
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AGENT S: AN OPEN AGENTIC FRAMEWORK THAT
USES COMPUTERS LIKE A HUMAN

Anonymous authors
Paper under double-blind review

Human

Can you help me calculate the total
sales, average monthly sales, and
generate visualizations?

Online Web Search
* Select the cells containing
all the required data …
* Click the Insert Chart icon
on the Standard toolbar …

Agent-Computer Interface
agent.type(“=SUM(Sheet1.A2:A20)”)
The total sales have been calculated …

agent.drag_and_drop(ele_id1, ele_id2)
The cells have been selected …

Planning

Sub
tas

k

Exe
cu

tio
n

Subtask 1: Calculate the total sales
Subtask 2: Calculate the average sales
Subtask 3: Create a chart to visualize
...

Hierarchical Planning

Abstractive

Task Experience

Retrieval

External Knowledge

Subtask Experience
Retrieval

Narrative Memory
I did similar tasks in doing
calculation in LibreOffice Calc.
Use the formula SUM to …

Episodic Memory
To sum … and select the cell…,
- agent.type()
- agent.drag_and_drop() …

Figure 1: Agent S uses a computer like a human to solve diverse desktop tasks on different systems.

ABSTRACT

We present Agent S, an open agentic framework that enables autonomous in-
teraction with computers through a Graphical User Interface (GUI), aimed at
transforming human-computer interaction by automating complex, multi-step
tasks. Agent S aims to address three key challenges in automating computer
tasks: acquiring domain-specific knowledge, planning over long task horizons,
and handling dynamic, non-uniform interfaces. To this end, Agent S introduces
experience-augmented hierarchical planning, which learns from external knowl-
edge search and internal experience retrieval at multiple levels, facilitating ef-
ficient task planning and subtask execution. In addition, it employs an Agent-
Computer Interface (ACI) to better elicit the reasoning and control capabilities
of GUI agents based on Multimodal Large Language Models (MLLMs). Evalu-
ation on the OSWorld benchmark shows that Agent S outperforms the baseline
by 9.37% on success rate (an 83.6% relative improvement) and achieves a new
state-of-the-art. Comprehensive analysis highlights the effectiveness of individual
components and provides insights for future improvements. Furthermore, Agent
S demonstrates broad generalizability to different operating systems on a newly-
released WindowsAgentArena benchmark. Code will be made publicly available.

1 INTRODUCTION

“The digital revolution is far more significant than the invention of writing or even of printing.”

— Douglas Engelbart, The Inventor of Computer Mouse

Since its invention, the mouse has been controlled by humans for interacting with computers. But
does it really have to be? Autonomous Graphical User Interface (GUI) agents offer the promise of
solving very specific and highly varied user queries—such as data entry, scheduling, and document

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

creation for individual users, and streamlining operations in commercial settings—in the most gen-
eral way: through direct UI interaction using the mouse and keyboard. Moreover, by eliminating
the need for constant manual interaction, these agents not only boost efficiency but also improve
accessibility, empowering individuals with disabilities to interact with technology in new, trans-
formative ways. Recent advancements in Multimodal Large Language Models (MLLMs), such as
GPT-4o (OpenAI, 2023) and Claude (Anthropic, 2024), have laid the foundation for the develop-
ment of GUI agents for human-centred interactive systems like desktop OS (Xie et al., 2024; Bonatti
et al., 2024).

However, automating computer tasks presents significant challenges. First, the vast range of
constantly-evolving applications and websites requires the agent to possess specialized and up-to-
date domain knowledge and the ability to learn from open-world experience. Second, complex
desktop tasks often involve long-horizon, multi-step planning with interdependent actions that must
be executed in a specific sequence. The agent must, therefore, create a clear plan with interme-
diate subgoals and track task progress. Third, GUI agents must navigate dynamic, non-uniform
interfaces, processing large volumes of visual and textual information while operating within a vast
action space. This involves distinguishing between relevant and irrelevant elements, accurately in-
terpreting graphical cues, and responding to visual feedback during task execution.

In this paper, we present Agent S, a new agentic framework that tackles these challenges towards
the goal of using computers like a human. First, to enhance the GUI agent’s capabilities in solving
diverse, long-horizon desktop tasks with specific domain knowledge, we propose an Experience-
Augmented Hierarchical Planning method. This approach leverages Online Web Knowledge and
past experiences stored in Narrative Memory to decompose the complex, long-horizon task into a
structured plan of manageable subtasks (see Figure 1). Online Web Knowledge provides up-to-date
external knowledge about specific applications, allowing the agent to adapt to frequently chang-
ing software and websites. Narrative Memory contains high-level, abstractive task experiences from
past interactions, equipping the agent with contextual understanding for effective task planning. The
agent monitors task completion progress, and during each subtask execution, it retrieves detailed,
step-by-step subtask experience from Episodic Memory to dynamically refine its actions and contin-
uously improve its planning ability. Successful subtasks and the full task experience are evaluated,
summarized, and stored in episodic and narrative memory to enable continual improvement.

41.7%

6.2%

12.3%
14.3%

7.5%

45.8%

13.0%

27.1%

36.7%

10.5%

0%

10%

20%

30%

40%

50%

Operating
System

Office Daily Professional Workflow

OSWorld Agent S

Figure 2: Agent S vs. OSWorld Agent results
across five broad computer task categories.

Furthermore, we introduce a specific language-
centric Agent-Computer Interface (ACI)
(Lieberman & Selker, 2003) as an abstraction
layer to improve grounding, safety, and ef-
ficiency for MLLM-based GUI agents. The
ACI defines an interaction paradigm by (1)
a dual-input strategy using visual input for
understanding environmental changes together
with an image-augmented accessibility tree for
precise element grounding; (2) a bounded ac-
tion space of language-based primitives (e.g.,
click(element id)) that are conducive to
MLLM common-sense reasoning and generate
environment transitions at the right temporal
resolution for the agent to observe immediate
and task-relevant environment feedback.

Our approach shows a remarkable improvement in the overall performance of Agent S on the
OSWorld benchmark (OpenAI, 2023) (from 11.21% to 20.58%, with a relative improvement of
83.6%), establishing the new state-of-the-art results. The detailed comparison is shown in Fig-
ure 2, which demonstrates consistent improvements by Agent S across five broad computer task
categories over the OSWorld agent. We also evaluate our Agent S on a concurrent work—
WindowsAgentArena (Bonatti et al., 2024), where we observe a performance improvement from
13.3% to 18.2% on an equivalent setup without any explicit adaptation. The improvement
demonstrates the broad generalizability of Agent S to different operating systems. We detail the
component-wise improvements introduced by the proposed strategies through ablation studies and
present a comprehensive error analysis of our Agent S framework. In summary, our contributions
are four-fold:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• We introduce Agent S, a new agentic framework that integrates experience-augmented hierar-
chical planning, self-supervised continual memory update, and an Agent-Computer Interface for
MLLM-based GUI agents to perform complex computer tasks.

• We propose an experience-augmented hierarchical planning method that uses experience from
external web knowledge and the agent’s internal memory to decompose complex tasks into exe-
cutable subtasks.

• We extend the concept of an ACI to GUI agents, allowing MLLM-based agents to operate com-
puters more precisely using a set of high-level, predefined primitive actions.

• We conduct experiments on different operating systems in the OSWorld and WindowsAgentArena
benchmarks, where the results show that Agent S achieves new state-of-the-art performance.

2 RELATED WORK

MLLM Agents. The advent of Multimodal Large Language Models (MLLMs) has led to a host of
works that utilize them as a reasoning backbone in Agentic Systems (Sumers et al., 2024). These
Agents augment LLMs with Memory, Structured Planning (Wang et al., 2023; Shinn et al., 2023;
Weng et al., 2023), Tool Use (Schick et al., 2023; Shen et al., 2023; Patil et al., 2023) and the ability
to Act in external environments Park et al. (2023). These agents have shown promise in domains
ranging from embodied simulators (Liang et al., 2023; Song et al., 2023) to video games (Wu et al.,
2023; Wang et al., 2024) and scientific research (Bran et al., 2023). For Software Engineering (Hong
et al., 2024; Qian et al., 2024) in particular, Yang et al. (2024) proposed an Agent-Computer Interface
(Lieberman & Selker, 2003) for MLLM agents to understand and act more efficiently and reliably.
Our work extends and integrates these individual modules into a new MLLM agent framework for
computer control.

