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Abstract

Test-time Compute (TTC) substantially improves LLM reasoning accuracy by
allowing models to think through multi-step intermediate reasoning. However,
extended reasoning chains can dramatically increase inference cost, motivating
frameworks that dynamically trade off computational expense against the expected
improvement. We introduce a dual-threshold framework that adaptively allocates
computation: an upper threshold that halts reasoning once sufficient confidence
on answer correctness is reached, and a lower threshold that abandons instances
where continued reasoning is unlikely to yield any correct answer. To determine
these thresholds in a principled way, we employ Distribution-Free Risk Control
(DFRC), which guarantees user-specified bounds on the accuracy loss relative to
full reasoning. Across two open-weight reasoning models and four benchmarks,
our approach reduces reasoning cost by up to 52% (on AIME) while maintaining
accuracy within a narrow margin of full TTC.

1 Introduction

Test-time compute (TTC) has become a key driver of advances in LLM reasoning, powering systems
like DeepSeek-R1 [4]. By externalizing reasoning into intermediate steps, TTC delivers substantial
accuracy gains. Yet these gains come at the cost of long reasoning chains and inference cost. The
central challenge is deciding, step by step, whether additional reasoning justifies the extra compute.

Prior frameworks typically terminate reasoning once further steps add little to performance [13, 16].
We refer to these as “upper-threshold” methods, which halt when the answer is deemed “good
enough.” In contrast, we explore the complementary idea of a lower threshold, which detects when
an instance is too difficult within the compute budget and halts early to reallocate resources elsewhere.
Specifically, we introduce a parametric lower-threshold mechanism (Fig. 1) alongside the upper
threshold. It enforces monotonic growth in model confidence during reasoning, and halts if confidence
falls below a target value, indicating insufficient progress.

A key practical challenge is selecting the lower-threshold function. Unlike model confidence—which,
when well-calibrated, directly reflects predictive risk in terms of correctness—the lower threshold
parameter lacks an obvious interpretability, and its value range can vary widely. To address this,
we employ Distribution-Free Risk Control [3, DFRC], which jointly selects the lower-threshold
parameter and upper-threshold value on a validation set given a user-specified target risk, thereby
ensuring guaranteed risk bounds (§2).

While DFRC has proven effective for early exiting in contexts such as layer-wise exiting [14, 7] and
speculative decoding [9], it has not been explored for inference-time reasoning. Adapting DFRC
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(a) Upper Threshold Exit (Probe-based confidence)
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(b) Lower Threshold Exit (Probe-based confidence)
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(c) Upper Threshold Exit (Internal confidence)
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(d) Lower Threshold Exit (Internal confidence)

Figure 1: Different threshold configurations in our risk-control framework on four AIME questions.
The x-axis denotes the reasoning step index, and y-axis shows proxy confidence signals computed
using either probe-based or internal measures (§3) indicated by the blue curve traces. The label
“cumulative” denotes the mean of all signals up to each step, while “sliding window” indicates the
mean over the most recent five steps. Markers × indicate incorrect intermediate answers, and •
indicate correct ones. Each subfigure compares the upper threshold (green line; §2.1) and the
adaptive lower threshold (orange curve; §2.2) that guide early exit. A larger • indicates an early
exit that yields a correct intermediate answer under the upper threshold, while a larger • denotes
an effective early exit on instances where the model’s current answer is incorrect and unlikely to
become correct with further reasoning. For illustration, the confidence trajectory is shown beyond the
exit point to indicate how it would have evolved without early stopping. As shown, our framework
calibrates per-instance thresholds that enable effective and well-timed early exits.

to this setting introduces unique challenges: reasoning steps are temporally correlated, confidence
estimates fluctuate non-monotonically, and stopping decisions must be calibrated across entire
reasoning trajectories rather than individual steps. To address these challenges, we introduce time-
adaptive parametric lower thresholds that vary dynamically with the reasoning step index—forming
a parametric family of thresholds rather than a single fixed one—and a dual-threshold calibration
framework that jointly optimizes high- and low-confidence exits across full reasoning trajectories.

In summary, our contributions are twofold: (1) We cast selective TTC as a risk-control problem
and propose a dual-threshold mechanism that unifies stopping (when the answer is sufficient) and
continuation (when further reasoning is beneficial), leveraging signals such as model confidence,
token entropy, and probe predictions. (2) We empirically evaluate our method on two open-weight
reasoning models and four datasets, achieving up to 52% reduction in reasoning cost on AIME while
maintaining or improving accuracy, and enabling explicit user control over the risk–compute tradeoff.

Related Work: Recent work has sought to reduce the cost of test-time reasoning by learning when
to stop generating intermediate steps. These adaptive stopping methods terminate reasoning once
further steps are unlikely to change the outcome, using strategies such as plateau detection [13, 10],
high-confidence thresholds [8, 15], or intermediate-answer consistency [5]. We refer to these as upper-
threshold methods, which halt once the model is sufficiently confident. In contrast, we introduce
a complementary lower-threshold mechanism that identifies cases where continued reasoning is
unproductive, allowing compute to be reallocated to more promising instances.

A related effort by Fu et al. [6] explores low-confidence exits but operates over multiple reasoning
chains with a fixed lower threshold. In contrast, our method performs early exiting within a single
reasoning trajectory, enabling a finer-grained and more adaptive stopping policy. Moreover, we use
DFRC [3, 12] to set thresholds in a principled way, providing formal accuracy guarantees and proven
effectiveness in early-exit and selective-prediction tasks [7, 9].
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2 Risk Control for Inference-Time Early Stopping

To formalize the trade-off between computational efficiency and predictive reliability, we introduce
a framework for risk-controlled early stopping. At each reasoning step t (see Appendix B for the
definition), the model produces an intermediate prediction ŷt with an associated confidence signal st.
The central question is when to terminate reasoning so that computation is minimized while keeping
the probability of an incorrect final answer provably small.

