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Abstract

Ensembles are a straightforward, remarkably effective method for improving the accuracy,
calibration, and robustness of neural networks on classification tasks. Yet, the reasons
underlying their success remain an active area of research. Building upon Pfau (2013), we
turn to the bias-variance decomposition of Bregman divergences in order to gain insight into
the behavior of ensembles under classification losses. Introducing a dual reparameterization
of the bias-variance decomposition, we first derive generalized laws of total expectation and
variance, then discuss how bias and variance terms can be estimated empirically. Next, we
show that the dual reparameterization naturally introduces a way of constructing ensembles
which reduces the variance and leaves the bias unchanged. Conversely, we show that ensembles
that directly average model outputs can arbitrarily increase or decrease the bias. Empirically,
we see that such ensembles of neural networks may reduce the bias. We conclude with an
empirical analysis of ensembles over neural network architecture hyperparameters, revealing
that these techniques allow for more efficient bias reduction than standard ensembles.

1 Introduction

The success of deep learning has necessitated many extensions of classical learning theory to modern models
and algorithms. In particular, the double-descent phenomenon (Belkin et al., 2019) has inspired a wide
breadth of research, in which the classical bias-variance decomposition (BVD) has been key (Neal et al.,
2019; Adlam & Pennington, 2020). Such analyses have been instrumental to understanding the performance
of various strategies that improve deep learning methods, including ensembles of deep networks (Hansen
& Salamon, 1990; Lakshminarayanan et al., 2017)—a simple method with state-of-the-art robustness and
uncertainty results (Ovadia et al., 2019; Gustafsson et al., 2020).

Most bias-variance analyses are specific to the mean-squared error (MSE). Although one can analyze classifiers
from an MSE perspective (Yang et al., 2020), such a restriction inevitably reduces the power of the analysis.
However, generalizing bias-variance decompositions to non-MSE losses is challenging. Although the MSE
allows a decomposition based on the performance of the mean predictor, this is a peculiarity of the MSE
rather than the rule. In the general case, bias-variance decompositions require manipulating a “central
prediction” that is much less amenable to analysis. Although bias-variance decompositions exist for Bregman
divergences (including the KL divergence from which standard classification losses are derived) (Pfau, 2013),
such decompositions are difficult to interpret and appear to break away from standard intuitions.

∗Work done at Google.
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We begin by bridging the gap between the classical bias-variance decomposition and its generalization to
Bregman divergences by means of a dual reparameterization. Analyzing the properties of the bias and variance
for non-symmetric losses, we characterize their departure from standard intuition. In particular, we will see
that ensembles that average model outputs can either increase or decrease the bias under non-symmetric
losses, whereas the bias is unchanged under the MSE. We then further leverage the dual reparameterization
to show that alternate ensembling techniques can recover the expected behavior of ensembles under the MSE.

We then investigate the empirical behavior of ensembles of neural networks. We first contrast the behaviors
of the two natural ensembling choices that arise from the generalized BVD. We find that, in practice,
ensembles that average model outputs decrease the bias, and discuss the conditions under which one ensemble
construction is preferable to the other. Hypothesizing that bias reduction is key to the performance of recent
ensembling techniques, we finally evaluate ensembles of networks of different architectures, showing that the
resulting bias reduction is indeed more efficient than that of ensembles of networks of identical architectures.

Contributions. Using a dual reparameterization of the central prediction in the bias-variance decomposition
of Pfau (2013), we tease apart which behaviors of the bias and variance are specific to the mean squared
error,1 and which behaviors are common to all Bregman divergences. Our key contributions are the following.

• The key quantity (the “central prediction”) in the BVD of a Bregman divergence is the primal projection
of the expected dual prediction; primal and dual spaces are specific to the choice of Bregman divergence.

• This central prediction follows a generalized law of total expectation. Similarly, the resulting variance in
the BVD of a Bregman divergence satisfies a generalized law of total variance.

• Conditional estimates of the bias and variance are biased by an irreducible quantity which overestimates
the bias and underestimates the variance; iterative bootstrapping can improve these estimates.

• We (re)define primal and dual ensembling methods based on the BVD. For the cross-entropy loss, primal
ensembling averages model probabilities, whereas dual ensembling averages model logits.

• Dual ensembling recovers the standard properties of ensembles under the MSE loss (unchanged bias and
reduced variance). However, ensembling in primal space can either increase or decrease the bias.

• Empirically, we see on Cifar10 and Cifar100 that primal ensembling neural networks under the cross-entropy
loss tends to decrease the bias, achieving a lower loss than dual ensembling. This can be explained by the
larger influence of extreme predictions under dual ensembling.

• Bias reduction contributes to the improved performance of ensembles of neural networks of different
architectures; such ensembles reduce the bias more efficiently as a function of ensemble size.

2 Related work

Bias-variance decompositions. The bias-variance decomposition has been an important tool in under-
standing the behavior of machine learning models (Geman et al., 1992; Kong & Dietterich, 1995; Breiman,
1996; Adlam & Pennington, 2020; Yang et al., 2020; d’Ascoli et al., 2020; Neal et al., 2019; Lin & Dobriban,
2021). Key to the decomposition are the notions of a “central label” and of a “central prediction.” Most
analyses focus on the bias-variance decomposition for the Euclidean square loss. In this case, the central
label and prediction correspond respectively to the mean label and prediction. James (2003) proposed a
more general decomposition for symmetric losses, Domingos (2000) focussed on the 0-1 loss, and Pfau (2013)
proposed a generalization to the space of all Bregman divergences. Hansen & Heskes (2000) identify which loss
functions admit bias-variance decompositions with specific properties (but do not analyze the decompositions
themselves). Jiang et al. (2017); Buschjäger et al. (2020) decompose twice differentiable losses via second
order Taylor expansion. In the general case—including for the KL divergence—the resulting decompositions
are approximate. Additionally, the resulting variance term may depend on target labels (Buschjäger et al.,
2020, via the loss l(µ) in Eqs. 1, 2), in a significant departure from other standard definitions of a variance.

