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Abstract

Prompt tuning is proposed to better tune pre-001
trained language models by filling the objective002
gap between the pre-training process and the003
downstream tasks. Current methods mainly004
convert the downstream tasks into masked lan-005
guage modeling (MLM) problems, which have006
proven effective for tasks with simple label sets.007
However, when applied to relation classifica-008
tion tasks which often exhibit a complex label009
space, vanilla prompt tuning methods designed010
for MLM may struggle with handling complex011
label verbalizations with variable length as in012
such methods, the locations and number of013
masked tokens are typically fixed. Inspired014
by the text infilling task for pre-training gener-015
ative models that can flexibly predict missing016
spans, we propose a novel generative prompt017
tuning method to reformulate relation classi-018
fication as an infilling problem to eliminate019
the rigid prompt restrictions, which allows our020
method to process label verbalizations of vary-021
ing lengths at multiple predicted positions and022
thus be able to fully leverage rich semantics of023
entity and relation labels. In addition, we de-024
sign entity-guided decoding and discriminative025
relation scoring to predict relations effectively026
and efficiently in the inference process. Exten-027
sive experiments under low-resource settings028
and fully supervised settings demonstrate the029
effectiveness of our approach.030

1 Introduction031

Relation classification (RC) is a fundamental task032

in natural language processing (NLP), aiming to de-033

tect the relations between the entities contained in034

a sentence. With the rise of a series of pre-trained035

language models (PLMs) (Devlin et al., 2019; Liu036

et al., 2019; Lewis et al., 2020; Raffel et al., 2020),037

fine-tuning PLMs has become a dominating ap-038

proach to RC (Joshi et al., 2020; Xue et al., 2021;039

Zhou and Chen, 2021). However, the significant040

objective gap between pre-training and fine-tuning041

may hinder the full potential of pre-trained knowl- 042

edge for such a downstream task. 043

To this end, prompt tuning (Brown et al., 2020; 044

Schick and Schütze, 2021a,b; Liu et al., 2021a) has 045

been recently proposed. The core idea is to con- 046

vert the objective of downstream tasks to be closer 047

to that of the pre-training tasks. Current methods 048

mainly cast a specific task to a masked language 049

modeling (MLM) problem through two compo- 050

nents: a template to reformulate input examples 051

into cloze-style phrases (e.g., “<input example>. It 052

was [MASK].”), and a verbalizer to map labels to 053

candidate words (e.g., positive→“great” and nega- 054

tive→“terrible”). By predicting [MASK] (“great” 055

or “terrible”), we can determine the label of the in- 056

put example (positive or negative). Prompt tuning 057

has proven effective especially for low-resource 058

scenarios (Gao et al., 2021; Scao and Rush, 2021) 059

by injecting task-specific guidance. When the label 060

space is simple, downstream tasks can easily adapt 061

to this paradigm (Hambardzumyan et al., 2021; 062

Lester et al., 2021), which predicts one verbaliza- 063

tion token at one masked position in the template. 064

However, when applying prompt tuning to RC 065

with complex label space that conveys rich seman- 066

tic information, vanilla prompt tuning methods de- 067

signed for MLM may struggle with handling com- 068

plex label verbalizations with variable length as in 069

such methods, the locations and number of masked 070

tokens are typically fixed. As presented in Figure 1 071

(b), different labels involve varying numbers of 072

words as their descriptions. Abridging such labels 073

into verbalizations of fixed lengths requires expert 074

efforts and may lose important label semantic infor- 075

mation, which is crucial for RC (Chang et al., 2008; 076

Sainz et al., 2021). The problem becomes more 077

tricky to handle when multiple predicted slots are 078

required in the template, each of which may corre- 079

spond to varying numbers of words to be predicted. 080

This will hinder injecting essential knowledge such 081

as entity types (Zhou and Chen, 2021) for RC. Fun- 082
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Figure 1: An illustration of (a) MLM pre-training, (b) vanilla prompt tuning intuitively applied to RC, (c) text
infilling pre-training, and (d) our proposed generative prompt tuning approach for RC.