GUI Agents. MLLM agents have been applied to execute natural language instructions in both
web and OS environments. Early research concentrated on web navigation tasks, utilizing MLLMs
to interact with web interfaces (Gur et al., 2024; He et al., 2024; Kim et al., 2023; Shaw et al., 2023;
Putta et al., 2024). Recently, the focus has shifted to OS-level environments, leading to the develop-
ment of benchmarks and frameworks such as OSWorld Xie et al. (2024) and WindowsAgentArena ?
for desktop control, and DiGIRL (Bai et al., 2024) and AndroidWorld (Rawles et al., 2024) for mo-
bile environments. These OS-level tasks offer broader control capabilities beyond the limitations of
single-browser contexts in web navigation. Methodologically, earlier GUI agents employed behav-
ioral cloning with reinforcement learning (Humphreys et al., 2022), in-context trajectory examples
(Zheng et al., 2024b), state-dependent offline experience (Fu et al., 2024b), and reusable skill gen-
eration (Wang et al., 2024). Contemporaneous work on GUI agents for video games and OS (Wu
et al., 2024; Song et al., 2024; Tan et al., 2024) propose varying instances of cognitive architec-
tures (Sumers et al., 2024). Our work contributes unique modules such as experience-augmented
hierarchical planning and ACI for GUI control, integrated with a novel continual memory update
framework.

Retrieval-Augmented Generation (RAG) for AI Agents. RAG (Fan et al., 2024) improves the
reliability of MLLM inference by augmenting the input with reliable and up-to-date external knowl-
edge. Similarly, MLLM agents benefit from retrieving task exemplars (Kim et al., 2024), state-aware
guidelines (Fu et al., 2024a), and past experiences (Kagaya et al., 2024). Our use of experience for
augmentation differs in three ways: 1) our hierarchical planning leverages both full task experience
and subtask experience; 2) the full task experience is summarized into an abstractive textual reward
for subtask planning; 3) the subtask experience is assessed and annotated by a self-evaluator before
being stored in memory.

3 AGENT S

The GUI-based Operating System control tasks can be formalized as a Partially Observable
Markov Decision Process (POMDP), defined asM = (S,O,A, T ,R), where S is the OS state
space, O is the observation space (natural language instructions, screenshots, accessibility trees,
etc.), A is the action space (clicks, keys, etc), T : S × A → S is the state transition function, and
R : S × A → [0, 1] is the reward function. Agent S, illustrated in Figure 3, is a novel framework
that integrates three main strategies in a closed loop to tackle such complex GUI-based operating

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Manager

Narrative
Memory

Experience
Context Fusion

Subtask Planner

𝑆0

𝑆𝑛

Worker

Trajectory
Reflector

Episodic
Memory

Action Generator

𝑆1

𝑤0

𝑤1

𝑆𝑛 𝑤𝑛

Agent Computer
Interface

Bounded
Action Space

ID-Grounding

OCR
Augmentation

𝑎𝑡

𝑜0

𝑜𝑡

𝐸𝑛

Evaluator
𝐸𝑒

Desktop
Environment

𝑇𝑢

Workers 𝑤0. . 𝑤𝑛

Subtasks 𝑆0. . 𝑆𝑛

Observation

Action

User Task

Episodic
Experience

Narrative
Experience

Web
Knowledge

Figure 3: Overview of the Agent S framework. Given task Tu and initial environment observation
o0, the Manager conducts experience-augmented hierarchical planning using web knowledge and
narrative memory to produce subtasks s0, . . . , sn. For each si, Worker wi draws from episodic
memory to generate an action at at time t, which is executed by the ACI to return the next immediate
observation ot+1. A self-evaluation module closes the loop by storing the summarized subtask and
full-task trajectories in narrative and episodic memory.

system control tasks: experience-augmented hierarchical planning, continual update of narrative
and episodic memory, and an Agent-Computer Interface for precise perception and action on GUIs.
Experience-augmented hierarchical planning allows Agent S to break down complex tasks into man-
ageable subtasks. This enables both high-level planning and low-level execution to draw from ex-
ternal web-based experience and internal task-specific experience. A continual process of storing
and retrieving self-evaluated task experience in narrative and episodic memory enables Agent S to
improve over time and adapt to changes in the open-world desktop environment. The ACI ensures
grounding by providing a vision-augmented accessibility tree observation containing all valid GUI
elements and constraining the agent’s chosen action to a bounded discrete space of valid actions.
Below, we describe each component and its integration in detail.

3.1 EXPERIENCE-AUGMENTED HIERARCHICAL PLANNING

In hierarchical planning Manager decomposes a high-level task T into a sequence of subtasks
{S1, S2, . . . , Sn}, where each subtask Si is more granular and feasible for execution. The Man-
ager assigns these subtasks to Workers, which execute them by performing low-level actions. Each
Worker operates in a localized decision-making loop, selecting actions at each timestep based on
its observation. The hierarchical structure allows the Manager to focus on planning while Workers
handle execution.

3.1.1 MANAGER: FUSING EXTERNAL KNOWLEDGE AND INTERNAL EXPERIENCE FOR
PLANNING

The Manager G is the primary plan generator module in our system. It receives a task Tu from
the user and the initial environment observation O0 (Annotated Accessibility Tree + Screenshot)
from the ACI as input. The manager formulates an observation-aware query Q based on the user
instruction and its observation in a “How to do X” format. This query is used for two types of
retrieval. First, the query is used for Online Web Search through Perplexica Search Engine1 to
get external knowledge. Then the same query is used to retrieve a similar task experience summary

1https://github.com/ItzCrazyKns/Perplexica

4

https://github.com/ItzCrazyKns/Perplexica

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

from the Manager’s own Narrative Memory Mn. The retrieval is based on the similarity of the
query embedding.

The Narrative Memory includes summaries of both successful and failed trajectories with specific
actions removed as abstractive full task experience Enu . The success/failure is evaluated by the
Self-Evaluator S module (described in Subsection 3.1.3) without any human feedback or ground
truth information. This two-step retrieval provides the Manager with both the general and specific
domain knowledge required to plan for the task. The outputs of the retrieval process are fused into a
single fused guideline using the Experience Context Fusion submodule, represented formally as:

Q = LLM(Tu, O0), Kweb = Retrieve(Web, Q)

Enu
= Retrieve(Mn, Q), Kfused = LLM(Mn(Q),Kweb)

The fused knowledge Kfused is then used by Subtask Planner submodule of the Manager to for-
mulate a detailed, topologically sorted queue of subtasks ⟨s0...sn⟩ that can accomplish the user
instruction. The manager also generates associated context Csi for each subtask si which includes
additional information useful to accomplish the subtask.

3.1.2 WORKER: LEARNING FROM SUBTASK EXPERIENCE AND TRAJECTORY REFLECTION

The subtasks ⟨s0..sn⟩ generated by the Manager G are executed sequentially by Worker modules
⟨w0..wn⟩. Each Worker can take multiple time steps within one episode to complete a subtask si.
Firstly, the combination of the User Task Tu, the subtask si and the contextual information Csi
are used as a query to retrieve similar subtask experience Esi from the Worker’s Episodic Mem-
ory. The Episodic Memory is indexed by the concatenation of the task query, the subtask, and
the contextual information ⟨Q, si, Csi⟩, based on the similarity of the embedding. As opposed to
Narrative Memory, Episodic Memory includes a complete plan with specific grounding actions and
only summaries from the subtask trajectories designated as DONE or successful by a Worker. Ad-
ditionally, a Trajectory Reflector submodule TRi is associated with each worker. This submodule
observes the entire episode as the worker is executing the subtask and provides reflective advice to
the agent—helping it think of alternative strategies and avoid repetitive actions.

Esi = Retrieve(Me, ⟨Tu, si, Csi⟩)
The subtask experience Esi and the reflection is used by the Action Generator submodule inside
a Worker to generate a single structured response - consisting of a previous action status check, ob-
servation analysis, semantic next action and grounded next action. This structured response allows
the agent to generate a templated chain-of-thought Wei et al. (2022); Yao et al. (2023) for improved
reasoning and results in a single grounded action aj . This action is passed to the ACI which imple-
ments it in the Desktop Environment. Once the worker reasons that the subtask has been completed,
it generates a special grounded action DONE which signals the successful end of the subtask. The
worker can also optionally generate a FAIL signal, in which case the hierarchical operation is reset
and the Manager replans a new set of subtasks based on the intermediate environment configuration.

3.1.3 SELF-EVALUATOR: SUMMARIZING EXPERIENCES AS TEXTUAL REWARDS

The Self-Evaluator S is responsible for generating experience summaries as textual rewards r for
the Manager and Worker modules. In the case of the successful end of an episode signaled by the
Worker with a DONE signal, the evaluator observes the complete episode and generates learning
in the form of a summarization of the strategy used by the worker to complete that subtask. This
strategy is fed back into the Worker’s episodic memory Me. In the case of the end of the complete
user-provided task, indicated either by the successful completion of all subtasks or by the maximum
number of steps limit, the evaluator generates a learning signal in the form of the summary of the
entire task completion process. This summary is fed back and saved in the narrative memory Mn

of the Manager. This process of Observations, Hierarchical Action Generation, and Rewards in the
form of textual summaries to update the internal memories of the Manager and Worker mirrors a
classic Hierarchical Reinforcement Learning process - but uses Retrieval as a learning strategy.

