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Abstract

Evaluating whether vision–language models (VLMs) reason consistently
across representations is challenging because modality comparisons are
typically confounded by task differences and asymmetric information. We
introduce SEAM, a benchmark that pairs semantically equivalent inputs
across four domains that have existing standardized textual and visual nota-
tions. By employing distinct notation systems across modalities, in contrast
to OCR-based image-text pairing, SEAM provides a rigorous comparative
assessment of the textual-symbolic and visual-spatial reasoning capabilities
of VLMs. Across 21 contemporary models, we observe systematic modality
imbalance: vision frequently lags language in overall performance, despite
the problems containing semantically equivalent information, and cross-
modal agreement is relatively low. Our error analysis reveals two main
drivers: textual perception failures from tokenization in domain notation
and visual perception failures that induce hallucinations. We also show that
our results are largely robust to visual transformations. SEAM establishes a
controlled, semantically equivalent setting for measuring and improving
modality-agnostic reasoning. We publicly release the code, dataset, and
leaderboard to foster further research.

1 Introduction

Vision-Language Models (VLMs) have made rapid progress in understanding and gener-
ating content that spans visual and textual domains, making tangible steps towards more
general artificial intelligence (Li et al., 2023; Liu et al., 2023c; OpenAI, 2024a). As these
models are deployed more broadly, however, it becomes necessary to measure whether they
reason consistently across representations, and assess whether multimodal models have
general, integrated understanding or approach problems with narrow, modality-specific
processing. The ability to solve tasks across multiple modalities is not, by itself, evidence of
unified reasoning, as performance could depend on how information is represented.

A fundamental obstacle with comparing a VLM’s ability across modalities is confounding by
modality: comparisons between vision and language typically vary both the representation
and the task, making it unclear whether observed performance differences reflect genuine
reasoning gaps or variable task difficulty (Lu et al., 2023; Yue et al., 2024a). Even for a fixed
concept, textual and visual instances rarely have matched semantics and difficulty, and
asymmetric information content further obscures what is being measured. This lack of
standardization across modalities makes it difficult to isolate and measure core multimodal
processing capabilities. Existing approaches either lack rigorous cross-modal alignment
or introduce biases through asymmetric information content, leaving the field without a
principled way to measure modality-agnostic reasoning.

We introduce SEAM, short for Semantically Equivalent Across Modalities, a benchmark
designed to rigorously assess modality-agnostic reasoning in VLMs by holding semantics
constant while varying only representation. SEAM leverages domains with standardized
notation systems in both language and vision modalities—chess (FEN notation vs. board
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images), chemistry (SMILES strings vs. structural diagrams), music (ABC notation vs. sheet
music), and graph theory (adjacency matrices vs. node-edge diagrams)—to ensure semantic
equivalence: a property where representations preserve identical meaning despite being
presented in different modalities. Each task is self-contained within a single modality,
eliminating confounding factors from joint inference and enabling clean language-only,
vision-only, and language-vision evaluation. The benchmark comprises 16 tasks (four per
domain), and 200 items per task (3,200 total), formatted as multiple-choice questions with
carefully constructed distractor answers to calibrate difficulty.

Our evaluation of 21 state-of-the-art VLMs reveals systematic modality imbalance: all
models exhibit significant gaps between vision and language performance. Additionally,
cross-modal answer agreement is relatively low, often not far from a random baseline, sug-
gesting that models differ substantially in how they process information across modalities,
and have substantial room to improve in integrating reasoning and leveraging abilities
across representations. Furthermore, we observe that modality imbalances vary significantly
across domains. Finally, our error analysis highlights two recurring failure modes: (i) textual
perception failures in tokenizing strings in textual inputs (e.g., SMILES, FEN), and (ii) visual
perception failures that induce hallucinations. We also perform robustness checks that show
our results are not sensitive to common visual transformations.

Our contributions are threefold. First, we introduce SEAM, the first benchmark to sys-
tematically control for semantic equivalence across modalities, enabling fair evaluation of
cross-modal reasoning. Second, we conduct a comprehensive empirical study across 21
models, measuring controlled cross-modal imbalances for the first time. Third, we analyze
errors and discrepancies across tasks and models, and pinpoint perception-driven failure
modes in modern VLMs that lower agreement rate across modalities, providing actionable
insights for future research. SEAM provides a principled framework for measuring progress
toward more robust and genuinely intelligent VLMs.

2 Related Work

Vision-language models. Early large VLMs separately process visual and textual inputs
with two-stream architectures (Lu et al., 2019; Tan & Bansal, 2019; Chen et al., 2020), followed
by unified models for both understanding and generation (Zhou et al., 2020; Zhang et al.,
2021; Li et al., 2020). The Flamingo and BLIP families of models (Alayrac et al., 2022;
Awadalla et al., 2023; Li et al., 2022; 2023; Dai et al., 2023) shift to bridging pre-trained
vision and language models. The integration of LLMs into VLMs has led to powerful
improvements such as the MiniGPT family (Zhu et al., 2023; Chen et al., 2023), LLaMA-
Adapter family (Zhang et al., 2023b; Gao et al., 2023), and the LLaVA family (Liu et al.,
2023c;b; 2024a; Li et al., 2024c;a), which have progressively enhanced visual instruction-
following capabilities. Among proprietary models, the GPT series (OpenAI, 2023; 2024a;b;
2025a; 2024c; 2025c;d;b), the Claude series (Anthropic, 2024; 2025a;b), and the Gemini
series (DeepMind, 2023; 2024a; 2025a; Comanici et al., 2025) have demonstrated state-of-
the-art multimodal reasoning. Strong open-source alternatives have emerged including
notable models such as the LLaMA series (Touvron et al., 2023a;b; Grattafiori et al., 2024),
the Gemma series (DeepMind, 2024b;c; 2025b), the InternVL family (Chen et al., 2024c;b;a;
Zhu et al., 2025), the Qwen family (Bai et al., 2023; Yang et al., 2024a;b; Wang et al., 2024b;
Bai et al., 2025; Xu et al., 2025), and Pixtral (Agrawal et al., 2024).

VLM benchmarks. Early benchmarks such as VQA (Antol et al., 2015; Goyal et al., 2017), OK-
VQA (Marino et al., 2019), and MSCOCO (Lin et al., 2014) were instrumental in evaluating
basic visual understanding. Recent benchmarks have expanded the scope to cover more
complex capabilities (Yin et al., 2023; Xu et al., 2024; Li et al., 2024b; Liu et al., 2024b; Tong
et al., 2024; Yu et al., 2023; Jiang et al., 2024; Ying et al., 2024; Fu et al., 2024), including
hallucination detection (Cui et al., 2023; Liu et al., 2023a) and advanced reasoning (Lu
et al., 2023; Zhang et al., 2024a). The MMMU series (Yue et al., 2024a;b) introduces college-
level multimodal questions and addresses shortcut issues by enforcing vision-dependent
evaluation. EMMA (Hao et al., 2025) further emphasizes complex, multi-step reasoning
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Graph Theory

Path Counting: Which of the following is the correct
number of unique simple paths from a to b in the graph?

Text:
[[0, 1, 0, 0, 0, 1], 
 [1, 0, 1, 1, 1, 0], 
 [0, 1, 0, 0, 1, 0], 
 [0, 1, 0, 0, 0, 0], 
 [0, 1, 1, 0, 0, 1], 
 [1, 0, 0, 0, 1, 0]]

Path Matching: Which of the following node lists
represents a path from a to b?