damentally, these limitations are because the exist-083

ing prompt tuning methods imitate MLM, which084

predicts only one token at one masked position.085

Therefore, we revisit existing pre-training tasks.086

As shown in Figure 1 (c), different from MLM,087

text infilling task (Lewis et al., 2020; Raffel et al.,088

2020) for pre-training generative models appears089

to be more compatible with RC. The task replaces090

consecutive spans of tokens with a single sentinel091

token and feeds the corrupted sentence into the en-092

coder. The decoder learns to predict not only which093

but also how many tokens are missing from each094

span.095

Inspired by the text infilling pre-training task, we096

propose a novel Generative Prompt Tuning method097

(GenPT), which eliminates the rigid prompt restric-098

tions and reformulates RC as an infilling task to099

fully exploit the semantics of entity and relation100

types. Specifically, we construct an entity-oriented101

prompt, in which the template converts input sen-102

tences to infilling style phrases by leveraging three103

sentinel tokens, which serve as placeholders for104

type tokens of head and tail entities and label ver-105

balizations. The target sequence then corresponds106

to entity type tokens and label verbalizations. In107

this way, our model can flexibly process label ver-108

balizations of different lengths at multiple predicted109

positions, so as to fully utilize the semantic infor-110

mation of entity and relation types without the need111

for manual prompt engineering. Moreover, effi-112

ciently deciding the final classes is a practical prob-113

lem in applying generative models to discrimina-114

tive tasks. We design a simple yet effective entity-115

guided decoding and discriminative relation scor-116

ing strategy, making the prediction process more117

robust and efficient.118

We conduct extensive experiments on four 119

widely used relation classification datasets under 120

low-resource and fully supervised settings. Com- 121

pared to a series of strong discriminative and gen- 122

erative baselines, our method achieves better or 123

competitive performance, especially in cases where 124

relations are rarely seen during training, illustrating 125

the effectiveness of our approach. 126

Our main contributions are as follows1: 127

• We reformulate relation classification as a text 128

infilling task and propose a novel generative 129

prompt tuning method, which eliminates the 130

rigid prompt restrictions and makes full use 131

of semantic information of entity types and 132

relation labels. 133

• We design entity-guided decoding and dis- 134

criminative relation scoring strategies to pre- 135

dict relations in the inference process effec- 136

tively and efficiently. 137

• Extensive experiments on four popular rela- 138

tion classification datasets demonstrate the ef- 139

fectiveness of our model in both low-resource 140

and fully supervised settings. 141

2 Background 142

2.1 MLM and Text Infilling 143

Masked language modeling (Taylor, 1953) is 144

widely adopted as a pre-training task to obtain a 145

bidirectional pre-trained model (Devlin et al., 2019; 146

Liu et al., 2019; Conneau and Lample, 2019). Gen- 147

erally speaking, a masked language model (MLM) 148

randomly masks out some tokens from the input 149

1We attach our code to the supplement and will release the
code at ∗URL∗ once the paper is accepted.
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sentences. Each [MASK] corresponds to one word.150

