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ABSTRACT
In the context of cardiovascular diseases (CVD) that exhibit an el-
evated prevalence and mortality, the electrocardiogram (ECG) is
a popular and standard diagnostic tool for doctors, commonly uti-
lizing a 12-lead configuration in clinical practice. However, the 10
electrodes placed on the surface would cause a lot of inconvenience
and discomfort, while the rapidly advancing wearable devices adopt
the reduced-lead or single-lead ECG to reduce discomfort as a solu-
tion in long-term monitoring. Since the single-lead ECG is a subset
of 12-lead ECG, it provides insufficient cardiac health information
and plays a substandard role in real-world healthcare applications.
Hence, it is necessary to utilize signal generation technologies to
reduce their clinical importance gap by reconstructing 12-lead ECG
from the real single-lead ECG. Specifically, this study proposes a
multi-channel masked autoencoder (MCMA) for this goal. In the
experimental results, the visualized results between the generated
and real signals can demonstrate the effectiveness of the proposed
framework. At the same time, this study introduces a comprehen-
sive evaluation benchmark named ECGGenEval, encompassing the
signal-level, feature-level, and diagnostic-level evaluations, pro-
viding a holistic assessment of 12-lead ECG signals and genera-
tive model. Further, the quantitative experimental results are as
follows, the mean square errors of 0.0178 and 0.0658, correlation
coefficients of 0.7698 and 0.7237 in the signal-level evaluation, the
average F1-score with two generated 12-lead ECG is 0.8319 and
0.7824 in the diagnostic-level evaluation, achieving the state-of-
the-art performance. The open-source code is publicly available at
https://github.com/CHENJIAR3/MCMA.
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1 INTRODUCTION
Cardiovascular disease (CVD)[20, 21, 27] contributes to the lead-
ing mortality all around the world. In clinical practice, clinicians
need to adopt some characterization tools[8] to diagnose cardio-
vascular disease, and one of the most popular tools is the standard
12-lead electrocardiogram (ECG). With the great development in
deep learning, some researchers have trained a cardiologist-level
model with the 12-lead ECG, like Ribeiro et al[25]. However, the
12-lead ECG signal collection process will put at least 10 electrodes
on the surface, which would cause a lot of inconvenience and dis-
comfort for users, and make long-term cardiac health monitoring
difficult. As a consequence, researchers and markets are trying their
best to explore some user-friendly devices for ECG signals collect-
ing in the real-world application, including patch[12, 15, 33, 35],
smartwatch[2, 10, 23, 28, 32], and armband[14, 18, 24]. Although the
single-lead ECG can be used for cardiac abnormality classification,
like the lead I for the Atrial Fibrillation[9], the lead V1 for the Bru-
gada Syndrome[36], and the lead aVR for the Sinus Bradycardia[17],
the full 12-lead ECG is necessary to provide comprehensive infor-
mation, matching the knowledge and needs of clinical physicians,
a limited or reduced number of leads ECG from wearable devices
will not work effectively for doctors.

Consequently, to overcome these limitations, it is necessary to
provide a direct approach to reduce the gap between the reduce-lead
(Specifically, single-lead) and 12-lead ECG, that is, reconstructing
12-lead ECGwith the reduced-lead ECG[1, 4–6, 11, 13, 19, 22, 29, 30],
as seen in Fig.1. Although these methods can approximately recon-
struct 12-lead ECG with the limited-lead ECG, there is a research
gap to fill for this 12-lead ECG reconstruction task. Firstly, the tradi-
tional generative models usually focus on the fixed single-lead, and
it is difficult to reconstruct 12-lead ECG with arbitrary single-lead
ECG. Secondly, the related works[1, 5, 6, 11, 13, 29, 30] mainly focus
on signal-level evaluation, instead of comprehensive evaluation for
this task, and it is known the signal-level evaluation result will be
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Figure 1: The 12-lead ECG generation process with single-
lead ECG, the input single-lead ECG could be arbitrary, in-
cluding I, II, III, aVR, aVL, avF, V1, V2, V3, V4, V5, V6, and
this case takes lead I as an example

influenced by various noises. Therefore, the contributions in this
study are as follows:

• A novel 12-lead ECG reconstruction framework, MCMA, is
proposed in this study, and it can convert arbitary single-lead
ECG into a 12-lead ECG.

• A benchmark for 12-lead ECG reconstruction tasks is pro-
posed, ECGGenEval, including signal-level, feature-level,
and diagnostic-level.

• The proposed framework can achieve state-of-the-art recon-
struction performance in the internal and external test sets,
with a mean square error of 0.0178 and a Pearson correlation
coefficient of 0.7698.

This research article will be organized as follows. Section 1
presents the research motivation and contributions in this study.
Section 2 will introduce the information about 12-lead ECG. Section
3 will introduce the proposed method, the public dataset, and the
evaluation metric. Section 4 demonstrates the experimental results
and discussions, which can prove the advantages over other studies.
Section 5 will briefly conclude this work.

2 ECG BACKGROUND
The standard 12-lead ECG is one of the most popular schemes in
clinical practice, which could provide enough cardiac health infor-
mation. As mentioned, it is difficult to collect the long-term 12-lead
ECG, since it causes a lot of inconvenience. This section will present
the definition of 12-lead ECG, including time-domain and space-
domain definitions. Firstly, a normal ECG should include P-wave,

QRS-complex, and T-wave, representing the corresponding cardiac
activity. For example, the P-wave means the atrial depolarization, if
the abnormal atrial depolarization process exists, there is a change
in P-wave-based ECG. Secondly, the 12-lead ECG needs 10 elec-
trodes on the surface, and each electrode position in the 12-lead
ECG is seen in Table 1.

Table 1: The electrode positions in 12-lead ECG

Lead Electrode position
Lead I Left Arm, Right Arm
Lead II Left Foot, Right Arm
Lead III Left Foot, Left Arm
Lead aVR Right Arm
Lead aVL Left Arm
Lead aVF Left Foot
Lead V1 The 4th intercostal space at the right sternal border
Lead V2 The 4th intercostal space at the left sternal border
Lead V3 The midpoint between V2 and V4
Lead V4 The 5th intercostal space at the midclavicular line
Lead V5 Lateral to V4, at the left midaxillary line
Lead V6 Lateral to V5, at the left midaxillary line

According to Table 1, three limb leads belong to the bipolar lead,
which requires two electrodes to collect the single-lead ECG. The
nine remaining leads belong to the unipolar lead, and take the
Wilson central terminal as the common reference.

