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Abstract

Recently, gradient-based discrete sampling has emerged as a highly efficient, general-purpose
solver for various combinatorial optimization (CO) problems, achieving performance compara-
ble to or surpassing the popular data-driven approaches. However, we identify a critical issue
in these methods, which we term “wandering in contours”. This behavior refers to sampling
new different solutions that share very similar objective values for a long time, leading to
computational inefficiency and suboptimal exploration of potential solutions. In this paper,
we introduce a novel reheating mechanism inspired by the concept of critical temperature
and specific heat in physics, aimed at overcoming this limitation. Empirically, our method
demonstrates superiority over existing sampling-based and data-driven algorithms across a
diverse array of CO problems.

1 Introduction

Combinatorial optimization (CO) refers to the problem that seeks the optimal solution from a finite feasible
set. This type of optimization is prevalent in numerous applications such as scheduling, network design,
resource allocation, and logistics. CO problems are inherently complex due to the huge number of potential
combinations, making the search for the optimal solution challenging.

To solve CO problems, various methods are developed. Exact methods like Branch-and-Bound (Land & Doigj,
2010) guarantee optimal solutions but are computationally intensive for large problems. Heuristic approaches,
such as greedy algorithms (DeVore & Temlyakov, [1996)), offer quick solutions but without an optimality
guarantee. Integer linear programming (Schrijver} [1998) is effective for formulating problems mathematically,
yet it struggles with scalability. Recently, data-driven approaches using machine learning (Li et al., |2018b
Gasse et al.} 2019; [Khalil et al., |2017; Nair et al., [2020; Karalias & Loukas| 2020)) have seen rapid growth.
However, they demand significant data and computational power and cannot be used as off-the-shelf solvers
for problems that differ from the training data.

Recently, sampling approaches have regained popularity in addressing CO problems. Simulated annealing
(SA) (Kirkpatrick et al., |1983)), a longstanding sampling method, has been widely applied in the CO field
for several decades. However, these methods are often criticized for their inefficiency in high-dimensional
spaces, primarily due to their random walk behavior during the exploration (Delahaye et al., 2019; Nourani
& Andresen, |1998}; Haddock & Mittenthall [1992). Leveraging recent advancements in gradient-based discrete
sampling (Grathwohl et al.||2021} |Sun et al, [2021} |2023a; [Zhang et al., |2022)), [Sun et al.| (2023b) demonstrates
that sampling methods can serve as general solvers and achieve a more favorable balance between speed and
solution quality compared to data-driven approaches for many CO problems, sometimes even outperforming
commercial solvers and specialized algorithms.

In this paper, we pinpoint a critical limitation, termed wandering in contours, in current gradient-based
sampling for CO. We observe that the sampling methods remain stuck in sub-optimal contours, defined as
a set of diverse solutions with identical or very similar objective values, for a prolonged duration due to
reliance on gradient information. This phenomenon severely harms both efficiency and solution quality. To
tackle this problem, we introduce a novel reheating mechanism inspired by the concept of critical temperature
and specific heat in physics. Our approach involves resetting the temperature to a theoretically informed
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threshold once the algorithm begins wandering, thus facilitating more effective exploration. We summarize
our contributions as follows:

o We identify a key issue in gradient-based sampling for combinatorial optimization (CO), termed
wandering in contours: algorithms yield distinct solutions, yet with nearly identical objective values
for extended periods due to gradient use and low-temperature settings.

e We then propose a reheat mechanism where we reset the temperature to the critical temperature
once the algorithm begins wandering, optimizing resource use and improving solution discovery.

e Through extensive experiments on various CO problems, we demonstrate that our method significantly
advances over previous sampling approaches.

2 Related Work

Gradient-based Discrete Sampling Sampling in discrete domains has historically been challenging, with
Gibbs sampling (Geman & Geman) 1984) being a longstanding primary method. A significant improvement
came with the introduction of locally balanced proposals by [Zanella| (2019)), leveraging local solution
information for sampling in discrete neighborhoods. Gradient-based discrete samplers are derived by using
gradient approximation (Grathwohl et al., [2021]), which become the most common implementations of locally
balanced samplers. Later, Sun et al.| (2021)) proposes PAS to broaden the discrete sampling neighborhood,
and DMALA developed by |Zhang et al.| (2022) enables parallel updates in each step. Many discrete samplers
are developed based on variants of locally balanced proposals (Rhodes & Gutmann, [2022; Sun et al., [2022;
2023a; [Xiang et al, 2023 Pynadath et al., |2024)

Sampling for Combinatorial Optimization Sampling methods were once popular for solving combina-
torial optimization (CO) problems, among which the most famous algorithm is simulated annealing (SA)
Kirkpatrick et al.| (1983). SA has been successfully applied to a wide array of CO problems, including TSP
(Kirkpatrick et al.l [1983]), scheduling [Van Laarhoven et al.[(1992), and vehicle routing |Osman| (1993)). Though
SA theoretically guarantees convergence to the global optimum under certain conditions, its use of random
walk leads to slow convergence in high-dimensional discrete problems. Addressing this, |Sun et al.| (2023a))
introduces an improved algorithm by integrating the gradient-based discrete sampler into the SA framework,
achieving superior solutions for complex CO problems more efficiently than many learning-based approaches.

3 Preliminaries

3.1 Combinatorial Optimization

We consider combinatorial optimization problems with the form:

inelgu(x), st. v(x)=0 (1)

where O is a d dimensional finite solution space. We assume Vx € O, the objective value u(x) > 0 and
v(z) < 0. By introducing a penalty coefficient A\, we obtain an unconstrained optimization problem from Eq
equation |1 (big enough A will ensure the equivalence of the optimal solutions):

miél f(z) & u(z) + \v(z). (2)
TE
We can view it as an energy-based model, where x is a state and f(z) is the energy of the state.