The objective is to predict the masked word by the151

rest of the tokens (see Figure 1 (a)).152

Different from MLM which only predicts one153

token for one [MASK], the text infilling task (Raf-154

fel et al., 2020; Lewis et al., 2020) for pretraining155

seq2seq model can flexibly generate spans with156

different lengths. As shown in Figure 1 (c), the157

text infilling task samples a number of text spans158

with different lengths from the original sentence.159

Then each span is replaced with a single sentinel160

token. The encoder is fed with the corrupted se-161

quence, and the decoder sequentially produces the162

consecutive tokens of dropped-out spans delimited163

by sentinel tokens.164

2.2 Prompt-tuning of PLMs165

During the standard fine-tuning of classification,166

the input instance x is converted to a token se-167

quence x̃ = [CLS]x[SEP]. The model predicts168

an output class by adding a classification head on169

top of the [CLS] representations. Despite the ef-170

fectiveness of fine-tuning PLMs, there is a big gap171

between pre-training tasks and fine-tuning tasks.172

To this end, prompt-tuning is proposed to convert173

the downstream task to make it consistent with174

the pre-training task. Current prompt-tuning ap-175

proaches mainly cast tasks to cloze-style questions176

to imitate MLM. Formally, a prompt consists of177

two key components, template and verbalizer. The178

template T (·) reformulates the original input x as179

a cloze-style phrase T (x) by adding a set of addi-180

tional tokens and one [MASK] token. The verbal-181

izer φ : R → V maps task labels R to textual to-182

kens V , where V refers to a set of label words in the183

vocabulary of a language modelM. In this way, a184

classification task is transformed into a MLM task:185

P (r ∈ R|x) = P ([MASK] = φ(r)|T (x))186

Existing prompt-based approaches are effective187

when the label verbalizations are short with fixed188

length, but struggle in cases where labels require189

more complex and elaborate descriptions, as in190

relation classification. We can see from Figure 1 (b)191

that different classes own label tokens of different192

lengths, and it may not always be easy to map them193

to verbalizations of the same length without losing194

semantic information.195

3 Approach196

As presented in Figure 1 (d), this paper considers197

relation classification as a text infilling style task198

under a seq2seq framework, which takes the se- 199

quence T (x) processed by the template as input 200

and outputs a target sequence y to predict relations. 201

This section gives the problem definition formally 202

in Section 3.1 and details our proposed approach. 203

We first introduce how to construct entity-oriented 204

prompts in Section 3.2, and then show the model 205

and training objective in Section 3.3. The infer- 206

ence details including entity-guided decoding and 207

relation scoring are in Section 3.4. 208

3.1 Problem Definition 209

Formally, for an instance x = [x1, x2, ..., x|x|] 210

with head and tail entity mentions eh and et span- 211

ning several tokens in the sequence, as well as 212

entity types th and tt, relation classification task 213

is required to predict the relation r ∈ R be- 214

tween the entites, where R is the relation set. r 215

represents the corresponding label verbalization. 216

Take a sentence x = “Christina is the Washing- 217

ton National Opera’s director” with relation r = 218

“org:top_members/employees” as an example, eh 219

and et are “Christina” and “Washington National 220

Opera”, and their entity types are “organization” 221

and “person” respectively. The relation label ver- 222

balization r = “top members or employees” are 223

derived from label r, which involves removing at- 224

tribute words “org:”, discarding symbols of “_”, 225

and replacing “/” with “or”. 226

3.2 Entity-oriented Prompt Construction 227

We design an entity-oriented continuous template 228

T (·) combining entity mentions and type informa- 229

tion, which uses a series of pseudo tokens (Liu 230

et al., 2021c) as prompts rather than discrete token 231

phrases. Specifically, for an input sentence x with 232

two marked entities eh and et, 233

T (x) = x [v0]...[vn0−1][X] eh [vn0 ]...[vn1−1]

[Y]et [vn1 ]...[vn2−1][Z]
234

where [vi] ∈ Rd refers to the i-th pseudo token in 235

the template. We add three sentinel tokens in the 236

template, where [X] and [Y] in front of entity 237

mentions are expected to denote type information 238

of head and tail entities, and [Z] to represent rela- 239

tion label tokens. The target sequence then consists 240

of head and tail entity types and label verbaliza- 241

tions, delimited by the sentinel tokens used in the 242

input plus a final sentinel token [W]. 243

y = [X]th [Y]tt [Z]r[W] 244
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Figure 2: Entity-guided decoding and relation scoring.

where th and tt denote the entity type sequence,245

r represents the token verbalizations of relation246

label. For example, we convert the example given247

in Section 3.1 to :248

T (x) =x [v0]...[vn0−1][X]Washington National Opera
[vn0 ]...[vn1−1][Y]Christina[vn1 ]...[vn2−1][Z]

249

250

The target sequence will be y = “[X], organi-251

zation, [Y], person, [Z], top, members, or, em-252

ployees, [W]”.253

3.3 Model and Training254

Given the generative PLMM and a template T (x)255

as input, we map T (x) into embeddings in which256

the pseudo tokens are mapped to a sequence of257

continuous vectors,258

e(x), h0, ..., hn0−1, e([X]), e(eh), hn0 , ...,

hn1−1, e([Y]), e(et), hn1 , ..., hn2−1, e([Z])
259

where e(·) is the embedding layer of M, hi ∈260

Rd are trainable embedding tensors with random261

initialization, d is the embedding dimension ofM,262

and 0 ≤ i < n2. We feed the input embeddings263

to the encoder of the model, and obtain hidden264

representations of the sentence h:265

h = Enc(T (x))266

At the j-th step of the decoder, the model attends267

to previously generated tokens y<j and the encoder268

output h, and then predicts the probability of the269

next token:270

P (yj |y<j , T (x)) = Dec(y<j ,h)271

We train our model by minimizing the negative272

log-likelihood of label text y tokens given T (x) as273

input:274

L = −
|y|∑
j=1

logP (yj |y<j , T (x))275

Dataset #train #dev #test #rel

TACRED 68,124 22,631 15,509 42
TACREV 68,124 22,631 15,509 42
Re-TACRED 58,465 19,584 13,418 40
Wiki80 44,800 5,600 5,600 80

Table 1: Statistics of datasets used.