1Or, more accurately, to symmetric losses.
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Bregman divergences and KL divergence. Bregman divergences are a generalization of the notion of
distance, similar to but less restrictive than metrics. Bregman divergences and operations in their associated
dual space are instrumental to optimization techniques such as mirror descent and dual averaging (Nemirovski
& Yudin, 1983; Nesterov, 2009; Juditsky et al., 2021). Closer to our work, the Bregman representative defined
in Banerjee et al. (2005) is related to the central label defined in (Pfau, 2013). The KL divergence and mean
squared error are the most commonly used Bregman divergences in machine learning. The Itakura-Saito
distance appears in matrix factorization tasks for audio processing (Févotte et al., 2009; Lefevre et al., 2011).
Recent work has also looked at parametric (Amid et al., 2019) or learned Bregman divergences (Cilingir
et al., 2020; Siahkamari et al., 2020; Lu et al., 2022).

Due to its importance in machine learning, the KL divergence is one of the few non-MSE Bregman divergences
for which the bias-variance tradeoff has been specifically analyzed (Heskes, 1998; Yang et al., 2020). For the
KL divergence, the “central predictor” corresponds to an average in log-probability space, which has been
studied in many works, including (Brofos & Shu, 2019; Webb et al., 2020). The fact that the bias remains
unchanged when averaging log-probability space has been briefly mentioned in (Dietterich, 2005).

Ensembles of deep networks. Ensembles combine the predictions of multiple models to improve upon
the performance of a single model; see, e.g., (Zhou, 2019; Dietterich, 2000). Recently, ensembles of neural
networks that only differ in their random seed (“deep ensembles”) have been shown to be a particularly
strong baseline for a variety of benchmarks (Lakshminarayanan et al., 2017). This result prompted further
research into alternative ensemble methods, including ensembles over hyper-parameters (Wenzel et al., 2020),
architectures (Zaidi et al., 2021), and joint ensemble training (Webb et al., 2020). In parallel, several
hypotheses have been proposed to explain the performance of deep ensembles. Fort et al. (2019) showed
empirically that deep ensembles explore diverse modes in the loss landscape. Allen-Zhu & Li (2020) argued
that the effectiveness of deep ensembles hinges on the assumption that inputs to the model have multiple
correct features that are learned by the different ensemble members. Wilson & Izmailov (2020); Hoffmann &
Elster (2021) analyzed deep ensembles as a Bayesian averaging procedure. Masegosa (2020); Ortega et al.
(2021) focus on understanding the relationship between generalization and diversity for deep ensembles, both
from theoretical and empirical perspectives. Lobacheva et al. (2020); Kobayashi et al. (2021) considered the
interplay between model and ensemble size.

3 Bias-Variance decomposition

We begin with some background on Bregman divergences, which also serves to set our notation. We refer to
Cesa-Bianchi & Lugosi (2006) for further background on Bregman divergences.

Although our empirical analysis focuses on the specific case of the KL divergence, all theoretical results are
stated for arbitrary Bregman divergences; proofs not provided in the main text can be found in Appendix A.

3.1 Preliminaries

Let X be a closed, convex subset of Rd, and let F : X → R be a strictly convex, differentiable function over
X . The Bregman divergence associated with F is the function DF : X × X → R+, such that

DF [y‖x] := F (y)− F (x)−∇F (x)>(y − x). (1)

It follows directly from the convexity of F that DF is convex in its first argument, although not necessarily
in its second argument (Bauschke & Borwein, 2001).
Example 3.1. The Bregman divergence of the negative entropy F (x) =

∑
i xi log xi is the generalized KL

divergence DF [y‖x] = KL[y‖x]−
∑

i(yi − xi). For x and y in the probability simplex, DF [y‖x] = KL[y‖x].

The Bregman divergence of the convex conjugate F ∗ of F is also of particular importance to our analysis.
We recall that the convex conjugate of a convex function F is defined as

F ∗(z) = sup
x
〈z, x〉 − F (x).
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Example 3.2. The convex conjugate of the negative entropy function on the probability simplex is the
log-sum-exp function (Boyd & Vandenberghe, 2004, Example 3.25).

As we assume that F is differentiable, we denote by x∗ = ∇F (x) the dual of x ∈ X . We will require the
following identity between primal x and dual x∗:

x = (x∗)∗ = ∇F ∗(∇F (x)). (2)

Example 3.3. Let F be the negative entropy over the probability simplex, whose convex conjugate F ∗
is the log-sum-exp function. Then, ∇F ∗ is the softmax function, and Equation (2) yields the identity
x = softmax(log x− 1) = softmax log x, where we let log operate element-wise on the vector x.

A Bregman divergence DF and its conjugate equivalent DF ∗ are related by the following equality:
Proposition 3.1 (Cesa-Bianchi & Lugosi (2006)). ∀x, y ∈ X , DF [x ‖ y] = DF ∗ [y∗ ‖ x∗].

Example 3.4. Let F be the negative entropy over the probability simplex, and write log-sum-exp as LSE.

DF ∗ [y∗‖x∗] = LSE(y∗)− LSE(x∗)− softmax(x∗)>(y∗ − x∗).

3.2 General statement

Let X be a random variable over X ⊆ Rd representing predictions made by a machine learning model, and Y
be the random variable associated with the corresponding label. Randomness in X may come from the choice
of training data, the seed used to initialize the training algorithm, or any other source of randomness in the
process that is used to obtain the model generating predictions. In contrast, randomness in Y is typically
due to aleatoric uncertainty, such as sensor noise.

A bias-variance analysis decomposes the average divergence ED[Y ‖X] between label and prediction variables
into a bias and two separate variance terms. The bias measures the divergence between the average label
and the average prediction. The variances measure the amount of fluctuation in the labels (Bayes error) and
predictions (model variance). These fluctuations are measured around an “average” or “central” point.

Under the mean squared error, these central points are respectively the expected label and expected prediction.
More generally, for an arbitrary Bregman divergence, these central labels and predictions are defined as
minimizers of the expected Bregman divergence with respect to the corresponding random variable.
Definition 3.5 (Central label). Let Y be a random variable over X (intuitively, the label). We call the
unique minimizer arg minz∈X ED[Y ‖z] the central label.
Definition 3.6 (Central prediction). Let X be a random variable over X (intuitively, the prediction). We
call the unique minimizer arg minz∈X ED[z‖X] the central prediction.
Proposition 3.2 (Banerjee et al. (2005)). The central label satisfies arg minz∈X ED[Y ‖z] = EY .