3 METHOD
This section will introduce the details of the proposed framework,
model architecture, ECG dataset, and evaluation metric. The model
structure and setting is shown in Appendix.A.

3.1 MCMA Input & Output
The proposed framework will be named as Multi-Channel Masked
Autoencoder (MCMA), which could mask different 11 leads and
remain only a single-lead ECG to generate the entire 12-lead ECG.
The input of MCMA is single-lead ECG, while the output of MCMA
is 12-lead ECG. The signal length is 1024 for MCMA. In this study,
no preprocessing step is used to avoid influencing ECG signals, like
filtering or scaling.

3.2 Multi-Channel Configuration
In this study, MCMA, the proposed framework, needs to convert
arbitrary single-lead ECG into the standard 12-lead ECG, and the
multi-channel configuration will be used to reduce training and
inference costs. On the one hand, with the multi-channel configura-
tion, only one model is necessary to reconstruct 12-lead ECG from
arbitrary single-lead ECG, distinguished from related works, like
garg et al[5] focus on utilizing lead II to reconstruct 12-lead ECG,
making it difficult for their model to work with other single-lead
ECG as input. On the other hand, unlike Electrocardio panorama[3],
the input ECG is one of the standard 12-lead ECG, and the output
is the standard 12-lead ECG. Therefore, the input shape for MCMA
is (1024× 12), which could adapt different single-lead ECG as input.
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3.3 Training MCMA
3.3.1 Padding Strategy. Since the proposed framework will be used
to reconstruct 12-lead ECG with arbitrary single-lead ECG, and it
is necessary to adopt a channel padding strategy in this study. To
retain the space information for each single-lead ECG, the zero-
padding strategy is proposed in this study. When the single-channel
ECG will be processed into the 12-channel format, while the other
channels will be set as zeros, as seen in Eq.1.

𝑃 (𝑒𝑐𝑔12, 𝑖) = 𝐼𝑧 × 𝑒𝑐𝑔12 [𝑖] (1)

In Eq.1, the shape of index matrix for zero-padding is 12 × 1,
𝐼𝑧 (𝑖) = 1 with other elements being zeros. Specifically, the output
shape equals the input shape, and the shape of 𝑒𝑐𝑔12 is 12×𝑁 , then
the shape of 𝑒𝑐𝑔12 [𝑖] is 1 × 𝑁 , so the output shape also is 12 × 𝑁 .
With zero-padding, MCMA could adaptively solve different inputs.
To highlight its advantages, the 12 copies for the single-lead ECG
will be as a comparison, named as the copy-padding strategy. The
index matrix for copy-padding strategy, 𝐼𝑐 , all elements are 1. At
the same time, the arbitrary input lead and the fixed lead (lead
I) will be compared. In addition, the 12-lead ECG is provided in
model training, and the padding strategy aims to mask the original
11-lead ECG with zeros or the remaining single-lead ECG in the
standard 12-lead ECG. Meanwhile, only the single-lead ECG exists
in the real-world application process, it should be with the padding
strategy for the proposed framework.

3.3.2 Loss Function. The autoencoder could extract the latent rep-
resentation with the raw data and convert the latent representation
into the target output. The common loss function for autoencoder,
𝐿, can be shown in Eq.2.

𝐿 = | |𝑒𝑐𝑔12 −𝐴𝐸 (𝑒𝑐𝑔1) | | = | |𝑒𝑐𝑔12 −𝐴𝐸 (𝑃 (𝑒𝑐𝑔12, 𝑖)) | | (2)

In Eq.2, 𝐴𝐸 denotes the autoencoder, and the 12-lead and single-
lead ECG signals are represented by 𝑒𝑐𝑔12 and 𝑒𝑐𝑔1. 𝑃 means the
padding strategy, including zero-padding and copy-padding. Addi-
tionally, 𝑖 means the index, varying from 1 to 12.

3.4 Inferencing MCMA
After the training process, MCMA would be used in real-world
applications, i.e., the inferencing (testing) process. Firstly, the single-
lead ECG should be provided as the input of MCMA. Secondly, the
zeros-padding strategy will be used in this process, like Eq.1, but
only the single-lead ECG inputs. Thirdly, the trained autoencoder
could generate the reconstucted 12-lead ECG, which could be used
to evaluation or downstream tasks. Then, the application process
for MCMA could be seen in Eq.3.

𝑔𝑒𝑐𝑔 = 𝐴𝐸 (𝐼𝑧 × 𝑒𝑐𝑔1) (3)

In Eq.3, 𝑔𝑒𝑐𝑔 is the generated 12-lead ECG with MCMA, 𝑒𝑐𝑔1 is
the single-lead ECG collected by wearable devices, 𝐼𝑧 could convert
𝑒𝑐𝑔1 into the input of 𝐴𝐸.

3.5 Comprehensive Evaluations
As mentioned, to fill the evaluation gap in this research field, this
studywill introduce a comprehensive evaluation benchmark, named
as ECGGenEval. Specifically, this benchmark will contain 3 kinds of

evaluation metrics, that is, signal-level, feature-level and diagnostic-
level. The following contents will introduce the detailed evaluation
metrics respectively.

3.5.1 Signal-Level. This study adopt the Pearson correlation co-
efficient (𝑃𝐶𝐶) and mean square error (𝑀𝑆𝐸) in the signal-level
evaluation. It is necessary to define the real and generated ECG
signal as 𝑟𝑒𝑐𝑔 and 𝑔𝑒𝑐𝑔 . Then, the definitions for PCC and MSE are
shown in Eq.4 and Eq.5.

𝑃𝐶𝐶 (𝑟𝑒𝑐𝑔, 𝑔𝑒𝑐𝑔) =
𝜇 (𝑟𝑒𝑐𝑔 × 𝑔𝑒𝑐𝑔) − 𝜇 (𝑟𝑒𝑐𝑔)𝜇 (𝑔𝑒𝑐𝑔)

𝜎 (𝑟𝑒𝑐𝑔)𝜎 (𝑔𝑒𝑐𝑔)
(4)

𝑀𝑆𝐸 (𝑟𝑒𝑐𝑔, 𝑔𝑒𝑐𝑔) = 𝜇 ((𝑟𝑒𝑐𝑔 − 𝑔𝑒𝑐𝑔)2) (5)

In these equations, as Eq.4 and Eq.5, 𝜇 (∗) and 𝜎 (∗) denotes the
mean value and standard deviation, respectively. The 𝑃𝐶𝐶 varies
from -1 to 1, and the𝑀𝑆𝐸 is at least bigger than 0. The relationship
between 𝑀𝑆𝐸 and generation performance is positively related,
while the relationship between𝑀𝑆𝐸 and generation performance is
negatively related. Therefore, based on the signal-level evaluation,
a better generative model should be with a higher 𝑃𝐶𝐶 and lower
𝑀𝑆𝐸 from two different aspects.