3.4 Entity-guided Decoding and Scoring 276

We propose a simple yet effective entity-guided de- 277

coding strategy, which exploits entity type informa- 278

tion to implicitly influence the choice of possible 279

candidate relations. As shown in Figure 2, at the 280

beginning of decoding, instead of only inputting 281

the start-of-sequence token <s> to the decoder, we 282

also append the entity type tokens. With ŷ = 283

<s>[X] th [Y] tt[Z] as initial decoder inputs that 284

serves as “preamble”, the model iteratively predicts 285

the subsequent tokens: 286

P (yj |ŷ, y<j , T (x)) = Dec(ŷ, y<j ,h) 287

We collect P ∈ RL×|V| through the decoding 288

process, where Pj is word probability at the j-th 289

prediction step, L represents the maximum gener- 290

ation length. The relation is predicted depending 291

on the generated token probability corresponding 292

to relation label verbalizations. Formally, for each 293

relation r ∈ R with its label verbalization r, the 294

prediction score sr is calculated as follows: 295

sr =
1

|r|

|r|∑
j=1

pj,rj 296

where pj,rj represents the probability of token rj at 297

the j-th step of decoding. The sentence is classified 298

into the relation with the highest score. 299

4 Experiments 300

4.1 Datasets and Setups 301

We conduct experiments on four RC datasets, 302

which are TACRED2 (Zhang et al., 2017), 303

TACREV3 (Alt et al., 2020), Re-TACRED4 (Stoica 304

et al., 2021), and Wiki805 (Han et al., 2019), as 305

presented in Table 1. TACRED is one of the most 306

widely used RC datasets. TACREV is a dataset 307

2https://nlp.stanford.edu/projects/
tacred/

3https://github.com/DFKI-NLP/tacrev
4https://github.com/gstoica27/

Re-TACRED
5https://github.com/thunlp/OpenNRE
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Model #Params
TACRED TACREV Re-TACRED Wiki80

K=8 K=16 K=32 K=8 K=16 K=32 K=8 K=16 K=32 K=8 K=16 K=32
Fi

ne
-t

un
in

g SpanBERT? (Joshi et al., 2020) 336M 08.4‡ 17.5‡ 17.9‡ 5.2‡ 5.7‡ 18.6‡ 14.2‡ 29.3‡ 43.9‡ 40.2‡ 70.2‡ 73.6‡

LUKE? (Yamada et al., 2020) 483M 9.5‡ 21.5‡ 28.7‡ 9.8‡ 22.0‡ 29.3‡ 14.1‡ 37.5‡ 52.3‡ 53.9‡ 71.6‡ 81.2‡

GDPNet† (Xue et al., 2021) 336M –‡ –‡ –‡ 8.3‡ 20.8‡ 28.1‡ 18.8‡ 48.0‡ 54.8‡ 45.7‡ 61.2‡ 72.3‡

TANL? (Paolini et al., 2021) 770M 18.1‡ 27.6‡ 32.1‡ 18.6‡ 28.8‡ 32.2‡ 26.7‡ 50.4‡ 59.2‡ 68.5‡ 77.9‡ 82.2‡

TYP Marker‡ (Zhou and Chen, 2021) 355M 28.9‡ 32.0‡ 32.4‡ 27.6‡ 31.2‡ 32.0‡ 44.8‡ 54.1‡ 60.0‡ 31.5? 57.0? 77.4?

Pr
om

pt
Tu

ni
ng

PTR (Roberta)‡ (Han et al., 2021) 355M 28.1‡ 30.7‡ 32.1‡ 28.7‡ 31.4‡ 32.4‡ 51.5‡ 56.2‡ 62.1‡ –‡ –‡ –‡

PTR (BERT)† (Han et al., 2021) 336M –‡ –‡ –‡ 25.3‡ 27.2‡ 33.1‡ 45.8‡ 53.8‡ 55.2‡ 67.6‡ 75.6‡ 78.8‡

KnowPrompt† (Chen et al., 2021) 336M –‡ –‡ –‡ 28.6‡ 30.8‡ 34.2‡ 45.8‡ 53.8‡ 55.2‡ 71.8‡ 78.8‡ 81.3‡

GenPT (BART) 406M
29.7‡ 33.5‡ 35.0‡ 29.6‡ 32.9‡ 34.3‡ 50.6‡ 56.7‡ 62.1‡ 71.4‡ 78.0‡ 82.4‡

(±0.7) (±0.7) (±0.7) (±0.6) (±0.7) (±0.4) (±2.7) (±0.8) (±1.8) (±0.4) (±0.4) (±0.6)

