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Abstract
Spiking neural networks (SNNs) are gaining pop-
ularity in deep learning due to their low energy
budget on neuromorphic hardware. However, they
still face challenges in lacking sufficient robust-
ness to guard safety-critical applications such as
autonomous driving. Many studies have been
conducted to defend SNNs from the threat of
adversarial attacks. This paper aims to uncover
the robustness of SNN through the lens of the
stability of nonlinear systems. We are inspired
by the fact that searching for parameters alter-
ing the leaky integrate-and-fire dynamics can en-
hance their robustness. Thus, we dive into the
dynamics of membrane potential perturbation and
simplify the formulation of the dynamics. We
present that membrane potential perturbation dy-
namics can reliably convey the intensity of per-
turbation. Our theoretical analyses imply that the
simplified perturbation dynamics satisfy input-
output stability. Thus, we propose a training
framework with modified SNN neurons and to
reduce the mean square of membrane potential
perturbation aiming at enhancing the robustness
of SNN. Finally, we experimentally verify the
effectiveness of the framework in the setting of
Gaussian noise training and adversarial training
on the image classification task. Please refer
to https://github.com/DingJianhao/
stable-snn for our code implementation.

1. Introduction
Spiking neural networks (SNNs) are gaining popularity in
the field of deep learning, owing to their ability to deploy
deep network architectures on neuromorphic hardware with
high efficiency (Pei et al., 2019; DeBole et al., 2019; Davies
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et al., 2018; Nieves & Goodman, 2021; Fang et al., 2020).
Unlike typical Analog Neural Networks (ANNs), neurons
in SNNs evolve their membrane potentials like biological
systems in response to stimuli and use spike sequences to
convey binary information (Gerstner et al., 2014; Xu et al.,
2023; Zhu et al., 2024). This distinguishing feature distin-
guishes SNNs from ANNs, providing a simplified depiction
of the complex dynamics observed in the brain (Yao et al.,
2022; Zhang & Li, 2020; Kheradpisheh & Masquelier, 2020;
Shi et al., 2024b). Thus, training deep SNNs with good
performance typically requires expanding the temporal evo-
lution of SNNs due to their dynamic nature and employing
surrogate functions to overcome the difficulty of the binary
spike emission function (Wu et al., 2018; Kim et al., 2020;
Zhang et al., 2022; Rathi & Roy, 2021; Kim et al., 2023;
Xu et al., 2024; Guo et al., 2023). The ongoing exploration
of SNNs aims to bridge the computational capabilities of
SNNs with the capabilities observed in biological neural sys-
tems, making them a promising frontier in the landscape of
neural network research (Maass, 1997; Zenke et al., 2021).

Similar to other types of neural networks, SNNs are now
facing the problem of vulnerability to adversarial attacks. In
safety-critical areas where system reliability is crucial, low
system reliability will hinder its widespread application, par-
ticularly in applications like autonomous driving (Yamazaki
et al., 2022) and robotic control (Bing et al., 2018). Adver-
sarial attacks, known for generating imperceptible perturba-
tions that can mislead neural networks, pose a significant
threat to the reliable functioning of neural networks (Good-
fellow et al., 2015; Szegedy et al., 2014; Özdenizci & Legen-
stein, 2021). Although some researchers found that special
configurations of SNN can unleash their potential for greater
robustness (Sharmin et al., 2020), SNNs’ susceptibility to
adversarial attacks is a recognized concern. More recent
research highlights the vulnerability of SNNs to adversarial
attacks (Kundu et al., 2021; Marchisio et al., 2021; Ding
et al., 2022; Bu et al., 2023; Hao et al., 2024), underscoring
the necessity to understand and improve their robustness.
Currently, research focuses on how to leverage adversarial
defense to improve the robustness of SNNs.

Deep SNNs usually use the leaky integrate-and-fire (LIF)
neuron model. The dynamics of the LIF neuron consist of a
leaky factor that controls the preserved information in the
membrane potential. In the context of robustness, Sharmin
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et al. (2020) found that the leak factor offers an additional
control to manipulate adversarial perturbation. Different
leaky factors correspond to different levels of smoothness
in the noise. Further evidence of its importance can be re-
vealed from the work of El-Allami et al. (2021). To improve
the robustness, they manually traversed the leaky factor
within some ranges and successfully found a robust configu-
ration. Both works emphasize the effectiveness of properly
setting the leaky factor, which results in different neuronal
dynamics and thus emphasizes the importance of neuronal
dynamics. On the other hand, other previous works have
only focused on changes in discrete spike output. Instead
of directly constraining discrete outputs, which may poten-
tially lead to the problem of inaccurate supervision signals,
these work shifted the focus to weight constraints or the
use of adversarial training (Kundu et al., 2021; Ding et al.,
2022; Liang et al., 2022). Therefore, we want to return to
the dynamic nature of SNNs to study and find ways to resist
perturbations.

Since the dynamics of SNN can help reduce the impact of
noise, one question arises: how can we design beneficial
dynamics to improve the robustness of SNN? An intuitive
solution is to design a dynamic system with stability, which
involves employing strategies that ensure the system’s be-
havior remains bounded and converges to a desired state
over time (Khalil, 2002). SNN can be viewed as a learnable
nonlinear dynamic system; therefore, we can also adopt wis-
dom from nonlinear dynamics and analyze SNN in similar
ways. This article aims to study the impact of perturbation
on spiking neural networks from the perspective of nonlin-
ear system stability and propose methods to improve the
robustness of spiking neural networks. Our contribution can
be summarized as follows:

• Based on the dynamic equations of LIF neurons be-
fore and after perturbation, we obtain the membrane
potential perturbation dynamics. Compared to discrete
spike-based metrics, simplified membrane potential
perturbation dynamics can serve as a reliable estimate
of the impact of input perturbations on neuronal dy-
namics.