3.5.2 Feature-Level. Although the signal-level evaluation is estab-
lished, since the original ECG signals may be subject to varying
degrees of influence from ambient noise, some metrics in other
levels are needed for objectively evaluating the reconstruction per-
formance. This section will introduce the heart rate for the feature-
level evaluation. It is known that R-waves in real 12-lead ECG
signals will theoretically occur simultaneously, and the generated
signals should meet this requirement. Firstly, the mean heart rate
(𝑀𝐻𝑅) at the 𝑗th lead could be calculated, as shown in Eq.6.

𝑀𝐻𝑅( 𝑗) = 60 × (𝑛 − 1)∑𝑛−1
𝑖=1 (𝑅(𝑖 + 1, 𝑗) − 𝑅(𝑖, 𝑗))

(6)

In Eq.6, the 𝑖th detected R-wave in 𝑗th lead will be denoted
as 𝑅(𝑖, 𝑗), and it is expressed in seconds. Therefore, 𝑀𝐻𝑅 could
represent the heartbeat per minute. Since the 12 heart rates are
obtained, it is time to measure the heart rate consistency. In addi-
tion, some ECG signals collected in real-world applications will be
difficult for R-wave detection of their enormous noise, so it is un-
necessary to choose any lead as a reference. Based on the 12𝑀𝐻𝑅

from different 12-lead ECG, the average value 𝑀𝑀𝐻𝑅 could be
computed. Further, the feature-level evaluation in this 12-lead ECG
reconstruction task will involve standard deviation (𝑆𝐷), Range
(the difference between maximum and minimum), and coefficient
of variation (𝐶𝑉 ), and they are expressed as 𝑀𝐻𝑅𝑆𝐷 , 𝑀𝐻𝑅𝑅𝑎𝑛𝑔𝑒
and𝑀𝐻𝑅𝐶𝑉 respectively.

3.5.3 Diagnostic-Level. Further, this study also adopts the diagnostic-
level evaluation for this 12-lead ECG reconstruction task. In the
real-world application, there are some trained classifiers with 12-
lead ECG as input, which are difficult to address some limited-lead
ECG. The proposed framework could convert the limit-lead (even
single-lead) ECG into 12-lead ECG, which bridges the limited-lead
ECG to the trained classifiers. Therefore, it is necessary to evalu-
ate the classification performance with the generated 12-lead ECG.
The representative classification metric will be used in this study,
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mainly including the precision (𝑃𝑟𝑒), recall (𝑅𝑒𝑐), specificity (𝑆𝑝𝑒)
and F1 score, as shown in literature[25].

3.6 Datasets
This study will adopt some public 12-lead ECG datasets to demon-
strate the advantages for this study, including PTB-XL[31, 34],
CPSC2018[16], and CODE-test[25]. The detailed descriptions of
the datasets can be seen in Appendix.B.

4 RESULTS AND COMPARISON
The signal-level evaluation result is seen in Table 2, while the
feature-level evaluation result in MCMA can be seen in Table 3,
taking the internal testing dataset as an example. Based on the
mentioned experimental results, it is known that the proposed
framework could reconstruct high-fidelity 12-lead ECG with single-
lead ECG. The average MSE and PCC in PTB-XL are 0.0178 and
0.7698, while the average MSE and PCC in CPSC2018 are 0.0658 and
0.7237, respectively. The experimental result of CPSC2018 will be
seen in the following appendix, which could further demonstrate
the effectiveness and advantage of the proposed MCMA.

Therefore, the reconstruction performance in the internal and ex-
ternal testing dataset could demonstrate its advantages, and MCMA
could reconstruct the standard 12-lead ECG with arbitrary single-
lead ECG as input. Therefore, the proposed method can provide a
feasible solution when collecting the standard 12-lead ECG is incon-
venient and difficult, like remote cardiac healthcare.Additionally,
MCMA could convert arbitrary single-lead ECG into the standard
12-lead ECG. The comparisons in signal-level, feature-level, and
diagnostic-level are shown in Table 4, Table 5 and Table 6, and the
appendix will provide the comprehensive results.

Based on the results, it is known that the proposed framework
can achieve state-of-the-art performance on the ECGGenEval, in-
cluding the signal-level, feature-level, and diagnostic-level evalua-
tion. For example, the MSE for generating 12-lead ECG with lead II
is 0.0179, better than Grag et.al[5]. The internal and external test-
ing set could prove its advance over other researchers. Therefore,
MCMA can be used for 12-lead ECG reconstruction tasks while
the single-lead ECG is collected, providing a novel solution in real-
world cardiac healthcare applications. It is possible to improve the
clinical importance of the wearable devices, playing an important
role in ECG monitoring.

5 CONCLUSION
In conclusion, this study proposes a novel generative framework
to reconstruct 12-lead ECG with single-lead ECG, as multi-channel
masked autoencoder (MCMA), and it involves two main contribu-
tions. Firstly, unlike other methods, the proposed framework could
convert arbitary single-lead ECG into the standard 12-lead ECG.
The experimental results showed that the proposed framework
had excellent performance, achieving state-of-the-art performance
on the proposed benchmark, ECGGenEval, including the signal-
level, feature-level, and diagnostic-level evaluation. For example,
the average Pearson correlation coefficients in the internal and
external testing set are 0.7698 and 0.7237, and it is shown that
the zero-padding strategy could play an important role in the pro-
posed framework. In the future, the proposed framework could be

adopted in clinical practice, which provides a novel feasible solution
for long-term cardiac health monitoring.
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Table 2: The signal-level evaluation of mean square error (MSE) and Pearson correlation coefficient (PCC) between the generated
and real 12-lead ECG in the internal testing set, PTB-XL. Since MCMA could convert any single-lead ECG into 12-lead ECG, 12
different results are reported in this table.