By analogy to Proposition 3.2, and for reasons that will be clear momentarily, we refer to the minimizer
z = arg minz ED[z‖X] as the dual mean, and write it EX.

We can now write out the bias-variance decomposition for any Bregman divergence D (Pfau, 2013):

ED[Y ‖X] = ED[Y ‖EY ] (Bayes error)
+D[EY ‖EX] (bias) (3)
+ ED[EX‖X]. (model variance)

Because Bregman divergences are necessarily symmetric, Equation (3) takes on a more complicated form
than the mean squared error’s decomposition. In particular, the central prediction is no longer the expected
prediction (whereas the central label remains unchanged); additionally, the ordering of terms within the bias
and variances is now meaningful.
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A main obstacle in bias-variance decompositions of Bregman divergences lies in the unwieldy form of the
central prediction, EX = arg minz ED[z ‖ X]. Our first contribution resolves this difficulty via a simple
observation: much like the central label, the central prediction is also the expectation of a random variable;
only, this expectation is taken in the dual space defined by the convex function F .
Proposition 3.3 (Dual mean). The dual mean EX is the primal projection of the mean of X in dual space:

EX = (EX∗)∗ = ∇F ∗(E∇F (X)).

Proof. By simple application of Propositions 3.1 and 3.2.

arg min
z∈X

EDF [z ‖ X] = arg min
z∈X

EDF ∗ [X∗ ‖ z∗] =
(

arg min
z∗∈X∗

EDF ∗ [X∗ ‖ z∗]
)∗

= (EX∗)∗.

This reformulation is crucial to our analysis, and, to the extent of our knowledge, novel.2

Remark 3.7. When DF is symmetric, it follows from Proposition 3.2 that EX = EX.
Example 3.8. When F is the negative entropy over the probability simplex, DF is the KL divergence, and

EX = softmax(E logX).

3.3 Laws of total expectations and variance

Despite its more general form, the model variance ED[EX‖X] of Equation (3) satisfies fundamental properties
associated with the usual variance VX = E(X−EX)2. In particular, denoting the operation X → ED[EX‖X]
by V, one can easily verify that VX ≥ 0, and that VX = 0 if and only if X is almost surely constant.

We next show that VX also follows a generalization of the law of total variance. This law disentangles the effect
of different sources of randomness, and is thus a fundamental tool in model analysis. Given two variablesX and
Z, the law of total variance decomposes the standard (Euclidean) variance as VX = E[V(X | Z)]+V[E(X | Z)]:
the variance of X is the sum of the variances respectively unexplained and explained by Z.

We begin by showing that the dual mean satisfies its own form of the law of total expectation; proving this is
straightforward with the reparameterization of Proposition 3.3.
Lemma 3.1. Let X,Z be random variables on X . Then EX = EZ [E [X|Z]], where E [X | Z] := (E[X∗|Z])∗.3

Proof. The proof follows directly from the (standard) law of total expectation and Equation (2).

E(E [X|Z]) = E
[
(E[X∗|Z])∗

]
=
(
E
[
E[X∗|Z]

])∗
= (EX∗)∗ = EX.

With Lemma 3.1 in hand, we can easily show a generalized form of the law of total variance, which simply
accounts for the definition of dual mean and generalized variance.
Lemma 3.2. Let X,Z be random variables over X , and define the conditional variance V[X|Z] :=
E
[
D[E(X|Z) ‖ X]

∣∣Z]. The variance VX := ED[EX‖X] satisfies a generalized law of total variance:

V[X] = E[V[X|Z]] + V[E [X|Z]].

As above, we define the conditional variance by replacing E[·] with E[·|Z]. We cannot overstate the importance
of Lemma 3.2, which is key to disentangling sources of randomness in ML algorithms (Neal et al., 2019;
Adlam & Pennington, 2020; Lin & Dobriban, 2021).

2Pfau (2013) showed that z = arg minz ED[z‖X] satisfies ∇F (z) = E[∇F (X)], which also entails Prop. 3.3.
3This definition is simply the definition of E using the conditional expectation E[·|Z] in place of E[·].
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4 Conditional and bootstrapped estimates

Before turning our attention to ensembles, we briefly discuss empirical estimates of the bias and variance.

The bias-variance decomposition of Equation (3) applies to any source of randomness. This includes the
random seed chosen to train the model, as well as the randomness in the training data T . However, although
one can easily draw a new random seed and retrain a model, sampling a new training set is often more
difficult. Even when acquiring more data is possible, this data is often used to augment an existing training
set rather than to evaluate the model’s robustness to data randomness.

In settings where there is randomness that cannot be controlled for, the empirical estimates of the bias and
variance of Equation (3) will necessarily be only approximate. For example, if we only get one draw of the
training set, our estimates will be conditioned on the available training data. The following proposition
quantifies to which extent these conditional quantities depart from their unconditional equivalents.
Proposition 4.1. Let X,Z be two random variables over X ; to simplify notation, we assume that the label
Y is deterministic (Y = y ∈ X ). Applying Equation (3) to X|Z then taking the expectations over Z yields an
alternate BVD:

ED[y‖X] = EZD[y‖E(X|Z)]︸ ︷︷ ︸
Conditional bias: BiasZ

+EZE
[
D[E(X|Z)‖X]

∣∣∣Z]︸ ︷︷ ︸
Conditional variance: VarZ

.

The conditional bias (resp. variance) overestimates (resp. underestimates) their respective total values by the
fixed quantity EZD[EX‖E(X|Z)]:

BiasZ = total bias + EZD[EX‖E(X|Z)] VarZ = total variance− EZD[EX‖E(X|Z)].

Remark 4.1. The quantity EZD[EX‖E(X|Z)] is non-negative, and equal to 0 if X and Z are independent.

Alternatively, one can estimate the true bias and variance by partitioning the training set into disjoint
subsets; models are trained on these subsets, which act as different draws of the training distribution.
This approach yields an unbiased estimator that is consistent as the number of partitions goes to infinity.4
However, partitioning raises the difficult question of how (and if) the model should also be modified: for
a neural network, should the width or number of layers be reduced to accommodate the smaller training
set? Furthermore, this approach is by construction incapable of estimating the bias and variance of models
trained on the full training set.