3.2 MEMORY CONSTRUCTION AND UPDATE

Initial Memory Construction via Self-supervised Exploration. To bootstrap Narrative Mn and
Episodic Memories Me, Agent S conducts self-supervised exploration on a set of synthetically gen-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Narrative & Episodic
Memory

Exploration Tasks Summarization

Web Knowledge

Task
Generator

(a) Self-supervised Exploration

Retrieval Summarization

Web Knowledge

Inference Task

Narrative & Episodic
Memory

(b) Continual Memory Update

Figure 4: The pipeline of memory construction and update, which contains two phases: Self-
supervised Exploration and Continual Memory Update. The initial Narrative & Episodic Memory
is constructed through some randomly curated tasks during the exploration phase, and then it is up-
dated based on the inference tasks continually.

erated tasks (see Figure 8). We utilize two methods to create two types of random exploration
tasks: environment-independent tasks and environment-aware tasks. For environment-independent
tasks, we leverage a task generator to generate the top 50 most common tasks from the various
applications used in OSWorld (Xie et al., 2024) and WindowsAgentArena (Bonatti et al., 2024).
For environment-aware tasks, we take the initial environments of the tasks in OSWorld and Win-
dowsAgentArena and prompt a Task Generator to generate a different task based on the environ-
ment. Both types of tasks consist of the exploration tasks. Then we run Agent S on these tasks by
only taking web knowledge Kweb and collect the full task (Narrative Experience En) and subtask
experiences (Episodic Experience Ee) for the narrative and episodic memories. The key stored in
narrative memory Mn is the query Q and for episodic memory Me, the key is query Q concatenated
with subtask information ⟨Q, si, Csi⟩. Through this process, the initial memory is constructed.

Continual Memory Update. As our Agent S interacts with new tasks, it continually updates the
Narrative Memory Mn and Episodic Memory Me, as illustrated in Figure 8. Thus even after the
initial exploration is completed, the agent continues to learn as it encounters and attempts newer,
more novel tasks. This process enables our agent to learn even during inference and retrieve the
learned knowledge to new tasks effectively.

3.3 AGENT-COMPUTER INTERFACE

Current desktop environments are designed to accommodate two distinct user types: (1) human
users, who can perceive and respond to subtle visual changes in real-time, and (2) software pro-
grams, which execute predefined tasks through scripts and Application Programming Interfaces
(APIs). However, these interfaces are inadequate for MLLM agents tasked with GUI control and ma-
nipulation at the fundamental keyboard-mouse level. These agents operate on a different paradigm:
they respond in slow, discrete time intervals, lack an internal coordinate system, and cannot effi-
ciently process fine-grained feedback after each minor mouse movement or keyboard input. Draw-
ing inspiration from the ACI developed for Software Engineering agents (Yang et al., 2024), we
propose the creation of a novel ACI to bridge the gap between the unique operational constraints of
MLLM agents and the requirements of open-ended GUI-control tasks.

Perception and Grounding. Grounding in GUIs is the task of identifying the target element e,
based on the natural language description of the element ẽ. Agents need to understand this nat-
ural language directive and find the exact UI element corresponding to this description. Current
MLLMs can effectively reason about certain elements and features in an image, but they cannot
directly ground and pinpoint specific elements in images as they lack an internal coordinate sys-
tem. In GUI manipulation, agents need to constantly interact with fine UI elements, and previous
works have shown that grounding is a significant bottleneck in these agents (Xie et al., 2024; Zheng
et al., 2024a). Desktop environments, however, provide an easily parseable Accessibility Tree with
coordinate information about almost every element in the UI. Thus, our ACI design incorporates a
dual-input strategy with different purposes for each input. The image input is used by the agent to
observe salient details about the environment—such as popups, button states, checking if a previous
action worked, and reasoning about the next step. The accessibility tree input is used for reason-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

ing about the next step and, more importantly, grounding specific elements in the environment. To
achieve this, we tag each element in the accessibility tree with unique integer tags which can be used
by agents when referring to these elements. Furthermore, while previous works seek to augment the
image with information from the accessibility tree (Xie et al., 2024; Zheng et al., 2024a; Bonatti
et al., 2024) using Set-of-Mark Prompting, we augment the tree with details from the image. To
achieve this, we run an OCR module on the image and parse textual blocks from the screenshot. We
then add these blocks to the accessibility tree as interactable UI elements if they do not already exist
in the tree. To check for existing elements, we perform an IOU (Intersection over Union) match with
all elements in the tree.

Constrained Action Space with Concurrent Feedback. Desktop automation has traditionally
relied on APIs and scripts, but adopting these as actions would imply an unbounded combinato-
rial action space of arbitrary executable code. This is unsuitable for keyboard-mouse-level GUI
automation agents because it compromises safety and precision. Code blocks can contain multiple
sequential actions, leaving the agent with neither control over nor feedback from individual steps.
To ensure that actions generated by agents are safely and reliably relayed to the environment and
produce clear and timely feedback, our ACI design incorporates a bounded action space. This space
includes primitive actions like click, type, and hotkey (detailed in Appendix A.1). Agents can refer
to different elements by their tagged IDs, and the ACI translates the ⟨ primitive - ID ⟩ information
into executable Python code. Furthermore, the agent is allowed to perform only one discrete action
at each time step, so it can observe immediate feedback from the environment. These actions are
also coarse enough to account for the slow, stateless nature of MLLMs, e.g., the agent can directly
move to and click an element instead of moving the mouse in small increments.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Benchmarks. We evaluate Agent S on OSWorld (Xie et al., 2024), a benchmark for testing the
multimodal agents’ capability of executing a wide range of computer tasks in a real computer envi-
ronment. This executable environment allows free-form keyboard and mouse control of real com-
puter applications, including OS, Office (LibreOffice Calc, Impress, Writer), Daily (Chrome, VLC
Player, Thunderbird), Professional (VS Code and GIMP), and Workflow (tasks involving multiple
apps). In addition, we also evaluate the generalization of Agent S on WindowsAgentArena (Bonatti
et al., 2024), a contemporaneous benchmark in the Windows operating system.

Settings & Baselines. Since the OSWorld benchmark contains 369 tasks on Ubuntu, for the
backbone model of Agent S, we leverage GPT-4o and Claude-3-Sonnet, respectively. For Win-
dowsAgentArena, we test all 154 tasks on GPT-4o. We use the PaddleOCR2 toolkit as our OCR tool
in augmenting accessibility trees for grounding. The embedding model for the retrieval we use is
text-embedding-3-small. Agent S takes the accessibility tree and screenshot as inputs, so we also use
the reported results in OSWorld (Xie et al., 2024) and WindowsAgentArena (Bonatti et al., 2024)
with same input setting as baselines. The OSWorld baseline takes the coordinates-based accessibil-
ity tree and screenshots as input for spatial grounding to generate the action with coordinates at each
step. The WindowsAgentArena baseline NAVI (Bonatti et al., 2024) utilizes an accessibility tree,
OCR, and Proprietary models to process the screenshot and create Set-of-Marks as input. Its action
space includes a constrained set of primitives but allows multiple actions to be chained together.

4.2 MAIN RESULTS

OSWorld. Table 1 shows the performance comparison between Agent S and the baseline models,
evaluated across the whole OSWorld test set. For the GPT-4o model, Agent S achieves an overall
success rate of 20.58%, nearly doubling the performance of the best corresponding baseline (GPT-
4o with 11.21%). Agent S consistently outperforms the baselines in the “Daily” and “Professional”
tasks, where it reaches 27.06% and 36.73% success rates, respectively, compared to the best base-
line results of 12.33% and 14.29%. These tasks are commonly used in daily life or involved with
knowledge-intensive professional applications, which benefit more from the retrieval augmentation

2https://github.com/PaddlePaddle/PaddleOCR

7

https://github.com/PaddlePaddle/PaddleOCR

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Main results of Successful Rate (%) on the OSWorld full test set of all 369 test examples.
All agents except CRADLE use Accessibility Tree + Screenshot as inputs. FRIDAY and OpenInter-
preter were evaluated by third parties.