What is “risk”? Intuitively, risk quantifies how much accuracy we are willing to trade for efficiency.
Bounding this risk ensures we save compute only when doing so does not significantly increase the
chance of error. A formal definition of selective risk and its estimation appears in Appendix E.

Two types of early exit: We instantiate this principle through two complementary exit mechanisms:

• Upper-threshold Exit: stops reasoning once confidence exceeds a threshold, indicating further
computation is unlikely to change the answer—saving compute on easy cases.

• Lower-Threshold Exit: halts reasoning when confidence stays low, avoiding wasted computation
on problems the model is unlikely to solve correctly.

Throughout this section, y⋆i denotes the ground-truth answer for instance i, ŷi, t the model’s step-t
prediction, si, t its confidence signal, and ŷi,final its final output after full reasoning. Two thresholds,
τhigh and τlow, govern early exits triggered by high or low confidence, respectively.

2.1 Upper Threshold Exit: Halting Inference Once Confident in Correctness

To avoid wasting computational resources on instances where the model is already certain, we
implement a high-confidence exit. The model stops generating further reasoning steps as soon as its
confidence in an answer ŷt exceeds a predefined upper threshold, τhigh. The primary risk associated
with this strategy is being confidently wrong. We can formalize this risk as an expected loss, ensuring
that the probability of an incorrect prediction, given high confidence, is bounded by a small value ε:

E
[
1{ŷt ̸= y⋆i }

∣∣ si,t ≥ τhigh
]
≤ εhigh, (1)

A second key risk to control is the performance-gap risk. This quantifies the change in loss incurred
by early-exiting compared to the loss from letting the model run to completion. The goal is to ensure
that computational savings do not come at the cost of a significant drop in performance. Let t be
the step where an early exit occurs for a given query i. The performance-gap risk is the expected
difference between the error of the early-exit answer, ŷi,t, and the error of the final answer from the
full model, ŷi,final. We can bound this risk by a value εgap:

E [1{ŷi,t ̸= y⋆i } − 1{ŷi,final ̸= y⋆i }] ≤ εgap (2)

This ensures that the overall early-exit policy does not introduce substantially more errors than the
full model would have.

2.2 Lower Threshold Exit: Stopping Early When the Answer Appears Unreachable

We also exit early when the model’s confidence signals that continued reasoning is unlikely to yield
a correct answer. This scenario captures two distinct failure modes: degrading reasoning, which
occurs when the model’s confidence deteriorates, falling below a static lower threshold τlow, and
unproductive reasoning, which occurs when the model becomes stuck and its confidence stagnates
without significant improvement over a series of steps. This is detected using a parametric condition
and prevents wasting computation on futile reasoning chains.

Let t denote the reasoning step at which an early exit is triggered and let j > t index subsequent
steps in the same trajectory. The key risk in this case is halting too soon—exiting at step t when the
model might have recovered and produced a correct answer at some later step j. We bound this risk
by a small tolerance εlow:

E
[
max
j>t

1{ŷi,j = y⋆i }
]
≤ εlow. (3)
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While static thresholds τlow provide a simple mechanism for controlling early exits, they can be overly
rigid across different reasoning trajectories. In particular, a fixed τlow may prematurely stop short
reasoning chains yet fail to terminate longer, stagnant ones.

To address this, we introduce adaptive threshold schedules that evolve with the reasoning step t.
A common choice is a parametric schedule that gradually increases τlow(t) as t grows, discourag-
ing very early exits while allowing termination after prolonged low-confidence phases. Detailed
implementation and equations are shown in Appendix E.

This dynamic calibration improves both stability and coverage, ensuring that early-stopping behavior
adapts to the difficulty and length of each reasoning trajectory. We show a few per-question examples
with lower-threshold exits for a (given signal) below.

2.3 Distribution-Free Risk Control Calibration (DFRC)

Thresholds such as τhigh and c, whether static or adaptive, must be chosen to keep risk below a desired
tolerance on unseen data. We achieve this via DFRC, which guarantees: Pr[R(τ) ≤ ε] ≥ 1 − δ,
ensuring risk ≤ ε with probability 1 − δ on onseen data. We calibrate thresholds using one of
three procedures: Conformal Risk Control(CRC) [2], Upper Confidence Bound (UCB) [3], and
Learn-Then-Test (LTT) [1]. Given a target risk level ε, each method selects τhigh (and, when
applicable, parameters for τlow(t)) to control empirical test risk from the validation set. CRC employs
a regularized empirical bound, UCB applies a Hoeffding upper confidence bound, and LTT performs a
Hoeffding–Bentkus hypothesis test. DFRC thus produces thresholds that maximize compute savings
while maintaining formal accuracy guarantees (see Appendix E.4 for details).

3 Experimental Setup

Models: We evaluate two models: DeepSeek-R1-Distill-Qwen-7B and DeepSeek-R1-Distill-Qwen-
32B. All models are run under a fixed budget forcing setup with the official decoding parameters
(temperature = 0.6, top-p = 0.9). Please check Appendix B for the generation protocol.

Datasets: We evaluate across four benchmarks: (a) AIME (1983–2024): Used both for probe
training (1983–2022) and evaluation (2022–2024). We measure internal confidence, entropy, and
probe signals on this dataset. (b) GPQA-D: Graduate-level physics reasoning questions. (c) MuSR:
Subsets covering murder mysteries and object placements, evaluated separately. (d) HLE: Graduate-
level questions, filtered to text-only math data as DeepSeek is not multimodal.

Extracting signals on model confidence: We study three types of confidence signals: two non-probe
baselines and one probe-based signal.
(a) Internal confidence: For each final candidate answer, we compute the internal confidence of the
model as the normalized logarithmic probability of the generated answer tokens. This measures the
model’s self-estimated likelihood under its decoding distribution.
(b) Entropy: We compute Shannon entropy over the distribution of the first token of the forced final
answer following [16]. Please refer to Appendix C for details of implementation.
(c) Probe-based confidence: We train probes on AIME data to estimate stepwise correctness from
hidden representations. This signal is math-specific and is therefore evaluated only on AIME and the
math subset of HLE. Please check Appendix C for the details of probing implementation.