Shortest Path Identification: Which of the following is the
length of the shortest simple path from a to b?

BFS Traversal: Which of the following lists represents the
order of the BFS traversal from node a in the graph?

Music

Note Counting: How many individual notes
(including♯,♭, and♮) appear in this piece? 

Measure Counting: Which of the following is the correct
number of measures in this piece?

Form Identification: Which of the following best describes
the musical form of this piece?

Rhythm Identification: Which of the following measures
contains a rhyme pattern?

Text:

X: 1
C c D d

Benchmark Construction
 1. Sample data from existing dataset/tools

Lichess ChemQA Irishman NetworkX

 3. Determine Ground Truth Answers
# Carbons: 20
Weight: 302

...

 5. Convert to Standard Image Representations

python-
chess RDKit Music21 NetworkX

# Notes: 4
# Measures: 1

...

Puzzle: e8d8
Fork: White's Knight on f6

...

# Paths [1 to 4]: 3
Shortest Path Length [3 to 4]: 2

...

 4. Craft Incorrect Choices

 2. Sample Raw Text Representation

FEN
3r4/rR1k1...

ABC
X:1829\nL:...

Adj Matrix
[[0, 1, 0, 0, 1], ...

SMILES
C1=CC(=C-...

Numerical Choice

Offset correct
answer for plausible,
challenging options.

Descriptive Choice

Sample similar
alternatives using a
embedding model.

Categorical Choice

Sample incorrect
options uniformly
from candidates.

Chess

Fork Detection:  Which of the following pieces is forking
other pieces in this chess position?

Text:

1r2kbr1/2p2p2/5N1p
/p1p1pp2/8/3P1K2

/PPP2P2/1R5R
 b - - 1 22

Centipawn Eval: Which of the following is the correct
centipawn evaluation for this chess position?

Puzzle Solving: Which of the following moves is the best
next move for the active player in this chess position?

Legal Move Identification: Which of the following moves
is legal in this chess position?

Chemistry

Carbon Counting: Which of the following is the correct
number of carbon atoms in this compound

Hydrogen Counting: Which of the following is the correct
number of hydrogen atoms in this compound?

Weight Calculation: Which of the following is the correct
molecular weight of this compound?

Caption Matching: Which of the following descriptions is
correct for this compound?

Text:

C19H29COOH

Figure 1: SEAM includes 16 tasks in chess, chemistry, music, and graph theory domains with
paired visual-spatial and textual-symbolic representations that are semantically equivalent.

across STEM fields. However, assessing the modality imbalance of VLMs remains difficult
due to the lack of benchmarks with semantically equivalent inputs across modalities. While
previous efforts have attempted to benchmark modality imbalance, they exhibit significant
limitations. Yue et al. (2024b) and Zhang et al. (2024b) introduced OCR-derived semantically
equivalent image-text pairs, e.g., screenshots or photos of textual questions, but these
merely transform text into images without leveraging distinct notation systems in different
modalities. Thus, OCR-based benchmarks mainly evaluate symbol recognition rather
than modality-agnostic reasoning capabilities. A robust evaluation should contrast visual-
spatial representations (encoding through spatial relationships and visual patterns) with
textual-symbolic representations (encoding through abstract symbols and formal notation)
to effectively assess modality imbalance. Further discussions on modality imbalance and
domain-specific VLMs are in Appendix A.

3 SEAM: Semantically Equivalent Across Modalities Benchmark

In this section, we describe how we designed and instantiated the SEAM benchmark. We
begin with our design principles that ensure semantic equivalence across modalities: stan-
dardized notations, faithful conversions, and single-modality self-containment. Guided by
these principles, we first select four domains that satisfy them (chess, chemistry, music, and
graph theory) and then define tasks within each domain, carefully constructing questions
for each task. The result is a 16-task, 3,200-item benchmark for attributing performance
differences to input modality rather than task confounds.

3.1 Design Principles

Standardized notation in both modalities. We selected benchmark domains that have
well-established, standardized notation systems that can represent semantically equivalent
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information across both visual and textual modalities. In chess, positions can be precisely
encoded as visual 2-D chessboards or as textual Forsyth-Edwards Notation (FEN) (Ed-
wards, 1994) strings, with perfect semantic equivalence between these representations.
Chemical compounds offer a similar duality through structural diagrams that visually
represent molecular bonds and atoms versus SMILES (Simplified Molecular Input Line
Entry System) (Weininger, 1988) strings that encode the same information textually. Musical
compositions can be expressed through traditional visual staff notation with notes and
measures or through ABC notation (Walshaw, 2004), which captures musical elements
in plain text. Graph theory provides another ideal domain with node-edge diagrams for
visual representation versus adjacency lists or matrices for textual encoding. This bidi-
rectional mapping property ensures that information content remains consistent across
modalities, enabling rigorous evaluation of cross-modal reasoning. While these notations
provide strong semantic alignment, we acknowledge that achieving absolute equivalence
impervious to subtle, low-level visual rendering variations (e.g., specific line styles, exact
node positioning) is a theoretical ideal; our focus is on ensuring that the essential symbolic
information is rigorously preserved across modalities. We later verify that our results are
robust to rendering changes.

Tool availability and real-world prevalence. Our domain selection is also driven by the
availability of robust tools that support faithful conversion between standardized textual
and visual representations, a prerequisite for creating semantically equivalent cross-modal
pairs. The python-chess library (Fiekas, 2025) provides conversion between FEN notation
and visual chessboards; RDKit’s capabilities (RDKit Development Team, 2025) allows trans-
formation between SMILES strings and molecular structure diagrams; Music21 (Cuthbert &
Ariza, 2010) converts between ABC notation and standard staff notation images; and the
NetworkX (Hagberg et al., 2008) library handles both adjacency matrices and node–edge
diagrams. These tools not only support cross-modal conversions but also enable automated
generation of synthetic questions and answer options across modalities.

We also prioritize domains with widespread real-world use in both visual and textual forms.
Chess practitioners routinely alternate between board visualizations and FEN notation
on platforms such as Chess.com (Chess.com, 2025) and Lichess (Lichess Team, 2025b). In
chemistry, researchers alternate between structural diagrams and SMILES strings, with
databases (Kim et al., 2025) providing both. Music analysis involves translation between staff
notation and formats like ABC notation (Roland, 2002), and graph theory researchers employ
both visualizations and adjacency matrices (Leskovec & Sosič, 2016). This dual-modality
prevalence ensures that SEAM evaluates reasoning capabilities that directly transfer to
real-world applications.

Self-contained in each modality. A key criterion is that every problem should be fully solv-
able using only its textual representation or only its visual representation. By crafting tasks
so that all necessary information is self-contained within each modality, we remove any need
for joint inference or reliance on secondary cues. This approach enforces a strict evaluation
of cross-modal reasoning and precludes models from exploiting superficial patterns that
might appear exclusively in one modality. Consequently, performance in our benchmark
reflects a model’s true ability to handle semantically equivalent information across different
representations, mirroring real-world scenarios where experts freely alternate between
visual and textual formats without losing crucial information.

3.2 Benchmark Construction

Guided by these principles, we construct 16 tasks (four per domain), formatted as 4-way
multiple-choice questions, following MMMU (Yue et al., 2024a). Each task contains 200
items (3,200 total). Detailed construction procedures and hyperparameters for each task
appear in Appendix C.