Agent MLLM OS Office Daily Profess. Workflow Overall

MMAgent Claude-3-opus 12.50 3.57 5.27 8.16 1.00 4.41
MMAgent Gemini-Pro-1.5 12.50 3.58 7.83 8.16 1.52 5.10
CRADLE GPT-4o 3.58 16.67 6.55 20.41 5.48 7.81

OpenInter* GPT-4o - - - - - 8.94
Friday* GPT-4o - - - - - 11.11

MMAgent GPT-4o 41.67 6.16 12.33 14.29 7.46 11.21
MMAgent GPT-4V 16.66 6.99 24.50 18.37 4.64 12.17

Agent S Claude-3.5-sonnet 41.66 13.83 30.46 32.65 9.54 20.48
Agent S GPT-4o 45.83 13.00 27.06 36.73 10.53 20.58

(a) Open Account Settings:
agent.click(41, 1, “left”)

(b) Remove the Account:
agent.click(86, 1, “left”)

(c) Remove the Account:
agent.click(149, 1, “left”)

Figure 5: A successful example of the Thunderbird task: “Help me to remove the account ‘anonym-
x2024@outlook.com’.” For space concern, (a) (b) (c) demonstrate the screenshots, current subtasks,
and grounding actions at steps 1, 4, and 6, respectively.

of Agent S. Both Claude-3.5-Sonnet and GPT-4o outperform the baseline versions across the ma-
jority of tasks. Claude-3.5-Sonnet even performs better than GPT-4o in “Daily” and “Professional”
tasks. The results demonstrate the enhanced capability of Agent S in handling diverse and complex
tasks more effectively than the baseline approaches.

Qualitative Examples. In Figure 5, we illustrate an example of a task from the Thunderbird app
from OSWorld: Help me to remove the account ”anonym-x2024@outlook.com”. Agent S completes
tasks by interacting with the desktop through a combination of actions. More qualitative examples
are demonstrated in Appendix D.1.

4.3 ABLATION STUDY

To demonstrate the effectiveness of individual modules of Agent S, we stratified sampled a subset
of 65 instances, testsub3 from the full test set for the ablation study. Considering the inference cost,
we utilized GPT-4o as the LLM backbone for all ablation studies for both the baseline and Agent S.

Learning from experience enhances the domain knowledge of GUI agents. The Experiential
learning process of Agent S involves searching web knowledge, retrieving full task experience from
narrative memory and retrieving subtask experience from episodic memory. To assess the impact of
different components, we systematically remove each component and observe performance changes
across different task categories. The results are shown in Table 2. Learning from universal experi-
ence available as web knowledge allows Agent S to make informed plans across a wide range of tasks
and has the most significant impact. The learning from Narrative and Episodic memories synergies
effectively with web retrieval, and the results detail how their ablation affects the agent’s ability to
handle complex tasks, underscoring the value of experiential learning. These results demonstrate
that each component plays a critical role in enhancing the agent’s domain knowledge. Removing
all three components (w/o All) degrades the performance significantly, revealing the importance of
learning from experience in the design.

3The test small set provided by the OSWorld codebase is too small and imbalanced (only 39 examples in
total and 2 in the OS category) for practical evaluations. Thus, we sample a larger and more balanced subset.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: The ablation study of experience-augmented hierarchical planning in OSWorld testsub.
The metric is Successful Rate (%).

Method OS (6) Office (17) Daily (16) Profess. (10) Workflow (16) Overall (65)

baseline (OSWorld Agent) 33.33 5.88 12.50 10.00 6.25 10.77

Agent S 50.00 11.76 37.50 40.00 12.50 26.15
- w/o Web Knowledge 16.60 11.76 24.49 30.00 6.25 16.80
- w/o Narrative Memory 33.33 11.76 36.99 20.00 12.50 21.41
- w/o Episodic Memory 33.33 5.88 25.00 30.00 12.50 18.46
- w/o All 33.33 5.88 18.75 20.00 6.25 13.85

0 5 10 15 20 25 30
Success Rate (%)

Agent S 26.15%

Agent S (ACI + Retrieval) 20.00%

Agent S (ACI-only) 12.31%

Baseline + Retrieval 12.31%

Baseline 10.77%

Figure 6: Ablation of ACI in OSWorld testsub.

0 5 10 15 20 25 30
Success Rate (%)

Agent S - w/o Exploration 15.38%

Agent S - w/o Self-Evaluator 18.46%

Agent S - w/o Continual Memory Update 23.18%

Agent S 26.15%

Figure 7: Ablation of the memory update mech-
anism in OSWorld testsub.

ACI elicits better reasoning abilities of LLMs and supports better agentic learning. Figure 6
presents the results of the ablation study on the ACI module. Comparing the baseline with Agent
S (ACI-only)4 highlights the enhanced reasoning abilities achieved by incorporating ACI. Addi-
tionally, we examined the impact of ACI on agentic learning by integrating the Experiential learning
process. For the baseline, adding Experiential learning slightly improved overall performance. How-
ever, when added to Agent S (ACI-only), the performance improved significantly, demonstrating
ACI’s effectiveness in enhancing agentic learning.

Hierarchical Planning supports long-horizon workflows. The (ACI-only + Experiential Learn-
ing) setup in Figure 6 shows Agent S performance without Hierarchical Planning, and the observed
performance drop (26.15% to 20.00%) compared to the full Agent S underscores the importance of
Hierarchical Planning in modeling long-horizon workflows. The effect of hierarchical formulation
becomes pronounced in the presence of Experiential learning as the Manager can generate more
detailed and accurate plans in the subtask planning stage.

Exploration, Continual Memory Update and Self-Evaluator are indispensable for memory
construction. Our agent collects experience in two phases - initially during the self-supervised ex-
ploration phase and then continually as it interacts with new examples (See Figure 8). To assess
the effectiveness of these two learning stages and further examine our Self-evaluator which stores
experience as summaries instead of unfiltered trajectories we run the ablation shown in Figure 7.
Removing exploration limits memory updates to the inference phase only. Removing the contin-
ual memory update means we only use the memory obtained from the exploration phase without
subsequent updates. Removing the self-evaluator involves replacing summarized experiences with
the original full trajectories. The results shown in Figure 7 reveal that ablating both the continual
memory update and self-supervised exploration phases results in a performance drop, with the self-
supervised exploration being much more impactful. The ablation of the Self-Evaluator further shows
the benefits of using summarized trajectories instead of full trajectory exemplars for planning.

4.4 ERROR ANALYSIS

We performed a thorough error analysis on the tasks that Agent S failed within testsub of the OS-
World. There are three types of errors that we observed: (1) Planning Error: A planning error occurs
when the agent generates unsuitable plans for a task, including inaccuracies in the plan, misleading
subtask information, or misalignment of subtask sequence with task requirements. (2) Grounding
Error: A grounding error arises when the agent fails to accurately interact with target elements
despite their visibility and the application of correct reasoning. This includes incorrect element se-
lection or inaccurate coordinate selection due to the inherent limitations of our action space (e.g.,
selecting the center instead of a more precise part of the element). (3) Execution Error: An execu-

4This version of Agent S excludes Hierarchical Planning to better study the effects of ACI in isolation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: The statistic of Error Rate (%) on testsub of OSWorld that Agent S failed to complete.
Error Metric OS Office Daily Profess. Workflow Overall

Planning Error 66.67 25.00 30.00 66.67 28.57 34.69
Grounding Error 0.00 75.00 50.00 66.67 35.71 53.06
Execution Error 33.33 87.50 100.00 66.67 71.43 79.59

Subtask Failure 16.67 58.47 62.82 33.61 70.43 57.17

tion error emerges when the agent makes incorrect decisions or fails to adjust its behavior during
task execution. This includes repetitive actions, diverging from subtask goals, delays in transitioning
between subtasks or violating established protocols by combining multiple actions into one.

Statistic Results of the Errors. We analyzed Agent S’s trajectory for each failed task, identifying
error types based on the definitions provided. A single task may contain multiple errors. We also cal-
culated the Subtask Failure Rate, which measures the average percentage of failed subtasks relative
to total attempts, and the Error Rate, which reflects the proportion of tasks exhibiting a specific error
type. As shown in Table 3, execution and grounding errors are the most common across various task
categories. A case study of error occurrence can be found in Appendix D.2.

4.5 GENERALIZATION TO DIFFERENT OPERATING SYSTEMS

We test the Agent S framework with no modification on WindowsAgentArena (Bonatti et al., 2024),
a Windows OS benchmark released contemporaneously with our work. We compare Agent S with
the similar configuration5 with GPT-4o as the MLLM backbone, Accessibility Tree + Image as the
input, and parsing with OCR. As shown in Table 4, Agent S outperforms the Navi agent without any
adaptation to the new Windows environment.

Table 4: Results of Successful Rate (%) on WindowsAgentArena using GPT-4o and Image + Ac-
cessibility Tree input on the full test set of all 154 test examples.

Method Office Web Browser Windows System Coding Media & Video Windows Utils Overall

NAVI(Bonatti et al., 2024) 0.0 20.0 29.2 9.1 25.3 0.0 13.3
Agent S 0.0 13.3 45.8 29.2 19.1 22.2 18.2

5 CONCLUSION

In this work, we present Agent S—A novel framework for developing fully Autonomous Graphical
User Interface (GUI) agents that can perform a wide range of user queries by directly controlling the
keyboard and mouse. Through the Agent S framework, we show the benefits of Learning from Expe-
rience for Task-oriented GUI agents. We also discuss the concept of an Agent Computer Interface for
the GUI domain, arguing in favour of an abstraction layer that allows MLLM agents to perceive and
reason at a language level with rich and continuous feedback. By leveraging Experience-Augmented
Hierarchical Planning, Online Web Knowledge, and an Agent-Computer Interface (ACI), Agent S
demonstrates SOTA performance on the OSWorld benchmark and generalizability across different
operating systems. We demonstrate the potential of MLLM agents to learn from external sources
and through direct interaction with the environment, without any human or environmental feedback
in the GUI agents domain, thus opening a discourse on zero-shot, agentic methods for GUI agents.

