
Dual-Objective Reinforcement Learning with Novel
Hamilton-Jacobi-Bellman Formulations

William Sharpless∗
wsharpless@ucsd.edu

Dylan Hirsch∗

dhirsch@ucsd.edu

Sander Tonkens
stonkens@ucsd.edu

Nikhil Shinde
nshinde@ucsd.edu

Sylvia Herbert
sherbert@ucsd.edu

Abstract: Hard constraints in reinforcement learning (RL), whether imposed via
the reward function or the model architecture, often degrade policy performance.
Lagrangian methods offer a way to blend objectives with constraints, but often
require intricate reward engineering and parameter tuning. In this work, we extend
recent advances that connect Hamilton-Jacobi (HJ) equations with RL to propose
two novel value functions for dual-objective satisfaction. Namely, we address:
(1) the Reach-Always-Avoid problem – of achieving distinct reward and penalty
thresholds – and (2) the Reach-Reach problem – of achieving thresholds of two
distinct rewards. We derive explicit, tractable Bellman forms in this context by
decomposing our problem. The RAA and RR problems are fundamentally different
from standard sum-of-rewards problems and temporal logic problems, providing
a new perspective on constrained decision-making. We leverage our analysis
to propose a variation of Proximal Policy Optimization (DO-HJ-PPO), which
solves these problems. Across a range of tasks for safe-arrival and multi-target
achievement, we demonstrate that DO-HJ-PPO out-competes many baselines.

1 Introduction

In a safety-critical scenario, an infinite-horizon accumulation of costs does not properly account
for safety violations. Rather, Bellman equations that encode best (or worst) values over time have
allowed RL to generalize to these and other relevant problems. These equations, including the
Safety Bellman Equation (SBE) [1] and Reach-Avoid Bellman Equation (RABE) [2], are derived
from the Hamilton-Jacobi (HJ) perspective of dynamic programming, and directly propagate the
best/worst values encountered over time. By focusing on extremal rewards and penalties, rather than
their sums, qualitatively distinct behaviors arise that act with respect to the best or worst outcomes
in time-optimal fashions [1, 2, 3, 4]. Ultimately, this yields policies with significantly improved
performance in target-achievement and obstacle-avoidance tasks over long horizons [3, 4, 5, 6].

In this work, we advance existing HJ-RL formulations to a broader class of problems. HJ-RL Bellman
equations are limited to: 1) Reach (R), wherein the agent seeks to reach a goal (i.e. achieve a reward
threshold), 2) Avoid (A), wherein the agent seeks to avoid an obstacle (i.e. avoid a penalty threshold),
and 3) Reach-Avoid (RA), a combination where the agent reaches a goal while avoiding obstacles
on the way. In this light, we extend the HJ-RL Bellman equations to larger problems concerned
with dual-satisfaction tasks, namely the Reach-Reach (reach two goals) and Reach-Always-Avoid
(continue avoiding hazards after successfully reaching a goal) problems, demonstrated in Figure 1.
Our contributions include:

• We introduce novel value functions for the RAA and RR problems.

• We prove these novel value functions and their optimal policies can be decomposed into R,
A, and RA value functions.

• We leverage design a novel PPO-based algorithm DO-HJ-PPO for solving the RAA and RR
problems.

Workshop on Safe and Robust Robot Learning for Operation in the Real World at CoRL 2025.

Figure 1: Depiction of the Reach-Always-Avoid (RAA) and Reach-Reach (RR) Tasks In the RAA tasks, the
zero-level set of the rewards (goals) and penalties (obstacles) are depicted in green and red respectively, while
in the RR problem, the zero-level set of the two rewards (two goals) are depicted in green and blue.

2 Related Works

This work involves aspects of safety (e.g. hazard avoidance), liveness (e.g. goal reaching), and
balancing competing objectives. We summarize the relevant related works here.

Constrained RL and Multi-Objective RL. Constrained Markov decision processes (CMPDs)
maximize the expected sum of discounted rewards subject to an expected sum of discounted costs, or
an instantaneous safety violation function remaining below a set threshold [7, 8, 9, 10, 11]. CMDPs
are an effective way to incorporate state constraints into RL problems, and the efficient and accurate
solution of the underlying optimization problem has been extensively researched, first by Lagrangian
methods and later by an array of more sophisticated techniques [12, 13, 14, 15, 16, 17, 18, 19, 20].
Multi-objective RL is an approach to designing policies that obtain Pareto-optimal expected sums
of discounted vector-valued rewards [21, 22, 23], including by deep-Q and other deep learning
techniques [24, 25, 26]. By contrast, this work explicitly balances rewards and penalties in a way that
does not require specifying a Lagrange multiplier or similar hyperparameter.

Hierarchical RL. Hierarchical RL represents a large body of work related to learning how to
decompose challenging problems into lower-level tasks, solve these simpler tasks, and recompose
them [27, 28]. This has been studied for decades [29, 30], with more recent approaches employing
representation learning [31], stochastic deep learning [32], off-policy RL [33], continuous adaptation
of the low-level policies [34], and skill-transfer [35]. While this line of work is similar to ours in
spirit, most hierarchical RL problems still involve optimizing the expected sum of discounted rewards,
which will lead to non-optimal policies in our case, and do not usually involve constraints.

Linear Temporal Logic (LTL), Automatic State Augmentation, and Automatons. Many works
have been explored that merge LTL and RL, canonically focused on Non-Markovian Reward Decision
Processes (NMRDPs) [36]. Here, the reward gained at each time step may depend on the previous
state history. Many of these works convert these NMRDPs to MDPs via state augmentation [36,
37, 38, 39, 40, 41]. Often the augmented states are taken to be products between an ordinary state
and an automaton state, where the automaton is used to determine "where" in the LTL specification
an agent currently is. Other works using RL for LTL tasks involve MDP verification [42], hybrid
systems theory [43], GCRL with complex LTL tasks [44], almost-sure objective satisfaction [45],
incorporating (un)timed specifications [46], and using truncated LTL [47]. While the problems we
attempt to solve (e.g. reaching multiple goals) can be thought of as specific instantiations of LTL
specifications, our approach to solving these problems is fundamentally different from those in this
line of work. Our state augmentation and subsequent decomposition of the problem are performed
in a specific manner to leverage new HJ-based methods on the subproblems. Through our specific
choice of state augmentation, we still prove that we can achieve an optimal policy in theory (and
approximately so in practice) despite the non-NMRDP setup.

2

Figure 2: DDQN Grid-World Demonstration of the RAA & RR Problems We compare our novel formulations
with previous HJ-RL formulations (RA & R) in a simple grid-world problem with DDQN. The zero-level sets of
q (hazards) are highlighted in red, those of r (goals) in blue, and trajectories in black (starting at the dot). In
both models, the agents actions are limited to {left, right, straight} and the system flows upwards over time.

Hamilton-Jacobi (HJ) Methods. HJ is a dynamic programming-based framework for solving reach,
avoid, and reach-avoid tasks [48, 49]. The value functions used in HJ have the advantage of directly
specifying desired behavior, so that a positive value corresponds to task achievement and a negative
value corresponds to task failure. Recent works use RL to find corresponding optimal policies by
leveraging the unconventional Bellman updates associated with these value functions [4, 50, 2, 1]. We
build on these works by extending these advancements to more complex tasks, superficially mirroring
the progression from MDPs to NMRDPs in the LTL-RL literature. Additional works merge HJ and
RL, but do not concern themselves with such composite tasks [3, 5, 51].

3 Problem Definition

Consider a Markov decision process (MDP)M = ⟨S,A, f⟩ consisting of finite state and action
spaces S and A, and unknown discrete dynamics f that define the deterministic transition st+1 =
f(st, at). Let an agent interact with the MDP by selecting an action with policy π : S → A to yield
a state trajectory sπt , i.e. sπt+1 = f (sπt , π (sπt)) .

In this work, we consider the Reach-Always-Avoid (RAA) and Reach-Reach (RR) problems, which
both involve the composition of two objectives, which are each specified in terms of the best reward
and worst penalty encountered over time. In the RAA problem, let r, p : S → R represent a reward
to be maximized and a penalty to be minimized. We will let q = −p for mathematical convenience,
but for conceptual ease we recommend the reader think of trying to minimize the largest-over-time
penalty p rather than maximize the smallest-over-time q. In the RR problem, let r1, r2 : S → R be
two distinct rewards to be maximized. The agent’s overall objective is to maximize the worst-case
outcome between the best-over-time reward and worst-over-time penalty (in RAA) and the two
best-over-time rewards (in RR), i.e.

(RAA)

 maximize (w.r.t. π) min
{
maxt r(s

π
t), mint q(s

π
t)
}

s.t. sπt+1 = f (sπt , π (sπt)) ,
sπ0 = s,

(RR)

 maximize (w.r.t. π) min
{
maxt r1(s

π
t), maxt r2(s

π
t)
}

s.t. sπt+1 = f (sπt , π (sπt)) ,
sπ0 = s.

As the problem names suggest, these optimization problems are inspired by (but not limited to) tasks
involving goal reaching and hazard avoidance. More specifically, the RAA problem is motivated by a
task in which an agent wishes to both reach a goal G and perennially avoid a hazardH (even after it
reaches the goal). The RR problem is motivated by a task in which an agent wishes to reach two goals,
G1 and G2, in either order. While these problems are thematically distinct, they are mathematically
complementary (differing by a single max/min operation), and hence we tackle them together.

The values for any policy in these problems then take the forms V π
RAA and V π

RR,

V π
RAA(s) = min

{
max

t
r(sπt), min

t
q(sπt)

}
and V π

RR(s) = min
{
max

t
r1(s

π
t), max

t
r2(s

π
t)
}
.

3

One may observe that these values are fundamentally different from the infinite-sum value commonly
employed in RL [52], and do not accrue over the trajectory but, rather, are determined by certain
points. Moreover, while each return considers two objectives, these objectives are combined in
worst-case fashion to ensure dual-satisfaction. Although many of the works discussed in the previous
section approach related tasks (e.g. goal reaching and hazard avoidance) via traditional sum-of-
discounted-rewards formulations, these novel value functions have a more direct interpretation in
the following sense: if r is positive (only) within G and q is positive (only) insideH, V π

RAA(s) will
be positive if and only if the RAA task will be accomplished by the policy π. Similarly if r1 and r2
are positive within G1 and G2, respectively, V π

RR(s) will be positive if and only if the RR task will be
accomplished by the policy π.