• We propose to improve the robustness by reducing
the mean square of the membrane potential perturba-
tion. In addition, our theoretical analyses prove that
the membrane potential perturbation dynamics satisfy
L2 input-output stability.

• We propose a training framework to improve the ro-
bustness of SNN by reducing the mean square of the
membrane potential perturbation for the last neuron
layer. Moreover, to further improve the reduction effi-
ciency of L2 gain, a dynamic LIF neuron is proposed
to replace LIF neurons in SNN.

• Our experiments show the effectiveness of the over-
all training framework, which significantly improves
adversarial robustness in image recognition on the
CIFAR-10 and CIFAR-100 datasets.

2. Background and Related Work
2.1. Spiking Neural Networks

Spiking neural networks emulate the behavior of natural
neurons by deploying differential equations evolving over
time. One of the most used neuron models in deep learning
is the leaky integrate-and-fire model (LIF) (Kim & Panda,
2021; Gerstner et al., 2014; Xu et al., 2022; Shi et al., 2024a).
The discrete form of the differential equation of LIF neurons
in a deep SNN can be expressed as follows:

vli [t] = λul
i [t− 1] +

∑
j

wl
ijs

l−1
j [t],

sli [t] = H
(
vli [t]− uth

)
, (1)

ul
i [t] = vli [t]

(
1− sli [t]

)
.

Here, vli[t] denotes the membrane potential of the i-th
neuron in layer l at time-step t (t = 1, 2, · · · , T ; l =
1, 2, · · · , L;ul

i[0] = 0), sli is the corresponding binarized
spike generated when vli[t] crosses the threshold uth (H
is the Heaviside function). The membrane potential af-
ter generating the spike (ul

i[t]) returns to resting potential
(0), waiting for decaying by leaky factor λ and receiving
weighted input spikes (

∑
j w

l
ijs

l−1
j ) from neurons in the

preceding layer.

2.2. Adversarial Attacks

Neural networks are notorious for being able to be fooled
by subtle perturbations in input data called adversarial at-
tacks. The sad situation also holds for SNN, which has a
higher sparsity of activation than ANN. One prevalent attack
method is to express the attack by maximizing network loss
L such that a classifier h : Rd → Y , where Y is the space
for labels. Receiving input x with perturbation δ will result
in misclassification h(x+δ) ̸= h(x). The attacks should be
imperceptible by applying guarantees that ∥δ∥p ≤ ϵ, where
ϵ is typically an integer multiple of 1/255 for images, and p
indicates the p-norm space. Formally, this optimization can
be expressed as:

δ = argmax
∥δ∥p≤ϵ

L (h(x+ δ), y) . (2)

We denote the perturbed input as x̃ = x+ δ for simplicity,
and the superscript of tilde is used over the hidden variables
related to x̃ in the following content.

FGSM, introduced by Goodfellow et al. (2015), is a funda-
mental attack method for creating adversarial examples by
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perturbing data in the negative direction of the gradient sign.
The following formula sums up this idea:

x̃ = x+ ϵ sgn (∇xL (h(x), y)) . (3)

Madry et al. (2018) propose an iterative version of FGSM,
known as PGD, which is an efficient attack method that
improves perturbations iteratively. It can be expressed as:

x̃k+1 =
∏

ϵ
(x̃k + π sgn (∇xL (h(x̃k), y))), (4)

where
∏

ϵ ensures that the poisoned data is confined within
the p-norm space around the clean data x and π is the step
size of one PGD iteration. Previous work highlighted that
SNN is vulnerable to the aforementioned crafted perturba-
tions in certain input coding schemes like constant input cod-
ing (Kundu et al., 2021), while some suggested that using
stochastic coding alternatives such as rate coding (Sharmin
et al., 2020; 2019; Ding et al., 2024) can enhance the se-
curity of SNN. Yet, the vulnerabilities can also be exposed
by deploying surrogate functions for the Heaviside function
and obtaining an SNN-specified attack with diverse attack
methodologies. This essentially poses a threat to the wide
deployment of neuromorphic hardware in safety-critical
applications (Liang et al., 2023; 2022).

2.3. Defensive Tools for SNN

Borrowing wisdom from adversarial robustness on ANN,
one can effectively build up a defensive network by exploit-
ing adversarial training against attacks (Kurakin et al., 2017;
Zhang et al., 2019). This involves pushing deep networks
to generalize on adversarial examples. While empirically
effective, adversarial training faces limitations of general-
ization on unseen attacks (Madry et al., 2018), leaving room
for potential vulnerabilities after training.

Researchers on SNN have worked to improve resilience by
deploying unique techniques. Kundu et al. (2021) improved
the robustness of SNN by perturbing the images over time
and performing adversarial training. Furthermore, recent ad-
vances have resulted in a larger improvement in robustness.
Ding et al. (2022) developed regularized adversarial training
(RAT) from the perspective of Lipschitz analysis. Mean-
while, methods proposed by Liang et al. (2022) explored
the application of certified robustness on SNN by explicitly
sensing the boundary of spike nonlinearity. These two works
explore the temporal characteristics composed of machine
learning tools, which inspires us to find new mathemati-
cal principles to analyze their robustness. Other empirical
findings on enhancing the robustness of SNN emphasized
the importance of both novel training methodologies and
structural optimizations in advancing the security of these
models (El-Allami et al., 2021; Sharmin et al., 2019).