4 Experimental Results

We present our results in twofolds: we first present the results with the lower-threshold-only early-
exiting, which is an under-explored domain that previous works have not considered. Then, we
present the combination of lower and higher thresholds to demonstrate the effectiveness of our
framework in token reduction and accuracy retention. Please check Appendix F for more results.

Lower-Threshold-Only Early Exiting Results: In the lower-threshold-only setting (Fig. 2), we
observe that introducing a stopping rule based solely on low-confidence signals already yields
meaningful token savings while maintaining accuracy close to the baseline. By abstaining on
hopeless cases, we observe further gains in effective accuracy. For example, on AIME (1983–2024)
with confidence as the signal, the curve demonstrates that early termination can discard unproductive
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reasoning without substantially increasing risk. Similarly, the probe confidence variant on the AIME
(2022-2024) split shows that auxiliary correctness signals can act as effective triggers for early
exit. These results confirm that the lower-threshold-only regime is not only viable but also offers a
previously underexplored avenue for reducing unnecessary computation. We explain the discrepancy
of the baseline accuracy in Appendix F.1

(a) DeepSeek-7B (AIME 2022–
2024, probe confidence)

(b) DeepSeek-7B (AIME 1983-
2024, confidence)

(c) DeepSeek-7B (GPQA-D, confi-
dence)

Figure 2: Lower-threshold-only early-exiting results across datasets using DeepSeek-7B under differ-
ent confidence signals. The Baseline denotes standard inference without early stopping. Conformal
Risk Control, Upper Confidence Bound, and Learn-Then-Test correspond to the three early-exiting
strategies introduced in §2.3. The top panels show early-stopping accuracy, computed over only those
examples that were not terminated by the lower threshold. The bottom panels show the proportion
of questions skipped as a function of total reasoning budget. In total, the AIME 2022–2024 dataset
contains 73 questions, the AIME 1983–2024 dataset 933 questions, and the GPQA-D dataset 198
questions. These results highlight how lower-threshold exiting improves compute efficiency by real-
locating reasoning steps from unproductive instances to those more likely to yield correct answers.

Combined Early Exiting Results: When we extend to the combined-threshold framework (Fig. 3),
the benefits become more pronounced. The dual thresholds allow us to both (i) terminate early when
reasoning is unproductive and (ii) stop once confidence is sufficiently high. This yields stronger
budget–efficiency trade-offs across multiple datasets and models. In particular, DeepSeek-32B on
GPQA-D and AIME exhibit smoother gains, showing that larger models are able to capitalize more
effectively on the thresholding strategy. Meanwhile, the 7B model on AIME with probe confidence
highlights that learned correctness signals can further enhance efficiency. Together, these results
demonstrate that the combined framework consistently reduces token usage while preserving, and in
some cases even slightly improving, accuracy relative to full test-time compute.

(a) DeepSeek-32B (GPQA-D, Inter-
nal Confidence)

(b) DeepSeek-32B (AIME 1983–
2024, Internal Confidence)

(c) DeepSeek-7B (AIME 2022–
2024, Probe-based confidence)

Figure 3: Combined upper and lower threshold early-exiting results across models and datasets.
Each panel shows budget–efficiency comparison under different signals. The Baseline denotes
standard inference without early stopping. Conformal Risk Control, Upper Confidence Bound, and
Learn-Then-Test correspond to the three early-exiting strategies introduced in §2.3.

5 Conclusion

We introduced a framework for adaptive TTC that uses dual thresholds to decide when further
computation is unnecessary or sufficient. This approach provides risk guarantees and reduces
inference cost, offering a practical path for efficient reasoning-augmented LLMs.
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Andersson Naesseth, and Eric Nalisnick. Fast yet safe: Early-exiting with risk control. Advances
in Neural Information Processing Systems, 37:129825–129854, 2024.

[8] William Jurayj, Jeffrey Cheng, and Benjamin Van Durme. Is that your final answer? test-time
scaling improves selective question answering. In Proceedings of the 63rd Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers), pages 636–644, 2025.

[9] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via
speculative decoding. In International Conference on Machine Learning, 2022.

[10] Minjia Mao, Bowen Yin, Yu Zhu, and Xiao Fang. Early stopping chain-of-thoughts in large
language models, 2025.

6



[11] Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi,
Luke Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple
test-time scaling. arXiv preprint arXiv:2501.19393, 2025.

[12] Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Tran, Yi Tay, and
Donald Metzler. Confident adaptive language modeling. Advances in Neural Information
Processing Systems (NeurIPS), 35:17456–17472, 2022.

[13] Menghua Wu, Cai Zhou, Stephen Bates, and T. Jaakkola. Thought calibration: Efficient and
confident test-time scaling. ArXiv, abs/2505.18404, 2025.

[14] Andrea Wynn, Metod Jazbec, Charith Peris, Rinat Khaziev, Anqi Liu, Daniel Khashabi, and
Eric Nalisnick. Safe and efficient in-context learning via risk control, 2025.

[15] Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Qiaowei Li, Zheng Lin,
Li Cao, and Weiping Wang. Dynamic early exit in reasoning models, 2025.

[16] Xixian Yong, Xiao Zhou, Yingying Zhang, Jinlin Li, Yefeng Zheng, and Xian Wu. Think or
not? exploring thinking efficiency in large reasoning models via an information-theoretic lens.
arXiv preprint arXiv:2505.18237, 2025.

[17] Anqi Zhang, Yulin Chen, Jane Pan, Chen Zhao, Aurojit Panda, Jinyang Li, and He He. Reasoning
models know when they’re right: Probing hidden states for self-verification, 2025.

A Test-Time Compute and Motivation

Test-time reasoning has been shown to substantially improve model accuracy on challenging domains
such as mathematics and question answering. In particular, allocating a larger computation budget,
by allowing the model to generate more tokens, can lead to higher final accuracy.