Lead I II III aVR aVL aVF V1 V2 V3 V4 V5 V6 Mean
MSE

I 0.0035 0.0099 0.0124 0.0035 0.0058 0.0104 0.0151 0.0465 0.0449 0.0306 0.0200 0.0142 0.0181
II 0.0076 0.0036 0.0113 0.0031 0.0087 0.0056 0.0167 0.0492 0.0480 0.0296 0.0183 0.0132 0.0179
III 0.0071 0.0079 0.0068 0.0059 0.0053 0.0053 0.0173 0.0505 0.0543 0.0393 0.0249 0.0171 0.0201
aVR 0.0055 0.0057 0.0166 0.0019 0.0091 0.0093 0.0151 0.0471 0.0443 0.0271 0.0157 0.0115 0.0174
aVL 0.0049 0.0098 0.0081 0.0053 0.0042 0.0076 0.0165 0.0485 0.0499 0.0368 0.0238 0.0164 0.0193
aVF 0.0080 0.0050 0.0082 0.0048 0.0071 0.0044 0.0174 0.0502 0.0523 0.0354 0.0225 0.0156 0.0192
V1 0.0071 0.0099 0.0175 0.0047 0.0093 0.0114 0.0094 0.0366 0.045 0.0361 0.0228 0.0153 0.0187
V2 0.0088 0.0108 0.0171 0.0059 0.0101 0.0114 0.0134 0.0215 0.0301 0.0351 0.0268 0.0179 0.0174
V3 0.0082 0.0106 0.0179 0.0054 0.0098 0.0116 0.0156 0.0315 0.0171 0.0229 0.0225 0.0169 0.0158
V4 0.0073 0.0089 0.0162 0.0044 0.0095 0.0103 0.0165 0.0427 0.0299 0.0128 0.0149 0.0137 0.0156
V5 0.0067 0.0075 0.0161 0.0036 0.0093 0.0096 0.0164 0.047 0.0413 0.0198 0.0096 0.0104 0.0164
V6 0.0065 0.0070 0.0161 0.0033 0.0093 0.0094 0.0159 0.0479 0.0459 0.0252 0.0125 0.0084 0.0173

Mean 0.0068 0.0081 0.0137 0.0043 0.0081 0.0089 0.0154 0.0433 0.0419 0.0292 0.0195 0.0142 0.0178
PCC

I 0.9759 0.7604 0.5216 0.9116 0.813 0.5204 0.832 0.741 0.7358 0.8096 0.854 0.8676 0.7786
II 0.8349 0.9809 0.6089 0.9264 0.6254 0.8544 0.8045 0.7165 0.7111 0.8212 0.8761 0.8917 0.8043
III 0.8345 0.8017 0.9618 0.8097 0.8559 0.8715 0.7884 0.7012 0.6503 0.7276 0.7919 0.8111 0.8005
aVR 0.9048 0.8996 0.3094 0.9811 0.6043 0.6031 0.8346 0.7358 0.7444 0.8440 0.9035 0.9195 0.7737
aVL 0.9125 0.7406 0.8367 0.8327 0.9615 0.6851 0.8069 0.7233 0.6877 0.7505 0.8048 0.8219 0.797
aVF 0.8105 0.9148 0.8306 0.8516 0.7156 0.9672 0.7871 0.7045 0.6667 0.7599 0.8177 0.84 0.8055
V1 0.8396 0.7501 0.2350 0.8570 0.5780 0.4618 0.9733 0.8154 0.7181 0.7524 0.8117 0.8396 0.7193
V2 0.7905 0.7131 0.2801 0.8070 0.5498 0.4605 0.867 0.9732 0.8532 0.7654 0.7691 0.7911 0.7183
V3 0.8100 0.7256 0.2358 0.8265 0.5509 0.4640 0.8231 0.875 0.9867 0.8831 0.8244 0.8157 0.7351
V4 0.8405 0.7895 0.3260 0.8697 0.5692 0.5464 0.8066 0.7765 0.8657 0.9856 0.9164 0.8805 0.7644
V5 0.8649 0.8346 0.327 0.9063 0.5857 0.5831 0.8107 0.7396 0.7713 0.9163 0.9833 0.9463 0.7724
V6 0.8683 0.8515 0.3227 0.9174 0.5872 0.5981 0.8199 0.7273 0.7299 0.8667 0.9474 0.9804 0.7681

Mean 0.8572 0.8135 0.4830 0.8748 0.6664 0.6346 0.8295 0.7691 0.7601 0.8235 0.8584 0.8671 0.7698

Table 3: The feature-level evaluation for the generated and real 12-lead ECG in the internal testing dataset PTBXL and the
external testing dataset CPSC2018, including𝑀𝐻𝑅𝑆𝐷 ,𝑀𝐻𝑅𝐶𝑉 ,𝑀𝐻𝑅𝑅𝑎𝑛𝑔𝑒 .

Input PTBXL CPSC2018
𝑀𝐻𝑅𝑆𝐷 𝑀𝐻𝑅𝐶𝑉 𝑀𝐻𝑅𝑅𝑎𝑛𝑔𝑒 𝑀𝐻𝑅𝑆𝐷 𝑀𝐻𝑅𝐶𝑉 𝑀𝐻𝑅𝑅𝑎𝑛𝑔𝑒

Original 2.2137 3.21% 7.2195 2.1313 2.65% 7.1267
I 1.6276 2.41% 5.0632 1.3633 1.81% 4.3808
II 1.3492 2.00% 4.0276 0.9823 1.33% 3.0902
III 1.6850 2.43% 5.1826 1.3029 1.73% 4.1343
aVR 1.3884 2.09% 4.1997 1.0209 1.39% 3.2029
aVL 1.5817 2.31% 4.8872 1.3417 1.77% 4.312
aVF 1.4986 2.19% 4.5079 1.1825 1.58% 3.7303
V1 1.3668 2.01% 4.1093 1.1336 1.52% 3.5885
V2 1.4561 2.12% 4.3951 1.1692 1.57% 3.6568
V3 1.4063 2.06% 4.2434 1.1199 1.51% 3.5077
V4 1.3385 1.98% 4.0322 1.0807 1.49% 3.3710
V5 1.3796 2.04% 4.1673 1.0963 1.50% 3.4172
V6 1.3571 2.02% 4.1031 1.0997 1.51% 3.4346

Mean 1.4529 2.14% 4.4099 1.1578 1.56% 3.6522
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Table 4: The signal-level comparison in PTB-XL and
CPSC2018, including Grag et al[5], Seo et al[29] and Joo et
al[11]

Dataset Metric Method Input Value
PTB-XL MSE Grag et al[5] LeadII 0.0292

MCMA Lead II 0.0179
Seo et al[29] Lead I 0.0279
Joo et al[11] Lead I 0.0378
MCMA Lead I 0.0181