A second option lies in bootstrapping (Efron & Tibshirani, 1994; Hall, 1992): we create new datasets by
sampling with replacement from the original dataset, and use these samples to estimate the bias and variance.
Repeating this procedure by resampling from the bootstrap samples in turn estimates the quantity required
to correct (Hall, 1992) the bootstrapped estimate (Algorithm 1 and Figure 2). This approach does not require
reducing the size of the training set, but bootstrapped samples will contain duplicate points.

To compare the conditional and bootstrapped estimates, we trained Wide ResNets (WRNs) (Zagoruyko &
Komodakis, 2016) with the cross-entropy loss on different disjoint partitionings of the CIFAR-10 dataset.
Figure 1a uses 50 partitions of 1k training points, and Figure 1b uses 20 partitions of 2.5k training points.
These partitions allow us to also compute the true bias and variance of the algorithm.5 To estimate the
conditional bias and variance, all models are trained on only one of the 50 (or 20) partitions of the training
data but with different random seeds. To estimate the true bias and variance values, each model is trained
on a different partition and a different random seed. To calculate the bootstrap estimates of the bias and
variance values, one partition out of the total 50 (or 20) partitions is randomly chosen from the training data,
then bootstrap estimates are calculated using Algorithm 1.

In both cases, we see that the bootstrapped estimates are more accurate than the conditional samples, but
both estimation methods systematically underestimate the variance and overestimate the bias. Additionally,
the boostrap bias is more accurate than the bootstrap variance; for this reason, practitioners may prefer to
estimate the variance as the total error minus the bootstrapped bias.

4See Figure 7 in App. C for an empirical analysis of how many partitions are necessary for estimates to converge.
5We insist here that these are the bias and variance of the algorithm trained on respectively 1k and 2.5k points, rather than

the bias and variance of the algorithm trained on the entire dataset.
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Figure 1: Conditional and bootstrapped estimates of the bias and variance on variations of the CIFAR-10 dataset.
The approximations of the CIFAR-10 dataset in figures (a) and (b) allow us to compute the true bias and variance; in
both cases, the bootstrap estimates are more accurate than the conditional estimates. Figure (c) shows the bootstrap
and conditional estimates on the true CIFAR-10 dataset, for which the true estimate cannot be computed.

T

T1

T11 T12 T11

T2

T21 T22 T11

T3

T31 T32 T33

Figure 2: Generating bootstrap samples from a dataset
D. The child of every node is sampled with replacement
from its parent so that all datasets have the same size.

Algorithm 1 Bootstrap estimate of bias (or variance)
Input: Training set T , number of bootstrap samples B
for i ∈ {1, . . . , B} do

Ti ← uniform_sample(T ) . Of size |T |
for j ∈ {1, . . . , B} do

Tij ← uniform_sample(Ti) . Of size |T |
b

(2)
i ← bias({Tij}j) . Bootstrap estimate for Ti

b(1) ← bias({Ti}i) . Bootstrap estimate for T

b(2) ← 1
B

∑
i
b

(2)
i

t← b(1)/b(2) . Corrective term
b(0) ← tb(1)

return Bias estimate b(0).

Figure 1c reports bootstrap and conditional bias and variance on the full dataset. Since the gap between
actual bias and variance widens as we decrease the number of partitions, it is likely that the true bias
dominates the variance in the non-partitioned regime (see also Appendix C).

The rest of our results focus on the conditional bias and variance, for two reasons. First, bootstrap estimates
are expensive to compute, requiring training O(B2) models. Second, we attempt to match the standard
practice of benchmarking on a dataset. Even in cases where a model’s loss (rather than bias or variance) is
studied, considering performance across i.i.d. draws of the training set is not common practice—despite this
being the technically correct approach from a frequentist perspective.

5 Ensembles and the BV decomposition

We conclude our theoretical analysis by considering ensembles within the context of the bias-variance
decomposition for non-symmetric losses. We will distinguish two types of ensembling. Primal ensembles
average individual model outputs, acting as an empirical approximation of the mean operator. In contrast,
dual ensembles will approximate the dual mean, by averaging the dual projection of individual model outputs,
then casting this average back into primal space.
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5.1 Primal ensembles

Most often in deep learning, ensembles simply average the outputs of n models that differ in their initializa-
tion (Lakshminarayanan et al., 2017). These ensembles are commonly motivated by the desire to reduce the
variance of the predictive model. Indeed, for the MSE, we know that ensembles averaging the outputs of
models drawn in i.i.d. fashion will (a) reduce the variance, and (b) conserve the bias.

We begin by recovering (a) under some additional weak convexity assumptions on the Bregman divergence,
but (b) will prove impossible in the general case.
Proposition 5.1. Let D be a Bregman divergence that is jointly convex in both variables. Let X1, . . . , Xn

be n i.i.d. random variables drawn from some unknown distribution, and define X̂ = 1
n

∑
i Xi. Then,

VX̂ = ED[EX̂‖X̂] ≤ ED[EX‖X] = VX.

Both KL divergence and mean squared error are jointly convex, and are special cases of Proposition 5.1.

However, conserving the bias when ensembling requires that the Bregman divergence be symmetric—ensuring
that E and E are equivalent operators. In the general case, ensembles can either decrease or increase the bias.

Proposition 5.2. Let D be the KL divergence. There exists a distribution over predictions X ∈ R2 and a
label y ∈ {0, 1} such that the bias D[y‖E [·]] satisfies

D[y‖EX̂] < D[y‖EX]
D[1− y‖EX̂] > D[1− y‖EX],

where as above we define the random variable for ensemble predictions X̂ = 1
n

∑
i Xi, and by abuse of notation

we conflate y ∈ {0, 1} with its one-hot representation.
Remark 5.1. Despite Proposition 5.2, ensembles reduce the overall cross-entropy loss due to Jensen’s inequality.

That standard ensembles do not preserve the bias (and can, in fact, increase it) is a strong departure from
what one might naively expect. Thus, it is natural to seek an ensemble method that would maintain the
following two behaviors: the variance decreases, and the bias is conserved.

