/2)

E−[N2] ≤E+[N2] + T
√
2
√

E+[N2]γT
−1/2

≤(γ−1T 1/2 + δT ) + T
√
2
√

γ−1T 1/2 + δTγT−1/2

≤γ−1T 1/2 + δT + T
√
2(γ−1/2T 1/4 + δ1/2T 1/2)γT−1/2

≤γ−1T 1/2 + δT +
√
2γ1/2T 3/4 +

√
2δ1/2γT

Using this in the regret decomposition on (−), we see for the second action µ = e2 = (0, 1) ∈ ∆A

R(e2) ≥R−(e2)

≥(γ−1T 1/2 + δT +
√
2γ1/2T 3/4 +

√
2δ1/2γT )(−γT−1/2)− T (−γT−1/2)

≥− 1− δγT 1/2 −
√
2γ3/2T 1/4 −

√
2δ1/2γ2T 1/2 + γT 1/2

=
(
(1− δ)γ −

√
2δ1/2γ2

)
T 1/2 −

√
2γ3/2T 1/4 − 1.

We can now choose γ = cδ−1/2 for a sufficiently small absolute constant c to show that

R(e2) ≥ Θ
(
δ−1/2T 1/2

)
−Θ(δ−3/4T 1/4). (8)

This bound holds when γ < 1
2
√
2
T 1/2, i.e. δ ≥ c′T−1 for some large enough absolute constant c′.

Lemma B.2 (Entropy inequality Bernoulli). In the setup of Theorem 3.2, we have

E− [N2] ≤E+ [N2] + T

√
2(γT−1/2)2

1
4 − (γT−1/2)2

E+ [N2].

In particular for γ < 1
2
√
2
T 1/2, we have E− [N2] ≤ E+ [N2] +

√
2E+ [N2]γT

−1/2.

Proof. Via Pinsker’s and the chain rule for the KL divergence (c.f. Auer et al. (1995) and Lattimore (2015, Appendix))

E− [N2]− E+ [N2] ≤ T

√
1

2
E+ [N2] · KL(X||Y ),

where X ∼ Ber( 12 + ϵ) and Y ∼ Ber( 12 − ϵ) for ϵ = γT−1/2. We conclude by computing

KL(X||Y ) =

(
1

2
+ ϵ

)
log

( 1
2 + ϵ
1
2 − ϵ

)
+

(
1

2
− ϵ

)
log

( 1
2 − ϵ
1
2 + ϵ

)
≤
(
1

2
+ ϵ

)( 1
2 + ϵ
1
2 − ϵ

− 1

)
+

(
1

2
− ϵ

)( 1
2 − ϵ
1
2 + ϵ

− 1

)
=2ϵ

(
−

1
2 − ϵ
1
2 + ϵ

+
1
2 + ϵ
1
2 − ϵ

)
=2ϵ

2ϵ
1
4 − ϵ2

.

B.3. The Stochastic Case
As claimed in the main part, we now sketch how the Õ(

√
δ−1T ) lower bound from Section 3.3 can be matched (up to

logarithmic terms) if the costs are stochastic and not adversarial. This improves slightly over our result for the adversarial
case.
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Theorem B.1. Let δ ∈ (0, 1) and consider Protocol 2 but where all ct(a) ∼ qa are i.i.d. for some fixed distributions qa with
support in [0, 1]. Then there is an algorithm such that for any specified µc ∈ ∆A with all µc(a) ≥ δ and all distributions q,
we have

R(µc) ≤ 1 and max
µ∈∆A

R(µ) ≤ O
(√

δ−1T log(AT ) + δ−2 log(T )
)
.

For a ∈ [A], let the a-th action’s reward distribution qa have mean 1 − ma, and write m for the corresponding vector.
We thus consider maximization of the rewards 1− ct that have means m. This is just for convenience to better highlight
the relation of our algorithm to the classic UCB algorithm (Lattimore & Szepesvári, 2020). As for the rewards, we index
the entries of a strategy µ ∈ ∆A as µa = µ(a). Fix an arbitrary a⋆ ∈ argmaxa ma. The (random) pseudo-regret of the
algorithm is

R̃ :=

T∑
t=1

(ma⋆ −
〈
µt,m

〉
).

Algorithm. Construct mt = (mt
1, . . . ,m

t
A), m

t = (mt
1, . . . ,m

t
A) to be the vectors of lower and upper confidence bounds

for the actions after playing and observing t rounds. Formally,

mt
a := m̂t

a − bta, mt
a := m̂t

a + bta,

where m̂t
a is the average reward among the rounds in which the a-th action is chosen during rounds 1, . . . , t (and zero if not

defined), and bta is a confidence half-width to be specified. With this, set M t := [mt,mt] := [mt
1,m

t
1]× · · · × [mt

A,m
t
A].