GenPT (T5) 770M
28.2‡ 32.1‡ 35.0‡ 27.9‡ 31.7‡ 34.6‡ 52.4‡ 57.3‡ 62.3‡ 73.5‡ 79.2‡ 83.0‡
(±1.3) (±1.4) (±0.9) (±1.8) (±1.5) (±0.9) (±1.6) (±1.9) (±1.5) (±0.8) (±0.6) (±0.4)

Table 2: Low-resource results on TACRED, TACREV, Re-TACRED, and Wiki80 datasets. We report mean and
standard deviation performance of micro F1 (%) over 5 different splits (see Section 4.1). Results marked with † are
reported by Chen et al. (2021), ‡ are reported by (Han et al., 2021), and ? indicates we rerun original code under
low-resource settings. Best and second best numbers are highlighted in each column.

revised from TACRED, which has the same train-308

ing data as the original TACRED and extensively309

relabeled development and test sets. Re-TACRED310

is another completely re-annotated version of TA-311

CRED dataset. Wiki80 is a relation classification312

dataset derived from FewRel (Han et al., 2018), a313

large scale few-shot RC dataset. We follow the314

split used in Chen et al. (2021). The entity type315

information is obtained from Wikidata (Vrandecic316

and Krötzsch, 2014).317

We evaluate our model under low-resource set-318

ting and fully supervised setting. For the low-319

resource setting, we randomly sample K instances320

per relation for fine-tuning and validation, with321

K to be 8, 16, and 32, respectively. Following322

the work of Gao et al. (2021), we measure the av-323

erage performance across five different randomly324

sampled data using a fixed set of seeds for each325

experiment. We also report the performance un-326

der fully supervised setting, where all training and327

development sets are available.328

4.2 Implementation Details329

The approach is based on Pytorch (Paszke et al.,330

2019) and the Transformer library of Huggingface331

(Wolf et al., 2020). We implement our method332

on two pretrained transformer language models,333

T5large (Raffel et al., 2020) and BARTlarge (Lewis334

et al., 2020). The approach based on T5 is de-335

scribed in detail in Section 3. The BART version336

is basically the same as the T5 version, except that337

the sentinel tokens in the template are replaced338

with [MASK] tokens, following the pre-training339

task format of BART, and the target sequence is340

composed of entity types and label verbalizations.341

Most hyper-parameters are chosen following previ- 342

ous works (Han et al., 2021; Zhou and Chen, 2021). 343

The maximum length of input sequence is 512. The 344

maximum generation length L depends on the max- 345

imum length of label verbalizations. The length of 346

pseudo tokens in the template T (·) is set to n× 3, 347

where n0 = n1 − n0 = n2 − n1 = n. n is 3 in 348

our implementation, and detailed discussion is in 349

Section 4.5. During training, our model is opti- 350

mized with AdamW (Loshchilov and Hutter, 2019) 351

with a learning rate of 3e− 5. We use a batch size 352

of 4 for T5 and 16 for BART, which are chosen 353

for practical consideration in order to fit into GPU 354

memory. The epochs are set to 5 and 10 for fully 355

supervised setting and low-resource setting. The 356

model is trained on 1 NVIDIA Tesla V100 GPU. 357

The training times of TACRED under K = 16 and 358

fully supervised settings are 0.36 hours and 10.1 359

hours, respectively, and testing time is 0.54 hours. 360

We conduct ablation experiments and performance 361

analysis based on the BART version. 362

4.3 Baselines 363

We compare our model with some recent efforts. 364

They are 1) SpanBERT (Joshi et al., 2020), a span- 365

based pretraining model, 2) LUKE (Yamada et al., 366

2020), a pretrained contextualized representations 367

of words and entities based on the Transformer, 368

3) GDPNet (Xue et al., 2021), constructing a la- 369

tent multi-view graph to find indicative words from 370

long sequences for RC, 4) TYP Marker (Zhou 371

and Chen, 2021), incorporating entity representa- 372

tions with typed markers, 5) TANL (Paolini et al., 373

2021), framing structured prediction as a transla- 374

tion task, 6) PTR (Han et al., 2021), a prompt tun- 375
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Model TACRED TACREV Re-TACRED Wiki80
Fi

ne
-t

un
in

g SpanBERT 70.8‡ 78.0∗ 85.3¶ 88.1?

LUKE 72.7‡ 80.6‡ 90.3‡ 89.2?

GDPNet 70.5‡ 80.2‡ –‡ –‡

TANL 72.1? 81.2? 90.8? 89.1?

TYP Marker 74.6‡ 83.2‡ 91.1‡ 91.3?