3.2 Simulated Annealing

Simulated annealing (SA) optimizes energy-based models by simulating a physical annealing. It employs a
temperature parameter T, and states are sampled according to

mr(z) o exp(—f(z)/T). (3)
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Inhomogeneous SA performs a single sampling step at each T while homogeneous SA performs multiple steps.
The temperature gradually decreases, and new solutions ' are accepted based on:

Pr(z — ') = min(1, exp(—(f (') — f(z)/T)). (4)

During the transition from high to low temperatures, SA narrows the target distribution, shifting from wide
exploration to targeted exploitation of low-energy states. SA is theoretically guaranteed to converge to the
global optimal state as 1" goes to 0.

3.3 Gradient-based Discrete Samplers

In locally balanced proposal (Zanella, [2019), the update rule at the current state x is given by:
a(y, @) o< g (w(y)/m(x)) K(z —y) (5)

where 7(+) is the target distribution over the discrete space ©, K is a kernel that decides the scale of the
proposal, and ¢(-) is a balancing function. In energy-based models, we have 7(z) x exp(—f(x)), i.e. m1(x) in
equation [3] Then,

q(y,x) o< g(exp(f(z) — f(y)) K (z — y) (6)

Using the first-order Taylor expansion to approximate f(z) — f(y), we then get the gradient-based discrete
sampler. Here, we assume f has a natural continuous relaxation f. The gradient of f is defined as
Vf(x)=Vf(x),xze€0O.

4 Pitfall of Gradient-based Discrete Sampling

In Section [I.1] we present an intriguing phenomenon of gradient-based sampling in solving combinatorial
optimization problems, which remarkably affects its performance and efficiency. In Section [£:2] we present a
theoretical analysis of this phenomenon and propose two explanations for its occurrence.

4.1 Wandering in Contours

Gradient-based discrete sampling, when combined with simulated annealing settings, has shown considerable
success in addressing large-scale combinatorial optimization (CO) problems (Sun et al. 2023bj |Goshvadi
et al., [2023), mainly due to its significantly accelerated convergence rate. The use of gradient information,
though advantageous for locating good solutions quickly, also undermines the core strength of simulated
annealing to explore the solution space effectively. This leads to a peculiar form of trap in the optimization
process, which we term wandering in contours,

Wandering in Contours: After quickly converging to a 1
sub-optimal stop value, the algorithm begins to sample new
different solutions sharing objective values very similar
to, or even the same as, the stop value for a long time.

@ Stop Value Point
Global Minimum
o — Normal Sampling Steps
—— Wandering in Contours

We observe that “wandering in contours” is prevalent

across various gradient-based discrete sampling methods X -2
and CO problems. This behavior is visualized in Figure[I]
where the algorithm, upon reaching a stop value, appears
to wander within certain contour lines without making
further progress.

Empirical evidence of this behavior is presented in Figure 2} 1
Here, we use a gradient-based discrete sampler, PAS (Sun
et al., [2021)), within simulated annealing (SA) framework,
for a maximum independent set problem, aiming to find
the solution with the highest objective value. Compared

Figure 1: Visualization of the “wandering in con-
tours” phenomenon.
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to the slowly updating process of traditional SA depicted in Figure the simulated annealing with PAS
rapidly converges to a sub-optimal solution (marked in green) within approximately 4,000 of the total 10,000
steps as shown in Figure Following this convergence, the algorithm enters a phase of “wandering in
contours”, where it generates new, different solutions, yet their objective values are strikingly similar to the
stop value, as demonstrated in Figure 2d & 2d] This phenomenon is broadly present in various gradient-based
discrete samplers, with evidence provided in Appendix [A]

How is “wandering in contours” different from convergence to suboptimal points? “Wandering in
contours” is distinct from being trapped in suboptimal points, a well-known phenomenon in machine learning
and optimization algorithms (Zhang et al.l |2017)). While both involve a lack of significant improvement,
“wandering in contours” depicts a phenomenon that the algorithm will sample different solutions, which is
just like the algorithm is still forwarding along a road and getting farther away from the beginning solution
of “wandering in contours”, but all the solutions on this road share similar objective values. This behavior is
illustrated in Figure [2d} where the new solutions sampled by the algorithm are getting far away from the
stop solution, while they share almost the same objective values.

In contrast, convergence to the suboptimal points signifies that the algorithm has found a region containing
the (sub)optimal solution. As mentioned in |Cruz & Doreal (1998), convergence indicates that the solutions
sampled become increasingly clustered around the suboptimal solution. This clustering behavior can be
observed in Figure [2¢] which shows the distance between the newly sampled solutions and the convergent
solution. It can be clearly seen that the newly sampled solutions are near each other.
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Figure 2: The wandering in contours phenomenon exemplified by a gradient-based discrete sampler on a
maximum independent set problem. (a): The trajectory of objective values of traditional simulated annealing,
where the algorithm updates the value slowly. (b): The trajectory of objective values of gradient-based
sampling methods. The algorithm converges rapidly to a stop value solution (highlighted in green) and then
stays close to this value. (c): A detailed view of objective values after the stop point. The objective values
continue to fluctuate but stay very similar to or the same as the stop value. (d): The distance of solutions
sampled by gradient-based samplers to the stop point. Despite sharing similar objective values, the solutions
are quite different from each other, suggesting by the large distance. (e): The distance of solutions sampled
by original simulated annealing to the convergent solution. All the newly sampled solutions are near each
other.
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4.2 What causes “wandering in contours”?