Consider the following update. Let
µ1 = µc,

and in round t+ 1, update

µt+1 = arg max
µ∈∆A

min
m̃∈[mt,mt]

〈
µ− µt, m̃

〉
. (9)

Regret analysis. First, note that conditioned on m ∈M t, we have

0 = min
m̃∈Mt

〈
µt − µt, m̃

〉
≤ max

µ∈∆A

min
m̃∈Mt

〈
µ− µt, m̃

〉
= min

m̃∈Mt

〈
µt+1 − µt, m̃

〉
≤
〈
µt+1 − µt,m

〉
. (10)

Hence, the algorithm monotonically improves, i.e.
〈
µt+1,m

〉
≥ ⟨µt,m⟩, if all confidence intervals include the true mean.

As for the confidence intervals, set bta := 2
√

2 log(T 2A/ζ)
nt
a

, where nt
a is the number of times that action a is chosen in rounds

1, . . . , t. Then by Hoeffding’s inequality, with probability at least 1− ζ, for all t ∈ [T ] we have m ∈ int(M t). We call this
event G.

By finding the closed form of the update rule in Equation (9) and the lower bound on µ1 = µc, it is not hard to see the
following.

Lemma B.3. Conditioned on G, we have µt
a⋆ ≥ µc

a⋆ ≥ δ for all t ∈ [T ].

Using Hoeffding’s inequality and a union bound, we thus get the following concentration.

Lemma B.4. Condition on G and let ζ ′ ∈ (0, 1). Then with probability at least 1− ζ ′, we have

nt
a⋆ ≥ δt−

√
2t log(T/ζ ′).

We are now ready to prove Theorem B.1. Condition on G and on the event in Lemma B.4. This occurs with probability at
least 1− ζ − ζ ′.

First, we consider the regret compared to µc. By the monotonicity property in Equation (10),〈
µt,m

〉
≥
〈
µt−1,m

〉
≥ · · · ≥

〈
µ1,m

〉
= ⟨µc,m⟩ .
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Setting ζ = ζ ′ = 1
2T and integrating out the regret of at most T under the failure event:

E

[
T∑

t=1

〈
µc − µt,m

〉]
≤Pr[G]E

[∑
t

〈
µc − µt,m

〉
| G

]
+ Pr[Ḡ]T ≤ 0 + (ζ + ζ ′)T = 1.

We now consider the worst case (pseudo-) regret R̃. Note that for the minimax problem in Equation (9), strong duality holds
and we can fix a saddle point (µt, m̃t) such that (for all (µ, m̃) ∈ ∆A ×M t)〈

µ− µt−1, m̃t
〉
≤
〈
µt − µt−1, m̃t

〉
≤
〈
µt − µt−1, m̃

〉
. (11)

Under the success events, we have nt
a⋆ ≥ δt−

√
2t log(T/ζ ′) by Lemma B.4. Now when t ≥ t0 := 8δ−2 log(T/ζ ′), then

nt
a⋆ ≥ 2δ−1

√
2t log(T/ζ ′) and hence

bta⋆ ≤ 2

√
4 log(T 2A/ζ)

δt
. (12)

We have

R̃ = 8δ−2 log(T/ζ ′) +

T∑
t=t0

(ma⋆ −
〈
µt,m

〉
) ≤ 8δ−2 log(T/ζ ′) +

T∑
t=t0

(ma⋆ −
〈
µt,m

〉
),

where the instantaneous regret for t ≥ t0 is (with µ⋆ := ea⋆ )

ma⋆ −
〈
µt,m

〉
=
〈
µ⋆ − µt,m

〉
=
〈
µ⋆ − µt, m̃t+1

〉
+
〈
µ⋆ − µt,m− m̃t+1

〉
≤
〈
µt+1 − µt,m

〉
+
〈
µ⋆ − µt,m− m̃t+1

〉
(by Equation (11) and m ∈M t+1)

≤
〈
µt+1 − µt,m

〉
+
〈
µ⋆, bt+1

〉
+
〈
µt, bt+1

〉
≤
〈
µt+1 − µt,m

〉
+
〈
µ⋆, bt

〉
+
〈
µt, bt

〉
. (as bt+1 ≤ bt)

Hence,

R̃ ≤8δ−2 log(T/ζ ′) +
〈
µT+1 − µt0 ,m

〉
+

T∑
t=t0

(〈
µ⋆, bt

〉
+
〈
µt, bt

〉)
≤8δ−2 log(T/ζ ′) + 1 +

T∑
t=t0

bta⋆ +

T∑
t=t0

〈
µt, bt

〉
≤8δ−2 log(T/ζ ′) + 1 +

T∑
t=t0

2

√
4 log(T 2A/ζ)

δt
+

T∑
t=t0

〈
µt, bt

〉
(by Equation (12))

≤O

(
δ−2 log(T/ζ ′) +

√
T log(AT/ζ)

δ

)
+

T∑
t=t0

〈
µt, bt

〉
,

with probability at least 1 − ζ − ζ ′. Using
∑T

t=t0
E[⟨µt, bt⟩] ≤ O(

√
AT log(AT/ζ)) (Auer et al., 2008), δ ≤ 1/A and

integrating out the regret under the failure event yields the result.