5.2 Dual ensembles

To keep the bias D[EY ‖EX] unchanged under ensembling, it is clearly sufficient to ensemble in such a way
that the ensemble predictor X̂ satisfies the equality EX̂ = EX. This is also sufficient to reduce the variance.
Proposition 5.3. Let D be any Bregman divergence. Let X1, . . . , Xn be n i.i.d. random variables drawn
from some unknown distribution, and define the dual ensemble

X̂ =
( 1
n

∑
i
X∗i

)∗
.

This operation ensures that EX = EX̂. Furthermore, dual ensembling reduces the variance and conserves the
bias: for any independent label variable Y overX , we have

D[EY ‖ EX̂] = D[EY ‖ EX]
ED[EX̂ ‖ X̂] ≤ ED[EX ‖ X].

Compared to Proposition 5.1 for primal ensembles, dual ensembles do not require that D be jointly convex to
guarantee variance reduction; the natural convexity of D in its first argument is sufficient.
Remark 5.2. Under the KL divergence, dual ensembles amount to averaging model logits instead of model
probabilities (sometimes referred to as geometric averaging).

X̂ = softmax
( 1
n

∑
i
log(Xi)

)
.
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Additional properties of dual ensembling under the KL divergence have been discussed in (Brofos & Shu,
2019); that it preserves bias has been mentioned briefly in (Dietterich, 2005).
Remark 5.3. Reordering Equation (3) for the KL divergence, we can write the loss of an ensemble of models
averaged in logit space as the difference between the average individual model loss and the variance, thus
recovering the ensemble diversity regularizer from (Webb et al., 2020). Consider a noiseless label Y = y
for the cross-entropy loss, and let the random variable X be uniformly distributed over n different models
x1, . . . , xn. Writing x̂ := softmax( 1

n

∑
i log xi) the (dual) ensemble prediction, Equation (3) then yields

1
n

∑
i
CE[y‖xi] = CE[y, x̂] + 1

n

∑
i
CE[x̂‖xi].

Reordering, we can write the ensemble loss CE[y, x̂] as the difference between the average individual model
loss and the regularizer in (Webb et al., 2020, Eq. (5)) with regularization strength λ = 1:

CE[y, x̂] = 1
n

∑
i
CE[y‖xi]−

1
n

∑
i
CE[x̂‖xi].

6 Empirical analysis of ensembles under the cross-entropy loss

Choosing the Bregman divergence D to be the KL divergence, we know that both primal and dual ensembles
reduce the total loss and variance. Furthermore, dual ensembles do not affect the bias, but primal ensembles
can either increase or decrease the bias. We now analyze how primal and dual ensembles compare in practice
when ensembling neural networks.

6.1 Comparing primal and dual ensembles

We begin by an empirical validation of the expected behaviors of primal and dual ensembles. Figures 3a
and 3b show the evolution of the total loss, bias, and variance of ensembles of independent WRNs 28–10 under
the cross-entropy loss on the associated Cifar test sets; Figure 3c stratifies the decomposition by corruption
intensity on the corrupted Cifar-100 (Hendrycks & Dietterich, 2019) test set.

For both primal and dual ensembles, the bias dominates the variance. As these are conditional estimates
subject to the estimation error described in Proposition 4.1, we cannot affirm that the true bias dominates
the true variance, although this is plausible based on the conclusions of Figure 1.

As expected, the dual bias is independent of ensemble size. The variance is reduced both by primal and dual
ensembling, and is slightly lower for dual ensembles. Finally, bias and variance gaps between primal and dual
ensembles widen as the corruption severity increases (Figure 3c). Surprisingly, the primal bias decreases when
ensembling; Proposition 5.2 states that primal ensembling can affect the bias, but not necessarily by reducing
it.6 However, since primal ensembling reduces bias on these datasets, and because the gap between primal
and dual variances is small, the primal NLL is lower; this behavior has been noted previously in (Brofos &
Shu, 2019). To understand this, we turn to a pointwise analysis.

Consider n models that assign probabilities p1, . . . , pn to the true class. In the two-class setting, we can
exactly write out the primal NLL as − log p1+...+pn

n , and the dual NLL as − log (p1···pn)1/n

(p1···pn)1/n+((1−p1)···(1−pn))1/n .

Fixing p1, . . . , pn−1 > 0, and considering f(pn) = primal_loss(p1, . . . , pn)− dual_loss(p1, . . . , pn), we have

−∞ ≤ f(pn) ≤ − log p1 + . . .+ pn−1

n
. (4)

The lower bound of Equation (4) is achieved for pn → 0: a single model in the ensemble can make the dual
loss arbitrarily worse than the primal loss. In contrast, the same single model can at best provide a bounded

6Note that the terms shown in Figure 3 are averaged over the entire test set. On individual points, we will see below that the
bias can be increased or decreased by ensembling.
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(c) BVD on Cifar100 corrupted datasets, stratified by corruption severity, for an ensemble size of 5.

Figure 3: Conditional bias, variance, and NLL of ensembles of WRNs 28–10 (estimated using 20 draws of each
ensemble size). The dual bias remains constant as a function of the ensemble size, while the primal bias is reduced.
The variance is reduced slightly more for dual ensembles, but at an overall magnitude much smaller than the bias.

improvement for dual ensembles over primal ensembles. Thus, even a single point in a dataset with a large
dual loss is theoretically sufficient to make primal ensembling outperform dual ensembling on average.

After some simple arithmetic manipulations, we obtain the following equivalent condition under which primal
ensembling achieves a lower NLL than dual ensembling in the two-class setting:∑

pi∑
(1− pi)

≥
∏
p

1/n
i∏

(1− pi)1/n
. (5)

Inequality (5) of arithmetic and geometric mean ratios can be further simplified for ensembles of two models.

Proposition 6.1. Let p1 and p2 be the probabilities assigned by two models to the true class y. Primal
ensembling these models will achieve a lower cross-entropy loss than dual ensembling if and only if p2 ≤ 1−p1.

In other words, primal ensembles are favorable when there is significant disagreement between ensemble
members. This is not surprising: for primal ensembles, all predictions contribute similarly to the ensemble
prediction, whereas dual ensembles are more sensitive to extreme predictions (p → 0 or p → 1), and in
particular to extreme incorrect predictions (p→ 0)—see also Figure 16 (Appendix H).

