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ABSTRACT

Handwritten Mathematical Expression Recognition (HMER) forms
a crucial task in the domain of document intelligence. It encom-
passes online and offline modalities, which utilize the trajectory se-
quence and static image as input, respectively. It is intuitive to utilize
both online and offline modalities to build a more powerful recogni-
tion system. However, a formidable challenge arises as a result of
the substantial heterogeneity between the online and offline modal-
ities, which consequently leads to considerable obstacles in their
alignment and fusion. In this work, we perceive the writing pro-
cess as a video and introduce the Aggregated Optical Flow Map
(AOFM) to represent the online modality, which is more compat-
ible with the offline modality. Additionally, we propose the Op-
tical Flow Aware Network (OFAN) in order to automatically ex-
tract, align, and fuse the features across online and offline modal-
ities. Through experiment analysis, our method can be seamlessly
applied to multiple existing offline HMER models, thereby yielding
stable and substantial enhancements across CROHME 2014, 2016,
and 2019 datasets. The code in this work is available at https:
//github.com/Hanbo-Cheng/OFAN.git.

Index Terms— Handwritten Mathematical Expression Recog-
nition, Aggregated Optical Flow Map, Multi-Modal, Attention

1. INTRODUCTION

Handwritten Mathematical Expression Recognition (HMER) is a
significant branch of document intelligence, which is required by
many applications such as education, technology document digi-
tization, and office automation. Diverging from regular text line
recognition tasks, HMER presents greater challenges due to the in-
tricate 2D structures inherent in mathematical expressions. Despite
the impressive accomplishments of large language models (LLM)
in natural language processing and multi-modal tasks, they still fall
short of conventional methods in multiple OCR-related tasks, espe-
cially the HMER. Therefore, it’s still necessary to design specialized
methods for the HMER [1].

From the perspective of input data, the HMER task comprises
two distinct categories: offline HMER and online HMER [2]. The
former utilizes static images, while the latter employs dynamic hand-
writing trajectories as input. The encoder-decoder structure is widely
used in both the offline and online OCR-related tasks [3, 4, 5]. In the
encoder stage, in offline HMER, WAP [6] proposes to use CNN-
based encoder to process the static image. For online HMER, [7, 8]
transform the sequence of trajectory points into 8-dimensional vec-
tors and leverages an RNN-based encoder to extract the feature. In
the decoder stage, most of the online and offline HMER methods

⋆ corresponding author

apply the RNN-based or transformer-based decoder with attention
mechanism [3, 9, 10]. Generally, the dynamic handwriting trajec-
tory in online HMER provides more comprehensive motion infor-
mation during the writing process, which proves to be significantly
beneficial in addressing ambiguous handwriting [8]. However, due
to the irregular writing orders among different writers and the lack of
global spatial information, the online HMER method often encoun-
ters limitations of lower structure analyzing capability and incorrect
prediction orders [2]. Compared to the trajectory sequence, the static
image has lower sensitivity to the writing orders and possesses more
global spatial information [8]. However, the offline HMER method
usually encounters the challenge of ambiguous writing, such as “B”
and “β”, “s” and “5” [6].

To fully exploit the advantage of online and offline informa-
tion, many works have explored the multi-modal HMER method.
[2] initially proposes a multi-modal HMER architecture. However,
a significant heterogeneity still exists between the features derived
from the online and offline modalities, leading to substantial chal-
lenges in the alignment and fusion processes of multi-modal data
[2]. Later, [11] suggests aligning and merging the features from dif-
ferent modalities through strokes. Although the use of stroke masks
to align the online and offline features can alleviate the alignment
and fusion problems, the irregular writing orders still impose a sub-
stantial passive impact on the process of recognition [11].

Optical flow is a technique to describe the motion of pixels in
the video, which reflects the movement of objects or cameras in
consecutive frames [12]. In this study, to bridge the gap between
online and offline HMER as well as enhance their complementarity,
we view the writing process as a video and introduce a novel tech-
nique, the Aggregated Optical Flow Map (AOFM) as illustrated in
Fig. 1 to represent the online modality. Our AOFM is easy to obtain
and incorporates both motion and global spatial information. Based
on AOFM, we introduce an encoder-decoder architecture called the
Optical Flow Aware Network (OFAN). To be more specific, the en-
coder incorporates a two-branch CNN structure to process the input
from online and offline modalities respectively. The decoder encom-
passes a multi-modal attention module that can automatically align
and fuse features extracted from disparate modalities. In the exper-
iment section, we implement our proposed HMER framework on
multiple extant offline methods and evaluate their performance on
CROHME 2014, 2016, and 2019 datasets. Evidenced by consistent
and significant improvement, our proposed approach exhibits sub-
stantial compatibility and prominent performance.