In the previous section, we observed that the sampler tends to “wander in contours” after reaching a certain
point, failing to make further progress. This section delves into an analysis of this phenomenon and identifies
its underlying causes. We discovered that this behavior primarily stems from two factors: the misleading
gradient information employed by discrete samplers, and the low-temperature environment inherent in the
simulated annealing framework. These two factors together significantly diminish the algorithm’s ability to
escape suboptimal solutions, leading it to persist in the “wandering in contours” pattern.

Misleading Gradient Information In gradient-based discrete sampling algorithms, the gradient V f(z)
will be incorporated in the proposal to generate the next state. The quality of the proposed state thus highly
depends on whether the gradient information is useful.
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Figure 3: (a):Illustration of the discrete optimization landscape for the function ix‘* - %:c?’ + %’xz. Directed
by the gradient information, the gradient-based discrete samplers will oscillate between two discrete solutions
2 and 3 near the local minimum 2.5. (b): Visualization of f(z1,22) from Problem (7} In the experiment,
we start from the local minimum (0,0) (marked as green) and test whether the discrete samplers can reach
the global minimum (1,1) (marked as red); (¢): The average escaping rate of three gradient-based discrete
samplers, which is defined as the probability of escaping from local minimum (0, 0) to the global minimum
(1,1) by running 20 sampling steps at different temperatures, declines sharply as temperature decreases.

It is well-established that gradient-based methods in continuous spaces are susceptible to converging to
local optima because gradient information can be misleading. This issue becomes even more pronounced in
discrete optimization problems, where the gradient utilized by discrete samplers is derived from a natural
continuous relaxation of the original discrete domain (as discussed in the preliminaries section). In such
relaxed continuous spaces, local minima may not correspond to feasible discrete solutions. Instead, they may
be encircled by a cluster of feasible discrete solutions sharing very similar objective values. The misleading
gradient will then lead the algorithm to jump around these feasible solutions, causing the wandering in
contours behavior.

We take a 1-dimensional discrete optimization problem as an example:

1, 44 15
neRIt T3 TR
The global minimum of the function is located at x = 0, as illustrated in Figure Within the continuous
relaxation of the domain N, there exists a local minimum at x = 2.5. This local minimum is surrounded by
the feasible discrete solutions at = 2 and & = 3. The gradient-based discrete samplers will be influenced by
gradient information to move towards the local minimum at z = 2.5. However, since z = 2.5 is not a feasible
solution in the discrete domain, the algorithm would ultimately converge to either x = 2 or x = 3, and then
jump to the other directed by the gradient. This behavior can lead to the algorithm oscillating between these
two suboptimal solutions.

Low Temperature Environment The low-temperature stage is a critical phase in the simulated annealing
process, featuring a rapid convergence toward the final solution as the algorithm reduces its random exploration.
However, during this phase, the exploration capabilities of gradient-based discrete samplers, enabled by the
randomness in the proposal distribution, rapidly diminish, making them less likely to escape from suboptimal
solutions.

We take one of the gradient-based discrete sampler DMALA |Zhang et al| (2022) as an example, and the
following analysis is also applied to the other gradient-based discrete samplers. The update rule of DMALA
at temperature T is:
Vi@)i(w; —ai) (@] — l’i)Q)
T 2 '

1
p(x}|z) = Softmax (2

When T is low, the magnitude of the gradient term increases significantly. As a result, the values inside
the softmax function become highly varied for different x’. This results in a more concentrated probability
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distribution after taking the softmax function. Consequently, the selection process becomes more deterministic
and less random, as the algorithm strongly favors certain directions. This means that when the temperature
is low, once the gradient information is misleading, as discussed before, the gradient-based discrete sampling
is more prone to the “wandering in contours” behavior and less likely to escape from it.

Moreover, at a low temperature T', the probability of accepting a worse solution z’ in simulated annealing is
lower, making it harder to jump out of the local optima by hill-climbing, i.e., temporarily accepting worse
solutions for eventually reaching superior ones.

We now show the effect of low temperature by a toy example. We consider the following discrete optimization
problem:

m 3
in T1,22) = —(z1 + 22) (21 + T2 — =). -
(z1,22)€{0,1}2 flzy, 2) (1 2)( 1 2 2) ( )

This function features a local minimum (0, 0) and a global minimum (1, 1), and hill-climbing is needed for
escaping from (0,0) to (1, 1), as illustrated in Figure

We employed three distinct gradient-based discrete samplers — DMALA (Zhang et all 2022), DLMC (Sun
et al., [2023a)), and PAS (Sun et al., [2021)) — to address this optimization problem under varying constant
temperature conditions. Initiating from the local minimum (0, 0), each sampler executed 20 sampling steps
at various constant temperatures to assess their ability to transition to the global minimum (1,1). Repeating
100,000 experiments for each temperature setting allowed us to calculate an average escaping rate, defined as
the likelihood of successfully moving from (0,0) to (1, 1) within 20 steps.

The results, shown in Figure clearly illustrate a sharp decline in the escaping rate as temperature
decreases across all samplers. This trend underscores the critical influence of temperature in gradient-based
discrete samplers within the simulated annealing framework, particularly highlighting how lower temperatures
significantly reduce the algorithm’s ability to escape from suboptimal solutions.

5 Gradient-based Sampling with Reheat

To address the challenges outlined in Section [4] we propose a reheat mechanism, which strategically raises
the temperature upon detecting the algorithm’s wandering. This approach addresses misleading gradient
information by flattening the proposal distribution over different candidates at higher temperatures, adding
randomness and aiding the escape from suboptimal states. The reheat directly tackles low-temperature
limitations by increasing the temperature, facilitating a more dynamic exploration process. Intuitively, reheat
works by resetting the temperature to a higher value. It usually contains two key steps: (1) Detect when to
reheat. (2) Increase the temperature to a predefined higher value. Below, we present our reheat method for
gradient-based discrete samplers in detail.