Pr
om

pt
Tu

ni
ng PTR (Roberta) 72.4‡ 81.4‡ 90.9‡ –‡

PTR (BERT) –‡ 80.2† 89.0† –‡

KnowPrompt –‡ 80.8‡ 89.8‡ –‡

GenPT (BART) 74.0‡ 82.0‡ 90.3‡ 90.5‡

GenPT (T5) 74.1‡ 82.9‡ 91.0‡ 90.6‡

Table 3: Fully supervised results of micro F1 (%) on
four datasets. ∗ are reported by Alt et al. (2020), ¶ are
reported by Stoica et al. (2021), ‡ are reported by Zhou
and Chen (2021), † are reported by Chen et al. (2021),
? indicates we rerun original code, and others are from
the original papers. Best and second best numbers are
highlighted in each column.

ing method with rules, which apply logic rules to376

construct prompts with several sub-prompts, and377

7) KnowPrompt (Chen et al., 2021), a knowledge-378

aware prompt tuning approach that injects knowl-379

edge into template design and answer construction.380

Among these works, LUKE adopts extra data for381

pre-training, PTR, KnowPrompt, and TYP Marker382

also utilize entity types in their methods.383

4.4 Main Results and Discussion384

Results of Low-Resource RC Table 2 presents385

the results of micro F1 under low-resource setting.386

We report mean and standard deviation over 5 dif-387

ferent sampled training and development sets. Our388

model achieves better or comparable performance389

in comparison to existing approaches. Specifically,390

our model outperforms the state-of-the-art discrim-391

inative fine-tuning model TYP Marker and prompt392

tuning methods PTR and KnowPrompt, proving393

that our method can handle extremely few-shot394

classification tasks better. We compare with gener-395

ative model TANL which frames relation classifica-396

tion as a translation task. It can be observed that our397

method outperforms TANL, and the performance398

gain mainly comes from three aspects: 1) We con-399

vert RC to a text infilling task to be consistent with400

the pre-training task. 2) We fully leverage the en-401

tity type information in training and inference to402

improve RC. 3) Compared to their complex decod-403

ing strategy, our relation scoring module is more404

efficient. See Section 4.6 for more discussion.405

Results of Fully Supervised RC As shown in406

Table 3, we evaluate our model on the fully su-407

pervised setting. We can see our method outper-408
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Figure 3: Comparison of F1 (%) with different fre-
quency relations on TACRED and TACREV.

forms some strong baselines including SpanBERT, 409

LUKE, and GDPNET, and reaches comparable per- 410

formance to the recent state-of-the-art model TYP 411

Marker, which incorporates entity types into entity 412

markers and achieves effective representations by 413

concatenating the vectors of entity markers to pre- 414

dict relations. Moreover, we obtain better results 415

on TACRED and TACREV datasets compared to 416

the prompt-tuning model PTR and KnowPrompt. 417

This result illustrates that it is practical to convert 418

the relation classification task to a text infilling task 419

and employ a pre-trained seq2seq model to gener- 420

ate label verbalizations. In this way, we can fully 421

utilize the semantic information of relation labels 422

without the need of manual prompt engineering. 423

Impact of Training Relation Frequency To fur- 424

ther explore the impact of relation frequencies in 425

training data, we split the test set into three subsets 426

according to the class frequency in training. Specif- 427

ically, we regard the relations with more than 300 428

training instances to form a high frequency sub- 429

set (except for “no_relation”), those with 50-300 430

training instances form a middle frequency subset, 431

and the rest form a low frequency subset. The high, 432

middle, and low frequency subsets consist of 11, 25, 433

and 5 relations, with each containing 2,263, 1,024, 434

and 38 instances on TACRED and 2,180, 912, and 435

31 on TACREV. As shown in Figure 3, we evaluate 436

our model and TYP Marker on the three subsets 437

of the test data. Although the performance of our 438

model is slightly lower than that of the TYP Marker 439

on the high frequency set, we outperform it on the 440

other two subsets, especially on the low frequency 441

set, proving that our model is more effective when 442

the class rarely appears in the training data. 443

4.5 The Effect of Prompt 444

The impact of prompt format Extensive exper- 445

iments with different template formats are con- 446

ducted to illustrate the effect of prompt construc- 447
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No. Inputs Targets
TACRED

K=8 K=16 K=32

1 x [v0]...[vn0−1][MASK]eh[vn0 ]...[vn1−1][MASK]et[vn1 ]...[vn2−1][MASK] th tt r 29.7 33.5 35.0

