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Abstract

Prompt tuning is proposed to better tune pre-
trained language models by filling the objective
gap between the pre-training process and the
downstream tasks. Current methods mainly
convert the downstream tasks into masked lan-
guage modeling (MLM) problems, which have
proven effective for tasks with simple label sets.
However, when applied to relation classifica-
tion tasks which often exhibit a complex label
space, vanilla prompt tuning methods designed
for MLM may struggle with handling complex
label verbalizations with variable length as in
such methods, the locations and number of
masked tokens are typically fixed. Inspired
by the text infilling task for pre-training gener-
ative models that can flexibly predict missing
spans, we propose a novel generative prompt
tuning method to reformulate relation classi-
fication as an infilling problem to eliminate
the rigid prompt restrictions, which allows our
method to process label verbalizations of vary-
ing lengths at multiple predicted positions and
thus be able to fully leverage rich semantics of
entity and relation labels. In addition, we de-
sign entity-guided decoding and discriminative
relation scoring to predict relations effectively
and efficiently in the inference process. Exten-
sive experiments under low-resource settings
and fully supervised settings demonstrate the
effectiveness of our approach.

1 Introduction

Relation classification (RC) is a fundamental task
in natural language processing (NLP), aiming to de-
tect the relations between the entities contained in
a sentence. With the rise of a series of pre-trained
language models (PLMs) (Devlin et al., 2019; Liu
et al., 2019; Lewis et al., 2020; Raffel et al., 2020),
fine-tuning PLMs has become a dominating ap-
proach to RC (Joshi et al., 2020; Xue et al., 2021;
Zhou and Chen, 2021). However, the significant
objective gap between pre-training and fine-tuning

may hinder the full potential of pre-trained knowl-
edge for such a downstream task.

To this end, prompt tuning (Brown et al., 2020;
Schick and Schiitze, 2021a,b; Liu et al., 2021a) has
been recently proposed. The core idea is to con-
vert the objective of downstream tasks to be closer
to that of the pre-training tasks. Current methods
mainly cast a specific task to a masked language
modeling (MLM) problem through two compo-
nents: a template to reformulate input examples
into cloze-style phrases (e.g., “<input example>. It
was [MASK].”), and a verbalizer to map labels to
candidate words (e.g., positive—‘‘great” and nega-
tive—“‘terrible”). By predicting [MASK] (“great”
or “terrible’), we can determine the label of the in-
put example (positive or negative). Prompt tuning
has proven effective especially for low-resource
scenarios (Gao et al., 2021; Scao and Rush, 2021)
by injecting task-specific guidance. When the label
space is simple, downstream tasks can easily adapt
to this paradigm (Hambardzumyan et al., 2021;
Lester et al., 2021), which predicts one verbaliza-
tion token at one masked position in the template.

However, when applying prompt tuning to RC
with complex label space that conveys rich seman-
tic information, vanilla prompt tuning methods de-
signed for MLM may struggle with handling com-
plex label verbalizations with variable length as in
such methods, the locations and number of masked
tokens are typically fixed. As presented in Figure 1
(b), different labels involve varying numbers of
words as their descriptions. Abridging such labels
into verbalizations of fixed lengths requires expert
efforts and may lose important label semantic infor-
mation, which is crucial for RC (Chang et al., 2008;
Sainz et al., 2021). The problem becomes more
tricky to handle when multiple predicted slots are
required in the template, each of which may corre-
spond to varying numbers of words to be predicted.
This will hinder injecting essential knowledge such
as entity types (Zhou and Chen, 2021) for RC. Fun-



(a) MLM grbrlxalzlgimn org:founded by founder
P s org:top_members/employees members Head
2 2 per:date_of birth birth

Bidirectional Encoder

A [MASK] C [MASK] E

(d) Our Generative

(c) Text Infilling ;
Prompt Tuning

X1 BIYID E[Z]
t1441%

Bidirectional
Encoder

Autoregressive
Decoder

R
AX]CIY]F

Bidirectional Encoder

Bidirectional Encoder

[CLS] Christina is the WN Opera's director. Relation between WN Opera and Christina is [MASK]