Our idea of reheating is non-trivial. The reheating mechanism is completely different from existing stepsize-
tuning methods explored in MCMC literature, and a detailed discussion is provided in Appendix [C} While
simulated annealing with reheating has been proposed before (Abramson et all|1999; |Anagnostopoulos et al.l
2006), its usage remains very limited. This is primarily due to the slow convergence rate of the original
simulated annealing (SA). “Reheat” was designed to aid simulated annealing in escaping local optima, but
the slow convergence of SA made it challenging to even reach a local optimum. Consequently, the reheat
mechanism often had minimal impact on enhancing simulated annealing’s performance and, in certain cases,
could even degrade it. On the contrary, gradient-based discrete samplers can converge to the local optimum
quickly, which re-energizes the reheating strategy. Integrating simulated annealing with gradient-based
discrete samplers offers a situation where the “reheat” mechanism becomes remarkably effective.

5.1 Detecting When to Reheat

The first critical step of our reheat mechanism is accurately detecting the “wandering in contours” behavior.
Considering that the objective values during wandering remain very similar, this behavior can be detected by
measuring the variation between the objective values.
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For this purpose, we set a value threshold, ¢, and a wandering length threshold, N. These parameters are
used to assess the changes in the objective values f(z:) at each step t. Specifically, we monitor the absolute
differences in consecutive objective values, and if these differences fall below € for IV consecutive steps, we
infer that the algorithm is exhibiting “wandering in contours”. Formally, the algorithm is considered to be
wandering in contours at step t if:

‘f(a)‘t,» — f(.%’t,ifl)‘ <e Vi=0,1,...,N—1. (8)

Hyperparameters e and N can be tailored to specific problems and the expected variability in the objective
values. Generally, a smaller € makes the detection more sensitive to minor changes, and a smaller N reduces
tolerance for spending time on similar values. We studied their practical effect in Section [6.3.3

5.2 Selecting the Reset Temperature

After detecting “wandering in contours”, choosing an appropriate reset temperature is critical. If the reset
temperature is too low, then the sampler will not have enough exploration ability to accept worse solutions
temporarily and diminish the influence of gradient information. If the reset temperature is too high, then the
sampler will act like an inefficient random walk for a long time.

5.2.1 Critical Temperature

To identify the optimal reset temperature, we utilize the concept of critical temperature T, in physical
annealing [Landau & Lifshitz| (1976]). This temperature marks the phase transition from disordered to ordered
states, fundamentally changing physical properties. Similar phase transitions have been observed in simulated
annealing (Kirkpatrick et al., [1983). Above T, the sampler’s search is random and broad. Below T, the
sampler is selective, with a higher tendency to reject worse solutions. It is also observed that the search will
be trapped in a single valley below T., making it hard to jump out of the “wandering in contours” (Strobl &
Barker], 2016). Hence, T, serves as a critical balance between exploration and exploitation.

The efficiency of simulated annealing around T, has been reported in numerous studies. |Kirkpatrick et al.
(1983) demonstrated that during phase transition, the search becomes more efficient. [Strobl & Barker| (2016])
showed that when using simulated annealing to solve phylogeny reconstruction, the search is constrained to a
small valley of the search space when the temperature is below T,.. The search efficiency around T, can also
be seen in Figure 2 of (Cai & Mal |2010b]).

While some algorithms (Basu & Frazer, [1990; |Cai & Mal [2010a)) have used critical temperature T, to design
the initial and final temperatures, its use for reheating is less common. |[Abramson et al.| (1999) proposes a
reheating strategy tied to function cost that implicitly involves T.. However, this method lacks theoretical
support and is sensitive to hyperparameters. Instead, our approach directly reheats to the critical temperature,
which injects just the right amount of stochastic energy back into the system, enabling it to escape “wandering
in contours” without incurring excessive randomness of a high-temperature regime.

5.2.2 Specific Heat

Determining the critical temperature in simulated annealing requires identifying the phase transition point
during optimization, which is characterized by peaks in specific heat Kirkpatrick et al.| (1983); |Strobl &
Barker] (2016). In statistical physics, the system’s energy at temperature T, denoted as E(T), adheres to the
Boltzmann distribution. Thus, the expected energy of a system can be seen as a function of the temperature,
E[E(T)]. The specific heat at temperature T, denoted as Cr, is traditionally defined in thermodynamics as
the rate of change of the expected energy E[E(T')] to temperature (Aarts et al., [1987)), given by Cr = %.
Integrating over the Boltzmann distribution allows deriving specific heat in terms of energy variance:

op = 20D 9)

where 02(E(T)) is the variance of the system energy at T.
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5.2.3 Determination of Critical Temperature

To determine the critical temperature based on specific heat, we first denote T'(¢) as the temperature at step
t, C(t) as the specific heat at temperature T'(¢), and x; as the solution sampled at step ¢, then by selecting
an appropriate sample size M, we define the approximation of C(¢) as :

e O f (@), f(@e)})

C(t) = t>M 10
(0 o s (10)
where o?({f(z¢_ar41), -+, f(w¢)}) represents the variance in objective values over the M most recent steps.
The critical temperature T, can be determined as T'(t*), where t* = argmaxC(t). However, SA with
t>M

gradient-based discrete samplers convergences rapidly in the initial stage, resulting in an abnormal initial
peak in specific heat (due to the high variance). As the annealing progresses, the specific heat quickly
decreases, eventually stabilizing at a level more typical of a critical temperature. This behavior is shown in

Figure

To address the abnormal peak, we introduce a “skip step” threshold, denoted as tgkip,, ensuring that the initial
transient behavior is excluded from the analysis. Thus, the critical temperature is identified as T'(#*), where

T* = argmax C(t). (11)
tztskip

Our method diverges from traditional SA reheat strategies (Abramson et all [1999) by accounting for
inhomogeneous chains and addressing gradient-based methods’ unique abnormal peaks.
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Figure 4: (a): Comparison of the first 200 steps shows that SA with PAS, a gradient-based discrete sampler,
achieves fast initial improvement, then slows, unlike traditional SA’s steady progress. (b): From steps 100 to
600, SA with PAS initially has much higher specific heat, which then quickly drops and stabilizes, in contrast
to traditional SA’s steady specific heat levels. (c): After converging to the stop value point, iSCO begins to
wander in contours and wastes the rest of the steps. (d): Upon detecting “wandering in contours”, ReSCO
reheats to the critical temperature, facilitating an escape from this behavior and discovering better solutions.