2.4. Input-Output Stability

SNNs in Eqs. 1 can be considered as a nonlinear input-
output system. We would like to note that it is quite com-
mon to view a neural network as a complex dynamic system.
Previous works are mostly on temporally continuous ANNs
that target robotic control, physical systems, and biologi-
cal systems (Kojima & Okamoto, 2022; Lawrence et al.,
2020; Chen et al., 2018). The challenge of SNN lies in the
unknown guarantee that SNN can have after training. By
examining the second row in Eqs. 1, one can get the impres-
sion that the output of the spiking neuron is bounded, which
is supposed to be capable of tolerating more input noise.
Liang et al. (2022) gave a linear relaxation of the sparse
Heaviside function and formulated the input boundaries of
spike inputs. This paper will give a theoretical point of view
on the stability of SNN under perturbations.

We introduce the L2 input-output stability here (Khalil,
2002). L2 stability measures the ability of a system to
maintain boundedness in the norm ratio between the output
signal and the input signal. The norm ratio, called L2 gain,
quantifies the stability of a system. The L2 norm is em-
ployed in the definition of L2 stability and is calculated over
the spaces of input and output signals. Specifically, consider
a system y = f(x), where f is some operator that relates
y and x. x has a temporal axis in [0,∞) and is defined in
Euclidean space Rm. The L2 norm of a signal x is given by

the expression ∥x∥L2
=
√∫∞

0
∥x(t)∥2dt, which provides

a quantitative measure of the signal’s energy. To address
L2 stability in the context of the nonlinear system, typically
an assumption regarding the origin x ≡ 0 of the nonlinear
system is that this origin is an asymptotically stable equilib-
rium point and gives f(0) = 0. Definition 2.1 outlines the
L2 norm and introduces the criteria for L2 stability.
Definition 2.1. (Khalil, 2002) For a nonlinear system
y = f(x), the L2 norm of signal x is ∥x∥L2

=√∫∞
0

∥x(t)∥2dt. x[:τ ](t) denotes signal x(t), (0 ≤ t ≤ τ)

. If there exists a continuous function α : [0,∞) → [0,∞)
belonging to class κ and a non-negative constant β, such
that for all x and τ ∈ [0,∞),

∥f(x)[:τ ]∥L2 ≤ α(∥x[:τ ]∥L2) + β. (5)

Then, the system is L2 stable. If there exist non-negative
constants γ and β, such that for all x and τ ∈ [0,∞),

∥f(x)[:τ ]∥L2 ≤ γ∥x[:τ ]∥L2 + β. (6)

Then, the system is finite-gain L2 stable, where the mini-
mum γ is called the L2 gain of the system.

3. Stable Spiking Neural Networks
In this section, we will analyze the neuronal dynamics under
attack and derive modified dynamics for input perturbations.
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We call it the membrane potential perturbation dynamics.
This dynamics can be referred to as an accurate indicator
of how much the network is perturbed. By designing and
minimizing the mean square of the potential perturbation,
we can improve the robustness of SNNs.

3.1. Neuronal Dynamics for Input Perturbations

By recording the float-point internal variables of spiking
neurons in Eqs. 1, if the input sequence is under perturbation,
we can get some knowledge of the noise budget forced to
SNN. For a hidden layer l, we denote s̃l−1

j as the perturbed
spike sequence from neuron j in the presynaptic layer l− 1.
Let first investigate the initial stage of one neuron before its
first spike: sli [t0] = 1, that is, 1 ≤ t ≤ t0. By subtracting
the clean and perturbed version of the first equation in Eqs. 1,
we can derive the dynamics with regard to the perturbation:(

vli [t]− ṽli [t]
)
= λ

(
vli [t− 1]− ṽli [t− 1]

)
+∑

j

wl
ij

(
sl−1
j [t]− s̃l−1

j [t]
)
, 1 ≤ t ≤ t0, (7)

where the denotation with the superscript tilde is the per-
turbed version of the origin variable. When t = 0, vli
and ṽli equal zero. If we denote the difference of the
membrane potential vli [t] before and after perturbation as
εli [t] = vli [t]− ṽli [t] (εli[0] = 0) and the difference of presy-
naptic spike train as ∆sl−1

j [t] = sl−1
j [t]− s̃l−1

j [t], then we
can simplify Eq. 7 to:

εli [t] = λεli [t− 1] +
∑
j

wl
ij∆sl−1

j [t], 1 ≤ t ≤ t0. (8)

Eq. 8 is actually an iterative equation with regard to the
membrane potential perturbation. The dynamics of ε strictly
characterize the change in membrane potential affected by
perturbations. One limitation of this equation is that it will
not hold after the neuron fires a spike. When the limit of
1 ≤ t ≤ t0 is removed, we assume εli [t] = vli [t]− ṽli [t] for
all time steps and can have:

εli [t] = λεli [t− 1] + J, (9)

J =
∑
j

wl
ij∆sl−1

j [t]

−λ
(
vli [t− 1] sli [t− 1]− ṽli [t− 1] s̃li [t− 1]

)
. (10)

Here in Eq. 9, J denotes the input for the dynamics of ε. We
can observe that in addition to considering the influence of
the weighted sum caused by the perturbation, this input is
also affected by the neuronal reset of the neuron. If there is
a spike in the previous time step, the dynamics of ε fluctuate
due to the neuronal reset. To get the dynamics of ε rid
of the fluctuation, we propose to reduce the resetting part
in Eq. 10. Eqs. 9 and 10 together construct a dynamics,

which we name membrane potential perturbation dynamics
(MPPD). For layer l in SNN running for T time steps,

MPPD : εli [t] = λεli [t− 1] +
∑
j

wl
ij∆sl−1

j [t], (11)

t = 1, 2, · · · , T.