To study this effect, we evaluate DeepSeek-Distill-Qwen-32B under a budget-forcing setup, where
the model is prompted with the string Final answer: \boxed{ to elicit a boxed final answer per
100 generated tokens. We record accuracy as a function of the number of generated tokens.

Figure 4: Performance of DeepSeek-Distill-Qwen-32B on AIME (2022–2024). Accuracy consistently
improves as more tokens are generated.

While both benchmarks show clear gains from additional computation, we also observe a diminishing
returns effect: beyond a certain point, generating extra tokens no longer yields substantial accuracy
improvements. This naturally motivates the question: can we identify and save the surplus tokens
that do not contribute to accuracy gains?

B Generation Protocol

Following [15], each problem is allotted a total budget of 10,000 tokens: 9,000 for the thinking
phase and 1,000 for the final-answer phase. If the model attempts to terminate early (e.g., by
producing EOS or stop tokens), we append benign filler tokens (the token wait) until the 9k-token
thinking budget is exhausted, following the protocol introduced in S1 Scaling [11]. We used the
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Figure 5: Performance of DeepSeek-Distill-Qwen-32B on GPQA-Diamond. Accuracy similarly
increases with more tokens.

system prompt: Please reason step by step, and put your final answer within
boxed. and we put the question from the give dataset to the user prompt. We used 4 A100 GPUs
with 80 GB of memory for inference.

C Signal Extraction Details

We follow the method proposed in DEER [15], appending the string Final answer: \boxed{ to
the model prompt to force generation of a boxed answer. The confidence and entropy signals are
computed over these forced answer tokens. We define a reasoning step as the thought until we hit the
"wait" token. At this point we append wait again to prompt the model to continue thinking therefore
the steps are of arbitrary length and constitute one logical thought until the model shifts it’s thought
process signaled by "wait"

C.1 Internal Confidence

Confidence Computation. Following [15], we define the confidence of a generated sequence
a = (a1, . . . , an) as the geometric mean of its per-token probabilities:

C =

(
n∏

i=1

p(ai)

) 1
n

, p(ai) = softmax
(
M(P, T, I, a<i)

)
ai

(4)

whereM denotes the LM head producing logits and the softmax normalizes over the vocabulary to
yield token probabilities.

Algorithm 1 Confidence Computation from vLLM Log-Probabilities

1: Input: Log-probabilities {log p(a1), . . . , log p(an)} from vLLM output
2: Initialize: log_prob_sum← 0
3: for i← 2 to n do ▷ Skip first generated token (e.g., “{” delimiter)
4: log_prob_sum← log_prob_sum+ log p(ai)
5: end for
6: Compute confidence:

C ← exp
(log_prob_sum

n− 1

)
7: Return C

Note. The log-probabilities log p(ai) provided by vLLM are already post-softmax, i.e. p(ai) =
softmax(M(P, T, I, a<i))ai

. Exponentiating them recovers the normalized probabilities directly, so
no explicit softmax operation is needed in implementation.
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C.2 Entropy

Definition. Following [16], we quantify the model’s token-level uncertainty using the Shannon
entropy:

H(p) = −
k∑

i=1

pi log pi, (5)

where {p1, . . . , pk} is a categorical probability distribution over candidate tokens (or answers).

Multiple-Choice Setting. For multiple-choice (MCQ) datasets, we compute entropy over the top-k
tokens following the boxed-answer prefix:

HMCQ = −
k∑

i=1

p̃i log p̃i, p̃i =
pi∑k
j=1 pj

, (6)

i.e., a truncated and renormalized distribution over the top-k candidate options.

Note. We prefer top-k entropy over restricting to {A,B,C,D} because it accounts for probability
mass that the model assigns to spurious or off-distribution tokens. This yields a more faithful measure
of uncertainty: if the model is highly confident in a non-option token, HMCQ will reflect that low
confidence in all valid options.

Free-Form Setting. For open-ended answers, our goal is to estimate the sequence-level entropy of
the model’s answer distribution:

Htrue = −
∑
y∈Y

P (y | x) logP (y | x),

where Y is the set of all possible completions and

P (y | x) =
|y|∏
t=1

p(at | x, a<t)

is the sequence probability of completion y = (a1, . . . , a|y|) given prompt x, expressed as a product
of token-level probabilities.

Since Y is exponentially large, we approximate this distribution by constructing a high-probability
subset Ŷ using a lightweight beam search. Specifically, Ŷ contains all answer completions discovered
by expanding the top-b partial sequences token-by-token until either a \boxed{} answer is closed or
the search reaches a maximum depth T .

We then construct a truncated and renormalized distribution:

P̃ (y | x) = P (y | x)∑
y′∈Ŷ P (y′ | x)

, y ∈ Ŷ,

and compute the beam entropy:

Hbeam = −
∑
y∈Ŷ

P̃ (y | x) log P̃ (y | x).

This is analogous to top-k entropy in the MCQ setting, but defined over completed answers instead
of tokens.
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Algorithm 2 Beam-Search-Based Entropy Estimation for Free-Form Answers

1: Input: Prompt token sequence x, beam size b, maximum expansion steps T
2: Initialize: Beam B ← {(c = x, p = 1.0)} where c is a token sequence (context) and p its

cumulative probability; completed map C ← {} ▷ dictionary mapping answer string→
cumulative probability

3: for t← 1 to T do ▷ repeat expansion for at most T decoding steps
4: Initialize empty list Bnext for next-step beam
5: for each (c, p) ∈ B do
6: Expand c by querying the model for its top-b next tokens
7: for each candidate next token a from the top-b distribution do
8: p′ ← p · p(a|c), c′ ← c ∪ a
9: if c′ closes a boxed answer then

10: s← extract_last_boxed(c′)
11: C[s]← C[s] + p′ ▷ accumulate probability mass if s was found via multiple paths
12: else
13: Add (c′, p′) to Bnext
14: end if
15: end for
16: end for
17: Keep only the top-b elements of Bnext by probability
18: if Bnext is empty then ▷ no partial completions remain to expand; terminate search early
19: break
20: end if
21: B ← Bnext
22: end for
23: Normalize probabilities: ps ← ps/

∑
s∈C ps for s ∈ C

24: Compute entropy:
Hbeam = −

∑
s∈C

ps log ps

25: Return Hbeam

C.3 Probes

Representation extraction and labeling: Let P denote the original problem prompt and x1:T

the budget-forced trajectory. Suppose the model emits K candidate final answers at token indices
1 ≤ t1 < · · · < tK ≤ 9000, with the s-th candidate answer denoted âs. For each step s, we
reconstruct the decoding context

Cs = [P ; x1:ts ],
and extract the hidden representation of the last token:

hs ∈ Rd.

