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Abstract

Deep learning-based 3D anatomical segmentation models that employ convolution kernels
have become ubiquitous in medical imaging. Currently, there exist trade-offs between model
capacity, the complexity of inference and accuracy. To cope with geometric invariances,
reflections (axes flips) of input data in training and test-time augmentations are often used,
but cause redundancies in computations. Group equivariance is one solution to enforce in-
variance w.r.t. rotation and reflection, but it comes at the cost of complicated inference.
To address those issues, we first explore a simple yet effective method that directly learns
symmetric kernels. To further boost performance and achieve full rotational and reflection
equivariance, we propose a novel concept that extends the idea of EdgeConvs, that have so
far been used in geometric point cloud learning, from graphs into voxelised grids and in-
tegrate this into the state-of-the-art framework for medical 3D segmentation, the nnUNet.
Our XEdgeConv kernel reduces the parameter count by 93% and computational opera-
tions 20-fold while maintaining very high segmentation accuracies on two challenging 3D
multi-organ segmentation tasks and it clearly outperforms alternative parameter reduction
strategies. https://github.com/multimodallearning/XEdgeConv

Keywords: Group convolutional neural networks, robust segmentation, rotation and per-
mutation equivariance

1. Introduction

Semantic 3D segmentation using U-Net models has become an integral part of a huge vari-
ety of medical image analysis pipelines, including registration, image-guidance, localisation
and diagnostics. The nnUNet framework Isensee et al. (2021) has set new state-of-the-art
accuracies in most recent benchmarks due to its potent parameterisation, rule-based ar-
chitecture recommendation and robust pre-processing and augmentation. It comes at the
cost of very large models and extensive test-time augmentations that may limit an efficient
application in resource-limited environments among others in point-of-care healthcare or
developing countries.

1.1. Related Work

A great number of complementary approaches exist that aim at limiting the kernels of
deep convolutional networks, e.g. by constraining their quantisation Zhang and Chung
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(2021), reducing their rank Jaderberg et al. (2014) or requiring symmetry Marcos et al.
(2016). While translational-invariance is given for fully-convolutional architecture, equiv-
ariance against rotations has to be incorporated at the additional computational expense by
augmentation strategies in training and at inference time. A particular popular direction of
research explores the use of rotation equivariant networks Cohen and Welling (2016) that
employ multiple rotated versions of filters Bekkers et al. (2018); Dieleman et al. (2016) (or
steerable filters Weiler et al. (2018)) and find a maximum response among them. While
steerable 3D filters can have great expressiveness, they come at the cost of a large additional
computation overhead. SymNets Dzhezyan and Cecotti (2021) explore a range of complex-
ity levels for symmetric filters in image classification but see a notable accuracy drop when
moving from reflection symmetry (which would yield 4 distinct values in a 3x3 kernel) to
full rotational invariance (only 2 distinct values in a 3x3 kernel).

Depth-separable convolutions found in EfficientNet and MobileNet Howard et al.
(2019), are another solution that can massively reduce the parameterisation of deep net-
works and is successfully used in 2D semantic segmentation. Here, the spatial and channel
dimensions of filter kernels are separated, replacing normal 3x3 convolutions by grouped
variants and 1 x 1 filters. In addition, the intermediate channel capacity is substantially
increased. It comes, however, without any beneficial geometric invariances.

Geometric deep learning Bronstein et al. (2017) is currently primarily focused on learn-
ing filters for unstructured 3D data, i.e. point clouds or point graphs, but may offer an
attractive invariance against permutations. The seminal point net Qi et al. (2017a) can
in principle be rotation- and permutation-equivariant but introduces canonical geometric
transformations based on absolute 3D coordinates. Diffusion graph CNNs Atwood and
Towsley (2016) design isotropic filters that only depend on the magnitude and not angle of
the spatial distance between two nodes. Graph attention networks Velickovi¢ et al. (2018)
are related to recent (vision) transformer architectures and employ a similar multi-head
attention for aggregating neighbourhood features. Edge convolutions Wang et al. (2019)
achieve the same mechanism without scaling of weights by softmax functions and are a par-
ticularly suitable starting point for our contribution. Here, neural messages across a graph
are learned based on a shared MLP (or 1x1 convolution) that receives the concatenated
pointwise features of two connected nodes as input. All incoming messages to a node are
aggregated using a symmetric function. That means the output of each message passing
step is independent of the spatial position or offset of the connected nodes. Hence, an
EdgeConv network that omits absolute geometric coordinates as input features is by design
rotation- and permutation-invariant. Due to the complexity of multi-scale operations on
an irregular domain, graph convolution networks have been limited (cf. Qi et al. (2017b)).
Here, recent works explored the use of isotropic kernels weighting spatial distances of graph
features Schiitt et al. (2017).