Text representations and ground truth. We first sample raw textual representations from
datasets or generate them with domain-specific tools. For chess, we extract FEN strings
from the Lichess Open Database Puzzles (Lichess Team, 2025c) and Evals (Lichess Team,
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2025a). For chemistry, we use SMILES strings from ChemBench (Guo et al., 2023) and
ChemQA (Zimmermann et al., 2024; Zhu et al., 2024). For music, we collect ABC notation
from the Irishman dataset (Wu et al., 2023) and the Music Theory dataset (Seeker38, 2025).
For graphs, we generate adjacency matrices with NetworkX.

Some ground-truth labels cannot be extracted automatically. For example, free-text captions
for chemical compounds require human annotation, so we sample them from existing
datasets. By contrast, when ground truth is deterministically derivable from the textual
representation, such as breadth-first search traversal order in graphs, we generate it auto-
matically with domain-specific tools.

Calibrated task difficulty. We calibrate task difficulty when constructing distractors (incor-
rect options) to enable meaningful cross-modal comparisons. Tasks that are too easy result
in near-perfect performance across all modalities, obscuring any potential gaps, while overly
difficult tasks reduce performance to random guessing levels, also making it difficult to
distinguish between modalities. Maintaining moderate difficulty exposes genuine modality
imbalances that can be properly measured. SEAM includes three option types—numerical,
categorical, and descriptive—each with tailored strategies to produce plausible, appro-
priately challenging distractors. For numerical tasks, we perturb the correct answer by
task-specific amounts (e.g., ±300 centipawns for chess evaluations) to generate alternatives
that remain within a plausible range while avoiding near-duplicates. For categorical tasks
(e.g., selecting music forms or legal chess moves), distractors are sampled uniformly from
the label set, excluding the correct label. For descriptive tasks involving rich text (e.g.,
chemical compound captions), we use the Multilingual-E5-large-instruct model (Wang
et al., 2024a) to retrieve semantically similar alternatives, as random negatives are typically
insufficiently confounding.

Text to image conversion. For domains with highly asymmetric layouts, such as music staff
notation, we pad the images with white space to produce square images. This preserves
visual clarity and ensures that structural patterns remain recognizable to VLMs even after
automatic resizing. All images are rendered at a standardized resolution of 400×400 pixels
to balance detail and computational efficiency. We adopt the default settings of each
conversion tool described in Section 3.1 to preserve semantic equivalence with the original
text representations, ensuring that neither modality introduces additional information.
Importantly, instead of rendering text as images (e.g., via screenshots), we use distinct,
standardized notation systems for language and vision modalities. This design targets VLMs’
ability to understand and reason over semantically equivalent content across modalities,
rather than relying on OCR-style recognition.

Since question–answer pairs are generated with domain-specific tools or sampled from
large-scale datasets (e.g., the Lichess Puzzle dataset with over 4.8 million entries), this
design enables continual expansion and regular updates, reducing the risk of benchmark
leakage from pretraining exposure (data contamination). As models improve, our distractor-
generation procedure supports flexible retuning of task difficulty, enabling the creation of
more challenging benchmark versions in future releases.

4 Experiments

4.1 Experimental Settings

We evaluate a total of 21 state-of-the-art vision-language models (VLMs) under zero-shot
chain-of-thought prompting (Kojima et al., 2022), using the latest publicly available release
of each model series at the time of evaluation. We use the vLLM framework (Kwon et al.,
2023) on 8 A100 GPUs to run inference for open-source models, adopting each model’s
default prompt format, system prompts, and generation hyperparameters when applicable,
as detailed in Appendix C We follow the OpenCompass (Contributors, 2023) protocol to
extract final answers from model outputs using an external LLM when rule-based extraction
fails. As final answer extraction is relatively straightforward, we use the smaller and open-
source Qwen2.5-7B-Instruct model for this task, given its strong performance and efficiency.

5

https://huggingface.co/datasets/Seeker38/music_abc_notation_with_music_theory


Published as a conference paper at COLM 2025

Table 1: Leaderboard of proprietary and open-source VLMs across language (L), vision (V),
and vision-language (VL) modalities. Models are sorted by agreement between language
and vision modalities. Bold and underlined values indicate best and second-best perfor-
mance within each category, respectively.

Model Accuracy Agreement

L V VL Avg L - V ↓ L - VL V - VL All

Proprietary Models

GPT-5-mini 0.787 0.653 0.830 0.756 0.630 0.846 0.653 0.584
GPT-5 0.804 0.632 0.857 0.765 0.627 0.876 0.657 0.596
Claude-3.7-Sonnet 0.743 0.591 0.679 0.671 0.594 0.715 0.624 0.506
Claude-4.1-Opus 0.827 0.578 0.814 0.740 0.575 0.844 0.580 0.523
Claude-4-Sonnet 0.808 0.545 0.803 0.719 0.569 0.834 0.566 0.508
Claude-3.5-Sonnet 0.665 0.560 0.514 0.580 0.537 0.549 0.508 0.378
GPT-4o 0.635 0.482 0.627 0.581 0.503 0.686 0.532 0.410
GPT-5-nano 0.699 0.510 0.753 0.654 0.500 0.771 0.516 0.432
GPT-4o-mini 0.555 0.411 0.529 0.498 0.480 0.650 0.518 0.379
Claude-3.5-Haiku 0.530 0.433 0.496 0.486 0.479 0.556 0.534 0.346

Open-Source Models

Qwen2.5-VL-72B-Instruct 0.547 0.475 0.519 0.514 0.447 0.504 0.532 0.318
InternVL3-78B 0.525 0.427 0.482 0.478 0.447 0.498 0.487 0.293
gemma-3-27b-it 0.516 0.428 0.450 0.465 0.447 0.497 0.575 0.325
gemma-3-12b-it 0.458 0.401 0.429 0.429 0.419 0.474 0.543 0.297
InternVL-2.5-78B 0.448 0.414 0.459 0.440 0.415 0.485 0.523 0.309
InternVL3-8B 0.382 0.357 0.386 0.375 0.388 0.425 0.456 0.229
Llama-3.2-90B-Vision-Instruct 0.434 0.384 0.439 0.419 0.384 0.460 0.443 0.253
Qwen2.5-Omni-7B 0.363 0.354 0.364 0.360 0.353 0.375 0.375 0.183
Qwen2.5-VL-7B-Instruct 0.303 0.350 0.359 0.337 0.347 0.389 0.437 0.216
InternVL-2.5-8B 0.324 0.337 0.334 0.332 0.324 0.340 0.436 0.196
Llama-3.2-11B-Vision-Instruct 0.289 0.330 0.323 0.314 0.287 0.303 0.401 0.152

As shown in Table 2 in Appendix B, the extraction results are highly consistent with those
obtained using different LLMs.

4.2 Results

General performance comparison. As shown in Table 1, proprietary models significantly
outperform open-source alternatives across all modalities in general, with GPT-5 demon-
strating superior accuracy (0.765) compared to the highest-performing open-source model,
Qwen2.5-VL-72B-Instruct (0.514). Performance consistently follows scaling laws across
both proprietary and open-source model families, with larger variants outperforming their
smaller counterparts (GPT-5 at 0.756 vs. GPT-5-nano at 0.654; Gemma-3 27B at 0.465 vs. 12B
at 0.429), highlighting the impact of model scale on multimodal reasoning capabilities.

Vision-language modality imbalance. In addition to accuracy, we calculate the agreement
rate between extracted final answers across semantically equivalent questions presented in
different modalities. For each sample, the agreement between modalities is binary (either 0
for disagree or 1 for agree), and these binary values are then averaged across all samples to
obtain the overall agreement rate.