C. Deferred Proofs for Extensive-Form Games
C.1. EFG Background
The following remark clarifies that the Markov game we defined in Section 4 (which is more common in the machine
learning literature) indeed covers the case of imperfect information EFGs (which are more common in the game theory
literature).
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Remark C.1. The notion of EFG in Definition 4.1 from Section 4 is usually referred to as a tree-structured perfect-
recall partially-observable Markov game (TP-POMG). This also covers the notion of perfect-recall imperfect information
extensive-form games (P-IIEFG) (Osborne & Rubinstein, 1994) that satisfy the timeability condition Jakobsen et al. (2016).
In fact, a more careful look reveals that the results directly generalize to any P-IIEFG without timeability (see Bai et al.
(2022) for this brief discussion).

For further clarification, we remark that usually, both the cost function u, the transition probabilities p and the policies π
(and treeplex strategies µ) may be non-stationary in the sense that they explicitly vary across the stages h ∈ [H] of the EFG.
However, as we assume tree structure and perfect recall, the state space and infoset space are partitioned along the stages
anyway, which is why WLOG we omit the explicit dependence of the above functions on the stage h. Finally, to be precise,
our algorithm assumes to know the tree structure of the game (but not necessarily the transitions), an assumption that can be
removed (Fiegel et al., 2023a).

C.2. OMD over the Treeplex
The unbalanced and balanced dilated KL divergence are defined as follows:

D(µ||µ′) :=
∑
x∈X ,
a∈A

µ(x, a) log

(
πµ(a|x)
πµ′(a|x)

)
,

Dbal(µ||µ′) :=

H∑
h=1

∑
xh∈Xh,
a∈A

µ(xh, a)

µh,bal(xh, a)
log

(
πµ(a|xh)

πµ′(a|xh)

)
,

where πµ is the policy corresponding to the treeplex strategy µ, and µh,bal is the unique strategy corresponding to the
balanced exploration policy

πh,bal(a|xh′) :=

{
|Ch(xh′ ,a)|
|Ch(xh′ )| (h′ ∈ {1, . . . , h− 1}),
1
A (h′ ∈ {h, . . . ,H}),

with Ch(xh′ , a) ⊂ Xh being set of infosets at step h reachable from (xh′ , a) (i.e. the unique path to such an infoset goes
through (xh′ , a)), and |Ch(xh′)| :=

⋃
a∈A Ch(xh′ , a).

Computation of Unbalanced OMD. For completeness, we restate the closed-form implementation of case one in
Equation (3) with the unbalanced dilated divergence D from Kozuno et al. (2021, Appendix B). In the setup of Equation (3),
let π̂t ∈ Π be the policy corresponding to µ̂t. Then we have a closed-form

π̂t+1(ah|xt
h) =π̂t(ah|xt

h) exp
(
1
{
ath = ah

}
(−ηĉt(xt

h, ah) + log(Zt
h+1))− log(Zt

h)
)
,

and π̂t+1(·|xh) = π̂t(·|xh) for all other xh ̸= xt
h. Here, Zt

h is

Zt
h := 1− π̂t(ath|xt

h) + π̂t(ath|xt
h) exp

(
−ηĉt(xt

h, a
t
h) + log(Zt

h+1)
)
,

and Zt
H+1 := 1.

Computation of Balanced OMD. For completeness, we also restate the closed-form implementation of case two in
Equation (3) with the balanced dilated divergence Dbal from Bai et al. (2022, Algorithm 5). Once more, let π̂t ∈ Π be the
policy corresponding to µ̂t. Then we have a closed form for the next iterate, namely

π̂t+1(ah|xt
h) = π̂t(ah|xt

h) exp

(
1
{
ah = ath

}(
−τµbal,h(xt

h, a
t
h)ĉ

t(xt
h, a

t
h) +

µbal,h(xt
h, a

t
h) log(Z

t
h+1)

µbal,h+1(xt
h+1, a

t
h+1)

)
− log(Zt

h)

)
,

and in the other infosets π̂t+1(ah|xh) = π̂t(ah|xh). Here,

Zt
h := 1− π̂(ath|xt

h) + π̂(ath|xt
h) exp

(
−τµbal,h(xt

h, a
t
h)ĉ

t(xt
h, a

t
h) +

µbal,h(xt
h, a

t
h) log(Z

t
h+1)