Combined Architectures attempt to exploit the advantages of volumetric and graph
learning approaches. The Point-Voxel CNN Liu et al. (2019) processes irregular 3D input
data as point clouds to reduce memory consumption (which allows higher spatial resolu-
tions) but performs convolutions with volumetric kernels for more efficient memory access
through better memory locality. The proposed point voxel convolution is used as a drop-in
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replacement for MLPs in PointNet(+4+) architectures and can increase the prediction ac-
curacy on different point cloud datasets, while also improving runtime and GPU memory
consumption. In another approach, Garcia-Uceda Juarez et al. (2019) replace the bot-
tleneck layer of a multi-scale U-Net with graph convolutions. This allows features to be
propagated more effectively over a nearest neighbour keypoint graph, leading to improved
airway segmentation on chest CT images. In contrast, in this paper we, investigate on the
level of filter kernels in which way and to what extent regular convolutions can be replaced
by graph approaches. Our key hypothesis is therefore: Can we combine the benefits of the
common-place multi-scale U-Net architecture with the power of symmetric neural message
passing of edge convolutions?

1.2. Contribution

1) We present a new convolutional network design for 3D voxel grids that is equivariant to
both permutation of input dimensions and all rectangular rotations of input scans. That
means the output segmentation is accurate irrespective of all 48 possible orientations of a
3D scan without requiring any test-time augmentation or computation of multiple (rotated)
filter versions. 2) We achieve a more than a magnitude reduction in model complexity and
model capacity compared to full 3D kernels. 3) We demonstrate for the first time, that
implementing a graph-convolutional architecture for voxelised data has immense benefits -
aside from point cloud data - and outperforms all other symmetric or permutation equiv-
ariant alternatives. 4) We evaluated the clear advantages of permutation-invariance in
practical applications on two datasets (CT and MRI) for 3D medical image segmentation.

2. Method

We address the task of segmenting multiple anatomical structures in 3D medical scans using
a deep convolutional network. Our proposed method replaces conventional 3 x 3 x 3 convolu-
tion kernels with reflection- and/or rotation-invariant alternatives. Since the seminal U-Net
paper Ronneberger et al. (2015), many architectural design choices have been extensively
studied. Nevertheless, a careful augmentation and supervision strategy of this classic archi-
tecture has been repeatedly shown to outperform various alternatives. We, therefore, base
our method on the state-of-the-art nnUNet framework Isensee et al. (2021) and implement
the new kernels as a drop-in feature.

Symmetric kernels Our first and most straightforward modified variant of the convo-
lution kernels uses a reduction of learnable parameters for each filter and channel from 27
to 4 by a rotationally symmetric reflection. To remove any dependency on orientation of
the filter kernel, we introduce weight sharing for all elements that have the same distance
from the centre. In a 3 x 3 x 3 these are four elements with r = {0, 1,v/2,/3}, see Fig-
ure 1. This approach is most closely related to diffusion graph CNNs Atwood and Towsley
(2016), which also learns isotropic graph convolutions that are orientation independent. In
a second variant, we experimented with a reflection-only symmetric kernel that comprises
8 distinct elements but found merely small improvements with the downside of losing rota-
tional invariance. Both variants have been studied in SymNets yielding good performance
for moderately challenging 2D image classification Dzhezyan and Cecotti (2021), but using
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Figure 1: Segmentation U-Net with default 3 x 3 x 3 convolution compared to symmetric
permutation and rotation invariant kernels and our proposed XEdgeConv opera-
tion that uses neural message passing to enable invariance.

relatively large kernels and shallow networks. Exploring the performance of incorporating
such a simplistic concept into state-of-the-art segmentation networks has not been investi-
gated so far and can serve as baseline.