In principle, an intelligent reasoner, either human or artificial, could (and perhaps should)
exhibit consistent performance when presented with semantically equivalent information in
different modalities. For example, a molecule shown as a structural diagram or described
through a SMILES string contains the same information. A human expert chemist might
prefer the visual structural diagram for intuitive reasoning, but when given a SMILES
string, they can still identify the compound and its properties, possibly by first mentally or
physically sketching the visual structure. The challenge lies in the molecular complexity
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Figure 2: Correlation between final answer agreement rates with language and vision inputs
and average accuracy across various VLMs. Models are color-coded by family. Random
Baseline denotes how often two models with identical accuracy p would agree by random
chance, which can be thought of as a lower bound for cross-modal agreement of real
multimodal models.

and properties, not in the modality of its presentation. A truly intelligent VLM could behave
analogously, and either naturally treat different input representations similarly, or learn
to translate between modalities when it is advantageous to do so—and thus have high
agreement between modalities when presented with semantically equivalent information
across different modalities.

However, this is not what we observe. The results in Table 1 reveal substantial performance
variation (low agreement) across modalities for all evaluated models. Proprietary and larger
open-source models consistently achieve higher accuracy with language inputs and lower
accuracy with vision inputs. Because VLMs typically build upon extensively pre-trained
LLMs, they inherit their reasoning capabilities from a base LLM. Textual inputs are fed
directly into the LLM, while visual inputs must first pass through a visual encoder and a
projector before being integrated into the LLM, which is a noisy process.

Note that a VLM could theoretically achieve near-perfect agreement across vision and lan-
guage on our semantically equivalent tasks, even at low accuracy levels. One conceptually
simple method would be to learn how to translate between modalities, which is always
possible by construction for SEAM tasks, attempting to solve problems in both modalities,
and picking one of the solutions. More ideally, a generally intelligent model could learn
how to leverage the strengths of each modality, and in which situations it is wise to prefer
one modality over another. But none of the VLMs we tested have high agreement, meaning
there is substantial progress to be made in attaining fluid and general intelligence that
adapts across modalities.
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Correlation between agreement and accuracy. We observe a strong positive correlation
between cross-modal agreement and overall accuracy across most model series in Fig 5,
suggesting an association between modality alignment and performance. This raises an
important question about the direction of causality: Does higher accuracy lead to higher
agreement, or does higher agreement drive better accuracy?

Note that as models become more accurate, they naturally converge as they increasingly
agree on correct answers across modalities, artifactually increasing agreement. In the
theoretical limit of perfect accuracy, cross-modal agreement would necessarily reach 1 as all
modalities output identical correct answers. However, evidence from Zhang et al. (2024b)
challenges the notion that accuracy improvements are the sole driver of higher agreement.
Their findings demonstrate that accuracy and agreement can vary independently within
practical performance ranges: VLMs can exhibit high agreement despite poor performance,
or achieve high accuracy with relatively low agreement between modalities. This pattern
is clearly visible in Fig 5, particularly among models in the GPT and Claude series. This
decoupling suggests that the strong positive correlation we observe cannot be explained
solely by accuracy driving agreement.

To measure the artifactual relationship between agreement and accuracy, we define a random
baseline that represents how often two models with identical accuracy p would agree by
random chance, which can be thought of as a lower bound for cross-modal agreement of
real multimodal models. We simulate two independent “modalities” with identical accuracy
p but no genuine coordination. For a multiple-choice question with 4 options where one is
correct, each modality independently selects the correct answer with probability p and each
incorrect answer with probability 1−p

3 . The agreement rate between the two modalities is

P = P1 + P2 = p2 + 3×
(

1−p
3

)2
= p2 + (1−p)2

3 , where P1 is the probability both select the
correct answer and P2 is the probability both select the same incorrect answer. By varying p,
we generate the random baseline curve shown in Fig 5.

Comparing this random baseline with our measured results of contemporary multimodal
models suggests that current models do not achieve significant cross-modal alignment
beyond the simple agreement achieved by task correctness. Most models cluster much closer
to this random baseline than to the ideal upper bound of perfect agreement, suggesting that
what appears to be improved cross-modal alignment as models scale may simply reflect the
mathematical constraint that higher accuracy necessitates higher agreement rates, rather
than representing true progress toward unified multimodal understanding.

Domain-specific modality imbalance. As illustrated in Fig 3, the degree of modality
imbalance is highly domain-specific. In chess and chemistry, models frequently demonstrate
comparable or slightly superior performance with vision inputs compared with language
inputs. However, this pattern reverses in music, where language inputs generally yield
better results than vision inputs. This imbalance becomes even more significant in graph-
related tasks, where the performance gap between language and vision inputs substantially
widens. These domain-specific asymmetries in input modalities suggest that cross-modal
consistency varies significantly depending on the reasoning domain. Such observations
motivate us to investigate the underlying mechanisms behind domain-specific performance
disparities.

Textual perception error. We examine the tokenization processes of open-source models to
understand how they parse domain-specific text inputs. In chemistry tasks, we find that
SMILES strings such as COC(=O)C(OC(C)(C)C)c1cc([N+](=O)[O-])ccc1-c1ccc2c(c1)CCCO2
are often incorrectly segmented into semantically meaningless subwords like ”OC”, ”cc”,
and ”([”. Such tokenization errors are particularly problematic, where structural elements
like parentheses (indicating branches) and square brackets (denoting charged atoms) carry
precise molecular semantics that, when incorrectly parsed, lead to fundamentally different
chemical interpretations. Similarly, we also identified severe tokenization errors in chess
FEN notation examples. However, music ABC notation exhibits fewer issues, likely due to its
abundant punctuation markers that provide clearer tokenization boundaries. Interestingly,
graph-related tasks, where adjacency matrices primarily consist of commas, 0s, and 1s,

8



Published as a conference paper at COLM 2025

Figure 3: Comparison of model accuracy across different modalities in each domain.

demonstrate minimal tokenization errors. The severity of such textual perception limitation
negatively correlates with the advantage of language inputs.

To further investigate tokenization error, we rerun the chess tasks with “gold-standard”
tokenization, which separates the tokens in FEN according to human common sense. For
example, if there are two pawns next to each other, the FEN will include “PP” which should
intuitively be tokenized into two “P” tokens. But VLMs often suboptimally regard “PP”
as a single token. We expect the models to perform better with the modified tokenizer.
However, we found that Qwen2.5-VL-72B-Instruct performs almost the same (original 0.542
vs. gold-standard 0.540 accuracy). We hypothesize that two contradictory factors combined
to result in such performance: although the tokenization becomes intuitively better (positive
factor), the models were not trained with such tokenization (negative factor). For example,
“PP” might occur a lot in the training data, and the model always uses the single “PP”
token to understand FEN. When we simply replace the “PP” token with two “P” tokens, the
semantics learned in the embedding of “PP” could not be directly used, while the semantics
of two adjacent “P”s were not as well trained. Such observations suggest the importance of
designing task-specific tokenizers and training domain-specific VLMs.
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Visual perception error. Furthermore, our results in Fig 3 suggest parallel constraints in
visual perception. In particular, the lack of synergistic improvement when combining vision
and language input indicates that the vision modality suffers from its own perception
challenges. In domains where language inputs face known tokenization difficulties, such
as chemistry and chess, the failure of vision inputs to compensate for these limitations is
evident across most VLMs. In domains with minimal tokenization problems, most VLMs
yield better results with language than vision-language. This indicates that vision inputs
are contributing negatively, which points to fundamental constraints in visual perception
capabilities. In particular, the process of cutting each image into patches to feed ViTs is
problematic. We found severe VLM hallucinations when vision inputs for graph theory
tasks are cut near the intersection of edges. The hallucinations are particularly related to the
edges and nodes involved in these intersections. A detailed example is shown in Fig 7 in
the Appendix. Note that textual inputs of the graph theory tasks are presented as adjacency
matrices, in which numbers were well-separated by commas, and thus there are no known
tokenization issues. This could potentially explain why the vision performance is much
worse than language in Fig 3.