Future Work. A key metric that has been unaddressed in existing work on MLLM agents for
computer control, including ours, is the number of agent steps and wall clock time required for task
completion. While our work focuses on achieving significant improvement in task performance,
future work can consider a shortest-path navigation formulation of GUI control and evaluate the
Pareto-optimality of various agents on the dimensions of time and accuracy. In our work, we use
the state-of-the-art GPT-4o and Claude-3.5-sonnet models. However, future work can extend the
ideas of experiential learning and Agent Computer Interface for smaller, open-source MLLMs which
could be fine-tuned to bridge the gap.

5The best-performing agent in WindowsAgentArena is based on an internal closed-sourced model that was
trained for GUI grounding and is not accessible outside of Microsoft now, so we choose a similar configuration
with ours for fair comparison.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Anthropic. The claude 3 model family: Opus, sonnet, haiku. Anthropic Blog, 2024. URL https:
//api.semanticscholar.org/CorpusID:268232499.

Hao Bai, Yifei Zhou, Mert Cemri, Jiayi Pan, Alane Suhr, Sergey Levine, and Aviral Kumar. Di-
girl: Training in-the-wild device-control agents with autonomous reinforcement learning. CoRR,
abs/2406.11896, 2024. doi: 10.48550/ARXIV.2406.11896. URL https://doi.org/10.
48550/arXiv.2406.11896.

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong
Lu, Justin Wagle, Kazuhito Koishida, Arthur Bucker, Lawrence Jang, and Zack Hui. Windows
agent arena: Evaluating multi-modal OS agents at scale. CoRR, abs/2409.08264, 2024. doi: 10.
48550/ARXIV.2409.08264. URL https://doi.org/10.48550/arXiv.2409.08264.

Andres M Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D White, and Philippe
Schwaller. Chemcrow: Augmenting large-language models with chemistry tools, 2023. URL
https://arxiv.org/abs/2304.05376.

Wenqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang, Hengyun Li, Dawei Yin, Tat-Seng Chua, and
Qing Li. A survey on RAG meeting llms: Towards retrieval-augmented large language models.
In Ricardo Baeza-Yates and Francesco Bonchi (eds.), Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, KDD 2024, Barcelona, Spain, August
25-29, 2024, pp. 6491–6501. ACM, 2024. doi: 10.1145/3637528.3671470. URL https://
doi.org/10.1145/3637528.3671470.

Yao Fu, Dong-Ki Kim, Jaekyeom Kim, Sungryull Sohn, Lajanugen Logeswaran, Kyunghoon Bae,
and Honglak Lee. Autoguide: Automated generation and selection of state-aware guidelines for
large language model agents. CoRR, abs/2403.08978, 2024a. doi: 10.48550/ARXIV.2403.08978.
URL https://doi.org/10.48550/arXiv.2403.08978.

Yao Fu, Dong-Ki Kim, Jaekyeom Kim, Sungryull Sohn, Lajanugen Logeswaran, Kyunghoon Bae,
and Honglak Lee. Autoguide: Automated generation and selection of state-aware guidelines for
large language model agents. CoRR, abs/2403.08978, 2024b. doi: 10.48550/ARXIV.2403.08978.
URL https://doi.org/10.48550/arXiv.2403.08978.

Izzeddin Gur, Hiroki Furuta, Austin V. Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck,
and Aleksandra Faust. A real-world webagent with planning, long context understanding,
and program synthesis. In The Twelfth International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=9JQtrumvg8.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models.
In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024,
Bangkok, Thailand, August 11-16, 2024, pp. 6864–6890. Association for Computational Linguis-
tics, 2024. doi: 10.18653/V1/2024.ACL-LONG.371. URL https://doi.org/10.18653/
v1/2024.acl-long.371.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, Chenglin Wu, and Jürgen Schmidhuber. Metagpt: Meta programming for A multi-agent
collaborative framework. In The Twelfth International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=VtmBAGCN7o.

Peter Conway Humphreys, David Raposo, Tobias Pohlen, Gregory Thornton, Rachita Chhaparia,
Alistair Muldal, Josh Abramson, Petko Georgiev, Adam Santoro, and Timothy P. Lillicrap. A
data-driven approach for learning to control computers. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.), International Conference on
Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of

11

https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499
https://doi.org/10.48550/arXiv.2406.11896
https://doi.org/10.48550/arXiv.2406.11896
https://doi.org/10.48550/arXiv.2409.08264
https://arxiv.org/abs/2304.05376
https://doi.org/10.1145/3637528.3671470
https://doi.org/10.1145/3637528.3671470
https://doi.org/10.48550/arXiv.2403.08978
https://doi.org/10.48550/arXiv.2403.08978
https://openreview.net/forum?id=9JQtrumvg8
https://openreview.net/forum?id=9JQtrumvg8
https://doi.org/10.18653/v1/2024.acl-long.371
https://doi.org/10.18653/v1/2024.acl-long.371
https://openreview.net/forum?id=VtmBAGCN7o
https://openreview.net/forum?id=VtmBAGCN7o

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Proceedings of Machine Learning Research, pp. 9466–9482. PMLR, 2022. URL https://
proceedings.mlr.press/v162/humphreys22a.html.

Tomoyuki Kagaya, Thong Jing Yuan, Yuxuan Lou, Jayashree Karlekar, Sugiri Pranata, Akira Ki-
nose, Koki Oguri, Felix Wick, and Yang You. RAP: retrieval-augmented planning with contextual
memory for multimodal LLM agents. CoRR, abs/2402.03610, 2024. doi: 10.48550/ARXIV.2402.
03610. URL https://doi.org/10.48550/arXiv.2402.03610.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks.
In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
7cc1005ec73cfbaac9fa21192b622507-Abstract-Conference.html.

Minsoo Kim, Victor S. Bursztyn, Eunyee Koh, Shunan Guo, and Seung-won Hwang. Rada:
Retrieval-augmented web agent planning with llms. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), Findings of the Association for Computational Linguistics, ACL 2024, Bangkok,
Thailand and virtual meeting, August 11-16, 2024, pp. 13511–13525. Association for Com-
putational Linguistics, 2024. doi: 10.18653/V1/2024.FINDINGS-ACL.802. URL https:
//doi.org/10.18653/v1/2024.findings-acl.802.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence,
and Andy Zeng. Code as policies: Language model programs for embodied control. In IEEE
International Conference on Robotics and Automation, ICRA 2023, London, UK, May 29 - June
2, 2023, pp. 9493–9500. IEEE, 2023. doi: 10.1109/ICRA48891.2023.10160591. URL https:
//doi.org/10.1109/ICRA48891.2023.10160591.

Henry Lieberman and Ted Selker. Agents for the user interface. Handbook of agent technology, pp.
1–21, 2003.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774.
URL https://doi.org/10.48550/arXiv.2303.08774.

Joon Sung Park, Joseph C. O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior. In Sean
Follmer, Jeff Han, Jürgen Steimle, and Nathalie Henry Riche (eds.), Proceedings of the 36th
Annual ACM Symposium on User Interface Software and Technology, UIST 2023, San Francisco,
CA, USA, 29 October 2023- 1 November 2023, pp. 2:1–2:22. ACM, 2023. doi: 10.1145/3586183.
3606763. URL https://doi.org/10.1145/3586183.3606763.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: Large language model
connected with massive apis. CoRR, abs/2305.15334, 2023. doi: 10.48550/ARXIV.2305.15334.
URL https://doi.org/10.48550/arXiv.2305.15334.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and
Rafael Rafailov. Agent Q: advanced reasoning and learning for autonomous AI agents. CoRR,
abs/2408.07199, 2024. doi: 10.48550/ARXIV.2408.07199. URL https://doi.org/10.
48550/arXiv.2408.07199.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen,
Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. Chatdev: Commu-
nicative agents for software development. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp. 15174–15186.
Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.ACL-LONG.810. URL
https://doi.org/10.18653/v1/2024.acl-long.810.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
Fair, Alice Li, William E. Bishop, Wei Li, Folawiyo Campbell-Ajala, Daniel Toyama, Robert
Berry, Divya Tyamagundlu, Timothy P. Lillicrap, and Oriana Riva. Androidworld: A dynamic
benchmarking environment for autonomous agents. CoRR, abs/2405.14573, 2024. doi: 10.48550/
ARXIV.2405.14573. URL https://doi.org/10.48550/arXiv.2405.14573.