XEdgeConv kernels Next, we introduce our proposed XFEdgeConv operation. In geo-
metric deep learning, the definition of a consistent spatial kernel layout is impossible due to
the absence of a regular grid. Hence, the interaction between points (or nodes) in a graph
can only depend on point-wise features. The introduction of graph attention Velickovié
et al. (2018) and edge convolutions Wang et al. (2019) opened the possibility of learning
to compute edge attention weights and neural messages respectively that depend on inter-
mediate feature vectors of both considered nodes connected by an edge in the graph. For
XEdgeConv a graph that comprises vertices and edges is constructed G = (V,€), which
in the simplest case can be a FKuclidean knn-graph. Edge features of two nodes i and j
that are in close spatial proximity are defined as e; ; = ho(z;, z;), where z; ; are pointwise
feature vectors and hg a trainable function. Without loss of generality, we assume hg to be
a 1 x 1 convolution of the concatenated feature vectors x; and x; with subsequent normal-
isation and ReLu activation. Once all k£ messages are computed, a symmetric aggregation
is required to combine the information that is received from the neighbourhood. Here we
opt for a max operator!, which goes along with the standard nnUNet pooling operation,
followed by another 1 x 1 convolution, normalisation and nonlinearity, but using averaging
yielded similar performance in preliminary experiments. Note, that a naive implementa-
tion of hg would require k computations per feature channel. Since, a linear transform
after concatenation can be replaced by computing two individual linear transforms inde-
pendently and adding their respective results this overhead is reduced from k to 2. Because
of weight-sharing the same linear part is required repeatedly for all k neighbours for which
a node sends out messages, these computations can be reused. When using image data on

1. For irregular graphs the pooling layer would need to be replaced by a graph coarsening layer such as in
Qi et al. (2017b)
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a grid, two 1 x 1 convolutions and a gather operation along all directions of knn-neighbours
followed by the max aggregation can be used to pass messages.

3. Implementation and Ablations

The global U-Net architecture comprises a base number of channels of 24, five downsampling
and upsampling steps in the encoder and decoder part respectively with skip connections to
pass features of same scale across the bottleneck (or lower branches) and to achieve highly
accurate segmentation of anatomies with varying sizes. To ensure permutation invariance
the stride of downsampling should be the same in all dimensions and the upsampling cannot
contain learnable transposed convolutions, so we opt for trilinear interpolation instead. The
whole architecture uses 22 convolution filters of size 3 x 3 x 3 with a maximum channel depth
of 320, instance normalisation and leaky ReLU activations.

Baselines As an upper heavy-baseline, we train the standard, nnUNet with 27 unique
coefficients in each filter element. The model excelled at all tasks of the Medical Segmenta-
tion Decathlon Antonelli et al. (2021) and incorporates extensive augmentation, including
mirroring along all axes, together with a robust cost function — Dice and cross-entropy
loss deeply supervised at multiple scales — and a patch-based training routine. All hyper-
parameters, design choices and pre-processing steps follow the rule-based concept described
in Isensee et al. (2021). As a light-baseline, we implement a 3D version of MobileNetV3
Howard et al. (2019) with a lite R-ASPP (atrous spatial pyramid pooling) segmentation
head (MobileLRASPP). In addition to changing the dimensionality of the kernels from 2D
to 3D, we replace batch by instance normalisation and use leaky ReLU activations to ac-
count for smaller batch sizes. Since, the network choices for MobileLRASPP are based on
larger (2D) images, we increase? the resolution of 3D patches by a factor of 1.5. The net-
work comprises 62 convolutional layers with residual connections in its backbone, efficient
depthwise separable convolutions and large dilation kernels with squeeze-excitation in the
segmentation head - counting 6.8 million parameters. The network is run in the nnUNet
environment to ensure comparability.

SymPermutation As our first concept, we implement rotation symmetric and permu-
tation invariant kernels in two variants: (1) A symmetric kernel which contains only 4
trainable values as shown in Figure 1 (denoted as SymPermutation (full)). (2) A sym-
metric kernel, which only has the center and its six neighbours as trainable parameters
resulting in 2 trainable values (denoted as SymPermutation (6-nbh)). The latter variant is
closer related to our proposed method, as XEdgeConv also only includes six neighbours in
our experiments.

XEdgeConv Our method replaces each 3 x 3 x 3 convolution with two 1 x 1 kernels, a
gathering operation in the immediate six-neighbourhood (k = 6 in the graph) followed by
instance normalisation and ReLU with another subsequent 1 x 1 convolution, normalisation
and leaky ReLU. We reduced the base number of feature channels from 24 to 16 and
use the arithmetic mean of the number of input and output channels for the specification
of the intermediate feature width between two subsequent convolutions. We can reduce
from 30.8 to only 2.0 million trainable parameters within the nnUNet framework which

2. We did not alter the MobileLRASPP layer count despite smaller image size to stick close to the definition
of the basis model
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Figure 2: Left: Overview of model resource usage and accuracy on abdomen CT experi-
ments. XEdgeConv excels with the smallest number of parameters and FLOPS
and second best accuracy. Right: The validation accuracy and standard deviation
w.r.t. to the number of training epochs.

boosts inference performance and moreover benefits of complete rotation and permutation
equivariance.