5 Discussion

Semantic equivalence. Although we generate and curate SEAM with standardized tools
to maximize cross-modal semantic equivalence, achieving perfect equivalence remains a
theoretical ideal. Subtle rendering details (e.g., line thickness, fonts, layout-driven node
placement) can introduce low-level perceptual differences relative to purely symbolic text,
potentially interacting with model perception. Nevertheless, results in Fig 4 (Appendix B)
demonstrate practical robustness to substantial visual alterations that preserve core sym-
bolic information. Specifically, applying resolution changes, grayscale conversion, and 180◦
rotation yields only minimal performance variation (at most ±1.6%, ±3.1%, and ±1.9%,
respectively), suggesting that models respond primarily to underlying content rather than
superficial visual characteristics. Additionally, some domains admit minor semantic mis-
matches between modalities. For example, FEN includes details (e.g., castling rights, en
passant availability) that are not always recoverable from a board image alone. In practice,
these differences affect task performance in only a very small minority of cases.

Limitations. We focus exclusively on images without evaluating video or multi-image
sequences, though such extensions are possible and important future work. For example,
comparing chess move sequences in PGN notation with sequences of board states could
assess cross-modal temporal reasoning. Our domain coverage, though carefully selected,
covers only a subset of domains meeting our selection criteria; additional domains such as
circuit diagrams versus SPICE netlists (Vungarala et al., 2025) could be incorporated. Our
evaluation includes a limited number of models due to budget constraints for proprietary
models and computational constraints for open-source models. SEAM will be made pub-
licly available with a leaderboard, enabling broader community contribution and ongoing
evaluation of emerging models. Future research could explore qualitative methods like
report cards (Yang et al., 2024c) to address the limitations of current VLM benchmarks.

6 Conclusion

Our SEAM benchmark reveals significant modality imbalance in VLMs, which struggle
to reason consistently across semantically equivalent visual and textual representations in
distinct notation systems. This fundamental limitation highlights the gap between current
capabilities and truly modality-agnostic AI. Moving forward, a crucial aspect of VLM
development is the ability to process information regardless of its representation format.
SEAM provides a principled framework for measuring progress toward more robust and
genuinely intelligent VLMs.
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A Extended Related Work

Modality imbalance. Despite the integration of visual and textual understanding in modern
VLMs, an inherent challenge persists in achieving balanced performance across different
modalities. Recent studies have uncovered significant inconsistencies between vision and
language capabilities in multimodal models, showing that even state-of-the-art systems
demonstrate varying levels of reliability depending on input modality (Zhang et al., 2024b;
2023c). This imbalance becomes particularly evident in complex spatial reasoning tasks,
where VLMs surprisingly underperform compared to their text-only counterparts, often
neglecting visual information when textual clues are available (Wang et al., 2025). The un-
derlying mechanisms driving this phenomenon have been theoretically explored, revealing
a competitive dynamic between modalities during joint training where gradient-based opti-
mization leads to only a subset of modalities being effectively learned (Huang et al., 2022).
Various approaches have emerged to address this challenge, including adaptive gradient
modulation techniques that dynamically adjust the optimization pace for different modal-
ities (Peng et al., 2022), prototype-based methods that specifically boost slower-learning
modalities without interference from dominant ones (Fan et al., 2023), and explicit image-to-
text conversion strategies that bridge the gap between simple and complex visual reasoning
tasks (Park et al., 2025). However, existing approaches to evaluate modality imbalance lack
rigorous cross-modal semantic equivalence, leaving the field without principled bench-
marks to isolate and measure modality-agnostic reasoning capabilities. Further discussions
on related works about domain-specific VLMs are presented in Appendix A.

Domain-Specific VLMs. While general-purpose VLMs have shown remarkable capabilities
across diverse tasks, a growing trend has emerged in developing domain-specialized vision-
language models that focus on particular fields requiring expert knowledge. NOTA (Tang
et al., 2025) represents one such effort in the music domain, bridging the gap between
two-dimensional score images and one-dimensional symbolic notation through a dedicated
multimodal music notation dataset. In the medical domain, MedVInT (Zhang et al., 2023d)
and Med-PaLM (Tu et al., 2024) leverage specialized medical visual-textual pretraining
to enhance clinical reasoning and diagnosis. For scientific literature, SciMMIR (Wu et al.,
2024) focuses on scientific diagram understanding and multimodal information retrieval.
Other domain-specific efforts include ChartLlama (Han et al., 2023) for chart interpretation,
Mplug-DocOwl (Ye et al., 2024) for document understanding, and LayoutGPT (Feng et al.,
2023) for graphic design. These specialized models often demonstrate superior performance
in their target domains compared to general-purpose VLMs, highlighting the importance of
domain-specific knowledge and training data in addressing specialized visual reasoning
tasks.

B Additional Results

Modality Extraction Model Average Accuracy Agreement

Language Qwen2.5-7B-Instruct 0.635 0.997Qwen2.5-72B-Instruct 0.635

Vision Qwen2.5-7B-Instruct 0.482 0.998Qwen2.5-72B-Instruct 0.481

Vision-Language Qwen2.5-7B-Instruct 0.627 0.998Qwen2.5-72B-Instruct 0.627

Table 2: GPT-4o results with different final answer extractors.

B.1 Semantic Equivalence

Admittedly, achieving perfect semantic equivalence across modalities presents theoretical
challenges, our benchmark design implements rigorous controls to ensure comparable
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Figure 4: Effect of performance from visual transformations on Qwen2.5-VL models.

information content between visual and textual representations. To validate the robustness
of our approach, we conduct experiments examining how visual transformations affect
model performance, as shown in Figure 4. We systematically tested three common image
transformations: resolution changes in chess diagrams, black-and-white conversion of chess
boards, and 180-degree rotation of molecular structures on Qwen 2.5 models.

Our results demonstrate minimal performance variations across these modifications. For
resolution changes, we observe differences of no more than ±1.6% in accuracy. Similarly,
black-and-white conversion produces maximum deviations of ±3.1%, while molecular rota-
tion yields changes within ±1.9%. The stability of performance across these transformations
supports our claim that models are responding to the underlying semantic content rather
than superficial visual properties. This is particularly notable given that these modifications
substantially alter the pixel-level representation while preserving the symbolic information
content.

B.2 Cross-model Agreement

The cross-model agreement analysis on semantically equivalent tasks reveals striking
modality-dependent variations in model consistency. When processing the same prob-
lems in language (left panel), models demonstrate high within-family agreement (GPT
variants: 0.79-0.86, Claude variants: 0.77-0.82) and moderate cross-family agreement (0.64-
0.75), suggesting that textual-symbolic reasoning elicits relatively consistent responses
across models. However, this consistency deteriorates markedly in the vision modality
(center panel), where agreement scores drop substantially, indicating that visual-spatial
processing of the same semantic content produces more divergent model behaviors. This
aligns with our finding that vision frequently underperforms language despite semantically
equivalent information being provided.