[X] organization [Y] person [Z] top members or employees [W]
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o Christina is the WN Opera's director.
[vo] [X] WN Opera [vq] [Y] Christina [v2] [Z]

Figure 1: An illustration of (a) MLM pre-training, (b) vanilla prompt tuning intuitively applied to RC, (c) text
infilling pre-training, and (d) our proposed generative prompt tuning approach for RC.

damentally, these limitations are because the exist-
ing prompt tuning methods imitate MLM, which
predicts only one token at one masked position.
Therefore, we revisit existing pre-training tasks.
As shown in Figure 1 (c), different from MLM,
text infilling task (Lewis et al., 2020; Raffel et al.,
2020) for pre-training generative models appears
to be more compatible with RC. The task replaces
consecutive spans of tokens with a single sentinel
token and feeds the corrupted sentence into the en-
coder. The decoder learns to predict not only which
but also how many tokens are missing from each
span.

Inspired by the text infilling pre-training task, we
propose a novel Generative Prompt Tuning method
(GenPT), which eliminates the rigid prompt restric-
tions and reformulates RC as an infilling task to
fully exploit the semantics of entity and relation
types. Specifically, we construct an entity-oriented
prompt, in which the template converts input sen-
tences to infilling style phrases by leveraging three
sentinel tokens, which serve as placeholders for
type tokens of head and tail entities and label ver-
balizations. The target sequence then corresponds
to entity type tokens and label verbalizations. In
this way, our model can flexibly process label ver-
balizations of different lengths at multiple predicted
positions, so as to fully utilize the semantic infor-
mation of entity and relation types without the need
for manual prompt engineering. Moreover, effi-
ciently deciding the final classes is a practical prob-
lem in applying generative models to discrimina-
tive tasks. We design a simple yet effective entity-
guided decoding and discriminative relation scor-
ing strategy, making the prediction process more
robust and efficient.

We conduct extensive experiments on four
widely used relation classification datasets under
low-resource and fully supervised settings. Com-
pared to a series of strong discriminative and gen-
erative baselines, our method achieves better or
competitive performance, especially in cases where
relations are rarely seen during training, illustrating
the effectiveness of our approach.

Our main contributions are as follows':

* We reformulate relation classification as a text
infilling task and propose a novel generative
prompt tuning method, which eliminates the
rigid prompt restrictions and makes full use
of semantic information of entity types and
relation labels.

* We design entity-guided decoding and dis-
criminative relation scoring strategies to pre-
dict relations in the inference process effec-
tively and efficiently.

* Extensive experiments on four popular rela-
tion classification datasets demonstrate the ef-
fectiveness of our model in both low-resource
and fully supervised settings.

2 Background

2.1 MLM and Text Infilling

Masked language modeling (Taylor, 1953) is
widely adopted as a pre-training task to obtain a
bidirectional pre-trained model (Devlin et al., 2019;
Liu et al., 2019; Conneau and Lample, 2019). Gen-
erally speaking, a masked language model (MLM)
randomly masks out some tokens from the input

"We attach our code to the supplement and will release the
code at *URLx* once the paper is accepted.



sentences. Each [MASK] corresponds to one word.
The objective is to predict the masked word by the
rest of the tokens (see Figure 1 (a)).

Different from MLM which only predicts one
token for one [MASK], the text infilling task (Raf-
fel et al., 2020; Lewis et al., 2020) for pretraining
seq2seq model can flexibly generate spans with
different lengths. As shown in Figure 1 (c), the
text infilling task samples a number of text spans
with different lengths from the original sentence.
Then each span is replaced with a single sentinel
token. The encoder is fed with the corrupted se-
quence, and the decoder sequentially produces the
consecutive tokens of dropped-out spans delimited
by sentinel tokens.