Each step is labeled according to correctness relative to the gold answer a⋆:
ys = I[âs = a⋆] ∈ {0, 1}.

This yields a dataset
D = {(hs, ys)}Ks=1.

Probe model and training: We train a two-layer MLP probe [17] to predict stepwise correctness
ys from the representation hs. Unless otherwise specified, features are extracted exactly as described
above. The probe is trained on AIME 1983–2022, with optional mixing of∼ 400 additional problems
from the MATH training split, yielding 2 probes for evaluation. Evaluation is performed on AIME
2022–2024.

Outputs and usage: After training, we apply the best-performing probe to AIME 2022–2024
trajectories, obtaining stepwise confidence scores

πs = Probe(hs) ∈ [0, 1].

These probe-based signals are used alongside internal confidence and entropy in our downstream
analyses and decision policies.
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D Analysis of Signals

We analyze two dataset-level signals—confidence and entropy—by bucketing steps every 100 tokens
and averaging accuracy per bucket. Per-token probe training is computationally heavy and poorly
calibrated at this granularity, so we present probe results only as per-instance correctness timelines.

D.1 Confidence Calibration

D.1.1 Confidence and Entropy Calibration

From the plots, we notice that the signals are more desirable on AIME questions since they have
relatively balanced correct vs. incorrect samples. The signals on HLE-Math is overconfident with
almost no correct answers but high confidence, while low entropy.

(a) AIME (b) GPQA-D

(c) HLE-Math (d) Mysteries

Figure 6: Confidence calibration (32B). Per-100-token bucket accuracy vs. confidence across four
datasets.
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(a) AIME (b) GPQA-D

(c) HLE-Math (d) Mysteries

Figure 7: Entropy calibration (32B). Per-100-token bucket accuracy vs. entropy across four datasets.

D.1.2 Probe Calibration

We evaluate probe calibration only on the last 73 questions from AIME 2022–2024, since the first
860 questions were used to train the probe. We show two calibration plots from probe training on the
AIME dataset, as well as one calibration result on the HLE_math dataset.

Figure 8: Probe calibration on AIME with mixed math training data.

Figure 9: Probe calibration on AIME with AIME-only training data.
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Figure 10: Probe calibration on the HLE_math dataset.

D.2 Per-Instance Example Analysis

We plot the model’s confidence, entropy, and probe’s correctness signal over reasoning steps to
illustrate per-instance behavior and motivate our risk-control framework.

(a) Confidence (b) Entropy

(c) Probe (ex. 1) (d) Probe (ex. 2)

Figure 11: 7B model on AIME. Per-instance signals over reasoning steps: confidence, entropy, and
probe outputs.
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(a) Confidence (b) Entropy

Figure 12: 32B model on AIME. Per-instance confidence and entropy traces.

(a) Confidence (b) Entropy

Figure 13: 32B model on GPQA-D. Per-instance confidence and entropy traces.

E Risk Control Formalization

E.1 Notation and Data Splits

Let X be queries (problems) and y⋆ ∈ Y the ground-truth answers. For each query i ∈ {1, . . . ,M}
the model generates a reasoning trajectory Ti = {(t, ŷi,t, si,t)}Ti

t=1, where t indexes intermediate
decision points (e.g., tokens, blocks, or checkpoints), ŷi,t is the candidate answer at step t, and
si,t ∈ R is a scalar confidence signal. Larger s means more confidence unless stated otherwise (for
inverse signals we apply a monotone transform, Sec. E.3).

We partition data into:

• Calibration set Dcal = {(Ti, y⋆i )}
Mcal
i=1 used to select thresholds and schedule parameters.

• Test set Dtest = {(Ti, y⋆i )}
Mtest
i=1 used only for reporting.

We assume exchangeability between calibration and test (split-conformal style). Within-trajectory
steps are dependent; guarantees are stated for selected decisions (often first-crossing events), not
per-step i.i.d. samples.

E.2 Selective Risk, Coverage, and First-Crossing Events

Let a scalar threshold τ induce a selective set Sτ = {i : si ≥ τ} in the standard one-shot setting. The
empirical selective risk is

Rn(τ) =
1

|Sτ |
∑
i∈Sτ

1{ŷi ̸= y⋆i }, Cn(τ) =
|Sτ |
n

.
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Multi-step (reasoning) setting. A decision policy acts on a trajectory prefix. We define first-
crossing indices to reduce multi-step dependence to a single selected step per query:

t↑i (τhigh) = inf{t : si,t ≥ τhigh}, t↓i (τlow(·)) = inf{t : si,t ≤ τlow(t)}.

If the set is empty we define t↑i = +∞ (no high-confidence exit) or t↓i = +∞ (no low-confidence
exit). A dual-threshold policy chooses the earliest of t↑i and t↓i when present, subject to guardrails
(Sec. E.5).

Let Isel be the indices of queries that produce a decision (accept or low-exit abstention) under a fixed
policy. The empirical selective risk is

R̂ =
1

|Iacc|
∑

i∈Iacc

1{ŷi,ti ̸= y⋆i }, Ĉ =
|Isel|
M

,

where Iacc ⊆ Isel are accepted instances and ti is the decision step (first-crossing). When evaluating
low-confidence exits as abstentions, we treat them as not contributing to numerator/denominator of
R̂ (risk is defined over accepted answers). When evaluating damage-control risk (the probability that
an early low exit loses a would-be correct final), we explicitly measure the performance-gap event
(Sec. ??).