µbal,h+1(xt
h+1, a

t
h+1)

)
,

and Zt
H+1 = 1.
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C.3. Upper Bound
First, note that due to the importance-weighting by the rollout policies the cost estimators are unbiased (Kozuno et al., 2021):
E [ĉt(x, a)] = E [ct(x, a)], and E [⟨ĉt, µt⟩] = E [E [⟨ĉt, µt⟩ | Ft−1]] = E [⟨ct, µt⟩], where Ft−1 is the σ-algebra induced by
all random variables prior to sampling the trajectory (st1, a

t
1, b

t
1, u

t
1 . . . , s

t
H , atH , btH , ut

H). Further, WLOG we assume that
the costs u(s, a, b) used to define the cost function ct in Equation (2) are bounded in [0, 1]. While in EFGs we assumed
u(s, a, b) ∈ [−1, 1], we can simply replace them by (1 + u(s, a, b))/2 without changing the regret bound. With this, we can
prove the desired upper bound by resorting to the estimated regret

R̂k(µ) :=

startk+1−1∑
t=startk

〈
ĉt, µt − µ

〉
= αk

startk+1−1∑
j=startk

〈
ĉt, µ̂t − µ

〉
+ (1− αk)

startk+1−1∑
t=startk

〈
ĉt, µc − µ

〉
. (13)

By convention startk+1 := T + 1 if k is the last phase.

Theorem 4.1. Let δ ∈ (0, 1/A]. For any special comparator µc ∈ T such that µc(x, a) ≥ δ for all x, a, Algorithm 2
achieves (for any ct’s from Equation (2))

R(µc) ≤ 1, and max
µ∈T
R(µ) ≤ Õ

(
δ−1
√
XH3T

)
.

Proof. Case 1: α = 1 is not reached. Suppose first the algorithm ends in phase k with αk < 1 at time step T . By
Lemma C.1, w.r.t. any comparator

T∑
t=1

〈
ĉt, µt − µ

〉
≤ (2R+ 2H) · k ≤ O(R log(R)).

All previous phases must have been exited, so by Lemmas C.1 and C.2 we have

T∑
t=1

〈
ĉt, µt − µc

〉
≤ 2k−1 −

k−1∑
i=1

2i−1 = 2k−1 − (2k−1 − 1) = 1.

Taking expectation yields the claim.

Case 2: α = 1 is reached. Next, suppose αk = 1 was reached. Then balanced mirror descent was run in the final phase k.
As before

startk−1∑
t=1

〈
ĉt, µt − µ

〉
≤ (2R+ 2H) · k ≤ O(R log(R)).

For the final phase, note that the algorithm runs balanced OMD with importance weights and uniform initialization for ≤ T
rounds. Thus by Lemma C.5, this phase has expected regret

E

[
T∑

t=startk

〈
ct, µt − µ

〉]
≤τH3T +

1

τ
Dbal(µ||µstartk)

≤τH3T +
XA log(A)

τ
(by Bai et al. (2022, Lemma C.7))

≤
√
XAH3 log(A)T (since τ =

√
XA log(A)

2H3T )

≤R, (14)

using δ ≤ 1/A. Thus for any comparator, we have

E

[
T∑

t=1

〈
ct, µt − µ

〉]
≤ O(R log(R)) +R = O(R log(R)).
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Finally, for the special comparator, we note that all phases k′ with αk′
< 1 have been left and thus by Lemma C.2

and Equation (14)

E

[
T∑

t=1

〈
ct, µt − µc

〉]
≤ R−

k−1∑
k′=1

2k
′−1 = R− (2k−1 − 1) ≤ 1,

where the last step used that αk = min{1, 2k−1/R} = 1 and thus R ≤ 2k−1.

The following lemma establishes the statement from Lemma 3.1, generalized to EFGs. The second part of the lemma is
essentially the same. Once more, the fact that µc is lower bounded comes into play when upper bounding the estimated cost
functions.

Lemma C.1 (During normal phases). Let k be such that αk < 1. Then for all µ ∈ T , almost surely

R̂k(µ) ≤ 2R+ 2H = 2δ−1
√

8XH3 log(A)T + 2H,

and for the special comparator almost surely R̂k(µc) ≤ 2k−1.

Proof. WLOG suppose that R = 2r is a power of 2, else we can run the algorithm for T such that R is the next largest
power of two and pay a constant factor in the regret. For the first term in Equation (13), we analyze unbalanced OMD to
bound

∑startk+1−1
t=startk ⟨ĉt, µ̂t − µ⟩ almost surely, making use of the fact that ĉt is bounded. Recall

ĉt(xh, a) =
1 {(xt

h, a
t
h) = (xh, a)}ut

h

µt(xh, a)
≤ 1

µt(xh, a)
.