Figure 1(a) shows the difference between the simplified
perturbation dynamics and that before simplification. We
input constant currents of 0.3uth (before perturbation, red
line) and 0.4uth (after perturbation, blue line) to the LIF
neuron. The difference in membrane potentials changing
with time in these two cases is the unsimplified perturbation
dynamics (dotted black line). The dotted line jitters violently
with time steps. In contrast, the simplified perturbation
dynamics have a very smooth curve (solid black line) since
there is no reset effect. Its evolution can reflect the leaky
factor λ of neuronal dynamics.

3.2. Metric for Measuring Perturbation

Previous studies on the robustness of SNN often involved
a proposal of distance under perturbation as a measure-
ment of how much the neuronal dynamics is affected by the
perturbation. From this point of view, the proposed pertur-
bation dynamics can inherently be recognized as a metric
measuring the perturbation. We are going to compare the
proposed metric to the time-averaged spiking activity dis-
tance (TASAD) proposed by Kundu et al. (2021) and spike
train distance (STD) proposed by Ding et al. (2022) in terms
of the sensitivity to input noise.

TASAD, as implied by its name, calculates the distance
between average firing rates before and after perturbation,
which emphasizes the patterns of firing rate. Using the
notation system in Section 2.1, TASAD can be expressed
as:

TASADl =

∥∥∥∥∥
(

T∑
t=1

sl [t]−
T∑

t=1

s̃l [t]

)
/T

∥∥∥∥∥
2

, (12)

As items in sl [t] only take values in 0 and 1, TASAD op-
erates in a discrete space and quantifies changes in spiking
activity over a period. It works especially well for rate-
coded SNNs.

STD, different from TASAD, quantifies the difference in
spike counts before and after perturbation. It provides a met-
ric for evaluating the impact on the overall spiking pattern.
STD can be expressed as:

STDl =

√√√√ T∑
t=1

∥∥∥sl [t]− s̃l [t]
∥∥∥2
2
, (13)

According to Eq. 13, even without changes in firing rate,
STD can be non-zero and sensitive to variations in spike
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(a) Membrane potential perturbation (MPP)
dynamics
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(c) Temporal Gaussian noise

Figure 1. Illustration of the membrane potential perturbation (MPP) dynamics. The LIF neuron in all subfigures receives a constant input
of 0.3uth. In (a)(b), the perturbation is +0.1uth. In (c), the perturbation is sampled from a Gaussian distribution N (0, (0.3uth)

2).

counts due to changes in spike time. Similar to TASAD,
STD is also constrained to discrete spaces due to its reliance
on spike counts.

In contrast, our proposed membrane potential perturbation
introduces a unique approach by considering float-point in-
put differences and applying neuronal dynamics without
spiking operations. This approach allows the potential per-
turbation to operate in continuous spaces, providing a more
fine-grained sensitivity to input noise levels. Suppose J
in εli [t] = λεli [t− 1] + J is a constant perturbation and
εli [0] = 0, then εli [t] =

1−λt

1−λ J faithfully reflect the effect
of leaky factor and noisy input. We presume J to be con-
stant because our SNNs, similar to the approach outlined
by Kim et al. (2022), employ direct coding where constant
images are fed into the first layer. Consequently, J remains
constant within this layer.

We simulate a LIF neuron for 30 time steps and record the
membrane potential perturbation before and after pertur-
bation. In terms of perturbation type, we choose to add a
constant bias input current and to add a temporal Gaussian
noise to the neuron. The results are illustrated in Fig. 1(b)(c).
The quantization effect of STD and TASAD can be clearly
seen in the figures. When we add the constant perturbation
to the input current, the TASAD curve fluctuates severely
due to the irregular spike occurrence. STD and MPPD can
indicate the intensity of the added perturbation. When we
add temporal Gaussian noise to the input current, STD can
only signify the existence of the noise but not the temporal
change of the noise. In comparison, the MPPD curve shows
a smoothed version of Gaussian noise. Note that temporal
Gaussian noise can be evoked in rate-coding SNN due to the
irregular spike occurrence weighted by Gaussian-distributed
synaptic weights.

Perturbation dynamics are more sensitive to input noise,
which means that reducing a specific moment estimator of
membrane potential perturbation can lead to better robust-
ness. Therefore, we propose to minimize the mean square
of MPPD (MS-MPPD) for the last neuron layer (layer L) to
align the features between perturbed input and clean input:

MS-MPPDL =
∑NL

i=1

∑T

t=1

(
εLi [t]

)2
, (14)

where NL is the number of neurons in layer L, T is the
number of time steps.

3.3. Determining the Stability

When training weights to reduce MS-MPPD, we limit the
extent to which noise affects features. Here we would like
to derive the property of L2 stability for the perturbation
dynamics.

Theorem 3.1. Given the membrane potential perturbation
dynamics of SNN inferring for T time steps as εl [t] =
λεl [t− 1] + W l∆sl−1 [t] for layer l, where W l is the
weight matrix of layer l, ∆sl−1 is the perturbation from
layer l − 1, εl [0] = 0, we have∥∥εl[:T ]

∥∥
L2

⩽ γl
∥∥∆sl−1

[:T ]

∥∥
L2

+ βl, (15)

where γl =
√
1/(1− λ)∥W l∥ and βl = 0. ∥W l∥ is the

spectral norm of the weight.