2.2 Prompt-tuning of PLMs

During the standard fine-tuning of classification,
the input instance x is converted to a token se-
quence * = [CLS]« [SEP]. The model predicts
an output class by adding a classification head on
top of the [CLS] representations. Despite the ef-
fectiveness of fine-tuning PLMs, there is a big gap
between pre-training tasks and fine-tuning tasks.
To this end, prompt-tuning is proposed to convert
the downstream task to make it consistent with
the pre-training task. Current prompt-tuning ap-
proaches mainly cast tasks to cloze-style questions
to imitate MLM. Formally, a prompt consists of
two key components, template and verbalizer. The
template 7'(-) reformulates the original input  as
a cloze-style phrase T'(x) by adding a set of addi-
tional tokens and one [MASK] token. The verbal-
izer ¢ : R — )V maps task labels R to textual to-
kens V, where V refers to a set of label words in the
vocabulary of a language model M. In this way, a
classification task is transformed into a MLM task:

P(r € Rlz) = P([MASK] = ¢(r)|T(x))

Existing prompt-based approaches are effective
when the label verbalizations are short with fixed
length, but struggle in cases where labels require
more complex and elaborate descriptions, as in
relation classification. We can see from Figure 1 (b)
that different classes own label tokens of different
lengths, and it may not always be easy to map them
to verbalizations of the same length without losing
semantic information.

3 Approach

As presented in Figure 1 (d), this paper considers
relation classification as a text infilling style task

under a seq2seq framework, which takes the se-
quence T'(x) processed by the template as input
and outputs a target sequence y to predict relations.
This section gives the problem definition formally
in Section 3.1 and details our proposed approach.
We first introduce how to construct entity-oriented
prompts in Section 3.2, and then show the model
and training objective in Section 3.3. The infer-
ence details including entity-guided decoding and
relation scoring are in Section 3.4.

3.1 Problem Definition

Formally, for an instance & = [71,%2, ..., 7|3
with head and tail entity mentions e;, and e; span-
ning several tokens in the sequence, as well as
entity types t; and t;, relation classification task
is required to predict the relation » € R be-
tween the entites, where R is the relation set. 7
represents the corresponding label verbalization.
Take a sentence x = “Christina is the Washing-
ton National Opera’s director” with relation r =
“org:top_members/employees” as an example, ey,
and e; are “Christina” and “Washington National
Opera”, and their entity types are “organization”
and “person” respectively. The relation label ver-
balization » = “fop members or employees” are
derived from label r, which involves removing at-
tribute words “org:”, discarding symbols of “_",
and replacing “/” with “or”.

3.2 Entity-oriented Prompt Construction

We design an entity-oriented continuous template
T'(-) combining entity mentions and type informa-
tion, which uses a series of pseudo tokens (Liu
et al., 2021c) as prompts rather than discrete token
phrases. Specifically, for an input sentence x with
two marked entities ey, and ey,

T(x) = @ [vo]...[Ung—1] [X] €p [Vng]---[Vn; —1]
[Y]et [Uny ] [Vny—1] [Z]

where [v;] € R? refers to the i-th pseudo token in
the template. We add three sentinel tokens in the
template, where [X] and [Y] in front of entity
mentions are expected to denote type information
of head and tail entities, and [Z] to represent rela-
tion label tokens. The target sequence then consists
of head and tail entity types and label verbaliza-
tions, delimited by the sentinel tokens used in the
input plus a final sentinel token [W].

y = [X]ty [Y1E: [Z]7 [W]
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Figure 2: Entity-guided decoding and relation scoring.

where t;, and ¢; denote the entity type sequence,
r represents the token verbalizations of relation
label. For example, we convert the example given
in Section 3.1 to :

T(x) =z [vo]...[Uny—1] [X] Washington National Opera
[Vno]--[Uny —1] [ Y] Christina[vn, |...[vn,—1] [Z]

The target sequence will be y = “[X], organi-
zation, [Y], person, [Z], top, members, or, em-

”

ployees, [W]”.