B.3 Error Analysis

Our analysis revealed two distinct failure patterns in text versus vision modalities. These
examples demonstrate fundamental limitations in how each modality handles structured
information.

Carbon counting: The text-only system incorrectly tokenized the SMILES notation as:

SMILES representation.

Nc1nccc(Oc2cc(F)ccc2F)c1I

Tokenized sequence.
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Figure 5: Cross-model agreement on semantically equivalent tasks presented in different
modalities. Correlation matrices show pairwise agreement scores between GPT-5, GPT-5-
mini, GPT-5-nano, Claude-4.1-Opus, Claude-4-Sonnet, and Claude-3.7-Sonnet models when
solving the same problems in language (left), vision (center), and vision-language (right)
formats, with darker blue indicating higher agreement.

Figure 6: Case-study of text-based versus vision-based processing in VLMs, showing two
error cases: (left) Qwen2.5-VL-72B-Instruct incorrect counting of carbon atoms in a chemical
structure due to SMILES tokenization, and (right) gemma-3-12b-it hallucinated graph paths
in a simple path counting problem. Both examples show discrepancies between text-only
and vision-only representatinos.

[`N', `c', `1', `n', `ccc', `(O', `c', `2', `cc', `(F', `)', `ccc', `2', `F', `)c', `1',
`I']

This results in counting only 7 carbon atoms instead of the correct 11. This error stems
from text systems struggling with context-dependent character interpretation in specialized
notations where ‘c’ signifies aromatic carbon. In contrast, the vision-only approach correctly
identified 11 carbon atoms by properly recognizing the benzene ring (6 carbons) and
pyridine ring (5 carbons) in the 2D molecular structure.
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Figure 7: Visual perception error example.

Unique simple path counting: When analyzing a simple undirected graph, the text-only
approach correctly identified exactly 2 unique simple paths from node 3 to node 5 through
path enumeration. However, the vision-only approach erroneously counted 4 paths by
hallucinating edges that don’t exist in the graph (0→ 5, 0→ 1, 1→ 7). This suggests vision
systems may struggle with precise spatial reasoning in graphs, potentially interpolating
connections based on spatial proximity rather than actual edge connections.

These examples highlight complementary strengths and weaknesses across input modalities.
Text-based systems excel at following explicit rules but may fail with specialized notation
requiring contextual understanding. Vision-based systems can interpret visual structures
holistically but may hallucinate relationships based on visual proximity. Our findings
suggest potential benefits from multimodal approaches that cross-validate across modalities
to mitigate modality-specific errors.

B.4 Final Answer Extractor

While VLMs often generate verbose rationales when prompted for multi-choice answers,
we need to extract their definitive selection of option A, B, C, or D robustly. We evaluate two

22



Published as a conference paper at COLM 2025

Table 3: Hyperparameter settings for benchmark creation and model inference.
Category Parameter Value

Graph Tasks

Node Limits Min: 6, Max: 9
Edge Limits Min: 5, Max: 20
Path Count Offset ±⌈ 0.1 × edge count + 1 ⌉ from correct count
Image Size 400 × 400 px
Samples 200 per task

Chemistry Tasks

Carbon Offset ±3 from correct count
Hydrogen Count Offset ±3 from correct count
Weight Count Offset ±20% of correct molecular weight
Image Size 400 × 400 px
Samples 200 per task

Chess Tasks

Max Puzzle Rating 1200
CP Offset ±300 centipawns from correct evaluation
Image Size 400 × 400 px
Samples 200 per task

Music Tasks

Measure Limits Min: 24, Max: 48 measures
Note Count Offset ±3 from correct count
Measure Count Offset ±3 from correct count
Image Size 600 × 600 px
Samples 200 per task

Model Inference

Temperature Inference Model Default
Temperature Extraction 0
Max New Tokens 8192
Max Model Length 16384

potential extractors: Qwen2.5-7B-Instruct and Qwen2.5-72B-Instruct, with vast difference
in the scale of parameters, comparing their extraction reliability on GPT-4o outputs across
all modalities. As shown in Table 2, both extractors achieved near-identical results with
exceptionally high agreement across all modalities. The consistency between the 7B and
72B models indicates that answer extraction is a relatively straightforward task that hardly
benefit from additional model capacity. Therefore, we adopt the more computationally
efficient Qwen2.5-7B-Instruct as our standard extractor for all experiments, assigning a
special token Z in cases where no valid option could be extracted, rather than making
random assignments that might artificially inflate performance metrics.

23



Published as a conference paper at COLM 2025

C Reproducibility

C.1 Hyperparameter Settings

Our benchmarking framework involves carefully designed hyperparameters across dif-
ferent task categories and model inference settings. Table 3 presents the comprehensive
hyperparameter configuration used in our experiments for reproducibility purposes.

C.2 Prompt Templates

Language-only Prompt Template.

{notation name}: {notation}

{instructions}

A. {option a}
B. {option b}
C. {option c}
D. {option d}

Let's think step-by-step to answer the above question.
One and only one option is correct. If you are unsure, provide your best guess.
If you believe none of the options are correct, select the closest one.
You MUST conclude with: The best option is [the_option_letter],
where the [the_option_letter] MUST be one of A, B, C or D.

Vision-only Prompt Template.

{image}

{instructions}

A. {option a}
B. {option b}
C. {option c}
D. {option d}

Let's think step-by-step to answer the above question.
One and only one option is correct. If you are unsure, provide your best guess.
If you believe none of the options are correct, select the closest one.
You MUST conclude with: The best option is [the_option_letter],
where the [the_option_letter] MUST be one of A, B, C or D.

Language & Vision Prompt Template.

{image}

{notation name}: {notation}

{instructions}

A. {option a}
B. {option b}
C. {option c}
D. {option d}

Let's think step-by-step to answer the above question.
One and only one option is correct. If you are unsure, provide your best guess.

24



Published as a conference paper at COLM 2025

If you believe none of the options are correct, select the closest one.
You MUST conclude with: The best option is [the_option_letter],
where the [the_option_letter] MUST be one of A, B, C or D.

Prompt Template for Final Answer Extraction.

Here is the complete predicted answer for a multiple-choice question\

***{prediction}***

Your task: Extract the final answer (the best option) from the text above.
Ignore the reasoning process and any inconsistence in the above complete predicted
answer.
It is usually in the format 'The best option is [letter]' at the end of the complete
predicted answer.
If found, reply with the letter 'A', 'B', 'C', or 'D'.
Otherwise, reply with 'Z'.
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C.3 Task Design Details

Our task designs focus on creating specialized problems that test the ability of models
to understand information presented across different modalities. Each domain requires
careful construction of semantically equivalent representations while ensuring appropriate
difficulty levels and clear evaluation metrics.

C.3.1 Chess

Chess offers an ideal domain for testing modality equivalence due to its well-established
symbolic notation systems and visual representations via standard tools. We developed
four chess-based tasks that assess different aspects of chess understanding and reasoning,
ensuring that questions can be answered through either visual board inspection or formal
chess notation analysis.

Fork Detection. The fork detection task evaluates a model’s ability to identify pieces creating
tactical forks on the chess board. A fork occurs when a single piece simultaneously attacks
two or more opponent pieces. We constructed this task using the python-chess library to
analyze positions from the Lichess puzzle database. For each position, we load the FEN
(Forsyth–Edwards Notation) string and analyze all pieces on the board to identify those
attacking multiple opponent pieces simultaneously using board.attacks() to count the number
of opponent pieces under attack from each piece from python-chess library. A random piece
creating a fork is selected as the correct answer, while three random non-forking pieces
are sampled as incorrect options. All incorrect options reference legitimate pieces of the
appropriate color on the board, making the task require genuine tactical understanding
rather than simple pattern matching.