PCC Grag et al[5] Lead II 0.7981
MCMA Lead II 0.8043

Seo et al[29] Lead I 0.7885
Joo et al[11] Lead I 0.7199
MCMA Lead I 0.7786

CPSC2018 MSE Grag et al[5] Lead II 0.0967
MCMA Lead II 0.0662

Seo et al[29] Lead I 0.0972
Joo et al[11] Lead I 0.1118
MCMA Lead I 0.0659

PCC Grag et al[5] Lead II 0.7382
MCMA Lead II 0.7616

Seo et al[29] Lead I 0.7278
Joo et al[11] Lead I 0.6845
MCMA Lead I 0.7471

Table 5: The feature-level comparison in PTB-XL and
CPSC2018, including Grag et al[5], Seo et al[29] and Joo et
al[11]

Dataset Method Input 𝑀𝐻𝑅𝑆𝐷 𝑀𝐻𝑅𝐶𝑉 𝑀𝐻𝑅𝑅𝑎𝑛𝑔𝑒
PTB-XL Original * 2.2137 3.21% 7.2195

Grag et al[5] Lead II 1.1608 1.70% 3.5872
MCMA Lead II 1.3492 2.00% 4.0276

Seo et al[29] Lead I 1.8943 2.74% 6.3984
Joo et al[11] Lead I 2.6891 4.03% 8.8273
MCMA Lead I 1.6276 2.41% 5.0632

CPSC2018 Original * 2.1313 2.65% 7.1267
Grag et al[5] Lead II 0.9545 1.24% 3.0523

MCMA Lead II 0.9823 1.33% 3.0902
Seo et al[29] Lead I 2.1899 2.79% 7.5269
Joo et al[11] Lead I 2.4136 3.31% 8.1059
MCMA Lead I 1.3633 1.81% 4.3808

Table 6: The diagnostic-level comparison in CODE-test, in-
cluding Grag et al[5], Seo et al[29] and Joo et al[11]

Method Input 𝑃𝑟𝑒 𝑅𝑒𝑐 𝑆𝑝𝑒 𝐹1
* 12-lead ECG 0.8747 0.9100 0.9958 0.8872

Grag et al[5] Lead II 0.7268 0.8542 0.9881 0.7808
Input for MCMA Lead II 0.0682 0.0339 0.9778 0.0333

MCMA Lead II 0.8099 0.7976 0.9935 0.7824
Seo et al[29] Lead I 0.8248 0.8480 0.9948 0.8299
Joo et al[11] Lead I 0.7817 0.7846 0.9938 0.7730

Input for MCMA Lead I 0.3971 0.1309 0.9910 0.1824
MCMA Lead I 0.8386 0.8381 0.9956 0.8319
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A PROPOSED MODEL
A.1 Model Architecture
For this framework, it is necessary to design a proper model for
12-lead reconstruction, aiming to learn the effective representation.
Firstly, it is necessary to take into account the locality and uncer-
tainty of features within the ECG signals and there is no feature
alignment in signal preprocessing. Therefore, the convolutional
neural network can largely extract the local feature, which can play
a key module in this 12-lead ECG reconstruction task. The designed
model in MCMA is shown in Fig.2.

Figure 2: The detailed model architecture, mainly including
MCBlock and MCTBlock, k is for kernel size and s is for
stride

The designed model is motivated by ResNet[7] and UNet[26].
The whole model can be subdivided into two modules, namely,
the downsampling and upsampling modules, which are composed
of the multi-convolution block (MCBlock) and multi-convolution-
transpose block (MCTBlock), respectively. The kernel size is 13
and the window size is 2. The activation function is GELU. To im-
prove the gradient stability, layer normalization (LN) and instance
normalization (IN) are used in each block. The skip connections
could speed up the convergence rate of the model and improve the
representation ability.

A.2 Hyperparamaters
At the same time, the basic training recipe is provided in Table
7, including some hyperparamaters settings, like batch size and
learning rate.

Table 7: The hyperparameters configuration

hyperparameters configuration
Batch size 256
Epochs 100

Signal Length 1024
Optimizer Adam

Learning rate 1e-3

B DATASET
B.1 PTB-XL
In this study, PTB-XL[31, 34] will be used for model training, val-
idating, and testing. As a large dataset, PTB-XL involves 21,799
clinical 10-second 12-lead ECG signals, and the sampling frequency
is 500Hz. Based on the SCP-ECG standard, this dataset includes 71
kinds of ECG statements. As recommended, this study will adopt
the cross-validation folds, in which the folds from the 1st fold to
the 8th fold will be the training set, the 9th fold and the 10th fold
act as the validation set and testing set, respectively. The ratio for
training:validation: and testing is about 8:1:1.

B.2 CPSC2018
To demonstrate the advantages and feasibility, CPSC2018[16] is
used as an external testing set since the data distribution and infor-
mation do not appear in model training and choosing. CPSC2018
contains 6,877 12-lead ECG, and these lengths varied from 6 sec-
onds to 60 seconds with 500 Hz in sampling frequency. This dataset
mainly includes a 9-type ECG, which aims to find out the cardiac
arrhythmia detection tool.

B.3 CODE-test
The above datasets just focus on similarity evaluation for the gen-
erated signals. This study will establish a benchmark for 12-lead
ECG reconstruction. Therefore, this process requires representa-
tive research for 12-lead ECG classification, like Ribeiro et al[25].
This testing set is named CODE-test, including 827 12-lead ECG
collected from different patients.

B.4 Data Distribution
Since the generative model requires the 1024 point as input length,
then the data distribution for two large-scale datasets could be
listed as Table 8.

Table 8: The data description of PTB-XL and CPSC2018

Dataset Role Number
Training Set 87200

PTB-XL Validation Set 10965
Internal testing set 11015

CPSC2018 External testing set 55999

Table 8 presents the data distribution in PTB-XL and CPSC2018,
including the internal and external testing set, which will be used
for the signal-level and feature-level evaluation. Since CODE-test
will be used in the diagnostic-level evaluation, it is necessary to
introduce the ECG abnormality, as shown in Table 9

Based on Table9, there are six arrhythmia types in this dataset. It
is important for the model to keep or generate pathological informa-
tion. Therefore, the classification performance with the real 12-lead
ECG will be adopted as the supremum, and the real single-lead ECG
with padding strategy will be used as the baseline.
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Table 9: The data description of CODE-test

Abbreviation Description Quantity Proportion
1dAVb 1st degree AV block 28 3.4%
RBBB right bundle branch block 34 4.1%
LBBB left bundle branch block 30 3.6%
SB sinus bradycardia 16 1.9%
AF atrial fibrillation 13 1.6%
ST sinus tachycardia 36 4.4%

C RESULTS
To evaluate the 12-lead ECG reconstruction performance for the
proposed framework, a comprehensive evaluation benchmark is
built in the mentioned content, named ECGGenEval. Therefore, the
experimental results for MCMA are calculated in this section with
the proposed benchmark, ECGGenEval, including the signal-level,
feature-level, and diagnostic-level evaluation.