3.3 Model and Training

Given the generative PLM M and a template 7'(x)
as input, we map 7'(x) into embeddings in which
the pseudo tokens are mapped to a sequence of
continuous vectors,

e(x), ho, ..., hng—1,e([X]),e(€n), Mng s ---s
hnlflve( (Y] )7e(ei):hn1,~-~>hnzflve( [Z])

where e(-) is the embedding layer of M, h; €
R? are trainable embedding tensors with random
initialization, d is the embedding dimension of M,
and 0 < 7 < na. We feed the input embeddings
to the encoder of the model, and obtain hidden
representations of the sentence h:

h = Enc(T'(x))

At the j-th step of the decoder, the model attends
to previously generated tokens y; and the encoder
output h, and then predicts the probability of the
next token:

P(yjly<j, T(x)) = Dec(y<;, h)

We train our model by minimizing the negative
log-likelihood of label text y tokens given 7'(x) as
input:

lyl

L=-> logP(y;ly<;,T(x))
j=1

Dataset #train #dev #test  #rel

TACRED 68,124 22,631 15,509 42
TACREV 68,124 22,631 15,509 42
Re-TACRED 58,465 19,584 13,418 40
Wiki80 44,800 5,600 5,600 80

Table 1: Statistics of datasets used.

3.4 Entity-guided Decoding and Scoring

We propose a simple yet effective entity-guided de-
coding strategy, which exploits entity type informa-
tion to implicitly influence the choice of possible
candidate relations. As shown in Figure 2, at the
beginning of decoding, instead of only inputting
the start-of-sequence token <s> to the decoder, we
also append the entity type tokens. With y =
<s>[X] ty [Y] t;[Z] asinitial decoder inputs that
serves as “preamble”, the model iteratively predicts
the subsequent tokens:

P(yj‘gay<j7T(m)) = DCC(Q7y<j7h)

We collect P € RE*IVI through the decoding
process, where P; is word probability at the j-th
prediction step, L represents the maximum gener-
ation length. The relation is predicted depending
on the generated token probability corresponding
to relation label verbalizations. Formally, for each
relation » € ‘R with its label verbalization r, the
prediction score s, is calculated as follows:

7|

1
Sp = m j;pj,rj

where p; ., represents the probability of token r; at
the j-th step of decoding. The sentence is classified
into the relation with the highest score.

4 Experiments

4.1 Datasets and Setups

We conduct experiments on four RC datasets,
which are TACRED? (Zhang et al., 2017),
TACREV? (Alt et al., 2020), Re-TACRED* (Stoica
et al., 2021), and Wiki80> (Han et al., 2019), as
presented in Table 1. TACRED is one of the most
widely used RC datasets. TACREV is a dataset

https://nlp.stanford.edu/projects/
tacred/
*https://github.com/DFKI-NLP/tacrev
*https://github.com/gstoica27/
Re—-TACRED
Shttps://github.com/thunlp/OpenNRE
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Model 4p TACRED TACREV Re-TACRED Wiki80
ode aAMS g8 K=16 K=32 K=8 K=16 K=32 K=8 K=16 K=32 K=8 K=16 K=32
e SpanBERT* (Joshi et al., 2020) 336M 84 175 179 52 57 186 142 293 439 402 702 736
£ LUKE* (Yamada et al., 2020) 483M 95 215 287 98 220 293 141 375 523 539 716 812
2 GDPNet! (Xue etal, 2021) 336M - - - 83 208 281 188 480 548 457 612 723
£ TANL" (Paolini et al., 2021) 770M 181 27.6 321 186 288 322 267 504 592 685 779 822
TYP Marker! (Zhou and Chen, 2021) 355M 289 320 324 27.6 312 320 448 541 600 315 57.08 77.4*
PTR (Roberta)! (Hanetal., 2021)  355M  28.1 30.7 321 287 314 324 515 562 621 - - _
2 PTR (BERT)' (Han et al., 2021) 336M - - - 253 272 331 458 538 552 676 756 788
£ KnowPrompt! (Chenetal, 2021)  336M - - — 286 308 342 458 538 552 718 788 813
B GenPT (BART) jogm 27 335 350 296 329 343 506 567 621 714 780 824
S (£0.7) (£0.7) (£0.7) (£0.6) (£0.7) (£0.4) (£2.7) (£0.8) (£1.8) (£0.4) (£0.4) (&0.6)