We confirm this in Figure 4, visualizing the pointwise BVD for ensembles of size n = 5 on CIFAR-100. As
expected, we see that dual ensembles are more likely to provide extreme probability estimates than primal
ensembles (Figure 4b). When primal ensembles achieve a lower NLL than dual ensembles (Figure 4c), both
primal and dual ensembles assign probabilities close to zero to the true class; however, dual probabilities
are more concentrated around zero. Conversely, when dual ensembles achieve the lower loss, primal and
dual probabilities are more spread out, and dual probabilities tend closer to one (Figure 4d). Finally, for the
ensembles analyzed in Figure 4, the dual NLL is lower than the primal NLL on almost 85% of datapoints; on
such points, we have |NLLprimal − NLLdual| ≈ 0.05, whereas on the 15% of datapoints where dual NLL is
higher than the primal NLL, we have |NLLprimal −NLLdual| ≈ 0.42. This is in line with our earlier analysis,
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(a) Pointwise bias-variance decomposition on Cifar100.
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Figure 4: Pointwise analysis of the bias-variance decomposition on the CIFAR-100 test set, using 20 draws of size-5
ensembles. (a) Decomposition over the full test set. Primal quantities (NLL, bias and variance) tend to be lower than
their dual counterparts, except for when the loss is very close to zero, in which case dual quantities are smaller. (b)
Empirical distribution of primal and dual probabilities assigned to the correct class over all CIFAR-100 test points;
extreme predictions (close to 0 or 1) are more common for dual ensembles. (b) Empirical distribution of probabilities
assigned to the correct class for the 50 points where the signed difference between primal and dual loss is smallest; (c)
for the 50 points where the signed difference between primal and dual loss is largest.

which showed that the asymmetry between primal and dual NLL allows for only a few points with much
worse dual NLL to influence the overall average performance.

We conclude this section by noting that Equation (5) still requires knowledge of the true labels. We leave to
future work the question of whether one can predict whether primal or dual ensembling will achieve a lower
loss without access to the true labels.

6.2 Primal ensembles of different model classes

We conclude our analysis by investigating the behavior of (primal) ensembles that average over network
width or network depth as well as random seeds; this has been shown to improve upon ensembling only over
the random seed (Zaidi et al., 2021). Based on our analysis, we seek to evaluate whether this improvement
over standard ensembles is due to faster bias reduction. (Yang et al., 2020) already showed that ensembles
of larger models have smaller bias; here, we are interested in whether the bias reduction as a function of
ensemble size is more efficient when ensembling over different architectures.

We begin with ensembles over different depths, training 100 WRNs of depths of 28, 40, and 52 each, following
the prescribed pattern depth = 6d + 4; the width multiplier is set to 10. Figure 5 shows indeed that, for
ensembles of different depths, the bias decreases faster as a function of the ensemble size compared to
ensembles of fixed depth and equivalent model size. Ensembles of different depths unsurprisingly have higher
variance; however, this increase in variance is less than the decrease in bias, as shown by the overall NLL.
The bias, variance, and NLL values of size-1 ensembles is provided in Appendices E and F.
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Figure 5: Bias, variance, and NLL on CIFAR-100 (estimated using 20 ensemble draws). Networks are trained with
different random seeds and different depths and then averaged in probability space (primal ensembles). Averaging
over depths dramatically reduces the bias, but in turn increases the variance. However, the increase in variance is
much smaller than the decrease in bias, and ensembles over multiple depths outperform ensembles of fixed depth.
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Figure 6: Bias, variance and NLL on CIFAR-100 (estimated using 20 ensemble draws). Networks are trained
with different initial random seeds and different widths and then averaged in probability space (primal ensembles).
Averaging over the width improves the bias at the cost of the variance.

A similar conclusion holds for ensembles of different widths (Figure 5), where this time we fix the depth to
6d+ 4 = 28 and let the width multiplier take values in {10, 20, 30}. Appendices E and F include results for
CIFAR-10 and corrupted datasets, with similar conclusions—only on the CIFAR-100 corrupted data is a
faster decrease in bias unclear.

7 Conclusion

Ensembles of deep classifiers achieve state-of-the-art performance across a variety of benchmark tasks.
Where ensembles have previously been analyzed for regression models through the lens of the bias-variance
decomposition, applying this decomposition proves more complicated for non-symmetric losses—such as the
KL divergence-based losses used in the vast majority of classification tasks. Pfau (2013) generalized the BVD
to Bregman divergences (including the KL divergence). However, whereas the “central” prediction for the
MSE decomposition is simply the expected prediction EX, the corresponding quantity for arbitrary Bregman
divergences is defined as the minimizer of an expected divergence, a term much less amenable to analysis.

We begin by resolving this difficulty by viewing the Bregman decomposition through the lens of convex
conjugates, showing that Bregman divergences implicitly defines primal and dual spaces, distinct when the
divergence is asymmetric. This perspective allows us to redefine the central prediction simply as the primal
projection of the expectation over dual predictions.

Using this reparameterization, we easily show that the model variance resulting from the bias-variance
decomposition satisfies a generalized law of total variance. We also exactly quantify the error term in
estimating the bias and variance terms when such estimates are implicitly conditioned on an uncontrolled
source of randomness (oftentimes, the randomness in the training data).
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The existence of primal and dual spaces for the bias-variance decomposition also has key implications when
building ensembles. Ensembling in primal space corresponds to simply averaging model predictions; this is
the usual setting for ensembles of neural network classifiers. We show that primal ensembles deviates from
standard assumptions: although they will reduce the variance under gentle assumptions, primal ensembling
may either increase or decrease the bias. Conversely, ensembling in dual space recovers expected behaviors,
always reducing the variance and leaving the bias unchanged.

Comparing different estimates of the bias and variance, we show that conditional estimates incur an irreducible
error, and that empirically the conditional bias dominates the variance for WRNs on Cifar. Bootstrapped
and partitioned estimates suggest that this holds true for the true bias and variance on the full test set.

Finally, we use the bias-variance decomposition to investigate the empirical behavior of neural network
ensembles under the cross-entropy loss. Experimentally, we observe that primal ensembling (a) reduces the
average bias, and (b) achieves a variance reduction of similar magnitude to dual ensembles, thus achieving a
lower overall NLL. To understand this behavior, we compare primal and dual ensembles on individual inputs,
showing that dual ensembles are more sensitive to extreme predictions, and incorrect predictions particularly.
Finally, we turn to (primal) ensembles of neural networks over different architectures, hypothesizing that
their improved performance may be in part explained by the behavior of the bias. Empirically, we confirm
that ensembling over architectures provides a faster bias reduction than ensembling only over random seeds.