C.1 Signal-Level
First of all, the signal-level evaluation is the primary evaluation
metric, such as MSE and PCC. Unlike the traditional methods, this
scheme has the advantage that arbitary single-lead ECG can be
output to 12-lead ECG without training multiple generative models,
effectively reducing the model training cost. The experimental
results of MSE and PCC are shown in Table 2, where the horizontal
direction represents the output and the vertical direction represents
the input. Besides, the reconstruction performance in the external
dataset, CPSC2018, is seen in Table 10.

C.2 Feature-Level
To avoid the noise influence, and meet the clinical requirement,
this study proposes the feature-level evaluation metric, including
the standard deviation𝑀𝐻𝑅𝑆𝐷 , Range𝑀𝐻𝑅𝑅𝑎𝑛𝑔𝑒 and coefficient
of variation 𝑀𝐻𝑅𝐶𝑉 . The feature-level evaluation results in the
internal testing set PTB-XL and external testing set CPSC2018 are
shown in Table 3, respectively. Since the proposed method can
convert arbitrary single-lead ECG into 12-lead ECG, these tables
will involve 13 groups of experimental results, the first group will
be the reference value as the original 12-lead ECG input.

Based on the experimental result, the conclusion can be drawn as
following. For CPSC2018, the optimal result is from the generated
12-lead ECG by lead II ECG. The generated 12-lead ECG from ar-
bitary single-lead ECG could produce a good heart rate consistency
in different leads, and it can even be better than the original 12-lead
ECG in some cases, due to the ECG signal denoising function in
the proposed framework. Therefore, the feature-level evaluation
can demonstrate the advantages of the MCMA. Additionally, the
ECG morphological features in the single-lead would like to be
calculated, demonstrating the similarity and consistency in the
generated and real ECG signals. Taking lead I as example, Table
11 shows the difference between the generated from 12 different
inputs and the original ECG, including the Heart rate(HR, bpm),
P_amplitude(P_amp, mv), P_duration(P_dur, ms), PR_interval(PR,
ms), QRS_amplitude(QRS_amp, mv), QRS_duration(QRS_dur, ms),

T_amplitude(T_amp, mv), ST(ms), QT_interval(QT, ms), QTc(ms),
andHeart rate variation(ms). In this table, amp and dur represent the
amplitude and duration, bpm means beat per minute, while ms and
mv are millisecond and millivolt. As a reference, the calculated mor-
phological feature values for the original lead I ECG are 74.2593bpm,
0.1159mv, 118.9081ms, 173.9268ms, 0.8535mv, 92.2338ms, 0.2123mv,
124.9686ms, 410.7288ms, 452.4418ms, 68.8162ms. Since the proposed
framework could convert arbitary single-lead ECG into 12-lead
ECG, Table 11 involves 12 groups of experimental result, including
lead I ECG.

Based on Table 11, the ECG morphological features of the gen-
erated ECG are extremely close to that of the original real ECG.
The duration similarity is better than amplitude similarity. Like the
heart rate, the maximum difference is 0.8456 and 1.23% in lead aVF,
which largely presents the feasibility of the proposed framework.
Besides, it is necessary to study other leads with some cutting-
edge technologies, and lead I is one of the mostly used cases in the
standard 12-lead ECG. Besides the R-peak, it is difficult to find the
morphological features with other lead ECG, especially the subtle
feature. Therefore, ECGGenEval focuses on the mean heart rate in
different leads ECG for feature-level evaluation.

C.3 Diagnostic-Level
The downstream task can demonstrate the clinical importance of the
generated 12-lead ECG, and the classifier is trained and validated by
Ribeiro et al[25]. The proposed framework could generate 12-lead
ECG with single-lead ECG, and the single-lead ECG could not be
processed by a classifier trained with 12-lead ECG. For example,
the classification performance of the generated 12-lead ECG with
lead I is completed by the pretrained model[25], and the classifier
could adopt the generated 12-lead ECG for arrhythmia classification.
The average F1-score over 6 classes is 0.8319. Then, it is proven
that MCMA could convert the single-lead ECG into the 12-lead
ECG, and the generated 12-lead ECG can retain the pathological
information, and it is different to the signal-level and feature-level
evaluation. Therefore, with the multi-channel masked autoencoder,
it is possible to complete arrhythmia classification with single-
lead ECG. Additionally, the proposed framework can reconstruct
12-lead ECG with arbitary single-lead ECG. Further, the detailed
diagnostic-level evaluations are shown in Table 12, including the
original 12-lead ECG (as the reference), the single-lead ECG (i.e.,
MCMA input) and the generated 12-lead ECG (i.e., MCMA output),
which shows the gain from the proposed framework.

According to Table 12, the classification performance of the gen-
erated 12-lead ECG is better than that of single-lead ECG and similar
to the real 12-lead ECG, which can demonstrate the classification
performance gain brought by MCMA. The generated 12-lead from
lead I could provide the closest classification performance, the aver-
age 𝐹1 score is 0.8319, which exceeds other cases. From the view of
the classification task, the classification performance in the above
tables demonstrates the generated 12-lead ECG can be used for
cardiac abnormality detection, which can prove its advantage in
bridging the single-lead ECG and 12-lead ECG, and it is effective in
generating the pathological information with single-lead ECG as
input.
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Table 10: The signal-level evaluation of mean square error (MSE) and Pearson correlation coefficient (PCC) between the
generated and real 12-lead ECG in the external testing set, CPSC2018