From Definition 2.1, γl is the L2 gain of the perturbation
dynamics. Theorem 3.1 suggests a promoting mechanism
to maximize the capability of controlling the L2 gain. For
the detailed derivation process of Theorem 3.1, please refer
to the Appendix. Yet, γl here is not a tight bound for the
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Figure 2. Training paradigm of our robust stable SNN.

L2 gain.
√
1/(1− λ) in γl reflects the effect of time-step

iteration, which can be found in the proof. This effect finally
manifests itself as the summation of powers of leaky factors
with an upper bound of

√
1/(1− λ).

Inspired by the work of PLIF with trainable leaky time con-
stant (Fang et al., 2021), we propose to add a trainable dy-
namic parameter al[t] to neurons for input of each time step
such that vli [t] = λal[t]ul

i [t− 1]+
∑

j w
l
ijs

l−1
j [t]. We call

this altered type of LIF neuron here Dynamic LIF (DLIF).
The added al[t] can have an individual effect on minimizing
γl orthogonal to the effect of altering W l. Therefore, we
can replace the original LIF neuron in SNN with DLIF and
attempt to minimize MS-MPPD while training.

3.4. Stabilizing Spiking Neural Networks

According to the analysis in the subsection above, we pro-
pose a training framework to stabilize SNN against perturba-
tion. The idea is to replace the traditional LIF neuron with a
DLIF neuron and minimize MS-MPPD for the last spiking
neuron layer in SNN. The training paradigm of our robust
stable SNN is shown in Figure 2.

Take the task of image classification for example. The
framework first performs an adversarial attack or some type
of perturbation on the original input, which will give an
adversarial version of the input images. Then, the two
versions of input will both be fed into SNN. The inputs of the
last spiking layer will be recorded for clean and perturbed
examples, respectively. Then, we subtract the two inputs
and calculate MS-MPPDL. After that, the outputs of SNN
corresponding to two inputs are used to obtain the task loss,
combining the clean loss and the loss under perturbation.
Following a mixup strategy (Zhang et al., 2018; Wang et al.,
2019), the task loss can be expressed as:

Ltask = χCE (fSNN (x) , y)+(1− χ) CE (fSNN (x̃) , y) ,
(16)

where χ is a mixture parameter, which is 0.5 by default.
Thus, the total loss of our proposed framework can be de-
picted as:

L = Ltask + ρ · MS-MPPDL, (17)

where ρ indicates the intensity of MS-MPPD. Minimizing
MS-MPPD directly improves the similarity between the
outputs corresponding to clean and perturbed inputs. The
additional temporal parameter in DLIF will enhance the
utility of maximizing similarity.

We use the STBP training algorithm to train SNNs. The
core of STBP training is to enable backpropagation with sur-
rogate functions instead of the non-differentiable Heaviside
function. In this paper, we use the triangle-like surrogate
functions (Deng et al., 2021). It can be described as:

∂sli [t]

∂vli [t]
=

1

ω2
max

(
ω −

∣∣vli [t]− uth

∣∣ , 0) , (18)

where ω = 1 by default. Note that the triangle-like surrogate
function is also used to craft white-box adversarial examples
in the proposed framework or robustness evaluation.

4. Experiments
4.1. Experimental Setup

We conduct experiments to verify our method to construct
a robust, stable SNN for the image classification task. We
employ the architecture setting from the current SOTA SNN
robustness work (Ding et al., 2022), using SNN versions of
VGG11 and WideResNet-16-4 (WRN16) for the CIFAR-10
and CIFAR-100 datasets. The time step to infer SNN is set
to 8 by default. To verify the effectiveness of the proposed
framework, the perturbation is chosen to be Gaussian noise
and adversarial noise (AT for short). The intensity of Gaus-
sian noise is ϵ = 8/255. And the construction of adversarial
noise follows RFGSM methods (Wong et al., 2019), with
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Table 1. Performance of our robust stable SNN compared with current state-of-the-art work.

Model Clean FGSM PGD7 PGD10 PGD20 PGD40 APGD10
CE APGD10

DLR

CIFAR10

SNN-BP, VGG5 (2020) 89.3 15.0 3.8 - - - - -
HIRE-SNN, VGG5 (2021) 87.9 35.5 5.3 - - - - -
SNN-RAT, VGG11 (2022) 90.74 45.23 21.16 - - - - -
LIF, VGG11, Natural 92.54 10.33 0.03 0.01 0.01 0.01 0.02 0.05
DLIF, VGG11, Natural 92.22 13.24 0.09 0.02 0.01 0.01 0.05 0.03
DLIF, VGG11, Gaussian, ρ = 0.0 92.43 11.30 0.18 0.10 0.08 0.06 0.08 0.09
DLIF, VGG11, Gaussian, ρ = 1.0 92.39 15.24 0.23 0.09 0.08 0.10 0.17 0.08
DLIF, VGG11, AT, ρ = 0.0 90.07 43.54 30.57 29.06 28.53 28.00 23.05 29.88
DLIF, VGG11, AT, ρ = 1.0 87.21 49.02 38.68 37.55 37.08 36.41 33.25 39.68
DLIF, VGG11, AT+Reg, ρ = 0.0 89.61 52.10 34.83 32.01 29.98 28.63 29.07 33.67
DLIF, VGG11, AT+Reg, ρ = 1.0 88.91 56.71 40.30 37.53 35.25 33.93 35.09 39.85
LIF, WRN16, Natural 94.28 12.80 0.00 0.00 0.00 0.00 0.00 0.00
DLIF, WRN16, Natural 94.01 12.29 0.00 0.00 0.00 0.00 0.00 0.00
DLIF, WRN16, Gaussian, ρ = 0.0 93.88 11.41 0.03 0.02 0.00 0.00 0.01 0.02
DLIF, WRN16, Gaussian, ρ = 1.0 92.85 13.40 0.07 0.06 0.05 0.03 0.03 0.08
DLIF, WRN16, AT, ρ = 0.0 90.16 48.09 33.70 32.37 31.33 30.99 27.94 32.39
DLIF, WRN16, AT, ρ = 1.0 90.11 49.82 36.21 34.71 33.71 33.41 30.08 34.85
DLIF, WRN16, AT+Reg, ρ = 0.0 91.38 56.87 36.77 33.24 30.49 29.07 31.38 34.55
DLIF, WRN16, AT+Reg, ρ = 1.0 91.15 57.89 38.78 35.33 32.82 31.13 32.90 37.39