4 Reachability and Avoidability in RL

Prior works [1, 2] study the reach V π
R , avoid V π

A , and reach-avoid V π
RA values, respectively defined by

V π
R (s) = max

t
r(sπt), V π

A (s) = min
t

q(sπt), V π
RA(s) = max

t
min

{
r(sπt),max

τ≤t
q(sπτ)

}
,

resulting in the derivation of special Bellman equations [1]. To put these value functions in context,
assume the goal G is the set of states for which r(s) is positive and the hazardH is the set of states for
which q(s) is non-positive. See Figure 2 for a simple grid-world demonstration comparing the RAA
and RR values with the previously existing RA and R values. Then V π

R , V π
A , and V π

RA are positive
if and only if π causes the agent to eventually reach G, to always avoid H, and to reach G without
hitting H prior to the reach time, respectively. The Reach-Avoid Bellman Equation (RABE), for
example, takes the form [2]

V ∗
RA(s) = min

{
max

{
max
a∈A

V ∗
RA (f(s, a)) , r(s)

}
, q(s)

}
,

and is associated with optimal policy π∗
RA(s) (without the need for state augmentation, see Section A

in the Supplementary Material). This formulation does not naturally induce a contraction, but may be
discounted to induce contraction by defining V γ

RA(z) implicitly via

V γ
RA(s) = (1− γ)min{r(s), q(s)}+ γmin

{
max

{
max
a∈A

V γ
RA (f(s, a)) , r(s)

}
, q(s)

}
,

for each γ ∈ [0, 1), as in [2]. A fundamental result (Proposition 3 in [2]) is that

lim
γ→1

V γ
RA(s) = VRA(s).

These prior value functions and corresponding Bellman equations have proven powerful for these
simple reach/avoid/reach-avoid problem formulations. In this work, we generalize the aforementioned
results to the broader class involving VRAA (assure no penalty after the reward threshold is achieved)
and VRR (achieve multiple rewards optimally). Through this generalization, we are able to train an
agent to accomplish more complex tasks with noteworthy performance.

5 The need for augmenting states with historical information

We here discuss a small but important detail regarding the problem formulation. The value functions
we introduce may appear similar to the simpler HJ-RL value functions discussed in the previous
section; however, in these new formulations the goal of choosing a policy π : S → A is inherently
flawed without state augmentation. In considering multiple objectives over an infinite horizon,
situations arise in which the optimal action depends on more than the current state, but rather the
history the trajectory. This complication is not unique to our problem formulation, but also occurs for
NMDPs (see the Related Works section). To those unfamiliar with NMDPs, this at first may seem like
a paradox as the MDP is by definition Markov, but the problem occurs not due to the state-transition
dynamics but the nature of the reward. An example clarifying the issue is shown in Figure 3.

4

Figure 3: Examples where a Non-Augmented Policy is Flawed In both MDPs, consider an agent with no
memory. (Left) For a deterministic policy based on the current state, the agent can only achieve one target (RR),
as this policy must associate the middle state with either of the two possible actions. (Right) The RAA case
is slightly more complex. Assume the robot will make sure to avoid the fire at all costs (which is easily done
from the current state). It would also prefer to not encounter the banana peel hazard, but will do so if needed to
achieve the target. From its current state the robot cannot determine whether to pursue the target by crossing the
banana peel or move to the right. The correct decision depends on state history, specifically on whether the robot
has already reached the target state or not (e.g. imagine the initial state is on the target state).

5.1 Augmentation of the RAA Problem

We consider an augmentation of the MDP defined byM = ⟨S,A, f⟩ consisting of augmented states
S = S ×Y ×Z and the same actionsA. For any initial state s, let the augmented states be initialized
as y = r(s) and z = q(s), and let the transition ofM be defined by

sπ̄t+1 = f
(
sπ̄t , π̄

(
sπ̄t , y

π̄
t , z

π̄
t

))
; yπ̄t+1 = max

{
r
(
sπ̄t+1

)
, yπ̄t
}
; zπ̄t+1 = min

{
q
(
sπ̄t+1

)
, zπ̄t
}
,

such that yt and zt track the best reward and worst penalty up to any point. Hence, the policy forM
given by π̄ : S → A may now consider information regarding the history of the trajectory.

By definition, the RAA value forM,

V π̄
RAA(s) = min

{
max

t
r(sπ̄t),min

t
q(sπ̄t)

}
,

is equivalent to that ofM except that it allows for a policy π̄ which has access to historical information.
We seek to find π̄ that maximizes this value.

5.2 Augmentation of the RR Problem

For the Reach-Reach problem, we augment the system similarly, except that zt is updated using a
max operation instead of a min:

sπ̄t+1 = f
(
sπ̄t , π̄

(
sπ̄t , y

π̄
t , z

π̄
t

))
; yπ̄t+1 = max

{
r1
(
sπ̄t+1

)
, yπ̄t
}
; zπ̄t+1 = max

{
r2
(
sπ̄t+1

)
, zπ̄t
}
.

Again, by definition,

V π̄
RR(s) = min

{
max

t
r1(s

π̄
t),max

t
r2(s

π̄
t)
}
.

The RR problem is again to find an augmented policy π̄ which maximizes this value.

6 Optimal Policies for RAA and RR by Value Decomposition

We now discuss our first theoretical contributions. We refer the reader to the supplementary material
for the proofs of the theorems.

6.1 Decomposition of RAA into avoid and reach-avoid problems

Our main theoretical result for the RAA problem shows that we can solve this problem by first solving
the avoid problem corresponding to the penalty q(s) to obtain the optimal value function V ∗

A (s) and
then solving a reach-avoid problem with the negated penalty function q(s) and a modified reward
function rRAA(s).

5

Theorem 1. For all initial states s ∈ S,

max
π̄

V π̄
RAA(s) = max

π
max

t
min

{
rRAA (sπt) ,max

τ≤t
q (sπτ)

}
, (1)

where rRAA(s) := min {r(s), V ∗
A (s)}, with

V ∗
A (s) := max

π
min
t

q (sπt) .

This decomposition is significant, as methods customized to solving avoid and reach-avoid problems
were recently explored in [1, 2, 4, 50], allowing us to effectively solve the optimization problem
defining V ∗

A (s) as well as the optimization problem that defines the right-hand-side of 1.

Corollary 1. The value function V ∗
RAA(s) := maxπ̄ V

π̄
RAA(s) satisfies the Bellman equation

V ∗
RAA (s) = min

{
max

{
max
a∈A

V ∗
RAA (f(s, a)) , rRAA(s)

}
, q(s)

}
.

6.2 Decomposition of the RR problem into three reach problems

Our main result for the RR problem shows that we can solve this problem by first solving two reach
problems corresponding to the rewards r1(s) and r2(s) to obtain reach value functions V ∗

R1(s) and
V ∗

R2(s), respectively. We then solve a third reach problem with a modified reward rRR(s).

Theorem 2. For all initial states s ∈ S,

max
π̄

V π̄
RR(s) = max

π
max

t
rRR (sπt) , (2)

where rRR(s) := min {max {r1(s), V ∗
R2(s)} ,max {r2(s), V ∗

R1(s)}}, with

V ∗
R1(s) := max

π
max

t
r1 (s

π
t) , V ∗

R2(s) := max
π

max
t

r2 (s
π
t) .

Corollary 2. The value function V ∗
RR(s) := maxπ̄ V

π̄
RR(s) satisfies the Bellman equation

V ∗
RR (s) = max

{
max
a∈A

V ∗
RR (f(s, a)) , rRR(s)

}
.

6.3 Optimality of the augmented problems

We previously motivated the choice to consider an augmented MDP M over the original MDP
in the context of the RAA and RR problems. In this section, we justify our particular choice of
augmentation. Indeed, the following theoretical result shows that further augmenting the states with
additional historical information cannot improve performance under the optimal policy.

Theorem 3. Let s ∈ S. Then

max
π

V π
RAA(s) ≤ max

π̄
V π̄

RAA(s) = max
a0,a1,...

min
{
max

t
r(st),min

t
q(st)

}
,

and
max
π

V π
RR(s) ≤ max

π̄
V π̄

RR(s) = max
a0,a1,...

min
{
max

t
r1(st),max

t
r2(st)

}
where st+1 = f(st, at) and s0 = s.

The terms on the right of the lines above reflect the best possible sequence of actions to solve the
RAA or RR problem, and the theorem states that the optimal augmented policy achieves that value,
represented by the middle terms.

7 DO-HJ-PPO: Solving RAA and RR with RL

In the previous sections, we demonstrated that the RAA and RR problems can be solved through
decomposition of the values into formulations amenable to existing RL methods. In this section,
we propose relaxations to the RR and RAA theory and devise a custom variant of Proximal Policy
Optimization, DO-HJ-PPO, to solve this broader class of problems, and demonstrate its performance.

6

7.1 Stochastic Reach-Avoid Bellman Equation

In this section we proceed by closely following [4], modifying the Stochastic Reachability Bellman
Equation (SRBE) into a Stochastic Reach-Avoid Bellman Equation (SRABE) to allow for stochasticity.
Using Theorems 1 and 2, the SRBE and SRABE offer the necessary tools for designing a PPO variant
for solving the RR and RAA problems.

We define Ṽ π
RAA to be the solution to the following Bellman equation:

Ṽ π
RAA(s) = Ea∼π

[
min

{
max

{
Ṽ π

RAA (f(s, a)) , rRAA(s)
}
, q(s)

}]
(SRABE)

The corresponding action-value function is

Q̃π
RAA(s, a) = min

{
max

{
Ṽ π

RAA (f(s, a)) , rRAA(s)
}
, q(s)

}
.

We define a modification of the dynamics f involving an absorbing state s∞ as follows:

f ′(s, a) =

{
f(s, a) q (f(s, a)) < Ṽ π

RAA(s) < rRAA (f(s, a)) ,

s∞ otherwise.

We then have the following proposition:
Proposition 1. For each s ∈ S and every θ ∈ Rnp , we have

∇θṼ
πθ

RAA(s) ∝ Es′∼d′
π(s),a∼πθ

[
Q̃πθ

RAA(s
′, a)∇θ lnπθ(a|s′)

]
,

where d′π(s) is the stationary distribution of the Markov Chain with transition function

P (s′|s) =
∑
a∈A

π(a|s) [f ′(s, π(a|s)) = s′] ,

with the bracketed term equal to 1 if the proposition inside is true and 0 otherwise.