4. Experiments and Results

Various datasets could have been chosen to evaluate our methodological contribution. We
opted for one abdominal CT and a cardiac MRI segmentation dataset:

Abdomen-CT In this task we are using the abdominal CT dataset described in Xu et al.
(2016) used in the Learn2Reg 2020 challenge Hering et al. (2021). For the latter, a pre-
processed version exists that consists of resampling to isotropic resolution of 2mm, automatic
cropping to a similar field-of-view and affine pre-registration to a canonical space®. To give
an impression of the variability of organ shapes, we can compute the overlap of copying the
segmentation masks from another randomly selected scan resulting in a very low average
Dice overlap of 28.1%. We split the data into 20 training and 10 validation scans with 13
anatomical labels each. We train all networks for 150 epochs with default settings. During
inference test-time augmentation (TTA) is used only for the two full-kernel variants (heavy-
and light-baseline), which boosts their performance by ~ 1%point at the cost of 8-times
longer inference. We used pytorch 1.10 and either a Nvidia RTX A4000 or A40 (with 16
and 48 GByte VRAM respectively) for training all models. Training each epoch takes 230
secs. for the heavy-baseline, 180 secs. for symmetric permutations, 100 secs. for the light-
baseline (MobileLRASPP) and between 290-500 secs. for our proposed model (depending
on whether memory checkpointing is employed for reduced VRAM). The CPU inference
time of XEdgeConv is 25 times faster than the heavy-baseline (considering TTA) and 3.2
times faster on a single pass.

3. Dataset: https://drive.google.com/uc?export=download&id=1aWyS_mQ5n7X2bTk9etHrn5di2-EZEzy0
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Table 1: Dice overlap of 10 unseen 3D abdominal CT scans with 9 of 13 structures shown.
XEdgeConv (ours) can maintain high scores at a significantly reduced parameter
count. Class labels: Spleen B, right kidney =, left kidney M, gallbladder M,
esophagus M, liver B, stomach M, aorta M and pancreas M.

Method #Param. Input © | H u | | | [ | | u avg.(13)

Light-baseline 6.8M  permuted | 24.2 71.2 80.0 11.3 7.0 827 238 181 94 | 295+ 9.0%
Heavy-baseline 30.5M  permuted | 61.4 88.0 839 41.3 31.0 86.1 56.5 31.0 39.7| 451 +8.7%
SymPermutation (6-nbh) 2.0M  permuted | 80.3 86.6 87.1 46.1 30.0 86.8 54.4 71.6 43.7 | 59.5 + 12.4%
SymPermutation (full) 4.6M  permuted | 75.1 85.5 93.1 37.8 24.9 89.9 583 77.1 43.1 | 60.2 + 12.4%
SymPermutation (6-nbh) 2.0M normal | 90.7 90.0 92.3 44.1 67.2 940 73.4 80.7 54.5| 70.3 £ 5.8%
Light-baseline 6.8M normal | 87.6 89.0 90.9 45.8 704 84.1 743 775 64.9 | 715+ 6.0%
SymPermutation (full) 4.6M normal | 90.3 91.0 932 66.2 614 941 74.7 83.5 581 | 749+ 59%
XEdgeConv 2.0M  permuted | 93.6 90.8 91.5 583 74.2 951 78.6 84.3 70.8 | 78.8+ 5.0%
XEdgeConv 2.0M normal | 94.0 91.8 939 774 751 96.2 79.8 882 71.7 | 81.6 + 4.0%
Heavy-baseline 30.5M normal | 95.2 93.7 932 733 76.9 968 91.1 91.6 76.3 | 844 + 3.2%

Table 1 (left) highlights the differences across methods and shows that XEdgeConv
can drastically reduce the required model capacity and complexity to each state-of-the-
art performance. This is in contrast to more simplistic symmetric permutation invariant
kernels and depth-wise separable convolutions that each result in a substantial drop in
quality. The detailed numerical results in Table 1 demonstrates the very accurate results
that can be obtained with our model that has 15x fewer parameters than the baseline
across all anatomical structures (with a small exception of the stomach, for which rotational
invariance seems to be a disadvantage). Figure 3 clearly shows the benefit of our model
when applied to permuted input data, where the performance of the baseline nnUNet drops
to nearly half (45.1% vs. 84.4%) but our XEdgeConv method retains its high scores (81.6%
vs. 78.8%).

heavy kernehanUNetl XEdgeConv
heavyskernelnnbNet | XEdgeGoni N '

"

v
training orientation training orientation input permuted input permuted

ali. " \'. bﬁ&‘?' :_’“ \\
s [ Terd | o

Figure 3: Prediction on a normally orientated scan (left) and a permuted input (right). Our
XEdgeConv method maintains performance.