12

https://proceedings.mlr.press/v162/humphreys22a.html
https://proceedings.mlr.press/v162/humphreys22a.html
https://doi.org/10.48550/arXiv.2402.03610
http://papers.nips.cc/paper_files/paper/2023/hash/7cc1005ec73cfbaac9fa21192b622507-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/7cc1005ec73cfbaac9fa21192b622507-Abstract-Conference.html
https://doi.org/10.18653/v1/2024.findings-acl.802
https://doi.org/10.18653/v1/2024.findings-acl.802
https://doi.org/10.1109/ICRA48891.2023.10160591
https://doi.org/10.1109/ICRA48891.2023.10160591
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.1145/3586183.3606763
https://doi.org/10.48550/arXiv.2305.15334
https://doi.org/10.48550/arXiv.2408.07199
https://doi.org/10.48550/arXiv.2408.07199
https://doi.org/10.18653/v1/2024.acl-long.810
https://doi.org/10.48550/arXiv.2405.14573

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Ham-
bro, Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Lan-
guage models can teach themselves to use tools. In Alice Oh, Tristan Naumann, Amir
Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neu-
ral Information Processing Systems 36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
d842425e4bf79ba039352da0f658a906-Abstract-Conference.html.

Peter Shaw, Mandar Joshi, James Cohan, Jonathan Berant, Panupong Pasupat, Hexiang Hu,
Urvashi Khandelwal, Kenton Lee, and Kristina Toutanova. From pixels to UI actions:
Learning to follow instructions via graphical user interfaces. In Alice Oh, Tristan Nau-
mann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances
in Neural Information Processing Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
6c52a8a4fadc9129c6e1d1745f2dfd0f-Abstract-Conference.html.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hug-
ginggpt: Solving AI tasks with chatgpt and its friends in hugging face. In Alice Oh, Tris-
tan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
77c33e6a367922d003ff102ffb92b658-Abstract-Conference.html.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Re-
flexion: language agents with verbal reinforcement learning. In Alice Oh, Tristan Nau-
mann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances
in Neural Information Processing Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
1b44b878bb782e6954cd888628510e90-Abstract-Conference.html.

Chan Hee Song, Brian M. Sadler, Jiaman Wu, Wei-Lun Chao, Clayton Washington, and Yu Su.
Llm-planner: Few-shot grounded planning for embodied agents with large language models. In
IEEE/CVF International Conference on Computer Vision, ICCV 2023, Paris, France, October
1-6, 2023, pp. 2986–2997. IEEE, 2023. doi: 10.1109/ICCV51070.2023.00280. URL https:
//doi.org/10.1109/ICCV51070.2023.00280.

Zirui Song, Yaohang Li, Meng Fang, Zhenhao Chen, Zecheng Shi, Yuan Huang, and Ling
Chen. Mmac-copilot: Multi-modal agent collaboration operating system copilot. CoRR,
abs/2404.18074, 2024. doi: 10.48550/ARXIV.2404.18074. URL https://doi.org/10.
48550/arXiv.2404.18074.

Theodore R. Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas L. Griffiths. Cognitive
architectures for language agents. Trans. Mach. Learn. Res., 2024, 2024. URL https:
//openreview.net/forum?id=1i6ZCvflQJ.

Weihao Tan, Wentao Zhang, Xinrun Xu, Haochong Xia, Ziluo Ding, Boyu Li, Bohan Zhou, Jun-
peng Yue, Jiechuan Jiang, Yewen Li, Ruyi An, Molei Qin, Chuqiao Zong, Longtao Zheng, Yu-
jie Wu, Xiaoqiang Chai, Yifei Bi, Tianbao Xie, Pengjie Gu, Xiyun Li, Ceyao Zhang, Long
Tian, Chaojie Wang, Xinrun Wang, Börje F. Karlsson, Bo An, Shuicheng Yan, and Zongqing
Lu. Cradle: Empowering foundation agents towards general computer control, 2024. URL
https://arxiv.org/abs/2403.03186.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language mod-
els. Trans. Mach. Learn. Res., 2024, 2024. URL https://openreview.net/forum?id=
ehfRiF0R3a.

13

http://papers.nips.cc/paper_files/paper/2023/hash/d842425e4bf79ba039352da0f658a906-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/d842425e4bf79ba039352da0f658a906-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6c52a8a4fadc9129c6e1d1745f2dfd0f-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6c52a8a4fadc9129c6e1d1745f2dfd0f-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/77c33e6a367922d003ff102ffb92b658-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/77c33e6a367922d003ff102ffb92b658-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://doi.org/10.1109/ICCV51070.2023.00280
https://doi.org/10.1109/ICCV51070.2023.00280
https://doi.org/10.48550/arXiv.2404.18074
https://doi.org/10.48550/arXiv.2404.18074
https://openreview.net/forum?id=1i6ZCvflQJ
https://openreview.net/forum?id=1i6ZCvflQJ
https://arxiv.org/abs/2403.03186
https://openreview.net/forum?id=ehfRiF0R3a
https://openreview.net/forum?id=ehfRiF0R3a

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/
forum?id=1PL1NIMMrw.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - De-
cember 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/
hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Shengping Liu, Bin Sun, Kang Liu, and
Jun Zhao. Large language models are better reasoners with self-verification. In Houda Bouamor,
Juan Pino, and Kalika Bali (eds.), Findings of the Association for Computational Linguistics:
EMNLP 2023, Singapore, December 6-10, 2023, pp. 2550–2575. Association for Computational
Linguistics, 2023. doi: 10.18653/V1/2023.FINDINGS-EMNLP.167. URL https://doi.
org/10.18653/v1/2023.findings-emnlp.167.

Yue Wu, Shrimai Prabhumoye, So Yeon Min, Yonatan Bisk, Ruslan Salakhutdinov, Amos Azaria,
Tom M. Mitchell, and Yuanzhi Li. SPRING: GPT-4 out-performs RL algorithms by studying
papers and reasoning. CoRR, abs/2305.15486, 2023. doi: 10.48550/ARXIV.2305.15486. URL
https://doi.org/10.48550/arXiv.2305.15486.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao
Yu, and Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement.
CoRR, abs/2402.07456, 2024. doi: 10.48550/ARXIV.2402.07456. URL https://doi.org/
10.48550/arXiv.2402.07456.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments. CoRR, abs/2404.07972, 2024. doi: 10.
48550/ARXIV.2404.07972. URL https://doi.org/10.48550/arXiv.2404.07972.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
CoRR, abs/2405.15793, 2024. doi: 10.48550/ARXIV.2405.15793. URL https://doi.org/
10.48550/arXiv.2405.15793.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenRe-
view.net, 2023. URL https://openreview.net/forum?id=WE_vluYUL-X.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a generalist web
agent, if grounded. In Forty-first International Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024a. URL https://openreview.
net/forum?id=piecKJ2DlB.

Longtao Zheng, Rundong Wang, Xinrun Wang, and Bo An. Synapse: Trajectory-as-exemplar
prompting with memory for computer control. In The Twelfth International Conference on Learn-
ing Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024b. URL
https://openreview.net/forum?id=Pc8AU1aF5e.

14

https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.18653/v1/2023.findings-emnlp.167
https://doi.org/10.18653/v1/2023.findings-emnlp.167
https://doi.org/10.48550/arXiv.2305.15486
https://doi.org/10.48550/arXiv.2402.07456
https://doi.org/10.48550/arXiv.2402.07456
https://doi.org/10.48550/arXiv.2404.07972
https://doi.org/10.48550/arXiv.2405.15793
https://doi.org/10.48550/arXiv.2405.15793
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=piecKJ2DlB
https://openreview.net/forum?id=piecKJ2DlB
https://openreview.net/forum?id=Pc8AU1aF5e

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A AGENT-COMPUTER INTERFACE

Agent Computer
Interface

Bounded
Action Space

ID-Grounding

OCR
Augmentation Desktop

Environment

Full accessibility Tree and
Screenshot as inputs

Bounded action space provided as
callable functions with arguments
allowing immediate feedback

ID Tag Name Text

0 Label Activities ..

1 Menu Ubuntu
Software

..

. .

157 OCR-
Element

Color
Balance..

Linearized Tree with IDs, Missing
elements from OCR, current app info
and Screenshot as OBSERVATION

agent.click(157, ‘left’, 1)

pyatuogui.click(456, 342,
button=‘left’…)

agent.click(ID, type, ..)

agent.type(ID, text, ..)

Figure 8: The Agent-Computer Interface (ACI) for Agent S integrates a linearized accessibility tree,
screenshot-based observations, and a bounded action space for GUI interaction. It enables the agent
to ground elements using unique integer tags and augment the accessibility tree with OCR-parsed
elements from screenshots. Actions are restricted to discrete primitives (e.g., click, type) to
ensure precise and safe interactions with the desktop environment, providing immediate feedback
after each step.