Now since R = 2r is a power of 2, we have αk = 2k−1/R ≤ 2log2(R)−1/R = 1/2, so

ĉt(xh, a) ≤
1

µt(xh, a)
=

1

αµt(xh, a) + (1− α)µc(xh, a)
≤ 1

1
2µ

c(xh, a)
≤ 2

δ
.

Moreover, ĉt is zero outside the visited ((xt
h, a

t
h))h. Thus, by Lemma C.3, for the first term in Equation (13) almost surely

startk+1−1∑
t=startk

〈
ĉt, µ̂t − µ

〉
≤ X log(A)

η
+

4ηTH(H + 1)

δ2
≤ δ−1

√
8XH2 log(A)T ≤ R. (15)

For the second term in Equation (13), note that since the if may only hold at t′ := startk+1 − 1,

startk+1−1∑
t=startk

〈
ĉt, µc − µ

〉
≤ 2R+

〈
ĉt

′
, µc
〉
≤ 2R+ 2H. (16)

Linearly combining Equations (15) and (16),

R̂k(µ) = αk

startk+1−1∑
t=startk

〈
ĉt, µ̂t − µ

〉
+ (1− αk)

startk+1−1∑
t=startk

〈
ĉt, µc − µ

〉
≤ 2R+ 2H

for any µ, and for the special comparator µc we have by Equation (15)

Rk(µc) = αk

startk+1−1∑
t=startk

〈
ĉt, µ̂t − µc

〉
+ (1− αk)

startk+1−1∑
t=startk

〈
ĉt, µc − µc

〉
≤ (2k−1/R)R = 2k−1.

Now suppose the algorithm exits a phase k. The following result mimics Lemma 3.2 for the case of EFGs, and we resort to
essentially the same proof.
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Lemma C.2 (Exiting a phase). Let k be such that αk < 1 and suppose Algorithm 2 exits phase k at time step startk+1 − 1.
Then almost surely R̂k(µc) ≤ −2k−1.

Proof. The if condition implies maxµ∈T
∑startk+1−1

t=startk ⟨ĉt, µc − µ⟩ > 2R, so when we let µ⋆ be a maximizer, we find

startk+1−1∑
t=startk

〈
ĉt, µt − µc

〉
=αk

startk+1−1∑
t=startk

〈
ĉt, µ̂t − µc

〉
=αk

startk+1−1∑
t=startk

〈
ĉt, µ̂t − µ⋆

〉
+ αk

startk+1−1∑
t=startk

〈
ĉt, µ⋆ − µc

〉
≤αkR+ αk(−2R)

=− 2k−1,

using Equation (15) in the last inequality.

C.4. Auxiliary Lemmas: OMD on the EFG Tree
Unbalanced OMD Lemmas.

Lemma C.3 (Bandit OMD with bounded surrogate costs). Let η > 0, and L > 0. Let (ĉt)t be cost functions such that for
all t, 0 ≤ ĉt(xh, a) ≤ L (for all xh, a), and moreover ĉt(xh, a) = 0 if (xh, a) ̸= (xt

h, a
t
h), where xt

h, ath are arbitrary. Set
µ̂1(xh, a) = 1/Ah and consider the scheme

µ̂t+1 =argmin
µ∈T

〈
µ, ĉt

〉
+

1

η
D(µ||µ̂t)

for t ≤ T ′. Then we have for all µ̂ ∈ T

T ′∑
t=1

〈
µ̂t − µ̂, ĉt

〉
≤ X log(A)

η
+ ηH(H + 1)L2T ′.

Proof. By Lemma C.4,

D(µ̂||µ̂t)−D(µ̂||µ̂t+1) +D(µ̂t||µ̂t+1) =− (D(µ̂||µ̂t+1)−D(µ̂||µ̂t)) + (D(µ̂t||µ̂t+1)−D(µ̂t||µ̂t))

=η
〈
µ̂t − µ̂, ĉt

〉
.

Thus (using D ≥ 0), we have a regret bound of

T ′∑
t=1

〈
µ̂t − µ̂, ĉt

〉
≤ 1

η

(
D(µ̂||µ̂1) +

T∑
t=1

D(µ̂t||µ̂t+1)

)
.