Ay

GenPT (T5) Jom 282 321350 270 317 346 524 S13 623 735 792 830
(£1.3) (£1.4) (£0.9) (£1.8) (£15) (£0.9) (£1.6) (£1.9) (£1.5) (£0.8) (£0.6) (+0.4)

Table 2: Low-resource results on TACRED, TACREYV, Re-TACRED, and Wiki80 datasets. We report mean and
standard deviation performance of micro F; (%) over 5 different splits (see Section 4.1). Results marked with | are
reported by Chen et al. (2021), 1 are reported by (Han et al., 2021), and « indicates we rerun original code under
low-resource settings. Best and second best numbers are highlighted in each column.

revised from TACRED, which has the same train-
ing data as the original TACRED and extensively
relabeled development and test sets. Re-TACRED
is another completely re-annotated version of TA-
CRED dataset. Wiki80 is a relation classification
dataset derived from FewRel (Han et al., 2018), a
large scale few-shot RC dataset. We follow the
split used in Chen et al. (2021). The entity type
information is obtained from Wikidata (Vrandecic
and Krotzsch, 2014).

We evaluate our model under low-resource set-
ting and fully supervised setting. For the low-
resource setting, we randomly sample K instances
per relation for fine-tuning and validation, with
K to be 8, 16, and 32, respectively. Following
the work of Gao et al. (2021), we measure the av-
erage performance across five different randomly
sampled data using a fixed set of seeds for each
experiment. We also report the performance un-
der fully supervised setting, where all training and
development sets are available.

4.2 Implementation Details

The approach is based on Pytorch (Paszke et al.,
2019) and the Transformer library of Huggingface
(Wolf et al., 2020). We implement our method
on two pretrained transformer language models,
T514rge (Raffel et al., 2020) and BART 4.4, (Lewis
et al., 2020). The approach based on T5 is de-
scribed in detail in Section 3. The BART version
is basically the same as the TS version, except that
the sentinel tokens in the template are replaced
with [MASK] tokens, following the pre-training
task format of BART, and the target sequence is
composed of entity types and label verbalizations.

Most hyper-parameters are chosen following previ-
ous works (Han et al., 2021; Zhou and Chen, 2021).
The maximum length of input sequence is 512. The
maximum generation length L depends on the max-
imum length of label verbalizations. The length of
pseudo tokens in the template 7'(-) is set to n X 3,
where ngp = n1 —ng = ng —ny = n. nis 3 in
our implementation, and detailed discussion is in
Section 4.5. During training, our model is opti-
mized with AdamW (Loshchilov and Hutter, 2019)
with a learning rate of 3e — 5. We use a batch size
of 4 for T5 and 16 for BART, which are chosen
for practical consideration in order to fit into GPU
memory. The epochs are set to 5 and 10 for fully
supervised setting and low-resource setting. The
model is trained on 1 NVIDIA Tesla V100 GPU.
The training times of TACRED under K = 16 and
fully supervised settings are 0.36 hours and 10.1
hours, respectively, and testing time is 0.54 hours.
We conduct ablation experiments and performance
analysis based on the BART version.

4.3 Baselines

We compare our model with some recent efforts.
They are 1) SpanBERT (Joshi et al., 2020), a span-
based pretraining model, 2) LUKE (Yamada et al.,
2020), a pretrained contextualized representations
of words and entities based on the Transformer,
3) GDPNet (Xue et al., 2021), constructing a la-
tent multi-view graph to find indicative words from
long sequences for RC, 4) TYP Marker (Zhou
and Chen, 2021), incorporating entity representa-
tions with typed markers, 5) TANL (Paolini et al.,
2021), framing structured prediction as a transla-
tion task, 6) PTR (Han et al., 2021), a prompt tun-



Model TACRED TACREV Re-TACRED Wiki80

oo SpanBERT 70.8 78.0* 8537  88.1*
£ LUKE 72.7 80.6% 90.31  89.2*
f GDPNet 705 80.2 - -
£ TANL 72.1* 81.2* 90.8*  89.1*