A.1 BOUNDED ACTION SPACE

To facilitate the agent’s accurate and effective task execution, we define a constrained action space,
which simplifies the action selection process, making it easier for the agent to ground its decisions
in a well-structured set of operations. As summarized in Table 5, each action type has certain
parameters and detailed in description.

Table 5: Agent Action Space, Descriptions, and Arguments.

Agent Action Action Details
Description Arguments

click Click on an element. element id, num clicks, button type, hold keys
type Type text into an element. text, element id, overwrite, enter
scroll Scroll within an element. element id, clicks
hotkey Press a hotkey combo. keys
hold and press Hold keys and press others. hold keys, press keys
drag and drop Drag and drop between elements. drag from id, drop on id, hold keys
save to buffer Save text to a buffer for later use. text
switch applications Switch to another app. app code
wait Wait for some time. time
done Mark task as success. None
fail Mark task as failure. None

A.2 ABLATIONS ON AGENT COMPUTER INTERFACE

The incorporation of Retrieval-as-Learning method enhances the performance of both the Baseline
and Agent S models, with a notably greater impact observed for Agent S, as shown in Table 6.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 6: The detailed result of ACI ablation study on testsub of OSWorld. The backbone model of
baseline and Agent S is GPT-4o.

Method Success Rate (%) ↑

OS (6) Office (17) Daily (16) Profess. (10) Workflow (16) Overall (65)
Baseline 33.33 5.88 12.50 10.00 6.25 10.77
+ Retrieval 00.00 00.00 25.00 30.00 6.25 12.31

Agent S (ACI-only) 16.60 5.88 18.75 20.00 6.25 12.31
+ Retrieval 33.33 11.76 31.25 30.00 6.25 20.00

B DETAILED RESULTS ON OSWORLD AND WINDOWSARENA

Table 7: Detailed success rates of baseline and Agent S using GPT-4o on OSWorld, divided by apps
(domains): OS, LibreOffice Calc, LibreOffice Impress, LibreOffice Writer, Chrome, VLC Player,
Thunderbird, VS Code, GIMP and Workflow involving with multiple apps.

Method Success Rate (%) ↑

OS Calc Impress Writer VLC TB Chrome VSC GIMP Workflow
Baseline 1.67 4.26 6.81 8.70 9.50 6.67 15.22 30.43 0.00 7.46

Agent S 45.84 2.13 15.34 30.42 30.06 40.00 21.74 52.17 23.08 10.53

Table 8: Detailed success rates of Agent S using GPT-4o on WindowArena, divided by apps (do-
mains): Chrome, Microsoft Edge, VS Code, Notepad, LibreOffice Calc, Settings, Windows Calc,
Clock, VS Code, Microsoft Paint, File Explorer, LibreOffice Writer, VLC Player.

Method Success Rate (%) ↑

Chrome Msedge VSC Notepad Lib Calc Settings Win Calc Clock Paint File Writer VLC

Agent S 17.65 7.69 29.17 0.00 0.00 80.00 0.00 50.00 0.00 36.84 0.00 19.05

C EXPERIENCE-AUGMENTED HIERARCHICAL PLANNING

Observation-Aware Query The Manager formulates a query Q based on the user task Tu and
initial observation O0:

Q = LLM(Tu, O0)

Narrative Memory – Storing Full Task Experiences The narrative memory is indexed using an
observation-aware query Q formulated by the Manager. It is represented as:

Mn(Q) = Save(Mn, Q)

where Mn represents the narrative memory, and Q is the query generated based on the user task and
initial observation O0.

Episodic Memory – Storing Successful Subtask Experiences The episodic memory is used by
Workers to execute subtasks and is indexed using the full User Task Tu, subtask si, and contextual
information Csi :

Me(Tu, si, Csi) = Save(Me, ⟨Tu, si, Csi⟩)

Where Me represents the episodic memory.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C.1 MANAGER: FUSING EXTERNAL KNOWLEDGE AND INTERNAL EXPERIENCE FOR
PLANNING

External Knowledge Retrieval The query Q is used to retrieve external knowledge Kext using
the Perplexica search engine:

Kext = Retrieve(Web, Q)

Fusion of Internal Experience and External Knowledge The internal narrative memory expe-
rience Mn(Q) and external knowledge Kext are combined using the Experience Context Fusion
module:

Kfused = MLLM(Mn(Q),Kext)

Subtask Planning The fused knowledge Kfused is used by the Manager to generate a queue of
subtasks ⟨s0, s1, . . . , sn⟩ and associated contexts ⟨Cs0 , Cs1 , . . . , Csn⟩:

{⟨s0, Cs0⟩, ⟨s1, Cs1⟩, . . . , ⟨sn, Csn⟩} = MLLM(Kfused)

C.2 WORKER: LEARNING FROM SUBTASK EXPERIENCE AND TRAJECTORY REFLECTION

Subtask Execution Each Worker wi retrieves subtask experience si by querying the episodic
memory Me:

Esi = Retrieve(Me, ⟨Tu, si, Csi⟩)

Trajectory Reflection The Worker reflects on the entire episode using a Trajectory Reflector TRi:

Reflection = TRi(trajectory)

This reflection helps the Worker refine its strategies.

Action Generation Using the retrieved subtask experience Esi , the Worker generates a structured
response for a grounded action aj :

aj = MLLM(Esi , observation,Reflection)

Subtask Completion The Worker signals the end of a subtask either through DONE or FAIL:

status =
{

DONE, if subtask completed successfully
FAIL, if subtask fails

C.3 SELF-EVALUATOR: GENERATING SUMMARIZED EXPERIENCES AS TEXTUAL REWARDS

Episodic Experience Update If a Worker completes a subtask, the Self-Evaluator S generates an
Episodic ExperienceEei as a summary of the strategy used:

Rsi = S(Episodei)

This experience is saved back into the episodic memory, indexed by the task Tu, subtask si, and
contextual information Csi :

Me ← Save(Me, ⟨Tu, si, Csi⟩, rsi)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Narrative Experience Update When the entire task is completed by the Manager G, the Self-
Evaluator generates a task completion reward rT , which is saved into the narrative memory, indexed
by the observation-aware query Q formulated by the Manager:

Enu = S(G(Tu))

Mn ← Save(Mn, Q,Enu)

C.4 ABLATIONS ON LEARNING

The results presented in Table 9 demonstrate the critical role played by both the Continual Learning
component and the Self-Evaluator in enhancing the performance of Agent S.

Table 9: The detailed result of experience-augmented hierarchical planning ablation study on testsub
of OSWorld. The backbone model of baseline and Agent S is GPT-4o.

Method Success Rate (%) ↑

OS (6) Office (17) Daily (16) Profess. (10) Workflow (16) Overall (65)
Agent S 50.00 11.76 37.50 40.00 12.50 26.15
- w/o Continual Memory Update 33.33 11.76 37.50 30.00 12.50 23.08
- w/o Self-Evaluator 33.33 5.88 31.25 20.00 12.50 18.46
- w/o Self-supervised Exploration 33.33 5.88 25.00 20.00 6.25 15.38

D SUPPLEMENTARY EXAMPLES FOR QUALITATIVE ANALYSIS

Here we present additional examples of successful and failed tasks as supplements to the qualitative
analysis in §4.2. Furthermore, we provide a more detailed error analysis to complement §4.4.

D.1 SUCCESS EXAMPLES

In this section, we present successful task examples from a variety of domains.

(a) Open Terminal:
agent.click(24, 1, ”left”)

(b) Open Terminal:
agent.click(13, 1, ”left”)

(c) Navigate to Home Directory:
agent.type(text=’cd/home/user’,
enter=True)

(d) Clone the Repository:
agent.type(text=’git clone
https://github.com/xlang-
ai/instructor-embedding’,
enter=True)

(e) Clone the Repository:
agent.wait(1)

Figure 9: A successful task of Multi apps. The task instruction is: Please help me clone the repo
”https://github.com/xlang-ai/instructor-embedding” to /home/user.. Each caption contains the plan
of the subtask and its corresponding grounding action.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) Click on the Tools menu:
agent.click(38, 1, left)

(b) Click on the Options... item:
agent.click(53, 1, left)

(c) click on Load/Save category:
agent.click(207, 1, left)

(d) Double-click on Load/Save cat-
egory:
agent.click(207, 2, left)

(e) Click on the General sub-
option:
agent.click(208, 1, left)

(f) Change the time to 3 minutes:
agent.type(230, “3”, over-
write=True)

Figure 10: An example of LibreOffice Impress. The task instruction is: Enable auto-save every
3min for me, so that I don’t need to hit Ctrl-S that much. Each caption contains the plan and its
corresponding grounding action.