E.3 Confidence Signals and Monotone Invariance

We support direct (larger = more confident) and inverse (smaller = more confident) signals. All
decision rules are invariant to strictly monotone transforms g; i.e., thresholding s at τ is equivalent to
thresholding g(s) at g(τ). For inverse signals we use either s′ = −s or s′ = rank(s), then calibrate
on s′.

E.4 Risk Guarantees and Calibration Methods

We give finite-sample, distribution-free procedures to select thresholds so that with probability at
least 1− δ, the true selective risk of accepted answers is ≤ ε.

Conformal Risk Control (CRC). Given n calibration points with indicators Zj = 1{ŷj ̸= y⋆j }
among the selected set at τ , CRC’s smoothed bound yields

Pr
(
R(τ) ≤ n

n+1Rn(τ) +
1

n+1

)
≥ n+1

n+2 .

We choose
τ⋆high = inf

{
τ : n

n+1Rn(τ) +
1

n+1 ≤ ε
}
.

This treats only accepted decisions (first-crossing at high). The same template applies to any
monotone transform of the signal.

Hoeffding-Upper Confidence Bound (UCB) Let N(τ) be selected samples and R̂(τ) their empir-
ical risk. Hoeffding’s inequality gives: with probability ≥ 1− δ,

R(τ) ≤ R̂(τ) +
√

log(1/δ)
2N(τ) .

We pick

τ⋆high = inf

{
τ : R̂(τ) +

√
log(1/δ)
2N(τ) ≤ ε

}
.

Learn-Then-Test (LTT). Let τ † ∈ argminτ Rn(τ) subject to Rn(τ) ≤ ε. Then perform a one-
sided binomial test for H0 : R(τ †) > ε. With K observed errors among N accepted points, the
p-value is

p = Pr{Bin(N, ε) ≤ K}.
Accept τ † if p ≤ δ. Equivalently, compute the Clopper–Pearson upper bound CP1−δ(K,N) and
accept if CP1−δ(K,N) ≤ ε.
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E.5 Dual-Threshold Policy and First-Crossing Semantics

High-confidence early exit. The policy accepts at the first step t↑i (τhigh) if it exists; the returned
answer is ŷi,t↑i . Calibration for τhigh controls selective error among accepted answers.

Low-confidence early exit (damage control). Define a time-varying lower schedule τlow(t)

(Sec. E.6). We abstain when t↓i (τlow) < t↑i (τhigh) and t↓i ≤ Ti (no earlier acceptance). The
central risk here is performance-gap:

ŷi,t↓i
̸= y⋆i︸ ︷︷ ︸

current is wrong

and ŷi,final = y⋆i︸ ︷︷ ︸
would recover if continued

.

Let Egap denote this event. We control Pr(Egap | t↓i occurs) ≤ ε by calibrating τlow(·) on calibration
traces that are budget-forced to observe counterfactual recovery (Sec. E.7). In practice we mark
an event as recoverable if the final answer after full budget matches y⋆ while the early state was
incorrect.

E.6 Parametric Low-Confidence Schedules

We use a logistic schedule for direct confidence:

τlow(t) =
τhigh

1 + exp(−c t+ b)
,

with slope c > 0 and shift b (we use b=4 by default; adjust on calibration). Early steps: large
denominator⇒ easy to continue; later steps: τlow(t)↗ τhigh, encouraging early exit when confidence
remains persistently low.

For inverse signals (e.g., entropy), use a decreasing schedule such as

τlow(t) =
τhigh

1 + exp(c t− b)
,

and apply the exit rule with reversed inequality.

Fitting c (and b). On Dcal, for a grid C (and optionally B), simulate first-crossing with fixed τhigh
(already calibrated) and candidate τlow(·). Compute the damage-control risk R̂gap and compute-
savings subject to a constraint on overall accuracy drop (e.g., within ±3% of full-TTR). Choose the
(c, b) that (i) satisfies risk constraints and (ii) maximizes a utility (e.g., tokens saved).

E.7 Budget-Forcing and Counterfactual Recovery

To judge whether a low exit would forego a correct final answer, we require observing the counter-
factual final outcome. We follow a budget-forcing protocol: continue generation to a fixed thinking
budget (e.g., 9k tokens) even if the model would otherwise stop, ensuring the final decision ŷi,final is
observed. This enables labeling Egap during calibration.

E.8 Deployment-Time Decision Rule

At inference time (test set or real-time), the policy executes online:
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Algorithm 3 Dual-threshold confidence-based early exiting

Require: Question Q, max token limit T
Require: Reasoning LLM θ
Ensure: Answer string A

1: Initialize reasoning line buffer R← [] and line counter n← 0
2: while |R| < T do
3: Generate new reasoning line:

rn ← GenerateNewLine
(
Q, ⟨think⟩, R; θ

)
4: Append rn to R; update n← n+ 1
5: Compute confidence c← PredictConfidence(Q,R; θ)
6: if c ≥ τhigh then
7: break
8: end if
9: Compute low threshold τℓ ← τlow(n)

10: if c ≤ τℓ then
11: break
12: end if
13: if ⟨/think⟩ is generated then
14: break
15: end if
16: end while
17: return A ∼ GenerateTillEos

(
Q, ⟨think⟩, R, ⟨/think⟩; θ

)

Algorithm 4 #UA@K based early exiting

Require: Question Q, token limit T ; Number of rollouts K, unique answer threshold ∆
Require: Reasoning LLM θ
Ensure: An answer string: A

1: Initialize reasoning line buffer R← [] and line counter n← 0.
2: while |R| < T do
3: Generate new reasoning line rn ← GenerateNewLine(Q, ⟨think⟩, R; θ)
4: Append rn to R, update line counter n← n+ 1
5: Randomly generate K answer rollouts

Ak ∼ GenerateTillEos(Q, ⟨think⟩, R, ⟨/think⟩, Final answer:\n; θ), k ∈ 1, . . . ,K
6: Extract and count all unique answers from A1, . . . , AK , denoted as U
7: if (|U | ≤ ∆) or ⟨/think⟩ is generated then
8: exit
9: end if