2 x [v0]...[vn0−1][MASK]eh[vn0 ]...[vn1−1][MASK]et[vn1 ]...[vn2−1][MASK] th tt r 28.2 31.8 33.6
3 x [v0]...[vn0−1] th eh[vn0 ]...[vn1−1] tt et[vn1 ]...[vn2−1][MASK] r 28.1 31.5 33.1
4 x [v0]...[vn0−1] eh[vn0 ]...[vn1−1] et[vn1 ]...[vn2−1][MASK] r 27.9 31.2 32.9
5 x th tt r 9.68 12.3 13.3
6 x r 9.95 11.6 13.1

Table 4: Ablation study on TACRED showing micro F1 (%) to illustrate the impact of prompt formats. The shadow
in row #1 indicates our entity-guided decoding, and row #2 represents the model without entity-guided decoding.
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Figure 4: Micro F1 (%) with different numbers of
pseudo tokens on TACRED.

tion. As shown in row #3 of Table 4, we add entity448

types to the input sequence instead of predicting449

them in the targets. Row #4 represents removing450

the mask tokens corresponding to entity types in451

the template, and only predicting the relation labels.452

The F1 score of the model under three different few-453

shot settings degraded. Moreover, we compare our454

model to the vanilla fine-tune pre-trained seq2seq455

model, where the encoder inputs are original sen-456

tences, and targets are relation labels with (row #5)457

and without (row #6) entity types, respectively. As458

we can see, our model outperforms the vanilla fine-459

tuning based approach by a large margin, indicat-460

ing the effectiveness of our entity-oriented prompt461

design and tuning.462

Discussion of pseudo token length Here we dis-463

cuss the effect of different pseudo token lengths.464

The experimental results are shown in figure 4.465

The microF1 under the setting ofK = 16 increases466

when n increases from 0 to 3, and then decreases467

slightly. In our experiment, we fix n to 3 to achieve468

effective performance, that is, there are 9 pseudo469

tokens in the template.470

Analysis of label semantics To verify the ben-471

efits coming from the label semantics, we experi-472

ment on manually crafted label verbalization with473

fixed length, following the work of Han et al.474

(2021). For example, relation “org:founded_by”475

is mapped to [organization, was, founded, by, per-476

Model
TACRED

K=8 K=16 K=32

Ours 29.7 33.5 35.0
Handcrafted verbalization 28.1 31.2 32.8

Table 5: Analysis of verbalizations with original label
tokens or handcrafted tokens.

Model
TACRED

K=8 K=16

Ours 29.7 33.5
Likelihood-based prediction (LP) 29.6 32.7

LP
Ours

3.80 h
0.54 h

Table 6: Micro F1 (%) and inference time (hours) on the
test set with our relation scoring and likelihood-based
prediction, respectively.

son], and relation “org:top_members/employees” is 477

mapped to [organization, ’s, employer, was, per- 478

son]. Note all relations are mapped to sequences 479

with exactly 5 tokens. With these label verbaliza- 480

tions that require expert efforts, we apply our model 481

by modifying the template T (·) as 482

T (x) = x [v0]...[vn0−1][MASK]eh[vn0 ]...[vn1−1]

[MASK][vn1 ]...[vn2−1][MASK]et
483

and y to be the mapped sequence. The results are 484

presented in Table 5. Our model obtains higher 485

results, proving our model can make full use of 486

label semantics by learning to predict label verbal- 487

izations with varying lengths. 488

4.6 Analysis of Decoding Strategy 489

The effect of relation scoring During re-running 490

TANL under K=8 on TACRED, we notice that 491

it takes a long time (86.62 hours) to perform 492

inference on the test set. To illustrate the effi- 493

ciency of our approach, we compare our relation 494

scoring strategy with likelihood-based prediction 495

(Nogueira dos Santos et al., 2020), which feeds 496
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birth
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org:founded_by
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per:date_of_birth

Bidirectional Encoder 

 

<s> Christina is the WN Opera's director.   
[v0] <X> WN Opera [v1] <Y> Christina [v2] <Z> </s>

Bidirectional Encoder 

(d) Ours
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Bidirectional
Encoder 

A C  F<X> <Y>

Autoregressive
Decoder 

B<Y>D E<X> <Z>
(c) Mask Infilling

(b) Conventional 
      Prompt-tuning

<X> organization <Y> person <Z> top members or employees </s>

Gold   org:subsidiaries      Entity Types <organization, organization>

However , the government let the deal expire in December
2001 amid protests from local politicians and workers at
a Semen Gresik unit, Semen Padang in West Sumatra .