For the first term we easily have D(µ̂||µ̂1) ≤ X log(A) (Kozuno et al., 2021, Lemma 6). For the second term, by Lemma C.4,
we have

D(µ̂t||µ̂t+1) = D(µ̂t||µ̂t+1)−D(µ̂t||µ̂t) ≤ η
〈
µ̂t, ĉt

〉
+ log(Zt

1) = η

H∑
h=1

µ̂t(xt
h, a

t
h)ĉ

t(xt
h, a

t
h) + log(Zt

1),

using that ĉt is zero outside ((xt
h, a

t
h))h. By Equation (17) and log(1 + x) ≤ x,

log(Zt
1) ≤

H∑
h=1

µ̂t(xt
h, a

t
h) exp

(
−η

h−1∑
h′=1

ĉt(xt
h′ , ath′)

)(
exp

(
−ηĉt(xt

h, a
t
h)
)
− 1
)

≤
H∑

h=1

µ̂t(xt
h, a

t
h) exp

(
−η

h−1∑
h′=1

ĉt(xt
h′ , ath′)

)(
−ηĉt(xt

h, a
t
h) + η2ĉt(xt

h, a
t
h)

2
)
,
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where we used exp(−y) ≤ 1− y + y2 for y ≥ 0. We thus find, using ĉt ≥ 0 throughout,

D(µ̂t||µ̂t+1) ≤η
H∑

h=1

µ̂t(xt
h, a

t
h)ĉ

t(xt
h, a

t
h) + log(Zt

1)

≤η
H∑

h=1

µ̂t(xt
h, a

t
h)ĉ

t(xt
h, a

t
h)

+

H∑
h=1

µ̂t(xt
h, a

t
h) exp

(
−η

h−1∑
h′=1

ĉt(xt
h′ , ath′)

)(
−ηĉt(xt

h, a
t
h) + η2ĉt(xt

h, a
t
h)

2
)

=η

H∑
h=1

µ̂t(xt
h, a

t
h)ĉ

t
h(x

t
h, a

t
h)

(
1− exp

(
−η

h−1∑
h′=1

ĉt(xt
h′ , ath′)

))

+ η2
H∑

h=1

µ̂t(xt
h, a

t
h) exp

(
−η

h−1∑
h′=1

ĉt(xt
h′ , ath′)

)
ĉt(xt

h, a
t
h)

2

≤η
H∑

h=1

µ̂t(xt
h, a

t
h)ĉ

t(xt
h, a

t
h)

(
1− exp

(
−η

h−1∑
h′=1

ĉt(xt
h′ , ath′)

))

+ η2
H∑

h=1

µ̂t(xt
h, a

t
h)ĉ

t(xt
h, a

t
h)

2

≤η
H∑

h=1

µ̂t(xt
h, a

t
h)ĉ

t(xt
h, a

t
h)

(
η

h−1∑
h′=1

ĉt(xt
h′ , ath′)

)
+ η2

H∑
h=1

µ̂t(xt
h, a

t
h)ĉ

t(xt
h, a

t
h)

2,

where we used 1 − exp(−x) ≤ x in the last step. Finally, using the bound on the cost functions and the fact that all
µ̂t(xt

h, a
t
h) ≤ 1, we find

D(µ̂t||µ̂t+1) ≤η2H2L2 + η2HL2 ≤ η2H(H + 1)L2.

Summing over t concludes the proof.

In the setup of Lemma C.3, let π̂t ∈ Π be the policy corresponding to µ̂t and recall (Appendix C.1)

Zt
H+1 =1,

Zt
h =

∑
ah

π̂t(ah|xt
h) exp

(
1
{
ath = ah

}
(−ηĉt(xt

h, ah) + log(Zt
h+1))

)
=1− π̂t(ath|xt

h) + π̂t(ath|xt
h) exp

(
−ηĉt(xt

h, a
t
h) + log(Zt

h+1)
)
,

The following lemma is a slight generalization of Kozuno et al. (2021). Indeed, the proof only uses that ĉt is zero outside
of the visited ((xt

h, a
t
h))h, not whether we normalize by µ̂t or µt or from which policy the trajectory (xt

h, a
t
h)h is sampled

from. The same holds for the following closed form of Zt
1 (Kozuno et al., 2021, c.f. Lemma 6):

Zt
1 = 1 +

H∑
h′=1

µ̂t(xt
h′ , ath′) exp

−η h′−1∑
h′′=1

ĉt(xt
h′′ , ath′′)

(exp (−ηĉt(xt
h′ , ath′)

)
− 1
)
. (17)

Lemma C.4 (Kozuno et al. (2021), Lemma 7). In the setup of Lemma C.3, we have

D(µ||µ̂t+1)−D(µ||µ̂t) = η
〈
µ, ĉt

〉
+ log(Zt

1)

a.s. for all t ≤ T ′, µ ∈ T .
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Balanced OMD Lemmas. Recall the definition of ct from Equation (2), for which ĉt is an unbiased estimator. Again,
recall that we WLOG replaced assume u(s, a, b) ∈ [0, 1] (by rescaling via (1 + u(s, a, b))/2) for simplicity, without
changing the regret bound.