Our analysis opens several avenues for future work. Of particular interest is identifying whether the average
bias reduction (and corresponding lower loss) of primal ensembles under the cross-entropy loss is common to
other datasets and tasks, as well as applying our analysis to learned Bregman divergences (Cilingir et al.,
2020; Siahkamari et al., 2020; Lu et al., 2022). Analyzing other common ensembling methods used in deep
learning and understanding their affect on the bias and variance is also of independent interest. Finally, we
found that primal ensembling achieves much greater variance reduction than bias reduction, despite bias
being the dominating term—raising the question of whether the insights developed in this work can help
derive ensembling methods with greater bias reduction.
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A Proofs

Proposition A.1 (Generalized triangle inequality for Bregman divergences). For any x, y, z in the domain
of F , we have D(x, z) = D(x, y) +D(y, z) + 〈∇F (y)− F (z), x− y〉.
Lemma 3.2. Let X,Z be random variables over X , and define the conditional variance V[X|Z] :=
E
[
D[E(X|Z) ‖ X]

∣∣Z]. The variance VX := ED[EX‖X] satisfies a generalized law of total variance:

V[X] = E[V[X|Z]] + V[E [X|Z]].

Proof. The proof follows from the generalized triangle inequality for Bregman divergences (Proposition A.1).

VX = ED[EX‖X]

= EZE
[
D[EX‖X]

∣∣∣Z]
= EZE

[
D[EX‖E(X|Z)] +D[E(X|Z)‖X] + 〈∇F (E(X|Z))−∇F (X), EX − E(X|Z)〉

∣∣∣∣Z]
= EZE

[
D[EX‖E(X|Z)] +D[E(X|Z)‖X] + 〈(E(X|Z))∗ −X∗, EX − E(X|Z)〉

∣∣∣∣Z]
= EZE

[
D[EX‖E(X|Z)] +D[E(X|Z)‖X] + 〈E[X∗|Z]−X∗, EX − E(X|Z)〉

∣∣∣∣Z]
= EZD[ EX︸ ︷︷ ︸

E[E(X|Z)]

‖E(X|Z)] + EZ

[
ED[E(X|Z)‖X]

∣∣∣Z]︸ ︷︷ ︸
V(X|Z)

+EZ〈E[X∗|Z]− E[X∗|Z], EX − E(X|Z)〉︸ ︷︷ ︸
=0

= V[E(X|Z)] + E[V(X|Z)].

Proposition 4.1. Let X,Z be two random variables over X ; to simplify notation, we assume that the label
Y is deterministic (Y = y ∈ X ). Applying Equation (3) to X|Z then taking the expectations over Z yields an
alternate BVD:

ED[y‖X] = EZD[y‖E(X|Z)]︸ ︷︷ ︸
Conditional bias: BiasZ

+EZE
[
D[E(X|Z)‖X]

∣∣∣Z]︸ ︷︷ ︸
Conditional variance: VarZ

.

The conditional bias (resp. variance) overestimates (resp. underestimates) their respective total values by the
fixed quantity EZD[EX‖E(X|Z)]:

BiasZ = total bias + EZD[EX‖E(X|Z)] VarZ = total variance− EZD[EX‖E(X|Z)].

Proof. Applying Equation (3) to the conditional bias EZD[y‖E(X|Z)], we have

EZD[y ‖ E(X | Z)] = D
[
y
∥∥∥ E [E(X|Z)]

]
+ EZD

[
E [E(X|Z)]

∥∥∥ E(X|Z)
]

= D[y ‖ EX] + EZD[EX ‖ E(X|Z)],

where the last equality stems from the law of iterated expectations for E . The result for the variance terms
follows immediately, as conditional bias and variance have the same sum as the full bias and variance.

Proposition 5.1. Let D be a Bregman divergence that is jointly convex in both variables. Let X1, . . . , Xn

be n i.i.d. random variables drawn from some unknown distribution, and define X̂ = 1
n

∑
i Xi. Then,

VX̂ = ED[EX̂‖X̂] ≤ ED[EX‖X] = VX.

17



Published in Transactions on Machine Learning Research (09/2022)

Proof. Let D : X × X → R+ be a Bregman divergence jointly convex in both variables. Let X̂ = 1
n

∑
i Xi,

where the Xi are i.i.d.. By convexity, for any z ∈ X ,

D[z ‖ X̂] ≤ 1
n

∑
i

D[z ‖ Xi]

ED[z ‖ X̂] ≤ 1
n

∑
i

ED[z ‖ Xi] = ED[z ‖ X]

min
z

ED[z ‖ X̂] ≤ min
z

ED[z ‖ X].

As EX = arg minz ED[z ‖ X], minz ED[z ‖ X] = ED[EX ‖ X], concluding the proof.

Proposition 5.2. Let D be the KL divergence. There exists a distribution over predictions X ∈ R2 and a
label y ∈ {0, 1} such that the bias D[y‖E [·]] satisfies

D[y‖EX̂] < D[y‖EX]
D[1− y‖EX̂] > D[1− y‖EX],

where as above we define the random variable for ensemble predictions X̂ = 1
n

∑
i Xi, and by abuse of notation

we conflate y ∈ {0, 1} with its one-hot representation.

Proof. For any one-hot label y ∈ {0, 1} and probability vector x, we have KL[y‖x] = log xy, and KL[1−y‖x] =
log(1− xy). As x→ log 1− x is decreasing, it suffices to prove that there exists a distribution D such that
KL[y‖EX̂] 6= KL[y‖EX]. In fact, it suffices to prove the existence of a distribution D such that EX 6= EX̂.

For the cross-entropy loss, we know7 that EX = softmax(E logX). Let D be the distribution that assigns
equal probability to x = (0.8, 0.2) and x = (0.6, 0.4), and is zero elsewhere. The equivalent ensemble
distribution assigns 1/4 probability to (0.8, 0.2) and (0.6, 0.4), and 1/2 probability to (0.7, 0.3). A simple
numerical computation then shows that EX 6= EX̂, concluding our proof.