5.3 Reheated Gradient-based Discrete Sampling for Combinatorial Optimization

Combining results in Section and we obtain the Reheated Sampling for Combinatorial Optimization
algorithm (ReSCO), which is summarized in Algorithm [I} ReSCO is compatible with any gradient-based
discrete sampler. In this paper, we use the same sampler as in |Sun et al.| (2023b). ReSCO adds minimal
overhead, as the reheat mechanism can be cheaply implemented, which is verified in the experiments section.

6 Experiments

We conduct a thorough empirical evaluation of our method ReSCO on various graph combinatorial optimization
tasks, including Max Independent Set (MIS), MaxClique and MaxCut. For all problems, we follow the
experimental setup in [Sun et al.| (2023b).
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Algorithm 1: Reheated Sampling for Combinatorial Optimization

1: Input: temperature schedule T'(-), sampling chain length L, value threshold e, wandering length threshold
N, sample size M, skip step threshold ¢,

2: Initialize: state xg, critical temperature = tskip, temperature indicator step tremp = 1, maximum
specific heat C* = 0, reheated = false

3: fort=1to L do

4: ;< SA-gradient-based-Sample(x¢—1, T (tTemp))
> To determine critical temperature t*

5. if t > tqp and not reheated then

6: Calculate C (t) as in Equation equation

7: if C(t) > C* then

8: C* — C(t),1* 1t

9: end if

10:  end if

> To detect “wandering in contours”
11:  if Condition equation [§ holds then

12: I Temp < t* > Reheat to critical temperature
13:  end if

14: tTemp ¢ tTemp + 1

15: end for

We found that ReSCO requires minimal hyperparameter tuning. We use a value threshold ¢ = 0.01, a
wandering length threshold N = 100, and a sample size M = 100 for all tasks. The skip step threshold
tskip varies by problem and can be easily set at the point where specific heat’s initial sharp decrease ends.
See Appendix [D] for more experimental details, and see Appendix [E] for discussions about how to choose
hyperparameters.

We present the results of experiments on Max Independent Set and MaxClique in this section, and put the
problem description and dataset information in Appendix [F] The problem description, dataset information
and experimental results of MaxCut is presented in Appendix [G]

Table 1: Left: Average approximation ratio of different methods on two MaxClique tasks, where iSCO-N
and ReSCO-N represent running N sampling chains for each problem; Right: Runtime of single-chain iSCO,
single-chain ReSCO, and 32-chain iSCO on MIS tasks on a machine with a single NVIDIA RTX A6000 GPU.

Method Twitter RBtest
Ephiélgi@;fgi tL;fk;S’QQQ)OQO) 8:3;2 8:;2? Method ~ SATLIB ER-[700-800] ER-[9000-11000]
RUN-CSP (Tonshoff et al.| [2020) 0.987 0.789 iSCO-1 40 min 8 min 193 min
iSCO-1 (Sun et al.| [2023b) 0.971 0.795 ReSCO-1 69 min 17 min 234 min
iSCO-16 (Sun et al.| |2023b]) 1.000 0.854 iSCO-32 826 min 225 min 1746 min
ReSCO-1 (ours) 0.972 0.811
ReSCO-16 (ours) 1.000 0.859

6.1 Results and Analysis
6.1.1 Multiple Chains

We report the results of MIS and MaxClique in Table [2l and Table [1| (Left) respectively, with KaMIS serving
as the baseline against which we measure performance drop. We see that ReSCO under the multi-chain setting
surpassed all learning-based and sampling methods and even found better solutions than using optimization
solvers in some tasks.
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Table 2: Results of MIS on three benchmarks provided by |Qiu et al.| (2022). Baselines involve methods using
optimization solvers (OR), Reinforcement Learning (RL), Supervised Learning (SL) equipped with Tree
Search (TS), Greedy decoding (G), and Sampling (S). S-N represents running N chains for each problem.
Methods that can’t produce results in 10x time limit of DIMES are labeled as N/A.

Moethod Type ‘ SATLIB ‘ ER-[700-800] ‘ ER-[9000-11000]

‘ Size T Drop | ‘ Size T Drop | ‘ Size T Drop |
KaMIS OR 425.96* - 44.87* - 381.31* -
Gurobi OR 425.95  0.00% | 41.38  7.78% N/A N/A

. SL+TS | N/A  N/A | 388 13.43% | N/A N/A
Intel (Li et al} [2018a) SL+G | 420.66 1.48% | 34.86 22.31% | 284.63  25.35%
DGL (Bother et al} [2022) SL+TS | N/A  N/A | 37.26 16.96% | N/A N/A
LwD(ALn et all, 2020) ~ RL+S | 42222  0.88% | 41.17  8.25% | 345.88  9.20%
: RL+G | 421.24  1.11% | 3824 14.78% | 320.50 15.95%
DIMES(Qiu et al}2022) by o | 49398 0.63% | 42.06 6.26% | 332.80 12.72%

S-1 422.65 0.78% | 43.37  3.3% 377.44 1.0%
S-32 42416  0.42% | 45.16  -0.6% | 383.50 -0.5%
S-1 42276 0.75% | 44.18 1.5% 378.25 0.8%
S-32 424.21 0.42% | 45.24 -0.8% | 383.75 -0.6%

iSCO (Sun et al., [2023Db)

ReSCO(Ours)

We also compare the results of ReSCO and other recently proposed methods which also run experiments on
MIS-ER-~[700-800], and the results are reported in Table 3| It shows that ReSCO surpasses all of the recently
proposed methods and obtains the best result on this problem set to our knowledge.