Following [2], we then define the discounted value and action-value functions with γ ∈ [0, 1) which
may be found in the Supplemental.

7.2 Algorithm

Briefly, we propose co-learning the decomposed values to provide a unified algorithm and associated
implementation, named DO-HJ-PPO. This includes “smarter” environment resets as well as boot-
strapping for efficient computation. Crucially, the decomposed values are used in the definition of the
special targets rRR and rRAA defined in Theorems 1 and 2, which then yield the RAA and RR values.
See the Supplementary Material for details.

8 Experiments

8.1 DDQN Demonstration

We begin by demonstrating the utility of our theoretical results (Theorems 1 and 2) through a simple
2D grid-world experiment using Double Deep Q-Networks (DDQN) (Figure 2). In this environ-
ment, the agent can move left, right, or remain stationary, while drifting upward at a constant rate.
Throughout, reward regions are shown in blue and penalty regions in red. In the RA scenario,
trajectories successfully avoid the obstacle but may terminate in regions from which future collisions
are inevitable, as there is no incentive to consider what happens after reaching the minimum reward
threshold. In contrast, under the RAA formulation, where the objective involves maximizing cumula-
tive reward while accounting for future penalties (as per Theorem 1), the agent learns to reach the
target while remaining in safe regions thereafter. On the right, we consider a similar environment
without obstacles but with two distinct targets. Here, the Reach-Reach (RR) formulation induces
trajectories that visit both targets, unlike simple reach tasks in which the agent halts after reaching a
single goal. These qualitative results highlight the behavioral distinctions induced by the RAA and
RR objectives compared to their simpler counterparts.

7

Figure 4: Success (→) and Partial Success (→) in RAA and RR Tasks for DO-HJ-PPO and Baselines We
evaluate our method DO-HJ-PPO in black against relevant baselines over 1,000 trajectories (with random
initial conditions) for both the Reach-Avoid-Avoid (RAA) and Reach-Reach (RR) problems in the Hopper, F16,
SafetyGym and HalfCheetah environments. In the first and third row, the partial success percentage of each
algorithm is given, defined by the number of trajectories to achieve either of the two objectives (reaching or
always-avoiding in the RAA, reaching either in the RR). In the second and fourth rows, success percentage is
given, defined by the number of trajectories to achieve both objectives.

8.2 Continuous Control Tasks with DO-HJ-PPO

To evaluate the method under more complex and less structured conditions, we extend our analysis to
continuous control settings qith on-policy methods. Specifically, we consider RAA and RR tasks
in the Hopper, F16, SafetyGym, and HalfCheetah environments, depicted in 1. In the RAA tasks,
the penalty function generally characterizes regions of states where the agent, certain body parts, is
intended to avoid, while in both RAA and RR tasks, the reward characterizes regions of states where
the agent is intended to reach (in any order). We include several relevant baselines, detailed in the
supplemental.

Empirically, we find that our method performs at the top-level, achieving first or second place among
all tasks and environments (Figure 4). In fact, as the multi-target (RR) or safe-achievement (RAA)
tasks become more complex (e.g. the SafetyGym or HalfCheetah tasks), our algorithm increasingly
dominates the 10 state-of-the-art baselines with success percentages. Note, that almost all algorithms
can achieve partial success at a high rate in each dual-objective task, highlighting the difficulty of
mixed or competing objectives, particularly with discounted-sum rewards. Moreover, it is the sole
performant algorithm in both dual-objective tasks, and displays the fastest achievement times in both
RAA and RR tasks for complicated and simple tasks (see Supplemental).

9 Conclusion

In this work, we introduced two novel Bellman formulations for new problems (RAA and RR)
which generalize those considered in several recent publications. We prove decomposition results
for these problems that allow us to break them into simpler Bellman problems, which can then be
composed to obtain the value functions and corresponding optimal policies. We use these results
to design a PPO-based algorithm for practical solution of RAA and RR. More broadly, this work
provides a road-map to extend the range of Bellman formulations that can be solved, via decomposing
higher-level problems into lower-level ones.

8

References
[1] J. F. Fisac, N. F. Lugovoy, V. Rubies-Royo, S. Ghosh, and C. J. Tomlin. Bridging hamilton-

jacobi safety analysis and reinforcement learning. In 2019 International Conference on Robotics
and Automation (ICRA), pages 8550–8556. IEEE, 2019.

[2] K.-C. Hsu, V. Rubies-Royo, C. J. Tomlin, and J. F. Fisac. Safety and liveness guarantees through
reach-avoid reinforcement learning. In Proceedings of Robotics: Science and Systems, Held
Virtually, July 2021. doi:10.15607/RSS.2021.XVII.077.

[3] M. Ganai, C. Hirayama, Y.-C. Chang, and S. Gao. Learning stabilization control from observa-
tions by learning lyapunov-like proxy models. 2023 IEEE International Conference on Robotics
and Automation (ICRA), 2023.

[4] O. So, C. Ge, and C. Fan. Solving minimum-cost reach avoid using reinforcement learning. In
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=jzngdJQ2lY.

[5] D. Yu, H. Ma, S. Li, and J. Chen. Reachability constrained reinforcement learning. In
International Conference on Machine Learning, pages 25636–25655. PMLR, 2022.

[6] D. Yu, W. Zou, Y. Yang, H. Ma, S. E. Li, J. Duan, and J. Chen. Safe model-based reinforcement
learning with an uncertainty-aware reachability certificate. arXiv preprint arXiv:2210.07553,
2022.

[7] E. Altman. Constrained Markov decision processes: Stochastic modeling. Routledge, Boca
Raton, 13 Dec. 2021.

[8] J. Achiam, D. Held, A. Tamar, and P. Abbeel. Constrained policy optimization. ICML,
abs/1705.10528:22–31, 30 May 2017.

[9] A. Wachi and Y. Sui. Safe reinforcement learning in constrained Markov decision processes.
ICML, 119:9797–9806, 12 July 2020.

[10] S. Gu, L. Yang, Y. Du, G. Chen, F. Walter, J. Wang, and A. Knoll. A review of safe reinforcement
learning: Methods, theories, and applications. IEEE Trans. Pattern Anal. Mach. Intell., 46(12):
11216–11235, Dec. 2024.

[11] Y. Chow, A. Tamar, S. Mannor, and M. Pavone. Risk-sensitive and robust decision-making: A
CVaR optimization approach. Neural Inf Process Syst, abs/1506.02188, 6 June 2015.

[12] A. Stooke, J. Achiam, and P. Abbeel. Responsive safety in reinforcement learning by PID
lagrangian methods. ICML, 119:9133–9143, 8 July 2020.

[13] T. Li, Z. Guan, S. Zou, T. Xu, Y. Liang, and G. Lan. Faster algorithm and sharper analysis for
constrained Markov decision process. Oper. Res. Lett., 54(107107):107107, May 2024.

[14] Y. Chen, J. Dong, and Z. Wang. A primal-dual approach to constrained Markov decision
processes. arXiv [math.OC], 26 Jan. 2021.

[15] S. Miryoosefi and C. Jin. A simple reward-free approach to constrained reinforcement learning.
ICML, abs/2107.05216:15666–15698, 12 July 2021.

[16] T.-Y. Yang, J. Rosca, K. Narasimhan, and P. J. Ramadge. Projection-based constrained policy
optimization. arXiv [cs.LG], 7 Oct. 2020.

[17] D. Ding, K. Zhang, T. Başar, and M. Jovanović. Natural policy gradient primal-dual method for
constrained Markov decision processes. Neural Inf Process Syst, 33:8378–8390, 2020.

[18] C. Tessler, D. J. Mankowitz, and S. Mannor. Reward constrained policy optimization. arXiv
[cs.LG], 28 May 2018.

9

http://dx.doi.org/10.15607/RSS.2021.XVII.077
https://openreview.net/forum?id=jzngdJQ2lY

[19] A. Gattami, Q. Bai, and V. Aggarwal. Reinforcement learning for constrained Markov decision
processes. AISTATS, 130:2656–2664, 2021.

[20] H. Satija, P. Amortila, and J. Pineau. Constrained Markov decision processes via backward
value functions. ICML, 119:8502–8511, 12 July 2020.

[21] M. A. Wiering, M. Withagen, and M. M. Drugan. Model-based multi-objective reinforcement
learning. In 2014 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement
Learning (ADPRL), pages 1–6. IEEE, Dec. 2014.

[22] M. K. Van and A. Nowé. Multi-objective reinforcement learning using sets of Pareto dominating
policies. The Journal of Machine Learning Research, 15(1):3483–3512, 2014.

[23] X.-Q. Cai, P. Zhang, L. Zhao, J. Bian, M. Sugiyama, and A. Llorens. Distributional Pareto-
optimal multi-objective reinforcement learning. Neural Inf Process Syst, 36:15593–15613,
2023.

[24] H. Mossalam, Y. M. Assael, D. M. Roijers, and S. Whiteson. Multi-objective deep reinforcement
learning. arXiv [cs.AI], 9 Oct. 2016.

[25] A. Abels, D. Roijers, T. Lenaerts, A. Nowé, and D. Steckelmacher. Dynamic weights in
multi-objective deep reinforcement learning. In K. Chaudhuri and R. Salakhutdinov, edi-
tors, Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 11–20. PMLR, 2019.

[26] R. Yang, X. Sun, and K. Narasimhan. A generalized algorithm for multi-objective reinforce-
ment learning and policy adaptation. In Advances in Neural Information Processing Systems.
proceedings.neurips.cc, 2019.

[27] S. Pateria, B. Subagdja, A.-H. Tan, and C. Quek. Hierarchical reinforcement learning: A
comprehensive survey. ACM Comput. Surv., 54(5):1–35, 30 June 2022.

[28] A. G. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement learning. Discrete
Event Dyn. Syst.: Theory Appl., 13(4):341–379, 2003.

[29] T. G. Dietterich. The MAXQ method for hierarchical reinforcement learning. ICML, pages
118–126, 24 July 1998.

[30] T. G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function decompo-
sition. J. Artif. Intell. Res., cs.LG/9905014, 21 May 1999.