Proposition 5.3. Let D be any Bregman divergence. Let X1, . . . , Xn be n i.i.d. random variables drawn
from some unknown distribution, and define the dual ensemble

X̂ =
( 1
n

∑
i
X∗i

)∗
.

This operation ensures that EX = EX̂. Furthermore, dual ensembling reduces the variance and conserves the
bias: for any independent label variable Y overX , we have

D[EY ‖ EX̂] = D[EY ‖ EX]
ED[EX̂ ‖ X̂] ≤ ED[EX ‖ X].

Proof. To preserve bias, it suffices to have EX̂ = EX. By definition of X̂, we have

EX̂ =
(
EX̂∗

)∗
=
(
E
[ 1
n

∑
i
X∗i

])∗
= (EX∗)∗ = EX. (6)

7See, e.g., (Yang et al., 2020).
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We now focus on the variance. Successively,

EDF [EX̂‖X̂] = EDF [EX‖X̂] (by EX = EX̂)
= EDF ∗ [X̂∗‖(EX)∗] (by Proposition 3.1)

= EDF ∗

[ 1
n

∑
i
X∗i ‖(EX)∗

]
(a)
≤ 1

n

∑
i
EDF ∗

[
X∗i ‖(EX)∗

]
(by convexity of DF ∗ in its first argument)

≤ 1
n

∑
i
EDF

[
EX‖Xi

]
≤ DF [EX‖X].

Proposition 6.1. Let p1 and p2 be the probabilities assigned by two models to the true class y. Primal
ensembling these models will achieve a lower cross-entropy loss than dual ensembling if and only if p2 ≤ 1−p1.

Proof. When n = 2, inequality (5) holds if and only if

(1− p1)(1− p2)(p1 + p2)2 − p1p2(2− (p1 + p2))2 ≥ 0
⇐⇒ (p1 − p2)2(1− (p1 + p2)) ≥ 0.

Thus, the primal loss is smaller than the dual loss if and only if p1 = p2 or p2 ≤ 1− p1.

B Experimental Details

The models used in this work are wide residual networks (WRN-28-10) (Zagoruyko & Komodakis, 2016) with
the cross-entropy loss unless specified otherwise. We train models with SGD + momentum to optimize the
cross-entropy loss. We use the learning rate schedule, batch size, and data augmentations specified in the
deterministic baseline provided by Nado et al. (2021).
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C Partitioned estimates of the bias and variance

(a) Bias (b) Variance

Figure 7: Bias and variance of a smaller WRN-16-5 over the CIFAR-100 dataset. We create 20 partitions of
the CIFAR-100 dataset, and estimate the bias either by conditioning on a partition (partition fixed/conditional
estimate), or by including the partition into the expectations that define the bias and variance (partition
multiple; converges to the true estimate). We see that it takes ≥ 10 partitions for the estimates of bias and
variance to begin converging, and that the converged values appear to still show the bias dominating the
variance.

D Bias-variance decomposition on SVHN and corrupted Cifar
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(b) CIFAR-10 corrupted
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(c) CIFAR-100 corrupted

Figure 8: Conditional bias, variance, and NLL of primal and dual WRN-28–10 ensembles on the SVHN test
set (left) and the corrupted Cifar10 and Cifar100 test sets (averaged over all corruptions). The comparison
between primal and dual ensembling methods remains similar, although are values are increased due to the
dataset shift.
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E Additional depth experiments
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Figure 9: (Primal) ensembling over depths: bias-variance decomposition on the Cifar10 clean test set.
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Figure 10: (Primal) ensembling over depths: bias-variance decomposition on the Cifar10 corrupted test set.
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Figure 11: (Primal) ensembling over depths: bias-variance decomposition on the Cifar100 corrupted test set.

Depth NLL Bias Variance
6 0.181 0.127 0.053
Uniform 0.177 0.125 0.051

(a) Clean test set

Depth NLL Bias Variance
6 1.170 0.923 0.247
Uniform 1.120 0.885 0.235

(b) Corrupted test set

Table 1: Bias, variance, and NLL values for size-1 ensembles for varying WRN depths on Cifar10
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Depth NLL Bias Variance
6 0.971 0.717 0.254
Uniform 0.980 0.718 0.262

(a) Clean test set

Depth NLL Bias Variance
6 2.887 2.355 0.532
Uniform 2.917 2.372 0.547

(b) Corrupted test set

Table 2: Bias, variance, and NLL values for size-1 ensembles for varying WRN depths on Cifar100

F Additional width experiments
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Figure 12: (Primal) ensembling over widths: bias-variance decomposition on the Cifar10 clean test set.
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Figure 13: (Primal) ensembling over widths: bias-variance decomposition on the Cifar10 corrupted test set.
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Figure 14: (Primal) ensembling over widths: bias-variance decomposition on the Cifar100 corrupted test set.
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Width NLL Bias Variance
20 0.164 0.123 0.041
Uniform 0.164 0.121 0.043

(a) Clean test set

Width NLL Bias Variance
20 1.044 0.848 0.196
Uniform 1.040 0.841 0.199

(b) Corrupted test set

Table 3: Bias, variance, and NLL values for size-1 ensembles for varying WRN widths on Cifar10

Width NLL Bias Variance
20 0.864 0.683 0.180
Uniform 0.877 0.684 0.193

(a) Clean test set

Width NLL Bias Variance
20 2.529 2.166 0.364
Uniform 2.574 2.176 0.399

(b) Corrupted test set

Table 4: Bias, variance, and NLL values for size-1 ensembles for varying WRN widths on Cifar100

G Expected calibration error
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Figure 15: Primal and dual expected calibration error (ECE) on the Cifar10 and Cifar100 datasets.

H Primal and dual ensembling for n = 2
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Figure 16: Ensembling two models with the cross-entropy loss. When the second model’s predicted probability for
the true class p2 is extreme (either towards 0 or towards 1), it dominates the prediction made by the other model p1.
This allows dual ensembling to achieve a lower loss when the second model is correct (p2 → 1), but also achieves much
higher losses when the second model is incorrect (p2 → 0). Note that primal and dual losses are equal at p1 = p2 and
p1 = 1− p2, as predicted by Proposition 6.1.
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