Cardiac-MRI As the heart’s orientation can vary across patients, we found it suitable to
show the influence of rotational and permutational invariant network training. The dataset
described in Zhuang et al. (2019) contains MRI scans of the whole heart and seven cardiac
labels annotated by experts. Additional to the inter-patient differences in heart orientation,
the MRI data subset was acquired in two different canonical scanner directions (6x RIA,
14x AIL)*. We split data such that training on AIL samples and testing on RIA samples
introduced an additional domain gap to the network. The MRI volumes were resampled

4. Directional convention is defined as: Right to Left, Anterior to Posterior, Superior to Inferior
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Table 2: Dice overlap of 6 unseen cardiac scans under RIA orientation domain shift (training
with AIL orientation). Labels: left myocardium M, left atrium ', left ventricle M,
right atrium B, right ventricle M, ascending aorta M and pulmonary artery M.

Method Input © | ® | [ ] [ ] | avg.(7)

Light-baseline RIA 18.0 6.2 17.6 457 144 402 325 | 24.9 + 14.2%
Heavy-baseline RIA 25.7 16.7 26.7 39.5 39 523 31.7| 28.1+17.9%
SymPermutation (6-nbh) RIA 58 47.1 6.7 50.5 15.9 484 46.3 | 31.5 + 18.5%
SymPermutation (full) RIA 20.6 69.2 223 494 150 61.2 424 | 40.0 £ 18.9%
XEdgeConv RIA 49.7 84.9 521 56.9 403 71.2 59.7 | 59.3 + 22.1%

at 1.5x1.5x1.5mm and centre-cropped around the ground truth label centroid to a size of
200x200x200 voxels. For this setting, we experience a large improvement in Dice mean
accuracies, shown in Table 2. The visual results of one test case are shown in Figure 4
for the centre slice and the 3D volume (ground truth, nnUNet full-kernel baseline and
XEdgeConv). The potential of our method can also be seen in cardiac segmentation where
the heavy-baseline nnUNet cannot overcome the orientation domain gap as successful as
our method (28.1% vs. 59.3%, Table 2).

Test case predictions are more convincing for some classes (e.g. the left atrium and
pulmonary artery in Figure 4).

ground truth heavy kernel nnUNet XEdgeConv

Figure 4: Heavy-baseline and XEdgeConv predictions given a RIA oriented test case. Net-
works were trained on AIL oriented data. With our method more reasonable
predictions are achieved (see left atrium and right ventricle prediction, arrow).
Class labels see Table 2.

5. Discussion and Conclusion

We have presented a radically new concept for computing spatial convolutions in a 3D
segmentation U-Net that does not directly use a spatial filter kernel but is rather based
on the concept of neural message passing. This comes at the benefit of rotation, reflection
and permutation equivariance. The benefits of using mirror (reflection) augmentations in
semantic segmentation had been previously discussed Isensee et al. (2021), but enabling
equivariance for input permutations offers further robustness, e.g. for potential incomplete
meta-data of imaging data in practical use cases (and removes the need for augmentation).

We evaluated the benefits of transferring graph-convolutions to grid-data in two medical
segmentation tasks. Our XEdgeConv-Net reduces the number of parameters by a factor of
15 (i.e. by 93%) and the number of computational FLOPS by 95% compared to the baseline
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nnUNet model while resulting in a minor reduction of 2.8% in Dice accuracy (81.6% vs
84.4%) for the first experiment (Abdomen-CT), with data that had been canonically aligned
as pre-processing. For canonically unaligned data — such as MRI images acquired with
different clinical scanning protocols — we can show that substantial higher Dice accuracies
can be achieved (28.1% vs. 59.3%). We can thus show that our proposed XEdgeConv
minimises the deterioration of 3D U-Net models in the case of domain-shifts introduced
by differences in 3D image orientation. Obtaining such a strong performance by replacing
full convolution kernels with only 2 trainable coefficients (a 15x fold decrease in model
capacity) is an unexpected and surprising result that can initiate further research into
trainable graph-based message passing algorithms for segmentation. To the best of our
knowledge this is the first method that demonstrates advances in voxelised 3D image analysis
using concepts from geometric point-cloud learning. For inference on CPU, a substantial
speed-up (3.2x without and 25x with test-time augmentation) is achieved. This clearly
demonstrates that the reduction of computational operations of geometric deep learning
methods translates into more efficient 3D image analysis when applied in clinical practice.
However, due to the highly optimised tensor compute units present in GPU servers, this
does not directly translate into faster training times during development. In future work,
other graph neighbourhoods and message passing schemes could be considered and a more
varied set of datasets could be studied to gain further insights into the relevance of different
invariances for other applications.
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