with entity-guided decoding  

w/o entity-guided decoding  

Prediction: 
org:city_of_headquarters  Autoregressive Decoder 

Encoder

<s> 
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cities

oforganization location

location

headquarters

of headquarters

</s> 

organization

Encoder

<s> organization organization

subsidiaries

subsidiaries

</s> 

Autoregressive Decoder Prediction: 
org:subsidiaries  

Figure 5: Case study to illustrate the effect of entity-
guided decoding.

each candidate sequence into decoder and uses out-497

put token likelihoods as corresponding class score.498

As shown in Table 6, our method achieves promis-499

ing performance with less inference time.500

The effect of entity-guided decoding As shown501

in row #2 of Table 4, by removing the entity-502

guided decoding, micro F1 drops from 35.0 to503

33.6 with K=32, proving its effectiveness. We504

further carry out a detailed case study, shown in505

Figure 5. A real test instance from TACRED with506

its entity type information is given. When there507

is no entity type guidance, the decoder generates508

the sequence “organization location cities of head-509

quarters”, and incorrectly classifies the instance as510

relation “org:city_of_headquarters”. Our model511

equipped with entity-guided decoding correctly pre-512

dicts the relation as “org:subsidiaries”. This strat-513

egy implicitly restricts the generated candidates,514

gaining performance improvement.515

5 Related Work516

5.1 Language Model Prompting517

Language model prompting has emerged with the518

introduction of the GPT series (Radford et al.,519

2018, 2019; Brown et al., 2020). PET (Schick520

and Schütze, 2021a,b) reformulates input examples521

as cloze-style phrases and perform gradient-based522

fine-tuning. ADAPET (Tam et al., 2021) modifies523

PET’s objective to provide denser supervision dur-524

ing fine-tuning. However, these methods require525

manually designed patterns and label verbalizers.526

To avoid labor-intensive prompt design, automatic527

prompt search (Shin et al., 2020; Schick et al.,528

2020) has been extensively explored. LM-BFF529

(Gao et al., 2021) adopts T5 to generate prompt530

candidates and verify their effectiveness through 531

prompt tuning. Continuous prompt learning (Li 532

and Liang, 2021; Qin and Eisner, 2021; Liu et al., 533

2021c,b) has been further proposed, which directly 534

uses learnable continuous embeddings as prompts 535

rather than discrete token phrases. 536

5.2 Relation Classification 537

Fine-tuning PLMs for RC (Joshi et al., 2020; Ya- 538

mada et al., 2020; Xue et al., 2021; Lyu and Chen, 539

2021) has achieved promising performance. Zhou 540

and Chen (2021) achieves state-of-the-art results 541

by incorporating entity type information into en- 542

tity markers. Another interesting line is converting 543

information extraction into generation form, es- 544

pecifically when labels have rich semantic informa- 545

tion. Zeng et al. (2018) and Nayak and Ng (2020) 546

propose seq2seq models to extract relational facts. 547

Huang et al. (2021) present a generative framework 548

for document-level entity-based extraction tasks. 549

Wang et al. (2021) convert information extraction 550

tasks into a text-to-triple translation framework. A 551

few recent works apply prompt learning on RC. 552

PTR (Han et al., 2021) propose a prompt tuning 553

method with rules by manually designing essential 554

sub-prompts and applying logic rules to compose 555

sub-prompts. KnowPrompt (Chen et al., 2021) de- 556

sign virtual template and answer words with knowl- 557

edge injected. The main difference between our 558

work and theirs is that we convert RC into an in- 559

filling task rather than MLM problem, which can 560

flexibly define templates and label verbalizations 561

by taking advantage of generative models. In addi- 562

tion, our method does not need any manual efforts 563

compared to PTR, which is more practical when 564

adapted to other datasets or similar tasks. 565

6 Conclusion 566

This paper presents a novel generative prompt tun- 567

ing method for RC. Unlike vanilla prompt tuning 568

that converts a specific task into an MLM prob- 569

lem, we reformulate RC as a text infilling task, 570

which can predict label verbalizations with vary- 571

ing lengths at multiple predicted positions and thus 572

better utilize semantic information of entity and 573

relation types. In addition, we design a simple yet 574

effective entity-guided decoding and discrimina- 575

tive scoring strategy, making our generative model 576

more practical. Qualitative and quantitative experi- 577

ments on four widely used RC benchmarks prove 578

the effectiveness of our approach. 579
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