In summary, the contribution of the paper is three-fold:
(1) We view the writing process as a video and propose the

Aggregated Optical Flow Map (AOFM) to represent the online
modality in the HMER task. The AOFM not only narrows the gap
between online and offline data but also preserves extensive spatial
information.
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𝑥2, 𝑦2
⋯
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Fig. 1. The generation of the AOFM.

(2) Based on the AOFM, we introduce the Otical Flow Aware
Network (OFAN) to accomplish the complementary integration of
offline and online data.

(3) Our OFAN can be generalized to various existing models and
achieve new state-of-the-art results. The experiment results demon-
strate the superiority of our method over the previous best method.

2. METHOD

In this section, we introduce the Aggregated Optical Flow Map
(AOFM) and the Optical Flow Aware Network (OFAN) based on
encoder-decoder architecture for the HMER task.

2.1. Aggregated Optical Flow Map

The inherent nature of the writing process aligns harmoniously with
the concept of a video. In the online trajectory sequence, each in-
dividual sampling point can be perceived as a distinct frame. Opti-
cal flow is a technique which is commonly applied in video-related
tasks, such as video understanding and action recognition [12, 13].
The optical flow map records the movement direction and velocity
of every pixel in each frame, which encompasses both the global
spatial and motion information. Meanwhile, the optical flow map
usually expresses a considerable complementarity with image [13].
However, the generation of conventional optical flow map is usually
time and space consuming [14], which severely limits its applica-
tion in HMER. Fortunately, We observe the online HMER exhibits
unique traits distinguishing it from conventional video inputs. These
distinctive traits encompass:

• Single dynamic point throughout the writing process
• Few intersections in the writing trace
• Direct and simplified acquisition of optical flow from the tra-

jectory sequence.
Due to these traits, in contrast to the conventional optical flow map,
we are able to streamline the tracking process to a single point and
aggregate all the motion information pertaining to the writing pro-
cess within a single frame, namely the Aggregated Optical Flow Map
(AOFM). The generation process is illustrated in Fig.1.

Fig. 2. The visualization of writing direction using gradient map.

The original data format of the online modality is a variable
length point sequence, denoted as:

[x1, y1, s1], [x2, y2, s2], · · · , [xN , yN , sN ] (1)

Where the xi, yi represent the coordination of the ith sampling point
and si is the stroke index. To alleviate the reliance on stroke infor-
mation, we refrained from using si.

Our approach entails extracting both the coordination in-
formation and the movement direction, denoted as (xi, yi) and
(∆xi,∆yi).

∆xi = xi+1 − xi ∆yi = yi+1 − yi (2)

Specifically, To alleviate the impact of variable writing velocity, we
normalize the direction vector (∆xi,∆yi) by converting it into a
unit vector and obtain (∆x̃i,∆ỹi):

∆x̃i =
∆xi√

∆xi
2 +∆yi

2
∆ỹi =

∆yi√
∆xi

2 +∆yi
2

(3)

Eventually, we put the direction (∆x̃i,∆ỹi) in the position of
(xi, yi), where ∆X̃,∆Ỹ ∈ RH×W :

∆X̃xi,yi = ∆x̃i ∆Ỹxi,yi = ∆ỹi (4)

Additionally, some characters such as "!", "÷", "i" and ".", com-
prise small-scale strokes that inherently lack a fixed writing pattern.
In Fig. 2, we manifest such a phenomenon by utilizing the hue to
represent the writing direction, denoting the angle within the range
of 0 to 2π. The figure suggests the same stroke "." has variable
writing patterns in different cases. Such a phenomenon leads to the
consequence that only using the optical flow map fails to establish
a stable feature, which eventually causes ambiguity and confusion.
To ameliorate this issue, we introduce the method called Auxiliary
Static Map (ASM). The ASM, denoted as S ∈ RH×W , is a single-
channel Boolean map, where the elements represent the presence of
optical flow information in the corresponding pixel. Eventually, we
form the AOFM by concatenating the ∆X̃, ∆Ỹ, and ASM:

AOFM = [∆X̃;∆Ỹ; S] (5)
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2.2. Optical Flow Aware Network

As illustrated in Fig. 3, our architecture leverages the AOFM as the
online modality input and static image as the offline counterpart. The
online and offline data parallelly pass through a two-branch sym-
metric CNN-based encoder to extract the high-level features. Then
a multi-modal decoder aligns and fuses the features from differ-
ent modalities to generate the target sequence. Although we select
the DWAP [15] to demonstrate our proposed method, the proposed
structure can also be applied to the transformer based [10] or tree
decoder based [16] method. In the encoder stage, following [15], we
use a pair of DenseNet [17] to extract the feature from the AOFM
and static image. We define the output feature map processed by
two DenseNet as Aoff,Aon ∈ RD×H×W respectively.