TYP Marker 74.6 83.2 9.1 91.3*
%‘) PTR (Roberta) 72.4 81.4 90.9 -
S PTR (BERT) - 80.2f 89.0 -
2 KnowPrompt - 80.8 89.8 -
§ GenPT (BART) 74.0 82.0 90.3  90.5
& GenPT (T5) 74.1 82.9 91.0  90.6

Table 3: Fully supervised results of micro £} (%) on
four datasets. * are reported by Alt et al. (2020), § are
reported by Stoica et al. (2021), I are reported by Zhou
and Chen (2021), T are reported by Chen et al. (2021),
* indicates we rerun original code, and others are from
the original papers. Best and second best numbers are
highlighted in each column.

ing method with rules, which apply logic rules to
construct prompts with several sub-prompts, and
7) KnowPrompt (Chen et al., 2021), a knowledge-
aware prompt tuning approach that injects knowl-
edge into template design and answer construction.
Among these works, LUKE adopts extra data for
pre-training, PTR, KnowPrompt, and TYP Marker
also utilize entity types in their methods.

4.4 Main Results and Discussion

Results of Low-Resource RC Table 2 presents
the results of micro F under low-resource setting.
We report mean and standard deviation over 5 dif-
ferent sampled training and development sets. Our
model achieves better or comparable performance
in comparison to existing approaches. Specifically,
our model outperforms the state-of-the-art discrim-
inative fine-tuning model TYP Marker and prompt
tuning methods PTR and KnowPrompt, proving
that our method can handle extremely few-shot
classification tasks better. We compare with gener-
ative model TANL which frames relation classifica-
tion as a translation task. It can be observed that our
method outperforms TANL, and the performance
gain mainly comes from three aspects: 1) We con-
vert RC to a text infilling task to be consistent with
the pre-training task. 2) We fully leverage the en-
tity type information in training and inference to
improve RC. 3) Compared to their complex decod-
ing strategy, our relation scoring module is more
efficient. See Section 4.6 for more discussion.

Results of Fully Supervised RC As shown in
Table 3, we evaluate our model on the fully su-
pervised setting. We can see our method outper-

TACRED

TACREV

BN TYPMarker B TYPMarker
Ours 100 Ours

80

60

micro Fy (%)
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20

high mid low high mid low

Figure 3: Comparison of F) (%) with different fre-
quency relations on TACRED and TACREV.

forms some strong baselines including SpanBERT,
LUKE, and GDPNET, and reaches comparable per-
formance to the recent state-of-the-art model TYP
Marker, which incorporates entity types into entity
markers and achieves effective representations by
concatenating the vectors of entity markers to pre-
dict relations. Moreover, we obtain better results
on TACRED and TACREYV datasets compared to
the prompt-tuning model PTR and KnowPrompt.
This result illustrates that it is practical to convert
the relation classification task to a text infilling task
and employ a pre-trained seq2seq model to gener-
ate label verbalizations. In this way, we can fully
utilize the semantic information of relation labels
without the need of manual prompt engineering.

Impact of Training Relation Frequency To fur-
ther explore the impact of relation frequencies in
training data, we split the test set into three subsets
according to the class frequency in training. Specif-
ically, we regard the relations with more than 300
training instances to form a high frequency sub-
set (except for “no_relation”), those with 50-300
training instances form a middle frequency subset,
and the rest form a low frequency subset. The high,
middle, and low frequency subsets consist of 11, 25,
and 5 relations, with each containing 2,263, 1,024,
and 38 instances on TACRED and 2,180, 912, and
31 on TACREV. As shown in Figure 3, we evaluate
our model and TYP Marker on the three subsets
of the test data. Although the performance of our
model is slightly lower than that of the TYP Marker
on the high frequency set, we outperform it on the
other two subsets, especially on the low frequency
set, proving that our model is more effective when
the class rarely appears in the training data.