[31] O. Nachum, S. Gu, H. Lee, and S. Levine. Near-optimal representation learning for hierarchical
reinforcement learning. arXiv [cs.AI], 2 Oct. 2018.

[32] C. Florensa, Y. Duan, and P. Abbeel. Stochastic neural networks for hierarchical reinforcement
learning. arXiv [cs.AI], 10 Apr. 2017.

[33] O. Nachum, S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical reinforcement learning.
Neural Inf Process Syst, 31:3307–3317, 21 May 2018.

[34] A. C. Li, C. Florensa, I. Clavera, and P. Abbeel. Sub-policy adaptation for hierarchical
reinforcement learning. arXiv [cs.LG], 13 June 2019.

[35] A. H. Qureshi, J. J. Johnson, Y. Qin, T. Henderson, B. Boots, and M. C. Yip. Composing
task-agnostic policies with deep reinforcement learning. arXiv [cs.LG], 25 May 2019.

[36] F. Bacchus, C. Boutilier, and A. J. Grove. Rewarding behaviors. In Proceedings of the National
Conference on Artificial Intelligence., pages 1160–1167. cs.toronto.edu, 4 Aug. 1996.

[37] F. Bacchus, C. Boutilier, and A. Grove. Structured solution methods for non-Markovian decision
processes. In AAAI/IAAI, pages 112–117, 1997.

10

[38] S. Thiebaux, C. Gretton, J. Slaney, D. Price, and F. Kabanza. Decision-theoretic planning with
non-Markovian rewards. J. Artif. Intell. Res., 25:17–74, 29 Jan. 2006.

[39] A. Camacho, O. Chen, S. Sanner, and S. McIlraith. Non-Markovian rewards expressed in
LTL: Guiding search via reward shaping. Proceedings of the International Symposium on
Combinatorial Search, 8(1):159–160, 1 Sept. 2021.

[40] R. T. Icarte, T. Q. Klassen, R. Valenzano, and S. A. McIlraith. Using reward machines for high-
level task specification and decomposition in reinforcement learning. ICML, 80:2112–2121,
3 July 2018.

[41] A. Camacho, R. Toro Icarte, T. Q. Klassen, R. Valenzano, and S. A. McIlraith. LTL and beyond:
Formal languages for reward function specification in reinforcement learning. In Proceedings of
the Twenty-Eighth International Joint Conference on Artificial Intelligence, pages 6065–6073,
California, 1 Aug. 2019. International Joint Conferences on Artificial Intelligence Organization.

[42] T. Brázdil, K. Chatterjee, M. Chmelík, V. Forejt, J. Křetínský, M. Kwiatkowska, D. Parker, and
M. Ujma. Verification of Markov decision processes using learning algorithms. arXiv [cs.LO],
10 Feb. 2014.

[43] M. H. Cohen, Z. Serlin, K. Leahy, and C. Belta. Temporal logic guided safe model-based
reinforcement learning: A hybrid systems approach. Nonlinear Anal. Hybrid Syst., 47(101295):
101295, Feb. 2023.

[44] W. Qiu, W. Mao, and H. Zhu. Instructing goal-conditioned reinforcement learning agents with
temporal logic objectives. Neural Inf Process Syst, 36:39147–39175, 2023.

[45] D. Sadigh, E. S. Kim, S. Coogan, S. S. Sastry, and S. A. Seshia. A learning based approach to
control synthesis of Markov decision processes for linear temporal logic specifications. In 53rd
IEEE Conference on Decision and Control, pages 1091–1096. IEEE, Dec. 2014.

[46] N. Hamilton, P. K. Robinette, and T. T. Johnson. Training agents to satisfy timed and untimed
signal temporal logic specifications with reinforcement learning. In Software Engineering and
Formal Methods, Lecture notes in computer science, pages 190–206. Springer International
Publishing, Cham, 2022.

[47] X. Li, C.-I. Vasile, and C. Belta. Reinforcement learning with temporal logic rewards. In
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
3834–3839. IEEE, Sept. 2017.

[48] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin. A time-dependent hamilton-jacobi formulation
of reachable sets for continuous dynamic games. IEEE Transactions on automatic control, 50
(7):947–957, 2005.

[49] J. F. Fisac, M. Chen, C. J. Tomlin, and S. S. Sastry. Reach-avoid problems with time-varying
dynamics, targets and constraints. In Hybrid Systems: Computation and Control. ACM, 2015.

[50] O. So and C. Fan. Solving stabilize-avoid optimal control via epigraph form and deep reinforce-
ment learning. arXiv [cs.RO], 23 May 2023.

[51] K. Zhu, F. Lan, W. Zhao, and T. Zhang. Safe multi-agent reinforcement learning via approximate
hamilton-jacobi reachability. J. Intell. Robot. Syst., 111(1), 30 Dec. 2024.

[52] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. A Bradford Book,
Cambridge, MA, USA, 2018. ISBN 0262039249.

[53] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/1707.06347.

11

http://arxiv.org/abs/1707.06347

[54] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning.
In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

[55] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym, 2016. URL https://arxiv.org/abs/1606.01540.

12

https://arxiv.org/abs/1606.01540

Supplementary Material

Contents

α Mean Steps to Success for DO-HJ-PPO .14

A Proof of RAA Main Theorem .15

B Proof of RR Main Theorem .22

C Proof of Optimality Theorem .27

D The SRABE and its Policy Gradient .27

E The DO-HJ-PPO Algorithm .28

F DDQN Demonstration .30

G Baselines .30

H Details of RAA & RR Experiments: Hopper .32

I Details of RAA & RR Experiments: F16 .32

J Broader Impacts .33

K Acknowledgments .33

13

Figure 5: Steps to Success (←) in RAA and RR Tasks for DO-HJ-PPO and Baselines For the same 1000
trajectories in Figure 4, we quantify here the number of steps until achievement of both tasks: reaching without
crash afterward in the RAA, reaching both goal in the RR. DO-HJ-PPO is not only competitive but consistently
achieves the dual-objective problems in the fewest number of steps.

Mean Steps to Success for DO-HJ-PPO

Here, we show the mean steps to success for each of the RAA and RR tasks included in the work.
DO-HJ-PPO proves to be among the top three fastest always and frequently appears as the first to
achieve dual-objective success on average. This underscores the ability of the algorithm to pick the
target (and policy) which will allow it to safely accomplish the entire task.

Proof Notation

Throughout the theoretical sections of this supplement, we use the following notation.

We let N = {0, 1, . . . } be the set of whole numbers.

We let A be the set of maps from N to A. In other words, A is the set of sequences of actions the
agent can choose. Given a1,a2 ∈ A, and τ ∈ N, we let [a1,a2]τ be the element of A for which

[a1,a2]τ (t) =

{
a1(t) t < τ,

a2(t− τ) t ≥ τ.

Similarly, given a ∈ A and a ∈ A, we let [a,a] be the element of A for which

[a,a](t) =

{
a t = 0,

a(t− 1) t ≥ 1.

Additionally, given a ∈ A and τ ∈ N, we let a|τ be the element of A for which

a|τ (t) = a(t+ τ) ∀t ∈ N.
The [·, ·]τ operation corresponds to concatenating two action sequences (using only the 0th to (τ −1)st

elements of the first sequence), the [·, ·] operation corresponds to prepending an action to an action
sequence, and the ·|τ operation corresponds to removing the 0th to (τ − 1)st elements of an action
sequence.

We let Π be the set of policies π : S → A. Given s ∈ S and π ∈ Π, we let ξπs : N → S be the
solution of the evolution equation

ξπs (t+ 1) = f (ξπs (t), π (ξπs (t)))

for which ξπs (0) = s. In other words, ξπs (·) is the state trajectory over time when the agent begins at
state s and follows policy π.

We will also “overload” this trajectory notation for signals rather than policies: given a ∈ A, we let
ξas : N→ S be the solution of the evolution equation

ξas (t+ 1) = f (ξas (t),a(t))

for which ξas (0) = s. In other words, ξas (·) is the state trajectory over time when the agent begins at
state s and follows action sequence a.

14

A Proof of RAA Main Theorem

We first define the value functions, V ∗
A , Ṽ ∗

RA, V
∗

RAA : S → R by

V ∗
A (s) = max

π∈Π
min
τ∈N

q (ξπs (τ)) ,

Ṽ ∗
RA(s) = max

π∈Π
max
τ∈N

min

{
rRAA (ξπs (τ)) ,min

κ≤τ
q (ξπs (κ))

}
,

V ∗
RAA(s) = max

π∈Π
min

{
max
τ∈N

r (ξπs (τ)) ,min
κ∈N

q (ξπs (κ))

}
,

where rRAA is as in Theorem 1.

We next define the value functions, v∗A, ṽ
∗
RA, v

∗
RAA : S → R, which maximize over action sequences

rather than policies:

v∗A(s) = max
a∈A

min
τ∈N

q (ξas (τ)) ,

ṽ∗RA(s) = max
a∈A

max
τ∈N

min

{
rRAA (ξas (τ)) ,min

κ≤τ
q (ξas (κ))

}
,

v∗RAA(s) = max
a∈A

min

{
max
τ∈N

r (ξas (τ)) ,min
κ∈N

q (ξas (κ))

}
,

Observe that for each s ∈ S,

v∗A(s) ≥ V ∗
A (s), ṽ∗RA(s) ≥ Ṽ ∗

RA(s), v∗RAA(s) ≥ V ∗
RAA(s).

We now prove a series of lemmas that will be useful in the proof of the main theorem.

Lemma 1. There is a π ∈ Π such that

v∗A(s) = min
τ∈N

q (ξπs (τ))

for all s ∈ S.

Proof. Choose π ∈ Π such that

π(s) ∈ argmax
a∈A

v∗A (f(s, a)) ∀s ∈ S.

Fix s ∈ S. Note that for each τ ∈ N,

v∗A (ξπs (τ + 1)) = v∗A (f (ξπs (τ), π (ξπs (τ))))

= max
a∈A

v∗A (f (ξπs (τ), a))

= max
a∈A

max
a∈A

min
κ∈N

q
(
ξaf(ξπs (τ),a)(κ)

)
= max

a∈A
max
a∈A

min
κ∈N

q
(
ξ
[a,a]
ξπs (τ)(κ+ 1)

)
= max

a∈A
min
κ∈N

q
(
ξaξπs (τ)(κ+ 1)

)
≥ max

a∈A
min
κ∈N

q
(
ξaξπs (τ)(κ)

)
≥ v∗A (ξπs (τ)) .