Table 3: Results of ReSCO and recently proposed methods when solving MIS-ER-[700-800] problem set.
ReSCO surpasses all of them and obtains the best result on this problem set to our knowledge.

Method ReSCO-32 GFlowNets DIFUSCO T2T
(ours) (Kim et al}[2024) (Sun & Yang| |2023) (Li et al.| [2024))
Results 45.24 41.14 40.35 41.37

6.1.2 Single Chain

When comparing the results between iSCO and ReSCO under multi-chain setting, the improvements of
ReSCO may seem minor. This is because running multi-chains can mitigate the wandering in contours
problem to some extent, but the extra computational cost compared to the single-chain setting is extremely
large.

We report the runtime of single-chain iSCO, single-chain ReSCO and multi-chain (32-chains) iSCO when
solving MIS problem sets in Table [I| (Right). The experiments were conducted on a single A6000 with
multiple chains executed in parallel, using the same implementation used by the iSCO paper. We see that
the runtime of 32-chain iSCO is at least 9 times of the runtime of single-chain iSCO, and the runtime of
32-chain iSCO is 28 times of the runtime of single-chain iSCO when solving MIS-ER-[700-800].

When we turn to the single-chain setting (which is the common setting in most algorithms), the improvement
of ReSCO is significant. For example, under the single-chain setting, iSCO obtains 43.37 while ReSCO
obtains 44.18 on MIS-ER~[700-800] problem set, and iSCO obtains 377.44 while ReSCO obtains 378.25 on
MIS-ER-[9000-11000] problem set (see Table [2). For the combinatorial optimization problems considered in
the paper, this amount of improvement is significant.

Also, single-chain ReSCO surpasses single-chain iSCO given the same runtime when solving MIS-ER-[700-800].
We compare the performance of single-chain iSCO and single-chain ReSCO given the same runtime when
solving MIS-ER-[700-800], and report the results in Figure Though iSCO performed better in the first
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200 seconds, it was surpassed by ReSCO in the remaining 800 seconds. Besides, iSCO showed a tendency to
stay at that level while ReSCO still showed an increasing trend.
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Figure 5: (a):The best value obtained by single-chain iISCO and single-chain ReSCO within the same runtime
when solving the MIS-ER-[700-800] problem set. (b): Performance of Reheated DMALA under different
wandering length threshold settings. (c): Performance of Reheated DLMC under different wandering length
threshold settings.

6.2 Effect and Applicability of Reheat Mechanism

We further study the effect of reheat by applying ReSCO and iSCO on a MIS problem. As illustrated
in Figure iSCO begins “wandering in contours” within 5,000 steps, failing to find improved
solutions thereafter. In contrast, ReSCO manages to escape from “wandering in contours” each time
after reheating (marked as green points) and identify better solutions, outperforming iSCO.

Furthermore, we test simulated annealing with three different gradient-based samplers with/without reheat
mechanism on MIS-ER-[700-800] problem set with a single-chain setting to show the effect of reheat on
different samplers. As can be seen in Table[d] reheat mechanism improves the results of all three gradient-based
samplers, proving its efficacy and broad applicability.

Table 4: Results of Simulated Annealing with different gradient-based samplers with/without ‘reheat’ using
single-chain setting on MIS-ER-[700-800] problem set. ‘Reheat’ improves the results for all the gradient-based
samplers.

Sl PAS DMALA DLMC
amplet (iSCO/ReSCO)  ((Zhang et al},[2022))  ((Sun et al} [2023a)

Without ‘reheat’ 43.37 42.92 42.94

With ‘“reheat’ 44.18 43.58 43.64

6.3 Ablation Study
6.3.1 Final Temperature

To evaluate ReSCQO’s robustness against variations in the cooling schedule, we conducted experiments on
the RBtest dataset with various final temperatures (we did not consider initial temperature due to its
demonstrated insensitivity (Sun et al., |2023b))). We reported the results in Figure which indicate that
ReSCO consistently outperforms iSCO on all final temperature values and is relatively robust to different
values. In contrast, iSCO’s performance declines noticeably with low final temperatures. This suggests that
ReSCO’s reheat mechanism enables it to be adaptive across a range of temperatures by reheating to the
critical temperature each time the current temperature is too low for it to find better solutions.
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Figure 6: Ablation studies on final temperature (a), chain length (b), and wandering length threshold (c) &

(d).

6.3.2 Chain Length

With constant initial and final temperatures, extending the chain length and slowing the cooling rate generally
improves results. We tested the impact of chain length on performance using the RBtest dataset under a
single-chain setup, keeping initial and final temperatures at 1 and 1073, respectively, and varying chain lengths
from 1k to 40k. Results illustrated in Figure [6D] show that extending the chain length boosts performance for
both algorithms, with ReSCO consistently outperforming iSCO at varying chain lengths.

6.3.3 Wandering Length Threshold

Among the four new hyperparameters introduced in ReSCO (¢, M, tgep, V), determining the wandering length
threshold N poses the greatest challenge due to the varying nature of “wandering in contours” across different
problems. In fact, setting N too large reduces ReSCO back to iSCO. To assess N’s impact on ReSCO’s
performance, we performed experiments in a single-chain setting on the SATLIB and ER-[9000-11000] datasets
with varying N values, using iSCO’s outcomes as a reference baseline.