Legal Move Discrimination. The legal move discrimination task evaluates whether models
can distinguish legal from illegal moves in complex positions. Chess positions frequently
contain moves that appear valid but are illegal due to pins, checks, or other tactical con-
straints. We constructed this task by loading chess positions from FENs and identifying
legal moves using the board.legal moves generator from the python-chess library. We then
generate plausible-looking illegal moves from appropriate pieces but to invalid destinations.
These illegal moves fall into several categories: moves that would leave the king in check,
moves of the correct piece color but to illegal destinations, and moves that appear geometri-
cally plausible but violate piece movement rules. For each position, we select one random
legal move and three illegal moves, presenting the position and candidate moves across all
modalities.

Puzzle Solving. The puzzle solving task challenges models to find the best move in tactical
positions drawn from the Lichess puzzle database. We carefully selected puzzles with a
maximum ELO rating to ensure appropriate difficulty for current models. For each puzzle,
we parse the FEN position and the first move from the puzzle sequence, then apply this
move to reach the position where the model must find the best continuation. The best
move, provided by the dataset, is presented alongside three randomly selected legal but
suboptimal moves as multiple-choice options obtained from python-chess library.

Position Evaluation. The position evaluation task assesses a model’s ability to judge the
relative advantage in a chess position. Professional chess engines like Stockfish quantify
advantage using centipawn values, where positive values indicate an advantage for White
and negative values for Black. We selected positions from a pre-evaluated Lichess database
where positions had moderate advantages to avoid trivial cases. For each position, we
created four evaluation options by taking the correct centipawn value and applying offsets
to the correct answer. This task is particularly challenging as it requires holistic assessment
of multiple factors including material balance, piece activity, king safety, and pawn structure
that transcend simple piece counting to correctly evaluate positions.

All chess tasks utilize python-chess library’s SVG rendering capabilities through
chess.svg.board() to generate visualizations, which are then converted to PNG images using
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Cairosvg. Positions are presented with appropriate board orientation, with board flipped
when Black to move and with coordinate notations to ensure complete information is avail-
able in the visual modality. For each task, we carefully selected 200 samples to create a
balanced and challenging dataset.

C.3.2 Chemistry

Molecular chemistry provides another appropriate test domain for modality equivalence
due to its dual representation systems: visual structural diagrams and symbolic SMILES
notation. We developed four chemistry-based tasks that evaluate understanding of molecu-
lar properties across different modalities, ensuring each task can be solved through either
visual inspection of molecular diagrams or analysis of SMILES notation.

Carbon Counting. The carbon counting task tests a model’s ability to accurately count the
number of carbon atoms in organic molecules. We selected molecules from the ChemQA
dataset with substantial carbon content to create appropriately challenging problems. Using
RDKit, we parse the SMILES notation of each molecule and programmatically identify the
exact carbon atom count to yield the correct answer, with incorrect options differing by
multiples of offset.

Hydrogen Counting. The hydrogen counting task is similar to the carbon counting one.
Using RDKit’s GetTotalNumHs() method, we calculate the total hydrogen count for each
molecule, including both explicit and implicit hydrogens. This task requires understanding
of organic chemistry valence rules to correctly infer hydrogen positions that may not be
explicitly shown in the molecular diagram or directly encoded in the SMILES string.

Molecular Weight Calculation. The molecular weight calculation task assesses a model’s
ability to estimate the molecular mass of chemical compounds. We use RDKit’s Descrip-
tors.MolWt() function to calculate the exact molecular weight of each compound based on its
atomic composition. For each molecule, we generate four options where the correct answer
is the actual molecular weight and incorrect options differ by a percentage-based offset.

Molecular Caption Matching. The molecular caption matching task evaluates semantic un-
derstanding of molecules by requiring models to identify the most accurate description for a
given molecule. We curated a set of expert-written molecule descriptions from the ChemQA
dataset, where each description explains a molecule’s structure, function, or biological activ-
ity. For each target molecule, we present its structure along with four possible descriptions,
only one of which correctly describes the molecule. To ensure challenging distractors, we
use the Multilingual-e5-large-instruct embedding model to identify semantically similar but
incorrect captions based on cosine similarity.

The visual representations of all chemistry tasks are generated using RDKit’s
Draw.MolToImage() function with consistent size parameters. For each task, we carefully
selected 200 samples to create a balanced and challenging dataset.

C.3.3 Music

Musical notation provides a complex test domain for modality equivalence, as it combines
visual symbols with structured temporal patterns. We developed four music-based tasks
that evaluate understanding of musical compositions across different modalities, ensuring
each task can be solved through either visual analysis of sheet music or interpretation of the
symbolic ABC notation format.

Note Counting. The note counting task assesses a model’s ability to accurately count
specific note occurrences in musical compositions. Using the music21 library, we parse
ABC notation from the Irishman dataset and systematically count occurrences of each note
type from A to G using the score.flat.getElementsByClass(’Note’) method. For each piece, we
randomly select a target note that appears in the composition and create multiple-choice
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options where the correct answer represents the actual note count, with incorrect options
differing by an offset that scales based on the correct count.

Measure Counting. The measure counting task tests a model’s ability to identify the total
number of measures in a musical composition. We use music21’s parsing to count measures
from the ABC notation, applying the part.getElementsByClass(’Measure’) method to identify
distinct measures in the score. As with the note counting task, the offset for incorrect options
scales with the distance from the correct answer, making the task more difficult for pieces
with ambiguous measure counts or complex repeat structures that might confuse measure
counting.

Musical Form Identification. The musical form identification task evaluates a model’s
understanding of compositional structure. Using a curated dataset of musical pieces with
labeled forms from the music theory dataset1, we present models with sheet music or ABC
notation and ask them to identify the correct musical form from options including Only
One Section, Through Composed, Compound Binary, Compound Ternary, and American
Popular forms. This task requires understanding of how musical sections relate to each other
and recognition of structural patterns that define different compositional forms, testing
higher-level music theory knowledge.

Rhythm Pattern Detection. The rhythm pattern detection task examines a model’s ability
to identify specific rhythmic patterns within a composition. Using custom pattern matching
regular expressions that analyze ABC notation, we identify measures containing specific
dotted note patterns (including dotted sixteenth, dotted eighth, dotted quarter, or dotted
half notes). For each composition, we select a measure containing the target rhythm pattern
and create options with three measures that don’t contain the pattern to make up the false
answers.

All music tasks are presented in both standard five-line staff format generated using mu-
sic21’s rendering capabilities and symbolic ABC notation format. The sheet music images
are standardized to 600×600 pixel square images, ensuring consistent visual representation.
We carefully filtered and balanced each task category to create a comprehensive benchmark
of 200 samples for evaluating music understanding across modalities.

C.3.4 Graph

We present a series of stochastic algorithms for generating graph-related tasks. Each algo-
rithm dynamically creates suitable graphs with specific constraints to ensure appropriate
difficulty levels and clear conceptual focus.

The framework follows a general pattern: (1) Generate candidate graphs with controlled
parameters, (2) Filter graphs to ensure they satisfy task-specific constraints, (3) Generate
correct solutions, plausible distractors, and incorrect options, and (4) Format and return the
complete task with answer options.

Each specific task generator (Cycle Detection, Path Counting, Path Existence, BFS Traversal)
implements this framework with task-specific constraints and choice generation logic.