It follows by induction that v∗A (ξπs (τ)) ≥ v∗A (ξπs (0)) for all τ ∈ N, so that

v∗A(s) ≥ min
τ∈N

q (ξπs (τ)) ≥ min
τ∈N

v∗A (ξπs (τ)) = v∗A (ξπs (0)) = v∗A(s).

Corollary 3. For all s ∈ S, we have V ∗
A (s) = v∗A(s).

15

Lemma 2. There is a π ∈ Π such that

ṽ∗RA(s) = max
τ∈N

min

{
rRAA (ξπs (τ)) ,min

κ≤τ
q (ξπs (κ))

}
for all s ∈ S.

Proof. First, let us note that in this proof we will use the standard conventions that

max∅ = −∞ and min∅ = +∞.

We next introduce some notation. First, for convenience, we set v∗ = ṽ∗RA and V ∗ = Ṽ ∗
RA. Given

s ∈ S and a ∈ A, we write

va(s) = max
τ∈N

min

{
rRAA (ξas (τ)) ,min

κ≤τ
q (ξas (κ))

}
.

Similarly, given s ∈ S and π ∈ Π, we write

V π(s) = max
τ∈N

min

{
rRAA (ξπs (τ)) ,min

κ≤τ
q (ξπs (κ))

}
.

Then

V ∗(s) = max
π∈Π

max
τ∈N

min

{
rRAA (ξπs (τ)) ,min

κ≤τ
q (ξπs (κ))

}
= max

π∈Π
V π(s),

and

v∗(s) = max
a∈A

max
τ∈N

min

{
rRAA (ξas (τ)) ,min

κ≤τ
q (ξas (κ))

}
= max

a∈A
va(s).

It is immediate that v∗(s) ≥ V ∗(s) for each s ∈ S, so it suffices to show the reverse inequality.
Toward this end, it suffices to show that there is a π ∈ Π for which V π(s) = v∗(s) for each s ∈ S.
Indeed, in this case, V ∗(s) ≥ V π(s) = v∗(s).

We now construct the desired policy π. Let α0 = +∞, S0 = ∅, and v∗0 : S → R∪{−∞}, s 7→ −∞.
We recursively define αt ∈ R, St ⊆ S, and v∗t : S → R ∪ {−∞} for t = 1, 2, . . . by

αt+1 = max
s∈S\St

min

{
max

{
rRAA(s),max

a∈A
v∗t (f(s, a))

}
, q(s)

}
, (3)

St+1 = St ∪
{
s ∈ S \ St

∣∣∣∣min

{
max

{
rRAA(s),max

a∈A
v∗t (f(s, a))

}
, q(s)

}
= αt+1

}
, (4)

v∗t+1(s) =


v∗t (s) s ∈ St,

αt+1 s ∈ St+1 \ St,

−∞ s ∈ S \ St+1.

(5)

From (4) it follows that
S0 ⊆ S1 ⊆ S2 ⊆ . . . , (6)

which together with (3) shows that

α0 ≥ α1 ≥ α2 ≥ (7)

Also, whenever S \ St is non-empty, the set being appended to St in (4) is non-empty so
∞⋃
t=0

St = S. (8)

For each s ∈ S, let σ(s) be the smallest t ∈ N for which s ∈ St. We choose the policy π ∈ Π of
interest by insisting

π(s) ∈ argmax
a∈A

v∗σ(s)−1(f(s, a)) ∀s ∈ S. (9)

16

In the remainder of the proof, we show that V π(s) = v∗(s) for each s ∈ S by induction. Let n ∈ N
and suppose the following induction assumptions hold:

V π(s) = v∗(s) = v∗n(s) ≥ αn ∀s ∈ Sn, (10)
v∗(s′) ≤ αn ∀s′ ∈ S \ Sn. (11)

Note that the above hold trivially when n = 0 since S0 = ∅ and α0 = +∞. Fix some particular
y ∈ Sn+1 and some z ∈ S \ Sn+1. We must show that

V π(y) = v∗(y) = v∗n+1(y) ≥ αn+1, (12)
v∗(z) ≤ αn+1. (13)

In this case, induction then shows that V π(s) = v∗(s) for all s ∈ ∪∞n=0St. Since this union is equal
to S by (8), the desired result then follows.

To show (12)-(13), we first demonstrate the following three claims.

1. Let x ∈ S and w ∈ A be such that f(x,w) ∈ Sn and q(x) ≥ αn+1. We claim x ∈ Sn+1.

We can assume x /∈ Sn, for otherwise the claim follows immediately from (6). Since
f(x,w) ∈ Sn, we have v∗n (f(x,w)) ≥ αn by (10). Thus

αn+1 ≥ min

{
max

{
rRAA(x),max

a∈A
v∗n (f(x, a))

}
, q(x)

}
≥ min {max{rRAA(x), αn}, αn+1}
= αn+1,

where the first inequality follows from (3), and the equality follows from (7). Thus

αn+1 = min

{
max

{
rRAA(x),max

a∈A
v∗n (f(x, a))

}
, q(x)

}
,

so the claim follows from (4).

2. Let x ∈ Sn+1 \ Sn and w ∈ A be such that f(x,w) ∈ Sn. We claim that

V π(x) = v∗(x) = αn+1. (14)

To show this claim, we will make use of the dynamic programming principle

va(s) = min
{
max

{
rRAA(s), v

a|1 (f(s,a(0)))
}
, q(s)

}
, ∀s ∈ S,a ∈ A,

from which it follows that

V π(s) = min {max {rRAA(s), V
π (f(s, π(s)))} , q(s)} , ∀s ∈ S, (15)

and

v∗(s) = min

{
max

{
rRAA(s),max

a∈A
v∗ (f(s, a))

}
, q(s)

}
, ∀s ∈ S. (16)

Since x ∈ Sn+1 \ Sn, then σ(x) = n + 1 by definition of σ, so π(x) ∈
argmaxa∈A v∗n(f(x, a)) by (9). Thus

v∗n (f(x, π(x))) = max
a∈A

v∗n (f(x, a)) . (17)

But then
v∗n (f(x, π(x))) ≥ v∗n (f(x,w)) ≥ αn ≥ αn+1 > −∞,

where the second inequality comes from (10), the third comes from (7), and the final
inequality comes from (3) (S \Sn is non-empty because x ∈ S\Sn). Thus f(x, π(x)) ∈ Sn

by (5). It then follows from (10) that

V π (f(x, π(x))) = v∗ (f(x, π(x))) = v∗n (f(x, π(x))) . (18)

17

Now, observe that for all s ∈ Sn and s′ ∈ S \ Sn,

v∗(s) = v∗n(s) ≥ αn ≥ v∗(s′) ≥ −∞ = v∗n(s
′), (19)

where the first equality and inequality are from (10), the second inequality is from (11),
and the final equality is from (5). Moreover, f(x, a) ∈ Sn for at least one a (in particular
a = w). Letting A′ = {a ∈ A | f(x, a) ∈ Sn}, it follows from (19) that

max
a∈A

v∗ (f(x, a)) = max
a∈A′

v∗ (f(x, a)) = max
a∈A′

v∗n (f(x, a)) = max
a∈A

v∗n (f(x, a)) . (20)

From (17)-(20) we have

V π (f(x, π(x))) = max
a∈A

v∗ (f(x, a)) = max
a∈A

v∗n (f(x, a)) . (21)

Now observe that

V π(x) = min {max {rRAA(x), V
π (f(x, π(x)))} , q(x)} ,

v∗(x) = min

{
max

{
rRAA(x),max

a∈A
v∗ (f(x, a))

}
, q(x)

}
,

αn+1 = min

{
max

{
rRAA(x),max

a∈A
v∗n (f(x, a))

}
, q(x)

}
,

where the first equation is from (15), the second is from (16), and the third is from (4). But
then (14) follows from the above equations together with (21).

3. Let x ∈ S \ Sn. We claim that v∗(x) ≤ αn+1. Suppose otherwise. Then we can choose
a ∈ A and τ ∈ N such that

min

{
rRAA (ξax(τ)) ,min

κ≤τ
q (ξax(κ))

}
> αn+1. (22)

It follows that ξax(τ) ∈ Sn, for otherwise

αn+1 ≥ min {rRAA(ξ
a
x(τ)), q(ξ

a
x(τ))}

by (3), creating a contradiction.

So x /∈ Sn and ξax(τ) ∈ Sn, indicating that there is some θ ∈ {0, . . . , τ − 1} such that
ξax(θ) /∈ Sn and f (ξax(θ),a(θ)) = ξax(θ + 1) ∈ Sn. Moreover, q (ξax(θ)) > αn+1 by (22).
It follows from claim 1 that ξax(θ) ∈ Sn+1.

But then it follows from claim 2 that v∗ (ξax(θ)) = αn+1. However,

v∗ (ξax(θ)) ≥ min

{
rRAA

(
ξaξax(θ)(τ − θ)

)
, min
κ≤τ−θ

q
(
ξaξax(θ)(κ)

)}
= min

{
rRAA (ξax(τ − θ + θ)) , min

κ≤τ−θ
q (ξax(κ+ θ))

}
= min

{
rRAA (ξax(τ)) , min

κ∈{θ,θ+1,...,τ}
q (ξax(κ))

}
> αn+1,

giving the desired contradiction.

Having established these claims, we return to proving (12) and (13) hold. In fact, (13) follows
immediately from claim 3, so we actually only need to show (12).

If y ∈ Sn, then from (5) and (10), we have that V π(y) = v∗(y) = v∗n(y) = v∗n+1(y), and from (7)
and (10), we also have that v∗n(y) ≥ αn ≥ αn+1. Together these establish (12) when y ∈ Sn.

So suppose y ∈ Sn+1 \ Sn. First, observe that v∗n+1(y) = αn+1 by (5). There are now two
possibilities. If there is some a ∈ A for which f(y, a) ∈ Sn, then (12) follows from claim 2. If

18

instead, f(y, a) /∈ Sn for each a ∈ A, then maxa∈A v∗n (f(y, a)) = −∞ by (5) (or if n = 0 by
definition of v∗0). Thus αn+1 = min {rRAA(y), q(y)} by (4), so

v∗(y) ≥ V π(y) ≥ min {rRAA(y), q(y)} = αn+1 ≥ v∗(y),

where the final inequality follows from claim 3. This completes the proof.