As demonstrated in Figures [6d and [6d} ReSCO exhibits robust performance across varying wandering length
thresholds. It consistently outperforms iSCO in finding better solutions for both datasets, regardless of the
threshold chosen.

This claim is further substantiated by Figure and where we implemented the reheat mechanism
in other gradient-based discrete samplers: DMALA (Zhang et al.| [2022) (Left) and DLMC (Sun et al.l
2023a)) (Right). We report the results of these two samplers under different wandering length threshold
settings when solving MIS-ER-[700-800] problem set. Both reheated DMALA and DLMC outperformed their
non-reheated counterparts across all threshold settings. These results align with those observed for ReSCO,
further demonstrating the robustness and effectiveness of our reheat mechanism across different samplers.

However, we cannot find a specific pattern of how the wandering length threshold influences the results. We
leave this for a future direction.

7 Conclusions

In this paper, we identify a problematic behavior observed in gradient-based discrete samplers for combinatorial
optimization, denoted as “wandering in contours”. To counteract this issue, we introduce a novel reheat
mechanism inspired by the principles of critical temperature and specific heat. This approach enables effective
detection of this undesired behavior and resets the temperature to an optimal level that ensures a balance
between exploration and exploitation. Our extensive experimental results validate the efficacy of the proposed
method.
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A Broad Existence of “Wandering in Contours”

To demonstrate the widespread occurrence of wandering in contours in gradient-based discrete samplers, we
analyzed the trajectory of the objective values of DMALA [Zhang et al| (2022), as depicted in Figure 7}

Figure El (Left) reveals that DMALA begins to wander in contours after 4000 steps, and wastes about 3000
steps before it escapes from wandering in contours. However, it continues to wander in contours as soon as it
escapes and wastes the rest steps obtaining no improvement. Figure El (Right) illustrates that the objective
values continue to fluctuate but remain very similar to or identical to the stop value, indicating that DMALA
is indeed wandering in contours after this point.

The behavior exhibited in Figure [7] closely resembles that shown in Figures b & [2d This similarity
suggests that despite DMALA’s simultaneous update of all dimensions, which theoretically allows for more
comprehensive exploration, it still exhibits wandering in contours nearly identical to PAS (2021]).
This observation provides strong evidence that wandering in contours is a common phenomenon among
gradient-based discrete samplers.
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Figure 7: Left: The trajectory of objective values of DMALA, which is similar to Figure showing the
existence of “Wandering in Contours”. Right: A detailed view of objective value after DMALA wanders in
contours. Its similarity with Figure [2¢| further proves the existence of “Wandering in Contours” in DMALA.

B Comparison of “Wandering in Contours” with Plateau Phenomenon

The “wandering in contours” behavior observed in gradient-based discrete sampling with simulated annealing
resembles the Plateau Phenomenon Fukumizu & Amari; [Wei et al| (2008); [Yoshida & Okadal (2020)),
encountered in the training of deep learning models. In deep learning, a plateau refers to a phase where
the training loss decreases at an exceedingly slow rate over many epochs. This is akin to “wandering in
contours”, where the algorithm repeatedly samples solutions around a stop value without making progress.
This similarity highlights a pervasive challenge in gradient-based optimization algorithms, extending across
both continuous and discrete domains. Addressing the plateau phenomenon typically involves modifying
neural network architectures, an approach that does not translate to the discrete sampling problems discussed
in this paper.
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C Comparison of Reheating with Stepsize-tuning Methods

Reheating mechanism is fundamentally different from existing stepsize-tuning methods explored in MCMC
literature |Zhang et al. (2019); |Andrieu & Thoms| (2008). Stepsize tuning methods, such as adaptive
stepsize |Andrieu & Thoms| (2008) or cyclical stepsize [Zhang et al.| (2019), control how far the next state will
be from the current state without changing the stationary distribution. In contrast, reheating mechanism
changes the stationary distribution through temperature adjustment.

In fact, stepsize-tuning methods cannot effectively mitigate the problem of wandering in contours. To
illustrate this, consider the update rule of the DMALA |Zhang et al.| (2022):

p(z}|x) = Softmax (;Vf(m)zgiﬂ; — ;) _ (] 2a:Ei)2)

When wandering in contours occurs, the temperature T inside the algorithm tends to be very small or even
close to 0. In this case, regardless of how the stepsize « is tuned, the gradient term remains dominant in
the update rule. Consequently, the misleading gradient information perpetuates the wandering in contours
behavior.

To empirically validate this, we conducted experiments using the iSCO algorithm on three MIS problems.
Upon detecting wandering in contours, we adjusted the stepsize 1 to larger values ay and recorded the final
ratios (iISCO result divided by baseline result) as shown in Table

Table 5: Effect of Stepsize-tuning on solving Wandering in Contours

a1 a9 Problem 1 Problem 2 Problem 3

0.2 0.2 0.79 0.83 0.83
02 1 0.79 0.83 0.83
02 10 0.79 0.83 0.83
0.2 10° 0.79 0.83 0.83
02 o0 0.79 0.83 0.83

As evident from Table [5] increasing the stepsize when wandering in contours is detected does not improve
performance across all three problems. This empirical evidence supports our theoretical argument that
stepsize-tuning is ineffective in addressing the wandering in contours issue.

D Settings of Experiments

We report the settings of all the experiments in Table [6]

E Determination of Hyperparameters

Beyond the experiments conducted in this paper, we give some methods to choose the four hyperparameters
in ReSCO here.