CIFAR100
SNN-BP, VGG11 (2020) 64.4 15.5 6.3 - - - - -
HIRE-SNN, VGG11 (2021) 65.6 16.4 2.9 - - - - -
SNN-RAT (2022) 70.89 25.86 17.81 - - - - -
LIF, VGG11, Natural 72.48 5.33 0.06 0.03 0.01 0.02 0.03 0.14
DLIF, VGG11, Natural 70.79 6.95 0.08 0.05 0.00 0.00 0.02 0.18
DLIF, VGG11, Gaussian, ρ = 0.0 70.82 7.99 0.56 0.51 0.39 0.38 0.33 0.86
DLIF, VGG11, Gaussian, ρ = 1.0 70.51 8.72 0.77 0.55 0.52 0.47 0.48 0.94
DLIF, VGG11, AT, ρ = 0.0 63.35 24.97 16.61 15.99 15.49 15.32 13.64 16.81
DLIF, VGG11, AT, ρ = 1.0 63.85 25.13 16.80 16.02 15.56 15.52 13.15 17.31
DLIF, VGG11, AT+Reg, ρ = 0.0 65.94 36.00 23.53 20.98 18.73 17.45 19.77 24.25
DLIF, VGG11, AT+Reg, ρ = 1.0 66.33 36.83 24.25 21.64 19.22 17.84 20.68 24.21
LIF, WRN16, Natural 73.06 7.49 0.00 0.00 0.00 0.00 0.00 0.11
DLIF, WRN16, Natural 73.85 8.08 0.00 0.00 0.00 0.00 0.00 0.09
DLIF, WRN16, Gaussian, ρ = 0.0 72.19 9.18 0.41 0.25 0.17 0.15 0.16 0.74
DLIF, WRN16, Gaussian, ρ = 1.0 68.87 9.10 0.65 0.44 0.36 0.34 0.38 1.22
DLIF, WRN16, AT, ρ = 0.0 65.86 25.90 15.20 14.03 13.37 13.30 11.98 16.32
DLIF, WRN16, AT, ρ = 1.0 65.26 25.73 16.22 15.11 14.68 14.09 13.09 16.93
DLIF, WRN16, AT+Reg, ρ = 0.0 66.57 33.05 18.75 16.23 14.16 13.44 14.93 20.53
DLIF, WRN16, AT+Reg, ρ = 1.0 65.58 33.56 19.22 17.14 15.52 14.41 15.87 21.68

Table 2. Ablation study.

Model Clean FGSM PGD7 PGD10 PGD20 PGD40 APGD10
CE APGD10

DLR

DLIF, AT, ρ = 0.0, MS-MPPD 85.32 38.61 27.28 26.27 25.78 25.72 22.37 26.43
DLIF, AT, ρ = 0.5, MS-MPPD 85.01 38.82 27.47 26.36 25.88 25.83 22.80 26.30
DLIF, AT, ρ = 1.0, MS-MPPD 85.21 39.63 28.33 27.34 26.98 26.36 23.94 27.70
DLIF, AT, ρ = 2.0, MS-MPPD 85.15 39.41 27.35 26.29 25.62 25.53 22.95 26.71

LIF, AT, ρ = 0.0, MS-MPPD 85.61 39.78 27.54 26.38 25.75 25.17 22.95 26.43
LIF, AT, ρ = 0.5, MS-MPPD 85.11 39.19 27.29 26.20 25.73 25.48 22.81 26.75
LIF, AT, ρ = 1.0, MS-MPPD 85.11 40.15 27.92 26.81 26.00 25.87 23.30 27.05
LIF, AT, ρ = 2.0, MS-MPPD 64.62 30.51 22.42 21.38 20.87 20.63 19.35 22.62

DLIF, AT, ρ = 1.0, TASAD 85.28 39.26 27.80 26.85 26.12 25.92 22.92 26.85
DLIF, AT, ρ = 1.0, STD 85.46 38.96 26.82 25.75 25.38 25.03 22.07 25.94
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an initial random step of 0.001 and a fast-gradient-sign step
with ϵ = 4/255. We also verify the compatibility of our
framework with the regularizer (Reg for short) proposed by
Ding et al. (2022) for SNN. For detailed training hyperpa-
rameters, please refer to the Appendix.