Corollary 4. For all s ∈ S, we have Ṽ ∗
RA(s) = ṽ∗RA(s).

Lemma 3. Let F : A× N→ R. Then

sup
a∈A

sup
τ∈N

sup
a′∈A′

F ([a,a′]τ , τ) = sup
a∈A

sup
τ∈N

F (a, τ) . (23)

Proof. We proceed by showing both inequalities corresponding to (23) hold.

(≥) Given any a ∈ A and τ ∈ N, we have supa′∈A′ F ([a,a′]τ , τ) ≥ F (a, τ). Taking the
suprema over a ∈ A and τ ∈ N on both sides of this inequality gives the desired result.

(≤) Given any a ∈ A and τ ∈ N, we have

sup
a′∈A′

F ([a,a′]τ , τ) ≤ sup
a′′∈A

F (a′′, τ) ,

so that the result follows from taking the suprema over a ∈ A and τ ∈ N on both sides of
this inequality.

Lemma 4. For each s ∈ S,
v∗RAA(s) = ṽ∗RA(s).

Proof. For each s ∈ S, we have

ṽ∗RA(s) = max
a∈A

max
τ∈N

min

{
rRAA (ξas (τ)) ,min

κ≤τ
q (ξas (κ))

}
(24)

= max
a∈A

max
τ∈N

min

{
r (ξas (τ)) , v

∗
A (ξas (τ)) ,min

κ≤τ
q (ξas (κ))

}
(25)

= max
a∈A

max
τ∈N

min

{
r (ξas (τ)) ,max

a′∈A
min
κ′∈N

q
(
ξa

′

ξas (τ)
(κ′)

)
,min
κ≤τ

q (ξas (κ))

}
= max

a∈A
max
τ∈N

min

{
r (ξas (τ)) ,max

a′∈A
min
κ′∈N

q
(
ξ[a,a

′]τ
s (τ + κ′)

)
,min
κ≤τ

q (ξas (κ))

}
= max

a∈A
max
τ∈N

max
a′∈A

min

{
r (ξas (τ)) ,min

κ′∈N
q
(
ξ[a,a

′]τ
s (τ + κ′)

)
,min
κ≤τ

q (ξas (κ))

}
= max

a∈A
max
τ∈N

max
a′∈A

min

{
r
(
ξ[a,a

′]τ
s (τ)

)
,min
κ′∈N

q
(
ξ[a,a

′]τ
s (τ + κ′)

)
,min
κ≤τ

q
(
ξ[a,a

′]τ
s (κ)

)}
(26)

= max
a∈A

max
τ∈N

min

{
r (ξas (τ)) ,min

κ′∈N
q (ξas (τ + κ′)) ,min

κ≤τ
q (ξas (κ))

}
(27)

= max
a∈A

max
τ∈N

min

{
r (ξas (τ)) ,min

κ∈N
q (ξas (κ))

}
= max

a∈A
min

{
max
τ∈N

r (ξas (τ)) ,min
κ∈N

q (ξas (κ))

}
= v∗RAA(s),

where the equality between (24) and (25) follows from Corollary 3, and where the equality between
(26) and (27) follows from Lemma 3.

19

Before the next lemma, we need to introduce two last pieces of notation. First, we let Π be the set of
augmented policies π̄ : S × Y × Z → A, where

Y = {r(s) | s ∈ S} and Z = {q(s) | s ∈ S} .

Next, given s ∈ S , y ∈ Y , z ∈ Z , and π̄ ∈ Π, we let ξ̄π̄s : N→ S , η̄π̄s : N→ Y , and ζ̄ π̄s : N→ Z , be
the solution of the evolution

ξ̄π̄s (t+ 1) = f
(
ξ̄π̄s (t), π̄

(
ξ̄π̄s (t), η̄

π̄
s (t), ζ̄

π̄
s (t)

))
,

η̄π̄s (t+ 1) = max
{
r
(
ξ̄π̄s (t+ 1)

)
, η̄π̄s (t)

}
,

ζ̄ π̄s (t+ 1) = min
{
q
(
ξ̄π̄s (t+ 1)

)
, ζ̄ π̄s (t)

}
,

for which ξ̄π̄s (0) = s, η̄π̄s (0) = r(s), and ζ̄ π̄s (0) = q(s).

Lemma 5. There is a π̄ ∈ Π such that

v∗RAA(s) = min

{
max
τ∈N

r
(
ξ̄π̄s (τ)

)
,min
τ∈N

q
(
ξ̄π̄s (τ)

)}
(28)

for all s ∈ S.

Proof. By Lemmas 1 and 2 together with Corollary 3, we can choose π, θ ∈ Π such that

ṽ∗RA(s) = max
τ∈N

min

{
r (ξπs (τ)) , v

∗
A (ξπs (τ)) ,min

κ≤τ
q (ξπs (κ))

}
∀s ∈ S,

v∗A(s) = min
τ∈N

q
(
ξθs (τ)

)
∀s ∈ S.

We introduce some useful notation we will use throughout the rest of the proof. For each s ∈ S, let
[s]+ = f(s, π(s)), [y]+s = max{y, r ([s]+)}, [z]+s = min{z, q ([s]+)}.

We define an augmented policy π̄ ∈ Π by

π̄(s, y, z) =

{
π(s) min{[y]+s , [z]+s , v∗A([s]+)} ≥ min{y, z, v∗A(s)},
θ(s) otherwise.

Now fix some s ∈ S . For all t ∈ N, set x̄t = ξ̄π̄s (t), ȳt = η̄π̄s (t) = maxτ≤t r(x̄τ), and z̄t = ζ̄ π̄s (t) =
minτ≤t q(x̄τ), and also set x◦

t = ξπs (t), y
◦
t = maxτ≤t r(x

◦
τ), and z◦t = minτ≤t q(x

◦
τ).

First, assume that t is such that min{[ȳt]+x̄t
, [z̄t]

+
x̄t
, v∗A([x̄t]

+)} < min{ȳt, z̄t, v∗A(x̄t)}. In this case,
π̄(x̄t, ȳt, z̄t) = θ(x̄t), so that

min{z̄t, v∗A(x̄t)} = min{z̄t+1, v
∗
A(x̄t+1)}

by our choice of θ. Since ȳt is non-decreasing in t, thus have

min{ȳt, z̄t, v∗A(x̄t)} ≤ min{ȳt+1, z̄t+1, v
∗
A(x̄t+1)}.

Next, assume that t is such that min{[ȳt]+x̄t
, [z̄t]

+
x̄t
, v∗A([x̄t]

+)} ≥ min{ȳt, z̄t, v∗A(x̄t)}. In this case,
we have that π̄(x̄t, ȳt, z̄t) = π(x̄t), so

min{ȳt, z̄t, v∗A(x̄t)} ≤ min{[ȳt]+x̄t
, [z̄t]

+
x̄t
, v∗A([x̄t]

+)} = min{ȳt+1, z̄t+1, v
∗
A(x̄t+1)}.

It thus follows from these two cases that min{ȳt, z̄t, v∗A(x̄t)} is non-decreasing in t. Let

T = min
{
t ∈ N | min{[ȳt]+x̄t

, [z̄t]
+
x̄t
, v∗A([x̄t]

+)} < min{ȳt, z̄t, v∗A(x̄t)}
}
.

There are again two cases:

20

(T <∞) In this case, π̄(x̄t, ȳt, z̄t) = π(x̄t) for t < T . Then x̄t = x◦
t , ȳt = y◦t , and z̄t = z◦t for all

t ≤ T . It follows that [x̄t]
+ = x◦

t+1, [ȳt]+x̄t
= y◦t+1, and [z̄t]

+
x̄t

= z◦t+1 for all t ≤ T . Thus
by definition of T ,

min
{
y◦t+1, z

◦
t+1, v

∗
A

(
x◦
t+1

)}
≥ min {y◦t , z◦t , v∗A (x◦

t)} ∀t < T.

and
min

{
y◦T+1, z

◦
T+1, v

∗
A

(
x◦
T+1

)}
< min {y◦T , z◦T , v∗A (x◦

T)} .
But since y◦t is non-decreasing and min{z◦t , v∗A(x◦

t)} is non-increasing in t, it follows that
min{y◦t , z◦t , v∗A(x◦

t)} must achieve its maximal value at the smallest t for which it strictly
decreases from t to t+ 1, i.e.

min {ȳT , z̄T , v∗A (x̄T)} = min {y◦T , z◦T , v∗A (x◦
T)}

= max
t∈N

min {y◦t , z◦t , v∗A (x◦
t)}

≥ max
t∈N

min {r (x◦
t) , z

◦
t , v

∗
A (x◦

t)}

= ṽ∗RA(s).

where the final equality follows from our choice of π. Since min{ȳt, z̄t, v∗A(x̄t)} is non-
decreasing in t, then

min{ȳt, z̄t} ≥ min{ȳt, z̄t, v∗A(x̄t)} ≥ min{ȳT , z̄T , v∗A(x̄T)} = ṽ∗RA(s) ∀t ≥ T.

Thus

v∗RAA(s) ≥ min

{
max
t∈N

r (x̄t) ,min
t∈N

q (x̄t)

}
= lim

t→∞
min{ȳt, z̄t} ≥ ṽ∗RA(s) = v∗RAA(s),

where the final equality follows from Lemma (4). Thus the proof is complete in this case.

(T =∞) In this case, π̄(x̄t, ȳt, z̄t) = π(x̄t) for all t ∈ N. Then x̄t = x◦
t , ȳt = y◦t , and z̄t = z◦t for

all t ∈ N. Also [x̄t]
+ = x◦

t+1, [ȳt]+x̄t
= y◦t+1, and [z̄t]

+
x̄t

= z◦t+1 for all t ∈ N. Thus by
definition of T ,

min
{
y◦t+1, z

◦
t+1, v

∗
A

(
x◦
t+1

)}
≥ min {y◦t , z◦t , v∗A (x◦

t)} ∀t ∈ N.