Lemma C.5. Let τ > 0. Set µ̂1(xh, a) = 1/Ah and with costs from Equation (2) for Protocol 3 consider the scheme

ĉt(xh, a) =
1 {(xh, a) = (xt

h, a
t
h)}ut

h

µ̂t(xh, a)
,

µ̂t+1 =argmin
µ∈T

(〈
µ, ĉt

〉
+

1

τ
Dbal(µ||µ̂t)

)
for t ≤ T ′. Then for all µ̂ ∈ T

E

 T ′∑
t=1

〈
µ̂t − µ̂, ct

〉 ≤ τ

2
H3T ′ +

1

τ
Dbal(µ||µ1).

Proof. By Lemma C.6, we have

1

τ

(
Dbal(µ̂||µ̂t+1)−Dbal(µ̂||µ̂t)

)
=
〈
µ̂, ĉt

〉
+ Ξt

1.

Thus,

1

τ
E
[
Dbal(µ̂||µ̂T ′

)−Dbal(µ̂||µ̂1)
]
=E

 T ′∑
t=1

〈
µ̂, ĉt

〉
+

T ′∑
t=1

Ξt
1


≤E

 T ′∑
t=1

〈
µ̂− µ̂t, ĉt

〉+
τH3

2
T ′ (by Lemma C.7)

=E

 T ′∑
t=1

〈
µ̂− µ̂t, ct

〉+
τH3

2
T ′,

as E [ĉt(x, a) | Ft−1] = ct(x, a). Using Dbal ≥ 0, we conclude

E

 T ′∑
t=1

〈
µ̂t − µ̂, ct

〉 ≤1

τ
Dbal(µ̂||µ̂1) +

τH3

2
T ′.

As before, the following lemma from Bai et al. (2022, Lemma D.7) does not use the specific form of the cost estimates but
only the update rules.

Lemma C.6. In the setup of Lemma C.5, for all µ ∈ T , we have

Dbal(µ||µ̂t+1)−Dbal(µ||µ̂t) = τ
〈
µ, ĉt

〉
+

log(Zt
1)

µbal,1(xt
1, a

t
1)

= τ
〈
µ, ĉt

〉
+ τΞt

1.

We introduce some extra notation for convenience: Let π̂t ∈ Π be the policy corresponding to µ̂t and set

βt
h := τµbal,h(xt

h, a
t
h), π̂t

h := π̂t(ath|xt
h), ĉth := ĉt(xt

h, a
t
h),

and consider the functions

Ξt
H(ĉ) :=Ξt

H(ĉH) := log
(
1− π̂t

H + π̂t
H exp(−βt

H ĉH)
)
/βt

H ,

Ξt
h(ĉ) :=Ξt

h(ĉh:H) := log
(
1− π̂t

h + π̂t
h exp(β

t
h(Ξ

t
h+1(ĉh+1:H)− ĉh))

)
/βt

H (h < H),
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and the values

Ξt
h :=Ξt

h(ĉ
t) =

1

βt
h

log(Zt
h) =

1

βt
h

log
(
1− π̂t

h + π̂t
h exp(β

t
h(Ξ

t
h+1 − ĉth)))

)
(h ∈ [H])

for the input ĉt. The following lemma now lets us bound the remaining term in the proof of Lemma C.5.

Lemma C.7. In the setup of Lemma C.5, we have

T∑
t=1

E
[
Ξt
1

]
≤ −

T ′∑
t=1

E
[〈
µ̂t, ĉt

〉]
+

τ

2
H3T ′.

Proof. By Lemma C.8 and as ĉt is unbiased,

T ′∑
t=1

E
[
Ξt
1

]
≤−

T ′∑
t=1

E
[〈
µ̂t, ĉt

〉]
+

τH

2

T ′∑
t=1

H∑
h=1

H∑
h′=h

∑
xh′ ,ah′

E
[
µbal,h
1:h (xh, ah)µ̂

t
h+1:h′(xh′ , ah′)ĉt(xh′ , ah′)

]

=−
T ′∑
t=1

E
[〈
µ̂t, ct

〉]
+

τH

2

T ′∑
t=1

H∑
h=1

H∑
h′=h

∑
xh′ ,ah′

E
[
µbal,h(xh, ah)µ̂

t
h+1:h′(xh′ , ah′)ct(xh′ , ah′)

]
︸ ︷︷ ︸

≤1

≤−
T ′∑
t=1

E
[〈
µ̂t, ct

〉]
+

τH3

2
T ′.

Lemma C.8 (Bai et al. (2022), Lemma D.11). We have

Ξt
1 ≤ −

〈
µ̂t, ĉt

〉
+

τH

2

H∑
h=1

H∑
h′=h

∑
xh′ ,ah′

µbal,h(xh′ , ah′)µ̂t
h+1:h′(xh′ , ah′)ĉt(xh′ , ah′),

where µ̂t
h+1:h′(xt

h′ , ath′) :=
∏h′

h′′=h+1 π̂
t(ah′′ |xh′′) along the unique path (xh′′ , ah′′)h′′ leading from step h + 1 to

(xt
h′ , ath′).