10: end while
11: return A ∼ GenerateTillEos(Q, ⟨think⟩, R, ⟨/think⟩; θ)

Algorithm 5 Confidence Risk Control (CRC) threshold calibration

Require: Calibration points {(ci, yi)}mi=1 where ci is confidence and yi is correctness
Require: Target risk level ϵ, scaling factor B = 1.0
Ensure: Confidence threshold τ

1: Sort unique confidence values {c1, c2, . . . , cu} in descending order
2: for each confidence value cj do
3: Sj ← {(ci, yi) | ci ≥ cj} ▷ Points with confidence ≥ cj
4: k ←

∑
(ci,yi)∈Sj

1[yi = True] ▷ Count correct predictions
5: n← |Sj | ▷ Total predictions
6: if 1− k

n ≤ ϵ ·B then
7: return cj ▷ Found threshold satisfying risk constraint
8: end if
9: end for

10: return 1.0 ▷ Default to maximum threshold if no suitable threshold found
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Algorithm 6 UCB-based threshold calibration

Require: Calibration points {(ci, yi)}mi=1 where ci is confidence and yi is correctness
Require: Target risk level ϵ, confidence level δ
Ensure: Confidence threshold τ

1: Initialize parameters w and parameter table W = {w1, . . . , wN} using a single epoch with naive
initialization

2: Initialize running mean
G← Em Eξ∇f̃(w;m, ξ) ▷ Sum over m, closed-form over ξ

3: repeat
4: Sample n and ϵ
5: Compute base gradient

g ← ∇f(w;n, ϵ)
6: Compute control variate

c← Em Eξ∇f̃(wm;m, ξ̃)−∇f̃(wn;n, ϵ) ▷ Use Em Eξ∇f̃(wm;m, ξ̃) = G
7: Update running mean

G← G+ 1
N Eξ(∇f̃(w;n, ξ)−∇f̃(wn;n, ξ)) ▷ Closed-form over ξ

8: Update parameter table
wn ← w

9: Update parameters
w ← w − λ(g + c) ▷ Or use g + c in any stochastic optimization algorithm

10: until convergence

E.9 Small-Sample Behavior

If N(τ) is small, bounds widen and coverage collapses. We enforce a minimum calibration support
Nmin (e.g., Nmin = 50). When N < Nmin we (i) enlarge ε grid or (ii) back off to a more conservative
τ (increasing τhigh or flattening τlow).

E.10 Compute Accounting and Cost–Risk Frontier

Let Bthink be the maximum thinking tokens and Bfinal final-answer tokens. For each query i with
decision step ti:

costi = ctok ·min(ti, Bthink)︸ ︷︷ ︸
thinking

+ ctok ·Bfinal,

with ctok a per-token cost (or wall-time). Report:

AvgCost =
1

M

∑
i

costi, Savings% = 100 ·
AvgCostbaseline − AvgCostpolicy

AvgCostbaseline
.

We plot frontiers in (R̂, Ĉ,AvgCost) space for families of policies (static vs parametric vs high-only).

E.11 Signal Extraction Details

Internal confidence. We use normalized log-probability over final-answer tokens: if ŷ spans tokens
a1:K with log-probs ℓk, define

s =
1

K

K∑
k=1

ℓk,

or in probability space, the geometric mean exp(s). For multi-choice, we may directly use the logit
margin between top-1 and runner-up to sharpen discrimination; calibration uses exactly the chosen s.

Entropy. For multiple-choice, compute Shannon entropy of the (renormalized) distribution over
answer options. For free-form, use beam-based entropy of the first token of the forced final-answer
head. When beams expose only the top-B candidates, renormalize over those B.
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Probe-based confidence. Apply the trained probe to last-token hidden states at step t to obtain
πt ∈ [0, 1] interpreted as correctness probability. We use st = logit(πt) by default (monotone
transform).

E.12 Calibration Routines

E.12.1 High-Threshold calibration (with CRC)

Input: calibration traces with (ŷi,t, si,t), grid T of candidate thresholds, target ε.
For each τ ∈ T :

1. For each i, compute t↑i (τ). If finite, mark acci = 1 and error Zi = 1{ŷi,t↑i ̸= y⋆i }.

2. Let N(τ) =
∑

i acci, R̂(τ) = 1
N(τ)

∑
i Zi.

3. Form CRC bound BCRC(τ) =
N(τ)

N(τ)+1 R̂(τ) + 1
N(τ)+1 .

Return τ⋆high = inf{τ : BCRC(τ) ≤ ε} (if none, report infeasible at this ε).

E.12.2 Lower-Threshold Calibration

Input: fixed τ⋆high, grids C (and shift B), target εgap, optional accuracy-drop budget ∆max.
For each (c, b) ∈ C × B:

1. For each i, compute first low-crossing t↓i and high-crossing t↑i . If t↓i<t↑i , mark a low-exit.
2. For each low-exit, mark gap if ŷi,final = y⋆i but ŷi,t↓i ̸= y⋆i .

3. Let Nlow be # low-exits, and R̂gap = #gap events
Nlow

.

4. Check risk constraint via CRC/UCB/LTT (replace counts accordingly).
5. Compute utility (e.g., tokens saved) and accuracy drop relative to full-TTR. Discard if

drop > ∆max.
Return (c, b) maximizing utility among feasible candidates.

Epsilon tuning for budget efficiency. Sweep ε ∈ E ; for each, re-calibrate τhigh and (c, b), evaluate
on a held-out fold, and select ε that meets accuracy constraints while maximizing compute savings.

E.13 Evaluation Metrics

• Selective risk R̂ and coverage Ĉ of accepted answers.
• Damage-control risk R̂gap over low exits.
• Overall accuracy vs full-TTR baseline (allowing a small drop, e.g., ≤ 3%).
• Compute (AvgCost, Savings%) and exit-point distributions.
• Risk–coverage curves and risk–compute frontiers.