While testing the performance of robustness, we choose
FGSM (Goodfellow et al., 2015), PGD (Madry et al., 2018)
and Auto-PGD (APGD) (Croce & Hein, 2020) attacks to
construct adversarial examples for evaluation. ϵ for eval-
uation is set to 8/255. The steps of PGD vary from 7 to
40. For APGD, we use the 10-step APGD of the loss of
cross-entropy (CE) and difference-of-logits-ratio (DLR).

4.2. Results

We compare the performance of SNNs trained by our frame-
work with current SOTA work in Table 1. We denote the
setting of network training with clean data as ‘natural’ in
the table. When ρ = 1, this means we are minimizing
MS-MPPD while training in Eq. 17. By comparing the
performance of ρ = 1 and ρ = 0, we can know the effec-
tiveness of minimizing MS-MPPD.

For both CIFAR-10 and CIFAR-100, SNNs with natural
training are vulnerable to strong PGD or APGD attacks. For
VGG11 on CIFAR-10 and CIFAR-100, SNN with DLIF
outperforms SNN with vanilla LIF in most cases of attack.
This implies that DLIF itself has the capability of improving
robustness, though it is not significant. When training with
Gaussian noise, the performance of DLIF improves more
when ρ = 1. For example, the improvement is 3.94% for
VGG11 and 1.99% for WRN16 on the CIFAR-10 dataset.

The improvement in performance is more prominent when
training with adversarial noise. For VGG11 with DLIF,
training with ρ = 1 improves the performance of PGD10,
APGD10

CE, and APGD10
DLR from 29.06%, 23.05%, and

29.88%, respectively, to 37.55%, 33.25%, and 39.68%, re-
spectively, compared with those when ρ = 0. We think
the improvement is due to minimizing MS-MPPD, which
has enhanced the similarity of internal representation be-
tween the perturbed and clean data. With the assistance
of adversarial noise, our performance is showing supreme
robustness against HIRE-SNN (Kundu et al., 2021), which
also gains robustness through adversarial training.

By integrating the previously proposed regularizer in SNN-
RAT (Ding et al., 2022) for SNN into the framework, our
model produced by the framework gives the best overall
performance. Our regularized model with ρ = 1 gives PGD7

accuracy of 49.02% and 56.71% for VGG11 and WRN16,
respectively, on CIFAR-10, higher than 45.23% of SNN-
RAT. Similarly, our regularized model with ρ = 1 gives
PGD7 accuracy of 36.83% and 33.56% for VGG11 and
WRN16, respectively, on CIFAR-100, higher than 25.86%

of SNN-RAT. Thus, we believe that with our architecture,
our model can further achieve robust performance for SNN.

4.3. Effect of ρ

Table 2 studies the effect of ρ. ρ determines the intensity
to increase the similarity of representations. We conduct
experiments on VGG-5 on the CIFAR-10 dataset. The val-
ues of ρ are chosen to be 0.0, 0.5, 1.0, and 2.0. We can
observe that, compared with the performance of ρ = 0, the
robustness of ρ ̸= 0 all increases. And ρ = 1 achieves the
best performance among the choices. Besides, we compare
the performance of SNN with only LIF neurons. When ρ
increases, the clean accuracy goes down. However, DLIF
SNN almost remains the same. Increasing ρ also improves
robustness with LIF, but not surpassing robustness with
DLIF. Besides, we also test training with spike distances of
TASAD and STD introduced in Section 3.2. Training with
TASAD or STD is not as effective at increasing robustness
as training with MS-MPPD.

We plot the trend of PGD10 accuracy with attack inten-
sity increasing on VGG11 trained with CIFAR-10 in Fig-
ure 3(a)(b). The curve decreases slowly when ρ = 1 com-
pared with ρ = 0, either with regularizer or not. The val-
ues of MS-MPPD are also constrained when ρ = 1 (Fig-
ure 3(c)(d)).
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Figure 3. Effect of the parameter ρ.
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5. Conclusions
In this paper, we first give a perturbation metric from the
viewpoint of neuronal dynamics. The perturbed input can
lead to perturbation dynamics, which accurately represent
the impact of perturbation. Our theoretical observations on
the stability inspire us to propose a framework to improve
the robustness of SNN with the assistance of a modified
neuron and the mean square of the membrane potential per-
turbation dynamics. The experimental results show that our
network exceeds the current SOTA methods for improving
the robustness of SNN. Overall, we believe our work will
increase the confidence of neuromorphic deployments in
future safety-critical applications.
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A. Proofs
In this section, we are going to proof Theorem 3.1 in the main text.

Proof. SNN with LIF neuron infer multiple discrete time steps (T steps) to get the output. We first here transform the L2

stability of a nonlinear continuous-time system to a discrete-time system. Given signal x with discrete temporal axis, the L2

norm is defined as
∥∥x[:T ]

∥∥
L2

=
√∑T

t=0 ∥x [t]∥2.