In the decoder stage, the model aims to generate a target se-
quence Y = [y1,y2, . . . ,yn]. The target sequence can be the tree
structure label [16] or the LaTeX string. Our decoder incorporates
two layers of Gated Recurrent Unit (GRU) [18] and a multi-modal
attention module. The first GRU layer aims to establish a shared
query vector for attention operation. The second GRU layer aims to
generate the target sequence step by step. The multi-modal atten-
tion module employs the shared query vector to retrieve, align and
fuse the significant feature from online and offline modalities. The
overall process can be denoted as:

ĥt = GRU1(yt−1,ht−1) (6)

ct = fMA(Q = ĥt,K = Aoff|Aon, V = Aoff|Aon) (7)

ht = GRU2(ct, ĥt) (8)

where GRU1 and GRU2 represent the first and second GRU layer,
fMA indicates the multi-modal attention module, ct is the context
vector, ĥt and ht represent the hidden state of the first and second
layer of the GRU cell in tth decoding step, respectively.

In fMA, we use a shared query vector to retrieve and align the
significant feature from online and offline respectively, which can be
expressed as:

coff
t = fattn(Q = ĥt,K = Aoff, V = Aoff) (9)

con
t = fattn(Q = ĥt,K = Aon, V = Aon) (10)

where coff
t and con

t are the context vector for offline and online modal-
ity, the fattn is the additive attention mechanism [19].

After generating the coff
t and con

t , the multi-modal attention mod-
ule fuses them and provides a shared context vector:

ct = W f ([c
off
t ; con

t ]⊤) + b (11)

where [coff
t ; con

t ] is the concatenation operation, W f ∈ RD×2D and
b ∈ RD are trainable parameters.

Then we utilize the hidden state of the second layer of GRU
ht, the context vector ct, and embedding of yt−1 to estimate the
probability of yt:

p(yt|Ioff, Ion,yt−1) = σ(W oϕ(W hht +W cct +W yE(yt−1)))
(12)

where the σ and ϕ are the softmax and maxout activation function,
Ioff, Ion are offline and online input data, and W o ∈ RK×m,W h ∈
Rm×n,W c ∈ Rm×D,W y ∈ Rm×n,E ∈ RK×m are trainable
parameters.
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Image

AOFM
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Fig. 3. Architecture of Optical Flow Aware Network adapted from
DWAP (OFAN-DWAP).

3. EXPERIMENTS

3.1. Dataset and Implement Details

For training and evaluation, our method utilizes the CROHME
dataset [20], which currently stands as the most widely employed
public dataset in the HMER task. In the CROHME training set,
there are 8836 handwritten mathematical formulas. The CROHME
encompasses three test sets: CROHME 2014, 2016, and 2019.
These test sets incorporate 986, 1147, and 1199 mathematical ex-
pressions, respectively. In the original form, the CROHME dataset
uses the trajectory sequence to represent the mathematical formula.
We transform the original data into the static image and the AOFM,
serving as the input of offline and online modality.

We employ our multi-modal HMER architecture in a plug-in
mode on multiple existing offline HMER models. In comparison
to the original offline approach, we introduce the following adap-
tations: (1) We incorporate an extra DenseNet encoder for online
modality. (2) We replace the single-modal attention module with our
proposed multi-modal attention module. As for the remaining com-
ponents, we meticulously adhere to the configuration of the original
offline model. The loss function is the cross entropy loss, and the op-
timization algorithm is the Adadelta [21], with a learning rate set to
1. All experiments were performed on a single NVIDIA 3090 24GB
GPU.

3.2. Comparison with State-Of-The-Art Methods

In this section, we validate the effectiveness and compatibility of
our method by applying it to five established offline HMER models:
WAP [15], ABM [4], BTTR [10], TDv2 [9], and CoMER [22].
These models encompass diverse decoder structures such as RNN-
based and transformer-based, and label categories including tree
structure-based and LaTeX string-based. This careful selection en-
sures that they represent a comprehensive range of existing methods
in the HMER task. The "-OFAN" indicates that we incorporate the
proposed architecture into the existing offline model. To evaluate
the model performance, we utilize the ExpRate measure, which
represents the proportion of correctly predicted expressions.

Based on the results presented in Table 1, our approach demon-
strates excellent compatibility with extant offline HMER models.
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Offline modal:

- 1 \infty 1 y

Multi-modal:

- 1 0 0 1 y

Online modal:

- \times n

Multi-modal:

\cdots \times n

Fig. 4. The OFAN rectifies errors in the single-modal method. We
use the arrow to represent the writing direction in online modality.

The experiment results convincingly reveal that our method con-
sistently improves the performance of these models. Notably, the
"CoMER-OFAN" configuration achieves considerable ExpRate of
60.24%, 61.63%, and 61.96% on CROHME 2014, 2016, and 2019
respectively. These results exhibit a significant advantage over the
majority of existing single-modal and multi-modal HMER models.