The proof is the same as in Bai et al. (2022).4

C.5. Lower Bound
Theorem 4.2. Let A ≥ 2, H ≥ 1, and δ ∈ (0, 1). There exists an EFG of depth H with X = Θ(AH) such that for any
µc ∈ T with minx,a µ

c(x, a) = δ, there is an adversary such that for any algorithm: IfR(µc) ≤ O(1), then

max
µ∈T
R(µ) ≥ Ω(

√
δ−1T − δ−3/4T 1/4).

Proof. Consider an A-nary tree with X = Θ(AH) leaves and where each infoset corresponds to a unique state. As for
the transitions, the learner is deterministically sent to a leaf s = (a1, . . . , aA) upon playing ah in each step h. Since
δ = minx,a µ

c(x, a), there also exists a leaf information set x = x(s) and and an action a such that µc(x, a) = δ. Now
consider two environments in which all state-action triples have cost one, except for the cost in leaf s, which is either
sampling according to the (+) or (−) environment from Theorem 3.2. We are thus effectively simulating a two-armed
bandit with comparator (1− δ, δ) with the same construction as in the simplex case. The derivation in Theorem 3.2 thus
concludes the proof.

4There, in (ii) we still have µ̂t(xh, ah)ĉ
t(xh, ah) ≤ 1. All other properties used in the proof hold for general ĉ ≥ 0 (in particular

Lemma D.9 and D.10, although stated for ℓ̃ ∈ [0, 1]H ).
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D. Further Experimental Evaluations
In this section, we provide further details regarding our experimental evaluations in Section 5.

All vs Exploitable Strategies. In addition to Section 5, we compare the performance of Min-Max, OMD and Algorithm 2
against a couple of other exploitable strategies strategies. We consider the following constant strategies:

• RaiseK: Bob raises/calls if and only he has a King, and checks/folds otherwise.
• RandMinMax(α): Bob plays a perturbed version of the Min-Max strategy: In every round, with a small probability α, he

will play the uniform strategy, and otherwise the Min-Max strategy.

In Figure 4, we present the amount of money that each of Min-Max, OMD, and Algorithm 2 extract with respect to the
aforementioned exploitable strategies. Specifically, Figure 4 reveals the following.

All vs RandMinMax(0.05) All vs RandMinMax(0.1) All vs RandMinMax(0.15)

All vs RandMinMax(0.3) All vs RandMinMax(0.5) All vs RaiseK

Figure 4: All vs Bob comparison for T = 1000 rounds. The x-axis displays the round t, and the y-axis displays how much
Min-Max, OMD, and Algorithm 2 gained from the second algorithm so far. The y-axes have varying scales for readability.

All vs RandMinMax(α): In all plots, our Algorithm 2 achieves at least the gain of the min-max equilibrium and in fact
always improves slightly over it. For small values of α (e.g. α = 0.05), meaning that Bob plays a (reasonable) strategy very
close to the min-max equilibrium, OMD always loses money while Algorithm 2 wins linearly. For larger values of α (e.g.
α = 0.1, 0.15, 0.3), OMD loses an initial amount but slowly starts catching up towards a total positive gain for very large T .
Finally, when α is large (e,g, α = 0.5), meaning that Bob plays a highly suboptimal (and not exploitative) strategy, OMD is
able to obtain a positive gain much quicker and eventually surpasses our Algorithm 2 (as it is not restricted to the support of
the min-max equilibrium, which in this case is of advantage).

All vs RaiseK: Notice that min-max equilibrium does not exploit RaiseK at all. At the same time, OMD exploits it linearly
right away, extracting a near-optimal gain from the opponent. Our Algorithm 2 also exploits RaiseK linearly at a comparable
slope, however starting exploitation somewhat delayed due to the risk-averse nature of the algorithm. However, our algorithm
consistently exploits weak opponents significantly better than the min-max strategy in all cases, and unlike OMD does so
while not risking to lose essentially any money.

In summary, our experimental evaluations reveal the following insights that are in accordance with our theoretical findings:
If Alice plays Algorithm 2, she secures at least the gain of the min-max strategy, thus not losing against any opponent.
Yet, she is able to better exploit strategies that deviate from the min-max strategy, at a level often comparable to standard
no-regret algorithms.

Implementation Details. In all experiments, we average n = 5 runs of repeated play (plotting Alice’s average cumulative
expected gain), and plot one standard deviation. In all algorithms, we used the same learning fixed rates (η ∼ 1/

√
T ) and

the (unbalanced) dilated KL divergence for fairness and simplicity. We provide the code in the supplementary material.
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