Then for the membrane potential perturbation dynamics εl[t] = λεl[t− 1] +W l∆sl−1[t], our aim is to determine γl and
βl for the following formula: ∥∥εl[:T ]

∥∥
L2

≤ γl
∥∥∆sl−1

[:T ]

∥∥
L2

+ βl, (19)

where ∥∥∥εl[:T ]

∥∥∥
L2

=

√∑T

t=1
∥εl [t]∥2, (20)∥∥∥∆sl−1

[:T ]

∥∥∥
L2

=

√∑T

t=1
∥∆sl−1 [t]∥2. (21)

By iterating the perturbation dynamics, we can obtain

εl [t] = W l∆sl−1 [t] + λW l∆sl−1 [t− 1] + · · ·+ λt−1W l∆sl−1 [1] , (22)

Thus, according to the inequality of norm, we have∥∥εl [t]∥∥
2
≤
∥∥∥W l∆sl−1 [t]

∥∥∥
2
+ λ

∥∥∥W l∆sl−1 [t− 1]
∥∥∥
2
+ · · ·+ λt−1

∥∥∥W l∆sl−1 [1]
∥∥∥
2

(23)

≤
∥∥∥W l

∥∥∥ (∥∥∆sl−1 [t]
∥∥
2
+ λ

∥∥∆sl−1 [t− 1]
∥∥
2
+ · · ·+ λt−1

∥∥∆sl−1 [1]
∥∥
2

)
, (24)

where
∥∥∥W l

∥∥∥ is the spectral norm of the weight. Therefore, we can reformulate Eq. 20 into the following:

∥∥∥εl[:T ]

∥∥∥
L2

=

√∑T

t=1
∥εl [t]∥2 (25)

⩽
∥∥∥W l

∥∥∥√1 · ∥∆sl−1 [T ]∥2 + · · ·+ (1 + λ+ · · ·+ λT−1) ∥∆sl−1 [1]∥2 (26)

⩽
∥∥∥W l

∥∥∥√1 · ∥∆sl−1 [T ]∥2 + · · ·+ (1− λT ) / (1− λ) ∥∆sl−1 [1]∥2 (27)

⩽
√
1/(1− λ)

∥∥∥W l
∥∥∥√∑T

t=1
∥∆sl−1 [t]∥2 (28)

⩽
√
1/(1− λ)

∥∥∥W l
∥∥∥∥∥∆sl−1

∥∥
L2

. (29)

Hence, γl =
√
1/(1− λ)∥W l∥ and βl = 0. ∥W l∥ is the spectral norm of the weight.

B. Effect of DLIF neuron
We propose to use DLIF with varying trainable parameters to take the place of the vanilla LIF neuron. We would like to
visualize the effect of DLIF. Note that the vanilla LIF neuron can be seen as a DLIF that fixes its trainable parameter to be
1.0. We use our VGG11 AT model on CIFAR-10 trained with ρ = 1 and ρ = 0 to visualize the parameters. The results are
shown in Figure 4(a)(b). We also calculate their average values across time steps or across layers in Figure 4(c)(d). We can
see that when ρ = 1, the overall parameters are larger than the parameters when ρ = 1. This trend is more obvious when the
number of layers deepens or when the time step increases. Generally speaking, the parameters after training do not deviate
too far from their initial values, and the values of these parameters are all near 1.
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Figure 4. Visualization of parameters in DLIF after proper training.

C. Implementation Details
We conduct experiments on classification tasks on the CIFAR-10 and CIFAR-100 datasets. The SNN architectures used are
VGG11 and WRN16. SNN uses direct encoding, and the encoding step size is 8. The number of training epochs is 100. The
batch size is 64. We used float16 floating point precision during training. We use the SGD optimizer with an initial learning
rate of 0.1. During training, the learning rate will decay to 0 in a cosine manner. The leakage factor for all SNNs is equal
to 0.99. For models without regularization, we add l2 regularization terms with an intensity of 0.0005 during the model
training process.

We utilize SNN versions of the VGG5 and VGG11 networks, tailored for 32 × 32 image input. We’ve chosen these
architectures for comparative analysis against three related works: (Sharmin et al., 2020) (VGG5 and ResNet20 for
CIFAR10, VGG11 for CIFAR100); (Kundu et al., 2021) (VGG5 and ResNet12 for CIFAR10, VGG11 and ResNet12 for
CIFAR100); and (Ding et al., 2022) (current SOTA, VGG11, and WRN16 for both CIFAR10 and CIFAR100). Thus, we
selected VGG11 and WRN16 for CIFAR10 and CIFAR100. For models using the regularizer in SNN-RAT, we also set the
penalty intensity separately. For CIFAR-10, we set the intensity of the VGG11 model to 0.0005 and the intensity of the
WRN16 model to 0.004; for CIFAR-100, we set the intensity of the VGG11 model to 0.001 and the intensity of the WRN16
model to 0.004.

Based on the above settings, we visualized the training process of CIFAR-100 WRN16. Our results can be seen in Figure 5.
During the training process, we saved the changes in Ltask and MS-MPPD of this model. We find that when ρ = 1 is
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Figure 5. Visualization of training process of WRN16.

used, Ltask will increase compared to ρ = 0, and the corresponding MS-MPPD will decrease. This shows that reducing
MS-MPPD during training is similar to adding a regularizer. The above phenomenon is even more pronounced when used
with other regularizations.

We performed adversarial attacks on spiking neural networks following previous literature (Kundu et al., 2021; Ding et al.,
2022). First, we identify misclassification as the attacker’s goal. By unfolding the dynamics of LIF neurons and applying
surrogate functions to the non-differentiable Heaviside function, the network is able to backpropagate the gradient. Next, we
perturbed the input in a direction that maximized the loss function using the computed gradient. We can employ FGSM and
PGD as gradient-based attack methods.

We conduct experiments with our proposed training scheme with the regularizer proposed in (Ding et al., 2022) (RAT),
as the two methods are orthogonal to each other. In RAT, the authors propose the use of spectral norm constraints on the
weights, aiming to reduce the spike distance before and after the perturbation. In our work, we proposed to reduce the mean
square of the membrane potential perturbation, and the implementation is to add a loss to the classification loss function.
This does not conflict with the constraints on the weights, and the optimization goals of the two are consistent, which is to
improve the robustness of SNN.
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