E.14 Bootstrap and Uncertainty Quantification

We form percentile or BCa confidence intervals over metrics via stratified bootstrap on queries (not
steps). For each bootstrap replicate b = 1, . . . , B:

1. Re-sample calibration queries with replacement; re-fit τhigh and (c, b).

2. Re-sample test queries with replacement; evaluate metrics.

Aggregate quantiles across b to form CIs for R̂, Ĉ, Savings%, and frontier points. For heavy
computation, reduce to B=200 and sub-sample C/E grids.
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E.15 Practical Defaults

Unless otherwise noted, we use: δ=0.1, CRC for τhigh, logistic τlow(t) with b=4, grid C =
{0.01, . . . , 2.0}, Nmin=50, and accuracy-drop budget ∆max=3% relative to full TTR. For inverse
signals, we set s′ = −s and re-use the same routines.

E.16 Limitations

Risk control guarantees depend on the core assumptions of exchangeability and semantic stationarity
of the data st. These guarantees can be compromised by domain drift, where the underlying data
distribution changes over time. Damage-control risk estimation requires budget-forced traces to
observe counterfactual scenarios. However, if the assigned budget is too restrictive, this process
can underestimate performance gaps, leading to an inaccurate assessment of risk. Finally, using an
insufficiently small calibration set forces the system to set overly conservative thresholds. This leads
to low task coverage and ultimately results in negligible budget savings, if any.

E.17 Thresholding Strategies

The core challenge is defining the form of these thresholds. A static threshold uses a single, fixed
value (e.g., τhigh(t) = Chigh) for all reasoning steps. However, this rigidity is suboptimal as the
meaning of a confidence score changes as the reasoning context evolves.

A more effective approach is parametric thresholding, where the threshold is a function of variables
such as the number of thinking steps, t. This allows the decision rule to adapt. For the lower threshold,
a canonical choice is a logistic schedule:

τlow(t) =
τhigh

1 + e(−c·t+4)

Here, τhigh is the calibrated high-confidence threshold, t is the number of thinking steps, and c is
a steepness parameter. The schedule starts with a low threshold, making very early exits rare, and
gradually increases toward τhigh, allowing exits only after prolonged low confidence signals that
signify computations being wasted.

To find the optimal parameters for these thresholding functions (e.g., τhigh and the steepness parameter
c) in a principled way, we use Distribution-Free Risk Control (DFRC). The goal of DFRC is to find a
decision rule that guarantees a user-specified risk level ε is not exceeded on unseen data, with high
probability 1− δ.

Formally, we use a calibration dataset to find parameters for our threshold τ (which can be a function
like τlow(t)) such that the true risk R(τ) is bounded:

P [R(τ) ≤ ε] ≥ 1− δ

DFRC allows us to select parameters that maximize computational savings while rigorously adhering
to the desired performance guarantee. There are several algorithms to achieve this, including
Conformal Risk Control (CRC), Upper Confidence Bound (UCB), and Learn-Then-Test (LTT), which
we use to calibrate our parametric thresholds.

F Applying Risk Control With Different Signals

We explored the risk control over two different models over 4 datasets. We mainly use confidence
and entropy as our signals due to the computational and time limitations. We include probing results
for DeepSeek-R1-Distill-Qwen-7B on AIME (1983–2024). We present the risk control result with
different parametric families, but we mainly focus on the sigmoid family since it usually gives us the
best empirical results with more token reduction while preserving the accuracy.
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F.1 AIME

F.1.1 Higher + Lower Threshold Plots

Figure 14: DeepSeek-7B on AIME: (Left) Sigmoid Confidence; (Right) Sigmoid Entropy.

Figure 15: DeepSeek-7B on AIME: (Left) Probe Confidence with mixed training data from AIME
and MATH; (Right) Probe Confidence with training data only on AIME.

Figure 16: DeepSeek-32B on AIME: (Left) Sigmoid Confidence; (Right) Sigmoid Entropy.

Please note that the difference of 7B model’s base results is due to the reason that the probes are
trained on the 860 questions while tested only on the last 73 questions, while the confidence and
entropy signals are tested on a held-out subset of the entire dataset.
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F.1.2 Lower Threshold Only Plots

Figure 17: AIME (Lower-Threshold-Only, Confidence): (Left) DeepSeek-7B; (Right) DeepSeek-
32B.

Figure 18: AIME (Lower-Threshold-Only, Probe Confidence): (Left) Probe trained with mixed
AIME + MATH data; (Right) Probe trained only on AIME.

F.2 GPQA-D

F.2.1 Higher + Lower Threshold Plots

Figure 19: DeepSeek-32B on GPQA-D: (Left) Sigmoid Confidence; (Right) Sigmoid Entropy.

22



F.2.2 Lower Threshold Only Plots

Figure 20: DeepSeek-32B on GPQA-D (Lower-Threshold-Only): (Left) Confidence; (Right) Entropy.

F.3 Murder Mysteries

F.3.1 Higher + Lower Threshold Plots

Figure 21: DeepSeek-32B on Murder Mysteries: (Left) Sigmoid Confidence; (Right) Sigmoid
Entropy.

F.4 Object Placements

F.4.1 Higher + Lower Threshold Plots

Figure 22: DeepSeek-32B on Object Placements: (Left) Sigmoid Confidence; (Right) Sigmoid
Entropy.

F.5 HLE

For HLE, we only show the result on Deepseek-Distill-Qwen-7B with Entropy as the early stopping
signal. The reason is that the model’s poor performance on the dataset makes the token reduction
graph less reliable.
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Figure 23: Deepseek-Distill-Qwen-7B with Entropy for Early Exiting

G Limitations

While our approach demonstrates promising results, several limitations remain. First, uncertainty
calibration can be further improved, and we leave the development of more advanced calibration
techniques to future work. Second, due to resource constraints, we were only able to apply probes
to smaller models; extending this analysis to larger models is expected to yield stronger calibration
performance. Finally, with the rapid emergence of new reasoning models, we plan to explore a
broader range of architectures across diverse datasets in future studies.
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