Let T ′ ∈ argmaxt∈N min {y◦t , z◦t , v∗A (x◦
t)}. Then

min {ȳT ′ , z̄T ′ , v∗A (x̄T ′)} = min {y◦T ′ , z◦T ′ , v∗A (x◦
T ′)}

= max
t∈N

min {y◦t , z◦t , v∗A (x◦
t)}

≥ max
t∈N

min {r (x◦
t) , z

◦
t , v

∗
A (x◦

t)}

= ṽ∗RA(s).

The rest of the proof the follows the same as the previous case with T replaced by T ′.

Corollary 5. For all s ∈ S, we have V ∗
RAA(s) = v∗RAA(s).

Proof of Theorem 1. Theorem 1 is now a direct consequence of the previous corollary together with
Corollary 4 and Lemma 4.

21

B Proof of RR Main Theorem

We first define the value functions, V ∗
R1, V

∗
R2, Ṽ

∗
R , V ∗

RR : S → R by

V ∗
R1(s) = max

π∈Π
max
τ∈N

r1 (ξ
π
s (τ)) ,

V ∗
R2(s) = max

π∈Π
max
τ∈N

r2 (ξ
π
s (τ)) ,

Ṽ ∗
R (s) = max

π∈Π
max
τ∈N

rRR (ξas (τ)) ,

V ∗
RR(s) = max

π∈Π
min

{
max
τ∈N

r1 (ξ
π
s (τ)) ,max

τ∈N
r2 (ξ

π
s (τ))

}
.

We next define the value functions, v∗R1, v
∗
R2, ṽ

∗
R, v

∗
RR : S → R, which maximize over action sequences

rather than policies:

v∗R1(s) = max
a∈A

max
τ∈N

r1 (ξ
a
s (τ)) ,

v∗R2(s) = max
a∈A

max
τ∈N

r2 (ξ
a
s (τ)) ,

ṽ∗R(s) = max
a∈A

max
τ∈N

rRR (ξas (τ)) ,

v∗RR(s) = max
a∈A

min

{
max
τ∈N

r1 (ξ
a
s (τ)) ,max

τ∈N
r2 (ξ

a
s (τ))

}
,

where rRR is as in Theorem 2. Observe that for each s ∈ S,

v∗R1(s) ≥ V ∗
R1(s), v∗R2(s) ≥ V ∗

R2(s), ṽ∗R(s) ≥ Ṽ ∗
R (s), v∗RR(s) ≥ V ∗

RR(s).

We now prove a series of lemmas that will be useful in the proof of the main theorem.

Lemma 6. There are π1, π2 ∈ Π such that

v∗R1(s) = max
τ∈N

r1 (ξ
π1
s (τ)) and v∗R2(s) = max

τ∈N
r2 (ξ

π2
s (τ))

for all s ∈ S.

Proof. We will just prove the result for v∗R1(s) since the other result follows identically. For each
s ∈ S, let τs be the smallest element of N for which

max
a∈A

r1 (ξ
a
s (τs)) = v∗R1(s).

Moreover, for each s ∈ S, let as be such that

r1 (ξ
as
s (τs)) = v∗R1(s).

Let π1 ∈ Π be given by π1(s) = as(0). It suffices to show that

r1 (ξ
π1
s (τs)) = v∗R1(s) (29)

for all s ∈ S, for in this case, we have

v∗R1(s) ≥ max
τ∈N

r1 (ξ
π1
s (τ)) ≥ r1 (ξ

π1
s (τs)) = v∗R1(s) ∀s ∈ S.

We show (29) holds for each s ∈ S by induction on τs. First, suppose that s ∈ S is such that τs = 0.
Then

r1 (ξ
π1
s (τs)) = r1(s) = r1 (ξ

as
s (τs)) = v∗R1(s).

For the induction step, let n ∈ N and suppose that

r1 (ξ
π1
s (τs)) = v∗R1(s) ∀s ∈ S such that τs ≤ n.

22

Now fix some x ∈ S such that τx = n+ 1. Notice that

v∗R1(x) ≥ v∗R1 (f (x, π1(x)))

≥ max
a∈A

r1

(
ξaf(x,π1(x))

(n)
)

≥ r1

(
ξ
ax|1
f(x,π1(x))

(n)
)

= r1

(
ξ[π1(x),ax|1]
x (n+ 1)

)
= r1 (ξ

ax
x (τx))

= v∗R1(x),

so that v∗R1 (f (x, π1(x))) = v∗R1(x) and τf(x,π1(x)) ≤ n. It suffices to show

τf(x,π1(x)) = n, (30)

for then, by the induction assumption, we have

r1 (ξ
π1
x (τx)) = r1

(
ξπ1

f(x,π1(x))
(n)
)
= v∗R1 (f (x, π1(x))) = v∗R1(x).

To show (30), assume instead that
τf(x,π1(x)) < n.

But

v∗R1(x) ≥ max
a∈A

r1
(
ξax
(
τf(x,π1(x)) + 1

))
≥ r1

(
ξ
[π1(x),af(x,π1(x))]
x

(
τf(x,π1(x)) + 1

))
= r1

(
ξ
af(x,π1(x))

f(x,π1(x))

(
τf(x,π1(x))

))
= v∗R1 (f (x, π1(x)))

= v∗R1(x),

so that
v∗R1(x) = max

a∈A
r1
(
ξax
(
τf(x,π1(x)) + 1

))
and thus

τx ≤ τf(x,π1(x)) + 1 < n+ 1,

giving our desired contradiction.

Corollary 6. For all s ∈ S, we have V ∗
R1(s) = v∗R1(s) and V ∗

R2(s) = v∗R2(s).

Lemma 7. There is a π ∈ Π such that

ṽ∗R(s) = max
τ∈N

rRR (ξπs (τ)) .

for all s ∈ S.

Proof. This lemma follows by precisely the same proof as the previous lemma, with r1, v∗R1, and π1

replaced with rRR, ṽ∗R, and π respectively.

Corollary 7. For all s ∈ S, we have Ṽ ∗
R (s) = ṽ∗R(s).

Lemma 8. Let ζ1 : N→ R and ζ2 : N→ R. Then

sup
τ∈N

max

{
min

{
ζ1(τ), sup

τ ′∈N
ζ2(τ + τ ′)

}
,min

{
sup
τ ′∈N

ζ1(τ + τ ′), ζ2(τ)

}}
= min

{
sup
τ∈N

ζ1(τ), sup
τ∈N

ζ2(τ)

}
.

23

Proof. We proceed by showing both inequalities corresponding to the above equality hold.

(≤) Observe that

sup
τ∈N

max

{
min

{
ζ1(τ), sup

τ ′∈N
ζ2(τ + τ ′)

}
,min

{
sup
τ ′∈N

ζ1(τ + τ ′), ζ2(τ)

}}
≤ max

{
min

{
sup
τ∈N

ζ1(τ), sup
τ∈N

sup
τ ′∈N

ζ2(τ + τ ′)

}
,min

{
sup
τ∈N

sup
τ ′∈N

ζ1(τ + τ ′), sup
τ∈N

ζ2(τ)

}}
= min

{
sup
τ∈N

ζ1(τ), sup
τ∈N

ζ2(τ)

}

(≥) Fix ε > 0. Choose τ1, τ2 ∈ N such that ζ1(τ1) ≥ supτ∈N ζ1(τ) − ε and ζ2(τ2) ≥
supτ∈N ζ2(τ)− ε. Without loss of generality, we can assume τ1 ≤ τ2. Then

sup
τ∈N

max

{
min

{
ζ1(τ), sup

τ ′∈N
ζ2(τ + τ ′)

}
,min

{
sup
τ ′∈N

ζ1(τ + τ ′), ζ2(τ)

}}
≥ sup

τ∈N
min

{
ζ1(τ), sup

τ ′∈N
ζ2(τ + τ ′)

}
≥ min

{
ζ1(τ1), sup

τ ′∈N
ζ2(τ1 + τ ′)

}
≥ min {ζ1(τ1), ζ2(τ2)}

≥ min

{
sup
τ∈N

ζ1(τ)− ε, sup
τ∈N

ζ2(τ)− ε

}
= min

{
sup
τ∈N

ζ1(τ), sup
τ∈N

ζ2(τ)

}
− ε.

But since ε > 0 was arbitrary, the desired inequality follows.

Lemma 9. For each s ∈ S,

ṽ∗R(s) = v∗RR(s).

24

Proof. For each s ∈ S,

ṽ∗R(s) =max
a∈A

max
τ∈N

rRR (ξas (τ)) (31)

=max
a∈A

max
τ∈N

max {min {r1 (ξas (τ)) , v∗R2 (ξ
a
s (τ))} ,min {v∗R1 (ξ

a
s (τ)) , r2 (ξ

a
s (τ))}} (32)

=max
a∈A

max
τ∈N

max

{
min

{
r1 (ξ

a
s (τ)) ,max

a′∈A
max
τ ′∈N

r2

(
ξa

′

ξas (τ)
(τ ′)

)}
,

min

{
max
a′∈A

max
τ ′∈N

r1

(
ξa

′

ξas (τ)
(τ ′)

)
, r2 (ξ

a
s (τ))

}}
=max

a∈A
max
τ∈N

max

{
min

{
r1 (ξ

a
s (τ)) ,max

a′∈A
max
τ ′∈N

r2

(
ξ[a,a

′]τ
s (τ + τ ′)

)}
,

min

{
max
a′∈A

max
τ ′∈N

r1

(
ξ[a,a

′]τ
s (τ + τ ′)

)
, r2 (ξ

a
s (τ))

}}
=max

a∈A
max
τ∈N

max
a′∈A

max

{
min

{
r1 (ξ

a
s (τ)) ,max

τ ′∈N
r2

(
ξ[a,a

′]τ
s (τ + τ ′)

)}
,

min

{
max
τ ′∈N

r1

(
ξ[a,a

′]τ
s (τ + τ ′)

)
, r2 (ξ

a
s (τ))

}}
=max

a∈A
max
τ∈N

max
a′∈A

max

{
min

{
r1

(
ξ[a,a

′]τ
s (τ)

)
,max
τ ′∈N

r2

(
ξ[a,a

′]τ
s (τ + τ ′)

)}
,

min

{
max
τ ′∈N

r1

(
ξ[a,a

′]τ
s (τ + τ ′)

)
, r2

(
ξ[a,a

′]τ
s (τ)

)}}
(33)

=max
a∈A

max
τ∈N

max

{
min

{
r1 (ξ

a
s (τ)) ,max

τ ′∈N
r2 (ξ

a
s (τ + τ ′))

}
,

min

{
max
τ ′∈N

r1 (ξ
a
s (τ + τ ′)) , r2 (ξ

a
s (τ))

}}
(34)

=max
a∈A

min

{
max
τ∈N

r1 (ξ
a
s (τ)) ,max

τ∈N
r2 (ξ

a
s (τ))

}
(35)

=v∗RR(s),

where the equality between 31 and 32 follows from Corollary 6, the equality between 33 and 34
follows from Lemma 3, and the equality between 34 and 35 follows from Lemma 8.