Lead I II III aVR aVL aVF V1 V2 V3 V4 V5 V6 Mean
MSE

I 0.0256 0.0334 0.0345 0.0274 0.0269 0.0326 0.0567 0.0914 0.1022 0.1032 0.1179 0.1384 0.0659
II 0.0302 0.0268 0.0320 0.0263 0.0303 0.0272 0.0605 0.0971 0.1051 0.1034 0.1178 0.1379 0.0662
III 0.0307 0.0310 0.0275 0.0293 0.0267 0.0272 0.0609 0.0989 0.1133 0.1151 0.1274 0.1439 0.0693
aVR 0.0289 0.0299 0.0383 0.0241 0.0314 0.0313 0.0566 0.0937 0.1016 0.101 0.1155 0.1367 0.0657
aVL 0.0284 0.0345 0.0298 0.0296 0.0247 0.0305 0.0592 0.0943 0.1106 0.1154 0.1284 0.1449 0.0692
aVF 0.0315 0.0282 0.0287 0.0283 0.0286 0.0262 0.0626 0.0996 0.1111 0.1110 0.1249 0.1423 0.0686
V1 0.0309 0.0346 0.0386 0.0281 0.0314 0.0337 0.0455 0.0802 0.1035 0.1133 0.1277 0.1438 0.0676
V2 0.0315 0.0354 0.0387 0.0299 0.0313 0.0341 0.0544 0.0558 0.0811 0.1065 0.1295 0.1463 0.0645
V3 0.0309 0.0342 0.0406 0.0291 0.0316 0.0335 0.0579 0.0684 0.0638 0.0907 0.1213 0.1426 0.0620
V4 0.0303 0.0327 0.0406 0.0279 0.0319 0.0333 0.0596 0.0833 0.0787 0.0772 0.1120 0.1380 0.0621
V5 0.0296 0.0323 0.0400 0.0269 0.0317 0.0332 0.059 0.0913 0.0943 0.0895 0.1000 0.1339 0.0635
V6 0.0296 0.0322 0.0396 0.0266 0.0318 0.0331 0.0589 0.0955 0.1029 0.0977 0.1104 0.1247 0.0652

Mean 0.0298 0.0321 0.0357 0.0278 0.0299 0.0313 0.0577 0.0875 0.0974 0.1020 0.1194 0.1395 0.0658
PCC

I 0.9671 0.7713 0.4671 0.8942 0.7086 0.5503 0.7277 0.6537 0.6914 0.8072 0.8586 0.8681 0.7471
II 0.7900 0.979 0.5957 0.9285 0.4784 0.8804 0.6703 0.6045 0.6693 0.8075 0.8614 0.8741 0.7616
III 0.7669 0.8115 0.9573 0.7981 0.8078 0.8752 0.6609 0.5923 0.5994 0.7108 0.7646 0.7821 0.7606
aVR 0.8715 0.9110 0.2685 0.9767 0.4172 0.6680 0.7228 0.6434 0.7084 0.8395 0.8985 0.9147 0.7367
aVL 0.8412 0.7250 0.8048 0.7829 0.9460 0.6755 0.6875 0.6341 0.6238 0.7113 0.7594 0.7756 0.7473
aVF 0.7409 0.9168 0.841 0.8418 0.6257 0.968 0.6339 0.5812 0.6184 0.7431 0.7870 0.8031 0.7584
V1 0.7742 0.7329 0.2269 0.8151 0.3979 0.4976 0.9559 0.7495 0.6783 0.7281 0.7662 0.7907 0.6761
V2 0.7301 0.6853 0.2112 0.7685 0.3921 0.4459 0.7724 0.9631 0.8494 0.7754 0.7501 0.7500 0.6745
V3 0.7541 0.7376 0.1042 0.8111 0.3556 0.5020 0.7073 0.8577 0.9825 0.9000 0.8303 0.8107 0.6961
V4 0.7838 0.7939 0.1143 0.8595 0.3475 0.5326 0.678 0.7320 0.8797 0.9833 0.9141 0.8781 0.7081
V5 0.8218 0.8115 0.1602 0.8938 0.3788 0.5447 0.689 0.6655 0.7591 0.914 0.9787 0.9374 0.7129
V6 0.8299 0.8147 0.1884 0.9052 0.3801 0.5535 0.691 0.6276 0.6944 0.8567 0.9353 0.9757 0.7044

Mean 0.8060 0.8075 0.4116 0.8563 0.5196 0.6411 0.7164 0.6921 0.7295 0.8147 0.8420 0.8467 0.7237

Therefore, based on the experimental results, it is concluded that
MCMA could generate the standard 12-lead ECG with arbitrary
single-lead ECG as input. At the same time, this study establishes
a comprehensive evaluation benchmark, ECGGenEval, including
the signal-level evaluation, feature-level evaluation, and diagnostic-
level evaluation. The experimental results prove that MCMA can
work well in ECGGenEval, which could be a baseline for future
work. In the internal testing set, MCMA could perform a MSE of
0.0178 and a PCC of 0.7698, and the lowest MSE is 0.0156 in the lead
V4 while the highest PCC is 0.8055 in the lead aVF. In the external
testing set, MCMA could perform a MSE of 0.0658 and a PCC of
0.7237, and the lowest MSE is 0.062 in the lead V3, while the highest
PCC is 0.7616 in the lead II. At the same time, for the feature-level
evaluation, MCMA could get a 𝑀𝐻𝑅𝑆𝐷 of 1.4529, a 𝑀𝐻𝑅𝐶𝑉 of
2.10%, and a𝑀𝐻𝑅𝑅𝑎𝑛𝑔𝑒 of 4.4099 in the internal testing set, while
the results are 1.1578, 1.56%, and 3.6522 in the external testing set.
In the classification task, the highest 𝐹1 is 0.8319, bridging the gap
between the single-lead ECG and 12-lead ECG.

C.4 Ablation Study
MCMA utilizes two key modules, one for arbitrary single-lead ECG
reconstruction, and another for zero-padding strategy. Then, it
is necessary to compare with different settings, including fixed-
channel(lead I as an example) and copy-padding strategy. The
signal-level evaluation metric, mean square error (MSE) and Pear-
son correlation coefficient (PCC) will be used. The experimental
results comparison with different settings could be shown in Table
13, including the lead I and the average value for 12 single-lead
ECG. In the most cases, MCMA has achieved an excellent result in
the 12-lead ECG reconstruction task.

As Table 13 showing, the proposed framework is effective. Firstly,
the multi-channel strategy could support arbitrary single-lead to
generate 12-lead ECG. Although the reconstruction performance of
lead I is slightly lower than the fixed-channel. When the lead I ECG
inputs, the fixed-channel could have a MSE of 0.0176 and a PCC
of 0.7885 better than MCMA, a MSE of 0.0181 and a PCC of 0.7786.
However, for the fixed-channel, it is difficult to realize 12-lead ECG
reconstruction with other leads, and the training and inference
cost is largely different in training and storing 12 models with this
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Table 11: The feature-level evaluation of absolute and relative morphological feature difference between the generated and
original lead I ECG