1https://huggingface.co/datasets/Seeker38/music abc notation with music theory
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Algorithm 1: Generate Cycle Detection Task
Initialize max attempts← 50
for attempt = 1 to max attempts do

Generate random directed graph D with few nodes
Convert D to undirected graph G
if D not connected then

continue
end
if D has no cycles then

continue
end
directed cycles← all simple cycles in D
undirected cycles← all simple cycles in G
if no new cycles in undirected graph then

continue
end
▷ Design answer choices
Correct← random cycle from directed cycles
Confusion← cycle in G but not in D
▷ Generate incorrect answers
Incorrect← two paths that:

- Are not part of any cycle
- Cannot form a cycle
- Are distinct

if failed to generate any answer then
continue

end
return D, G, Correct, Confusion, Incorrect

end
return failure
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Algorithm 2: Generate Path Counting Task

begin
Initialize max attempts← 50
for attempt = 1 to max attempts do

Generate random undirected graph G with few nodes
if G not connected then

continue
end
if too few nodes in G then

continue
end
Create and shuffle all possible source-target pairs
foreach (source, target) in shuffled pairs do

if no path exists from source to target then
continue

end
Count all simple paths from source to target
if 1 < path count < 10 then

▷ Generate answer options
correct answer ← path count
o f f set← ⌈0.1× edge count + 1⌉
options← empty list
for delta = −o f f set to o f f set do

if delta ̸= 0 and path count + delta > 0 then
Add path count + delta to options

end
end
while |options| < 3 do

o f f set← o f f set + 1
Add viable options using new offset

end
if |options| > 3 then

Sort options by distance from path count
Keep only closest 3 options

end
return G, source, target, path count, options

end
end

end
return failure

end
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Algorithm 3: Generate Path Existence Task

begin
Initialize max attempts← 50
for attempt = 1 to max attempts do

Generate random directed graph D with few nodes
Convert D to undirected graph G
if D not connected or too few nodes then

continue
end
Create and shuffle all possible source-target pairs
foreach (source, target) in shuffled pairs do

if no path exists from source to target in D then
continue

end
Get directed paths in D and undirected paths in G
if too few or too many paths then

continue
end
if any undirected path differs from all directed paths then

source node← source
target node← target
▷ Generate answers
correct← random directed path from source to target
tricky← undirected path not in directed paths
▷ Generate incorrect answers
incorrect← empty list
for up to 50 attempts do

if |incorrect| = 2 then
break

end
▷ Try different strategies to generate invalid paths
non path← one of:

1. Path with invalid edges
2. Path with repeated nodes
3. Random sequence of nodes

if non path is valid and not duplicate then
Add non path to incorrect

end
end
if correct ̸= None and tricky ̸= None and |incorrect| = 2 then

return D, G, correct, tricky, incorrect
end

end
end

end
return failure

end
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Algorithm 4: Generate BFS Traversal Task

begin
▷ Generate suitable graph and BFS levels
for attempt = 1 to max attempts do

Generate random undirected graph G
if G not connected or has too few nodes then

continue
end
foreach start node in shuffled nodes do

level groups← BFS levels from start node
if fewer than 3 levels or unsuitable level sizes then

continue
end
correct order ← flattened level groups (nodes sorted within levels)
return G, start node, level groups, correct order

end
end
▷ Generate answer options
con f using distractor ← None
for several attempts do

Copy level groups to distractor levels
Swap nodes between non-root levels
distractor order ← flattened distractor levels
if distractor order ̸= correct order then

con f using distractor ← distractor order
break

end
end
incorrect options← empty list
for several attempts do

if |incorrect options| = 2 then
break

end
▷ Try shuffling level structure
Copy and shuffle non-root levels while keeping root fixed
incorrect order ← flattened shuffled levels
if incorrect order is valid and unique then

Add to incorrect options
end

end
▷ Format and return results
Format all traversal options with level grouping
Combine into option list and shuffle
correct idx ← index of correct option
return G, option list, correct idx, level sizes

end
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CIFAR-100 SEAM CIFAR-100 SEAM
Qwen2.5-VL-7B-Instruct Qwen2.5-VL-72B-Instruct

Language
Vision
Language+Vision

Figure 8: T-SNE visualization of modality-specific embeddings from Qwen models.

D Internal Representation Alignment

SEAM also enables us to investigate how VLMs process semantically equivalent information
across different input formats internally. A fundamental capability of robust VLMs is to
create unified representations across modalities that align on semantic content rather than
cluster by input format (Pandey et al., 2022; Zhang et al., 2023a). Following insights from
Huang et al. (2024) that effective VLMs should narrow the modality gap in deeper layers,
we examine the final layer representations of both Qwen2.5-VL-7B-Instruct and Qwen2.5-
VL-72B-Instruct models to investigate whether current VLMs achieve this capability on our
challenging benchmark.

We include CIFAR-100 (Krizhevsky et al., 2009) as a comparison baseline because it repre-
sents a simple and well-established dataset, serving as an approximate upper bound for
cross-modal alignment. We extract embeddings from three input modalities: language-only,
vision-only, and multimodal (language plus vision) for both datasets. These embeddings are
then projected into two-dimensional space using T-SNE (Van der Maaten & Hinton, 2008)
for visualization and analysis. Fig 8 presents these T-SNE visualizations from both model
scales. For CIFAR-100, we observe that the models demonstrate integrations of embeddings
across modalities, indicating fairly successful cross-modal alignment for simple categorical
information. In contrast, our SEAM benchmark reveals persistent modality gaps at the
final layer in both models, with embeddings from all three modalities forming distinct
clusters with minimal overlap. This disparity in separation magnitude suggests the issue
extends beyond any natural tendency to preserve modality-specific information for output
purposes, as both datasets would show similar patterns if that were the only factor. Instead,
this separation demonstrates that despite impressive performance on standard benchmarks,
current VLMs struggle to form unified representations when reasoning over semantically
equivalent information presented in fundamentally different notation systems.

D.1 Embedding Extraction

For the Qwen2.5-VL-7B-Instruct and Qwen2.5-VL-72B-Instruct models analyzed, we extract
embeddings from each transformer layer l ∈ {1, 2, ..., L} in the language decoder part, where
L represents the total number of layers. Given an input i in modality m ∈ {language(L),
vision(V), vision-language(VL)}, we extract the hidden states hl

i,m ∈ Rsm×d, where sm is the
sequence length for modality m and d is the hidden dimension.

To obtain a single representative embedding for each input-modality pair, we apply mean
pooling across all tokens:

h̄l
i,m =

1
sm

sm

∑
j=1

hl
i,m,j (1)

This approach captures comprehensive representations for both image and text inputs,
rather than relying solely on special tokens like [CLS] or [IMG], which might not fully
encapsulate modality-specific information in intermediate layers (Jiao et al., 2024).
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D.2 Cross-Modal Representation Analysis

D.2.1 T-SNE Visualization

We run T-SNE on the mean-pooled embeddings to visualize the embedding spaces across
modalities. For the models involved, we extract embeddings from the final layer for
inputs from CIFAR-100 and our SEAM benchmark in three modalities: language, vision,
and language+vision. For the CIFAR-100 dataset, we use class labels as the language
input. For our SEAM benchmark, we use the pure symbolic representation without further
guidance prompts as the language input. The T-SNE algorithm is then applied with a
perplexity of 30 and 1,000 iterations to obtain a two-dimensional projection that preserves
local neighborhood relationships.
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