The value threshold € should be a small number that can cover the value fluctuations caused by wandering in
contours. A practical heuristic we found is setting € to be 10 times the minimal increment in objective values.
This approach has proven effective in our experiments for identifying wandering in contours, where ¢ was
consistently set at 0.01 across all experiments.

The sample size M can be subjectively selected within a certain range without significantly affecting the
reheating mechanism.

The skip step tstep is easily identified at the point where the specific heat ends its initial sharp decline.

The wandering length threshold N is a bit more difficult to decide. As discussed in Section the only
requirement for N is that it should not be too small (no smaller than 100), otherwise “reheat” will happen
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Table 6: Setting of hyper-parameters in the experiments. ER1 represents ER-[700-800] problem set, and ER2
represents ER-[9000-11000] problem set.

‘ MIS ‘ MaxClique ‘ MaxCut
Datasets
‘ SATLIB ER1 ER2 ‘ Twitter RBtest ‘ Optsicom  BA
Initial Temperature T'(0) 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Ending Temperature T'(L) le-5 le-3  1le-3 le-2 le-3 le-3 le-6
Chain Length L 1M 200k 400k 1k 1k 25k 50k
Temperature Schedule T'(+) ‘ exponentially decay
Sample Size M 100 100 100 100 100 100 100
Value Threshold e 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Wandering Length Threshold N 100 100 100 100 100 100 100
Skip Step tskip 500 200 350 100 130 100 200

too often. And in practice, N will not influence the final results too much. Figure [6c & [6d] prove it: for all
the chosen numbers varying from 100 and 5000, the results of ReSCO outperform the results of iSCO. In fact,
iSCO can be seen as a special case of ReSCO with an extremely large N (i.e. larger than the chain length),
in which case “reheat” will never happen.

F Problem Setup for MIS and MaxClique

F.1 Max Independent Set

Problem Description Given a graph G = (V, E) where |V| = d, the Max Independent Set (MIS) problem
aims to find the largest set of vertices no two of which are adjacent. Representing the inclusion of node 7 in
the set as x; = 1 and exclusion as z; = 0, the MIS problem can be framed as the optimization problem:

subject to:

TiT; = 0, V(Z,]) eF

Denote the adjacency matrix of G as A, by selecting a penalty term A, we can construct the energy function
as:

We choose A = 1.0001, which is the same as |Sun et al|(2023b)), and report — f(z) as the final result.

Datasets Following [Sun et al.| (2023b), we use the MIS benchmark from Qiu et al.| (2022)), consisting of one
realistic dataset SATLIB (Hoos & Stutzle, [2000) and Erdés-Rényi(ER) random graphs of different sizes. We
directly test ReSCO on the test datasets provided by |Goshvadi et al.| (2023]), which contains the following
datasets:

e SATLIB: consists of 500 test graphs, each with at most 1347 nodes and 5978 edges.
o ER-[700-800]: consists of 128 test graphs with 700 to 800 nodes.
« ER-[9000-11000]: consists of 16 test graphs with 9000 to 11000 nodes.
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F.2 Max Clique

Problem Description Given a graph G = (V, E) with |V| = d, the Max Clique (MC) problem seeks the
largest subset of vertices such that every two distinct vertices are adjacent. Using binary representation
where z; = 1 indicates node 7 is part of the clique and z; = 0 otherwise, the MC problem can be defined as:

subject to:

zix; =0, V(i,j)¢E

Letting A’ be the adjacency matrix of the graph complement, we can establish the energy function:

d T A’
zt Az
CERDWAES

To align with prior work, we set A = 1.0 as in |Sun et al| (2023Db)), and the result reported is —f(x).
Datasets Following [Sun et al.| (2023b), we test ReSCO on:

« RB: synthetic datasets generated with RB model (Xu et al., 2007)), consists of 500 graphs, each with
at most 475 nodes;

o Twitter: a realistic Twitter dataset (Leskovec & Krevl, 2014)), consists of 196 graphs, each with at
most 247 nodes.

G Experimental Information on MaxCut

Problem Description Given an undirected graph G = (V, E) where |V| = d, the MaxCut problem aims
to partition V into two disjoint subsets such that the number of edges between the subsets is maximized.
Each vertex i is assigned to a partition represented by x; € {0,1}, where ; = 1 indicates that vertex ¢ is in
one subset and x; = 0 indicates it’s in the other. Then MaxCut problem can be formulated as:

1—(2x; —1)2x; — 1
max Z (2z 2)( Lj )
o013 Tk

We can directly construct the energy function due to MaxCut is unconstrained, which is:

2
(i,4)eE
and we report — f(z) ad the final result.

Datasets Following [Sun et al.| (2023b)), we apply the benchmark as in (Dai et al., [2020) and (Karalias &
Loukas, [2020) and , and choosing the following datasets:

o BA: synthetic datasets generated with Barabédsi—Albert model, consisting of 1000 graphs, with nodes
number varying from 16 to 1000;

e Optsicom: realistic datasets consisting of ten graphs, each with at most 125 nodes.
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Results Because iSCO has been shown to surpass all the learning-based methods and classical methods in
baselines and obtained even better results compared to optimization solvers, so we only report the improvement
of approximation ratios of ReSCO compared to iSCO with the single-chain setting on the two datasets in
Table

Table 7: The improvement of approximation ratios compared to iSCO on MaxCut Problems; The second line
of BA graphs represents the nodes number of graphs in the dataset.

BA graphs .
Methods | 1600 3940 6475 128150 256-300 512.600 1024-1100 | OPtsicom
ReSCO | 40 426 +0 +0 +le-d  +led +le5 | 40

It’s clear that the results obtained by iSCO and ReSCO are almost the same, and ReSCO surpasses iSCO
slightly on several datasets. This is because iSCO has found solutions that are good enough, making exploring
other parts of the solution space less useful.
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