4.5 The Effect of Prompt

The impact of prompt format Extensive exper-
iments with different template formats are con-
ducted to illustrate the effect of prompt construc-



TACRED

No. Inputs Targets K=8 k=16 K=32
1 @ [vg]...[Ung—1] [MASK] €p[Ung]...[n, 1] IMASK] €;[vp, ]...[on,—1] [MASK]  tptyr 297 335 35.0
2 @ [vg]...[Ung—1] [MASK] ep[Une]...[Un, —1] IMASK] €;[vp, |...[on,—1] [MASK]  tpt;r 282 318  33.6
3 @ [vo)..[Ung—1] th €n[Ung].--[Uny —1] Et €¢[Un,]...[Uny—1] [MASK] r 28.1 315 33.1
4 @ [Vo]...[Ung—1] €R[Ung ] [Un,—1] €¢[Vn,]--.[Uny—1] [MASK] r 279 312 329
5 T tptyr  9.68 123 13.3
6 x r 9.95 11.6 13.1

Table 4: Ablation study on TACRED showing micro F} (%) to illustrate the impact of prompt formats. The shadow
in row #1 indicates our entity-guided decoding, and row #2 represents the model without entity-guided decoding.

= 0.305
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— 0.300
=
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length of pseudo tokens

Figure 4: Micro F; (%) with different numbers of
pseudo tokens on TACRED.

tion. As shown in row #3 of Table 4, we add entity
types to the input sequence instead of predicting
them in the targets. Row #4 represents removing
the mask tokens corresponding to entity types in
the template, and only predicting the relation labels.
The F} score of the model under three different few-
shot settings degraded. Moreover, we compare our
model to the vanilla fine-tune pre-trained seq2seq
model, where the encoder inputs are original sen-
tences, and targets are relation labels with (row #5)
and without (row #6) entity types, respectively. As
we can see, our model outperforms the vanilla fine-
tuning based approach by a large margin, indicat-
ing the effectiveness of our entity-oriented prompt
design and tuning.

Discussion of pseudo token length Here we dis-
cuss the effect of different pseudo token lengths.
The experimental results are shown in figure 4.
The microF under the setting of X' = 16 increases
when n increases from O to 3, and then decreases
slightly. In our experiment, we fix n to 3 to achieve
effective performance, that is, there are 9 pseudo
tokens in the template.

Analysis of label semantics To verify the ben-
efits coming from the label semantics, we experi-
ment on manually crafted label verbalization with
fixed length, following the work of Han et al.
(2021). For example, relation “org:founded_by”
is mapped to [organization, was, founded, by, per-

TACRED
Model K=8 K=16 K=32
Ours 297 335 350

Handcrafted verbalization 28.1 31.2 32.8

Table 5: Analysis of verbalizations with original label
tokens or handcrafted tokens.

TACRED
Model K=8 K=16
Ours 29.7 335

Likelihood-based prediction (LP)  29.6 32.7

Ours 0.54 h
LP 3.80 h

Table 6: Micro I, (%) and inference time (hours) on the
test set with our relation scoring and likelihood-based
prediction, respectively.

son], and relation “org:top_members/employees” is
mapped to [organization, ’s, employer, was, per-
son]. Note all relations are mapped to sequences
with exactly 5 tokens. With these label verbaliza-
tions that require expert efforts, we apply our model
by modifying the template 7'(-) as

T(x) = @ [vo]...[Ung—1] [MASK] €n[Ung]...
[MASK] [Un,]...

[’Unl*l]
[Un,—1] [MASK] et

and y to be the mapped sequence. The results are
presented in Table 5. Our model obtains higher
results, proving our model can make full use of
label semantics by learning to predict label verbal-
izations with varying lengths.

4.6 Analysis of Decoding Strategy

The effect of relation scoring During re-running
TANL under K=8 on TACRED, we notice that
it takes a long time (86.62 hours) to perform
inference on the test set. To illustrate the effi-
ciency of our approach, we compare our relation
scoring strategy with likelihood-based prediction
(Nogueira dos Santos et al., 2020), which feeds



However , the government let the deal expire in December
2001 amid protests from local politicians and workers at
a Semen Gresik unit, Semen Padang in West Sumatra .