Table 1. Results on the CROHME dataset, "off" and "on" indicates
the offline and online modality, † represents our reproduced result.

Model
Modality CROHME(ExpRate)

off on 2014 2016 2019

WAP [6] ✓ 46.55 44.55 -
DWAP-TD [16] ✓ 49.10 48.50 51.40
SAN [23] ✓ 56.2 53.6 53.5
CAN-DWAP [24] ✓ 57.00 56.65 54.88
CAN-ABM [24] ✓ 57.26 56.15 55.96
BTTR [10] ✓ 53.96 52.31 52.96
TDv2 [9] ✓ 53.56 55.18 58.72
GCN [25] ✓ 60.00 58.94 61.63
TAP [8] ✓ 48.47 44.81 -
G2G [26] ✓ 54.46 52.05 -
MDR [3] ✓ 55.8 52.5 53.6
MAN [2] ✓ ✓ 54.05 50.56 52.21
MMSCAN-D [11] ✓ ✓ 55.38 52.22 53.88
MMSCAN-E [11] ✓ ✓ 57.20 53.97 56.21
path signature [27] ✓ ✓ 58.92 59.46 63.22

OFAN-based multi-modal method

DWAP† [15] ✓ 50.51 49.34 48.70
DWAP-OFAN ✓ ✓ 55.78 54.40 53.38

ABM† [4] ✓ 55.58 54.05 54.23
ABM-OFAN ✓ ✓ 57.71 55.01 56.30

BTTR† [10] ✓ 54.05 55.01 57.38
BTTR-OFAN ✓ ✓ 58.27 57.45 58.46

TDv2† [9] ✓ 54.87 54.58 57.88
TDv2-OFAN ✓ ✓ 59.73 58.41 60.13

CoMER† [22] ✓ 58.92 57.89 59.21
CoMER-OFAN ✓ ✓ 60.34 61.63 61.96

3.3. Ablation Study

To verify the effectiveness of AOFM and our multi-modal HMER
method, we conduct ablation experiments on CROHME. The result
is presented in Table 2. The "on" indicates AOFM serving as online

input, while the "off" signifies image as offline input. The "ASM"
implies whether to use the auxiliary static map in AOFM. The results
reveal that the performance of the single-modal model using AOFM
with ASM slightly surpasses the offline model, and the multi-modal
method significantly outperforms the single-modal approach. As il-
lustrated in Fig. 4, in the offline method, the grouping of characters
"00" is recognized as "∞" due to the occlusion. In the online coun-
terpart, the discrete sampling nature causes the recognition of "· · · "
as "−". Through the utilization of the OFAN, the deficiencies in the
single-modal approach are significantly alleviated. Additionally, in
AOFM, we append the proposed ASM to alleviate the random writ-
ing pattern of small-scale strokes. To explore the impact of ASM, we
compared the method with and without ASM. The result in Table 2
suggests that the ASM improves the performance considerably, both
in the single-modal and multi-modal methods.

In order to assess the efficacy of the multi-modal attention mod-
ule, we compare the performance of different feature-aligning strate-
gies. The result is illustrated in Table 3, where the "align method"
denotes the multi-modal feature aligning strategy. The "attention"
represents our proposed multi-modal attention module. The "concat"
denotes the alignment of online and offline features through direct
concatenation. The results clearly demonstrate that our proposed
multi-modal attention module significantly enhances performance.

Table 2. Ablation study of offline and online modalities.

Model off on ASM
CROHME (ExpRate)

2014 2016 2019

DWAP

✓ 50.51 49.34 48.70
✓ 51.52 47.78 46.04
✓ ✓ 51.82 51.53 47.37

✓ ✓ 54.76 53.36 52.54
✓ ✓ ✓ 55.78 54.40 53.38

Table 3. Ablation study of of the alignment strategy.

Model
Align

Method
CROHME (ExpRate)

2014 2016 2019

DWAP
concat 53.45 53.36 51.29

attention 55.78 54.40 53.38

4. CONCLUSION

In this paper, we adopt a unique perspective by considering the writ-
ing process as a video and propose the Aggregated Optical Flow
Maps (AOFM) to serve as the input of online HMER. Then we in-
troduce the Optical Flow Aware Network (OFAN) to solve the online
and offline HMER in a unified manner. Our proposed architecture
incorporates a symmetric two-branch CNN encoder and a decoder
with the multi-modal attention module, which can work in plug-in
mode with most of the existing offline models. The experiment sub-
stantiates the considerable performance improvements yielded by
our method. This framework not only promotes better fusion be-
tween the two modalities but also exhibits substantial adaptability
and scalability.
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