Input HR P_amp P_dur PR QRS_amp QRS_dur T_amp ST QT QTc HRV
I 0.5718 0.0369 7.1689 6.9264 0.2594 3.6948 0.0686 10.1397 10.6262 12.53 12.945
% 0.83% 40.59% 6.67% 4.02% 34.89% 3.99% 38.58% 9.29% 2.72% 2.87% 29.23%
II 0.6144 0.0402 10.3392 11.0876 0.2876 8.495 0.0777 21.1166 18.8347 21.7852 15.5677
% 0.89% 42.14% 9.79% 6.51% 43.83% 9.00% 45.76% 16.47% 4.57% 4.72% 33.01%
III 0.6612 0.0377 9.8265 10.2947 0.2861 7.8738 0.0744 18.8939 17.3506 19.8629 16.1653
% 0.98% 37.87% 9.23% 6.02% 43.01% 8.32% 42.44% 15.48% 4.25% 4.34% 35.83%

aVR 0.7057 0.0393 9.5391 10.0386 0.2857 7.6208 0.074 17.9166 17.3683 20.2003 16.4932
% 1.05% 39.81% 9.07% 5.93% 42.57% 8.11% 41.73% 14.48% 4.24% 4.41% 42.87%
aVL 0.7025 0.0412 10.0827 10.3801 0.2852 8.5999 0.0801 22.6017 19.9419 22.7184 16.0154
% 1.02% 43.13% 9.55% 6.01% 42.94% 9.29% 48.01% 16.92% 4.86% 4.93% 43.83%
aVF 0.8456 0.0412 10.584 11.6172 0.2782 8.0677 0.087 24.6724 22.678 25.9355 20.782
% 1.23% 42.18% 10.00% 6.58% 41.67% 8.61% 54.04% 19.48% 5.52% 5.62% 84.92%
V1 0.6776 0.0406 8.4764 8.8283 0.2817 7.148 0.0719 15.8229 14.2657 16.4709 14.8274
% 0.99% 43.68% 7.89% 5.15% 41.23% 7.66% 42.11% 12.52% 3.49% 3.61% 31.62%
V2 0.8388 0.0377 9.4705 10.4393 0.2694 6.6889 0.0697 17.5462 16.8356 19.6939 18.2729
% 1.23% 42.29% 8.84% 5.99% 38.14% 7.09% 41.84% 15.76% 4.18% 4.35% 61.52%
V3 0.8084 0.0425 11.2461 11.3603 0.2804 8.8347 0.0921 25.7338 22.9555 26.3674 20.4351
% 1.19% 42.60% 10.94% 6.56% 42.56% 9.59% 57.04% 19.09% 5.60% 5.75% 63.80%
V4 0.6599 0.0404 10.7843 10.4909 0.294 8.0254 0.079 23.2426 21.0381 24.2838 16.5114
% 0.98% 41.75% 10.17% 6.08% 45.63% 8.59% 46.96% 18.18% 5.13% 5.25% 36.52%
V5 0.663 0.0416 11.7688 11.911 0.2909 9.1403 0.0827 24.2244 21.3619 24.411 16.0495
% 0.99% 43.73% 11.33% 6.90% 45.50% 9.68% 51.35% 18.46% 5.18% 5.27% 31.43%
V6 0.6571 0.0421 11.4455 11.8411 0.2885 8.8592 0.0827 23.5203 21.4196 24.5041 15.9346
% 0.95% 45.04% 11.04% 6.94% 44.48% 9.43% 50.78% 18.10% 5.24% 5.33% 30.94%

setting. Secondly, the zero-padding strategy is better than the copy-
padding strategy, while the two strategies both support the 12-lead
reconstruction with arbitrary single-lead ECG. The mean MSE and
PCC in MCMA are 0.0177 and 0.7697, while the mean MSE and

PCC in copy-padding are 0.0195 and 0.7069. Therefore, based on
the experimental result, MCMA is feasible to reconstruct 12-lead
ECG with arbitrary single-lead ECG as input.

Received 2024-05-18; revised 2024-07-04; accepted 2024-06-29
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Table 12: The diagnostic-level evaluation of classification performance gain with the generated 12-lead ECG by MCMA

Input 𝑃𝑟𝑒 𝑅𝑒𝑐 𝑆𝑝𝑒 𝐹1
Original 12-lead ECG[25] 0.8747 0.9100 0.9958 0.8872

I 0.3971 0.1309 0.991 0.1824
I+MCMA 0.8386 0.8381 0.9956 0.8319

MCMA Gain 0.4415 0.7072 0.0046 0.6495
II 0.0682 0.0339 0.9778 0.0333

II+MCMA 0.8099 0.7976 0.9935 0.7824
MCMA Gain 0.7417 0.7637 0.0157 0.7491

III 0.1667 0.0056 0.9998 0.0108
III+MCMA 0.6983 0.6509 0.9915 0.6524
MCMA Gain 0.5316 0.6453 -0.0083 0.6416

aVR 0 0 0.9985 0
aVR+MCMA 0.5005 0.4675 0.9770 0.4690
MCMA Gain 0.5005 0.4675 -0.0215 0.4690

aVL 0 0 0.9998 0
aVL+MCMA 0.6265 0.637 0.9862 0.6136
MCMA Gain 0.6265 0.637 -0.0136 0.6136

aVF 0 0 1 0
aVF+MCMA 0.5411 0.6057 0.9794 0.5167
MCMA Gain 0.5411 0.6057 -0.0206 0.5167

V1 0.2641 0.251 0.9973 0.2573
V1+MCMA 0.7579 0.8707 0.9921 0.8073
MCMA Gain 0.4938 0.6197 -0.0052 0.5500

V2 0.1667 0.0611 1 0.0894
V2+MCMA 0.7094 0.7983 0.9900 0.7410
MCMA Gain 0.5427 0.7372 -0.01 0.6516

V3 0.2428 0.1267 0.9909 0.1469
V3+MCMA 0.7654 0.8422 0.9927 0.7972
MCMA Gain 0.5226 0.7155 -0.0063 0.6503

V4 0.1667 0.009 1 0.0171
V4+MCMA 0.7900 0.8130 0.9929 0.786
MCMA Gain 0.6233 0.804 -0.0071 0.7689

V5 0 0 1 0
V5+MCMA 0.7918 0.8053 0.9931 0.7895
MCMA Gain 0.7918 0.8053 -0.0069 0.7895

V6 0.0833 0.0049 0.9996 0.0093
V6+MCMA 0.7514 0.7896 0.9921 0.7580
MCMA Gain 0.7918 0.8053 -0.0069 0.7895

Table 13: The module importance in MCMA

Channel Padding Strategy Input Mean MSE Mean PCC
Fixed- Zeros Lead I 0.0176 0.7885
Multi- Copy Lead I 0.0191 0.7205
Multi- Zeros Lead I 0.0181 0.7786
Fixed- Zeros 12 Single-lead 0.0505 0.1342
Multi- Copy 12 Single-lead 0.0195 0.7069
Multi- Zeros 12 Single-lead 0.0177 0.7697
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