Gold org:subsidiaries  Entity Types <organization, organization>

with entity-guided decoding

subsidiaries </s>
Encoder * * L
. Prediction:
Autoregressive Decoder

org:subsidiaries

A

<s> organization organization subsidiaries

w/o entity-guided decoding

organization location cities  of headquarters</s>

Encoder * * * * *

—D> Autoregressive Decoder

*

<s> organization location cities of headquarters

Prediction:
org:city_of headquarters

Figure 5: Case study to illustrate the effect of entity-
guided decoding.

each candidate sequence into decoder and uses out-
put token likelihoods as corresponding class score.
As shown in Table 6, our method achieves promis-
ing performance with less inference time.

The effect of entity-guided decoding As shown
in row #2 of Table 4, by removing the entity-
guided decoding, micro F3 drops from 35.0 to
33.6 with K=32, proving its effectiveness. We
further carry out a detailed case study, shown in
Figure 5. A real test instance from TACRED with
its entity type information is given. When there
is no entity type guidance, the decoder generates
the sequence “organization location cities of head-
quarters”, and incorrectly classifies the instance as
relation “org:city_of _headquarters”. Our model
equipped with entity-guided decoding correctly pre-
dicts the relation as “org:subsidiaries”. This strat-
egy implicitly restricts the generated candidates,
gaining performance improvement.

5 Related Work
5.1 Language Model Prompting

Language model prompting has emerged with the
introduction of the GPT series (Radford et al.,
2018, 2019; Brown et al., 2020). PET (Schick
and Schiitze, 2021a,b) reformulates input examples
as cloze-style phrases and perform gradient-based
fine-tuning. ADAPET (Tam et al., 2021) modifies
PET’s objective to provide denser supervision dur-
ing fine-tuning. However, these methods require
manually designed patterns and label verbalizers.
To avoid labor-intensive prompt design, automatic
prompt search (Shin et al., 2020; Schick et al.,
2020) has been extensively explored. LM-BFF
(Gao et al., 2021) adopts TS5 to generate prompt

candidates and verify their effectiveness through
prompt tuning. Continuous prompt learning (Li
and Liang, 2021; Qin and Eisner, 2021; Liu et al.,
2021c,b) has been further proposed, which directly
uses learnable continuous embeddings as prompts
rather than discrete token phrases.

5.2 Relation Classification

Fine-tuning PLMs for RC (Joshi et al., 2020; Ya-
mada et al., 2020; Xue et al., 2021; Lyu and Chen,
2021) has achieved promising performance. Zhou
and Chen (2021) achieves state-of-the-art results
by incorporating entity type information into en-
tity markers. Another interesting line is converting
information extraction into generation form, es-
pecifically when labels have rich semantic informa-
tion. Zeng et al. (2018) and Nayak and Ng (2020)
propose seq2seq models to extract relational facts.
Huang et al. (2021) present a generative framework
for document-level entity-based extraction tasks.
Wang et al. (2021) convert information extraction
tasks into a text-to-triple translation framework. A
few recent works apply prompt learning on RC.
PTR (Han et al., 2021) propose a prompt tuning
method with rules by manually designing essential
sub-prompts and applying logic rules to compose
sub-prompts. KnowPrompt (Chen et al., 2021) de-
sign virtual template and answer words with knowl-
edge injected. The main difference between our
work and theirs is that we convert RC into an in-
filling task rather than MLM problem, which can
flexibly define templates and label verbalizations
by taking advantage of generative models. In addi-
tion, our method does not need any manual efforts
compared to PTR, which is more practical when
adapted to other datasets or similar tasks.

6 Conclusion

This paper presents a novel generative prompt tun-
ing method for RC. Unlike vanilla prompt tuning
that converts a specific task into an MLM prob-
lem, we reformulate RC as a text infilling task,
which can predict label verbalizations with vary-
ing lengths at multiple predicted positions and thus
better utilize semantic information of entity and
relation types. In addition, we design a simple yet
effective entity-guided decoding and discrimina-
tive scoring strategy, making our generative model
more practical. Qualitative and quantitative experi-
ments on four widely used RC benchmarks prove
the effectiveness of our approach.
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