(a) Initiate Find and Replace:
agent.hotkey([’ctrl’, ’h’])

(b) Enter the Words:
agent.type(”text”, 181)

(c) Enter the Words:
agent.type(”test”, 200)

(d) Enter the Words:
agent.type(”text”,
181, overwrite=True)

(e) Enter the Words:
agent.click(200)

(f) Enter the Words:
agent.type(”test”, 200)

(g) Replace All Instances:
agent.click(206, 1, ”left”)

(h) Replace All Instances:
agent.click(206, 1, ”left”)

Figure 11: A successful task of VSCode. The task instruction is: Please help me change all the
places in this document that say ”text” to ”test”. Each caption contains the plan of the subtask and
its corresponding grounding action.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) Select the First Two Paragraphs:
agent.click(55, 1, ”left”)

(b) Select the First Two Paragraphs:
agent.hold and press([’shift’], [])

(c) Select the First Two Paragraphs:
agent.click(55, 1, ”left”)

(d) Select the First Two Paragraphs:
agent.drag and drop(55, 57)

(e) Open the Line Spacing Menu:
agent.click(151, 1, ”left”)

(f) Set Double Line Spacing:
agent.click(179, 1, ”left”)

Figure 12: A successful task of LibreOffice Writer. The task instruction is: Make the line spacing of
first two paragraph into double line spacing. Each caption contains the plan of the subtask and its
corresponding grounding action.

(a) Open the Files application:
agent.click(20, 1, ”left”)

(b) Navigate to the Trash:
agent.click(23, 1, ”left”)

(c) Select the poster file:
agent.click(139, 1, ”left”)

(d) Restore the poster file:
agent.click(135, 1, ”left”)

(e) Restore the poster file:
agent.click(138, 1, ”left”)

(f) Restore the poster file:
agent.done(28, 1, ”left”)

Figure 13: A successful task of OS. The task instruction is: I am currently using an Ubuntu system,
and I have wrongly deleted a poster of party night. Could you help me recover it from the Trash?
Each caption contains the plan of the subtask and its corresponding grounding action.

Although the agent successfully completes the tasks depicted in Figure 9 10 11 12 13, there are
still issues present in its execution trajectories. For instance, during the task in Figure 11, the agent
incorrectly enters the word into the wrong field at Figure 11 (c), although this mistake is corrected
promptly. Furthermore, in the course of the task demonstrated in Figure 12, the agent exhibits
inappropriate actions at Figure 12 (a)(b)(c). Additionally, while performing the task depicted in
Figure 13, the agent fails to recognize the completion of the task at Figure 13 (d), subsequently at-
tempting to recover an already existing file on the desktop at Figure 13 (e)(f). These issues highlight
the inherent challenges in achieving consistently reliable behavior, even when tasks are nominally
completed.

D.2 DETAILED ERROR ANALYSIS AND FAILURE EXAMPLES

In this section, we analyze the sources of execution errors as defined in §4.4, followed by presenting
several examples of failed tasks, each with a detailed error analysis provided for the respective case.
Empirically, Grounding and planning errors often directly lead to execution errors (e.g., failing
to interact with the correct target element can result in repetitive actions, and incorrect planning

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Grounding-induced
31%

Planning-induced
15%

Self-induced
54%

Figure 14: The error sources of the overall 39 execution errors.

messages can lead to wrong decisions while performing the task). We reviewed all 39 execution
errors in errors on testsub of OSWorld that Agent S failed to complete, as shown in Figure 14, and
found that 46% were caused by planning or grounding errors. This indicates that reducing these
errors, particularly grounding errors, which frequently cause repetitive actions, could significantly
improve performance.

During the task in Figure 15, the agent simultaneously makes planning, execution, and grounding
errors. First, the inaccurate planning information in Figure 15 (a) suggests typing ’1’ instead
of ’No. 1’ in the cell constitutes a planning error, leading the agent to type the incorrect value.
Additionally, the agent’s attempt to drag the fill handle from ’B2’ to ’B23’ in Figure 15 (b) fails due
to the selection of erroneous elements and coordinates, which can be classified as a grounding error.
Furthermore, the agent continues to try to execute the subtask ’Drag the Fill Handle’ with repetitive
actions in Figure 15 (c)(d)(e)(f), overlooking the prior grounding error and being unable to correct
its behavior timely, which is indicative of an execution error.

Another type of planning error emerges while the agent is executing the task shown in Figure 16.
The plan generated by the agent is flawed, as it incorporates an irrelevant subtask “Updating of
Chrome”, which does not pertain to the intended goal. Additionally, the resulting subtask sequence
is incorrect, as it erroneously prioritizes such subtask, as illustrated in Figure 16 (c)(d). This
fundamental planning deficiency propagates into an execution error, preventing the agent from
successfully turning off the extension, as demonstrated in the subsequent figures.

The failed task depicted in Figure 17 illustrates a scenario where the agent makes a grounding error,
which subsequently leads to an execution error. After adding the Alpha Channel, the agent attempts
to select the ’Fuzzy Select Tool’ from the toolbox to target the background. However, instead of
selecting the correct element (represented by the magic wand icon), the agent consistently grounds
to the incorrect element, ’Activity’, located at the top-left corner. This misselection brings the
system to its ’Overview’ state. The agent then switches back to GIMP but continues to incorrectly
select ’Activity’, mistakenly identifying it as the ’Fuzzy Select Tool’. This repeated incorrect action
is demonstrated in Figure 17(e)(f)(g)(h). It is evident that the agent fails to correct its behavior
promptly when facing this issue, which can be considered an execution error stemming directly
from the initial grounding error.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(a) Planning Information: The in-
formation marked in red is wrong.

(b) Drag the Fill
Handle from ’B2’ to ’B23’:
agent.drag and drop(56, 87)

(c) Drag the Fill
Handle from ’B2’ to ’B23’:
agent.drag and drop(72, 387)

(d) Drag the Fill
Handle from ’B2’ to ’B23’:
agent.drag and drop(72, 387)

(e) Drag the Fill
Handle from ’B2’ to ’B23’:
agent.drag and drop(72, 342)

(f) Drag the Fill
Handle from ’B2’ to ’B23’:
agent.drag and drop(72, 342)

Figure 15: An failed task of LibreOffice Calc. The task instruction is: Fill the Sequence Numbers as
”No. #” in the ”Seq No.” column

(a) Open Chromium Settings:
agent.click(43, 1, ”left”)

(b) Open Chromium Settings:
agent.click(402, 1, ”left”)

(c) Update Chromium:
agent.click(133, 1, ”left”)

(d) Update Chromium:
agent.wait(5)

(e) Turn Off Extensions:
agent.click(128, 1, ”left”)

(f) Turn Off Extensions:
agent.click(68, 1, ”left”)

(g) Turn Off Extensions:
agent.click(68, 1, ”left”)

(h) Turn Off Extensions:
agent.click(62, 1, ”left”)

(i) Turn Off Extensions:
agent.click(40, 1, ”left”)

Figure 16: An failed task of Chrome. The task instruction is: Can you help me clean up my computer
by getting rid of all the tracking things that Amazon might have saved? I want to make sure my
browsing is private and those sites don’t remember me. Each caption contains the plan of the subtask
and its corresponding grounding action.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(a) Close the Color Profile Dialog:
agent.click(167, 1, ”left”)

(b) Add an Alpha Channel:
agent.click(31, 1, ”left”)

(c) Add an Alpha Channel:
agent.click(181, 1, ”left”)

(d) Add an Alpha Channel:
agent.click(180, 1, ”left”)

(e) Select the Background:
agent.click(0, 1, ”left”)

(f) Select the Background:
agent.switch applications(’gimp’)

(g) Select the Background:
agent.click(1, 1, ”left”)

(h) Select the Background:
agent.switch applications(’gimp’)

(i) Select the Background:
agent.click(2, 1, ”left”)

Figure 17: An failed task of GIMP. The task instruction is: Could you make the background of
this image transparent for me? Each caption contains the plan of the subtask and its corresponding
grounding action.

23

	Introduction
	Related Work
	Agent S
	Experience-augmented Hierarchical Planning
	Manager: Fusing External Knowledge and Internal Experience for Planning
	Worker: Learning from Subtask Experience and Trajectory Reflection
	Self-Evaluator: Summarizing Experiences as Textual Rewards

	Memory Construction and Update
	Agent-Computer Interface

	Experiments
	Experimental Setup
	Main Results
	Ablation Study
	Error Analysis
	Generalization to Different Operating Systems

	Conclusion
	Agent-Computer Interface
	Bounded action space
	Ablations on Agent Computer Interface

	Detailed Results on OSWorld and WindowsArena
	Experience-augmented Hierarchical Planning
	Manager: Fusing External Knowledge and Internal Experience for Planning
	Worker: Learning from Subtask Experience and Trajectory Reflection
	Self-Evaluator: Generating Summarized Experiences as Textual Rewards
	Ablations on Learning

	Supplementary Examples for Qualitative Analysis
	Success Examples
	Detailed Error Analysis and Failure Examples