Before the next lemma, we need to introduce two last pieces of notation. First, we let Π be the set of
augmented policies π̄ : S × Y × Z → A, as in the previous section, but where

Y = {r1(s) | s ∈ S} and Z = {r2(s) | s ∈ S} .

Next, given s ∈ S , y ∈ Y , z ∈ Z , and π̄ ∈ Π, we let ξ̄π̄s : N→ S , η̄π̄s : N→ Y , and ζ̄ π̄s : N→ Z , be
the solution of the evolution

ξ̄π̄s (t+ 1) = f
(
ξ̄π̄s (t), π̄

(
ξ̄π̄s (t), η̄

π̄
s (t), ζ̄

π̄
s (t)

))
,

η̄π̄s (t+ 1) = max
{
r1
(
ξ̄π̄s (t+ 1)

)
, η̄π̄s (t)

}
,

ζ̄ π̄s (t+ 1) = max
{
r2
(
ξ̄π̄s (t+ 1)

)
, ζ̄ π̄s (t)

}
,

for which ξ̄π̄s (0) = s, η̄π̄s (0) = r1(s), and ξ̄π̄s (0) = r2(s).

Lemma 10. There is a π̄ ∈ Π such that

v∗RR(s) = min

{
max
τ∈N

r1
(
ξ̄π̄s (τ)

)
,max
τ∈N

r2
(
ξ̄π̄s (τ)

)}
for all s ∈ S.

25

Proof. By Lemmas 6 and 7 together with Corollary 6, we can choose π, θ1, θ2 ∈ Π such that

v∗R1(s) = max
τ∈N

r1
(
ξθ1s (τ)

)
∀s ∈ S,

v∗R2(s) = max
τ∈N

r2
(
ξθ2s (τ)

)
∀s ∈ S,

ṽ∗R(s) = max
τ∈N

max {min {r1 (ξπs (τ)) , v∗R2 (ξ
π
s (τ))} ,min {r2 (ξπs (τ)) , v∗R1 (ξ

π
s (τ))}} ∀s ∈ S.

Define π̄ ∈ Π by

π̄(s, y, z) =


π(s) max{y, z} < ṽ∗R(s)

θ1(s) max{y, z} ≥ ṽ∗R(s) and y ≤ z,

θ2(s) max{y, z} ≥ ṽ∗R(s) and y > z.

Now fix some s ∈ S . For all t ∈ N, set x̄t = ξ̄π̄s (t), ȳt = η̄π̄s (t) = maxτ≤t r1(x̄τ), and z̄t = ζ̄ π̄s (t) =
maxτ≤t r2(x̄τ), and also set x◦

t = ξπs (t). It suffices to show

v∗RR(s) ≤ min

{
max
τ∈N

r1 (x̄τ) ,max
τ∈N

r2 (x̄τ)

}
, (36)

since the reverse inequality is immediate. We proceed in three steps.

1. We claim there exists a t ∈ N such that max {r1(x̄t), r2(x̄t)} ≥ ṽ∗R(x̄t).

Suppose otherwise. Then π̄(x̄t, ȳt, z̄t) = π(x̄t) so that x̄t = x◦
t for all t ∈ N. Thus

max
t∈N

max {r1(x̄t), r2(x̄t)} < max
t∈N

ṽ∗R(x̄t)

= ṽ∗R(s)

= max
τ∈N

max {min {r1 (x◦
τ) , v

∗
R2 (x

◦
τ)} ,min {r2 (x◦

τ) , v
∗
R1 (x

◦
τ)}}

= max
τ∈N

max {min {r1 (x̄τ) , v
∗
R2 (x̄τ)} ,min {r2 (x̄τ) , v

∗
R1 (x̄τ)}}

≤ max
τ∈N

max {r1(x̄τ), r2(x̄τ)} ,

providing the desired contradiction.

2. Let T be the smallest element of N for which

max {r1(x̄T), r2(x̄T)} ≥ v∗R(x̄T),

which must exist by the previous step, and let T ′ be the smallest element of N for which

max {min {r1 (x◦
T ′) , v∗R2 (x

◦
T ′)} ,min {r2 (x◦

T ′) , v∗R1 (x
◦
T ′)}} = ṽ∗R(s),

which must exist by our choice of π. We claim T ′ ≥ T .

Suppose otherwise. Since x̄t = x◦
t for all t ≤ T , then in particular x̄T ′ = x◦

T ′ , so that

max {min {r1 (x̄T ′) , v∗R2 (x̄T ′)} ,min {r2 (x̄T ′) , v∗R1 (x̄T ′)}} = ṽ∗R(s).

But then
max{r1(x̄T ′), r2(x̄T ′)} ≥ ṽ∗R(s) ≥ ṽ∗R(x̄T ′).

By our choice of T , we then have T ≤ T ′, creating a contradiction.

3. It follows from the previous step that

ṽ∗R(x̄T) = ṽ∗R(x
◦
T) = ṽ∗R(s).

By our choice of T , there are two cases: r1(x̄T) ≥ ṽ∗R(x̄T) and r2(x̄T) ≥ ṽ∗R(x̄T). We
assume the first case and prove the desired result, with case two following identically. To
reach a contradiction, assume

r2(x̄t) < ṽ∗R(x̄T) ∀t ∈ N.

26

But then π̄(x̄t, ȳt, z̄t) = θ2(x̄t) for all t ≥ T , so v∗R2(x̄T) = maxt≥T r2(x̄t) < ṽ∗R(x̄T) ≤
ṽ∗R(s). Thus r2(x◦

T ′) ≤ v∗R2(x
◦
T ′) ≤ v∗R2(x

◦
T) = v∗R2(x̄T) < ṽ∗R(s). It follows that

max {min {r1 (x◦
T ′) , v∗R2 (x

◦
T ′)} ,min {r2 (x◦

T ′) , v∗R1 (x
◦
T ′)}} < ṽ∗R(s),

contradicting our choice of T ′.

Thus r2(x̄t) ≥ ṽ∗R(x̄T) = ṽ∗R(s) for some t ∈ N and also r1(x̄T) ≥ ṽ∗R(x̄T) = ṽ∗R(s), so
that (36) must hold by Lemma 9.

Corollary 8. For all s ∈ S, we have V ∗
RR(s, r1(s), r2(s)) = v∗RR(s).

Proof of Theorem 2. The proof of this theorem immediately follows from the previous corollary
together with Corollary 7 and Lemma 9.

C Proof of Optimality Theorem

Proof of Theorem 3. The inequalities in both lines of the theorem follow from the fact that for each
π ∈ Π, we can define a corresponding augmented policy π̄ ∈ Π by

π̄(s, y, z) = π(s) ∀s ∈ S, y ∈ Y, z ∈ Z,
in which case V π

RAA(s) = V π̄
RAA(s) and V π

RR(s) = V π̄
RR(s) for each s ∈ S. Note that in general, we

cannot define a corresponding policy for each augmented policy, so the reverse inequality does not
generally hold (see Figure 3 for intuition regarding this fact).

The equalities in both lines of the theorem are simply restatements of Lemma 5 and Lemma 9.

D The SRABE and its Policy Gradient

Proof of Proposition 1. We here closely follow the proof of Theorem 3 in [4], which itself modifies
the proofs of the Policy Gradient Theorems in Chapter 13.2 and 13.6 [52]. We only make the minimal
modifications required to adapt the PPO algorithm developed previously for the SRBE to on for the
SRABE.

∇θṼ
πθ

RAA(s) =∇θ

(∑
a∈A

πθ(a|s)Q̃πθ

RAA(s, a)

)
=
∑
a∈A

(
∇θπθ(a|s)Q̃πθ

RAA(s, a)

+ πθ(a|s)∇θ min
{
max

{
Ṽ π

RAA (f(s, a)) , rRAA(s)
}
, q(s)

})
=
∑
a∈A

(
∇θπθ(a|s)Q̃πθ

RAA(s, a)

+ πθ(a|s)
[
q(s) < ṼRAA (f(s, a)) < rRAA(s)

]
∇θṼ

π
RAA (f(s, a))

)
(37)

=
∑
s′∈S

[(∞∑
k=0

Pr(s→ s′, k, π)

)∑
a∈A
∇θπθ(a|s′)Q̃πθ

RAA(s
′, a)

]
(38)

=
∑
s′∈S

[(∞∑
k=0

Pr(s→ s′, k, π)

)∑
a∈A

πθ(a|s′)
∇θπθ(a|s′)
πθ(a|s′)

Q̃πθ

RAA(s
′, a)

]

=
∑
s′∈S

[(∞∑
k=0

Pr(s→ s′, k, π)

)
Ea∼πθ(s′)

[
∇θ lnπθ(a|s′)Q̃πθ

RAA(s
′, a)

]]
∝ Es′∼d′

π(s)
Ea∼πθ(s′)

[
∇θ lnπθ(a|s′)Q̃πθ

RAA(s
′, a)

]
,

27

where the equality between (37) and (38) comes from rolling out the term ∇θṼ
π

RAA (f(s, a)) (see
Chapter 13.2 in [52] for details), and where Pr(s→ s′, k, π) is the probability that under the policy
π, the system is in state s′ at time k given that it is in state s at time 0.

Note, Proposition 1 is vital to updating the actor in Algorithm 1.

E The DO-HJ-PPO Algorithm

In this section, we outline the details of our Actor-Critic algorithm DO-HJ-PPO beyond the details
given in Algorithm 1.

Algorithm 1 : DO-HJ-PPO (Actor-Critic)

Require: Composed and Decomposed Actor parameters θ and θi, Composed and Decomposed
Critic parameters ω and ωi, GAE λ, learning rate βk and discount factor γ. Let Bγ amd Bγ

i
represent the Bellman update and decomposed Bellman update for the users choice of problem
(RR or RAA).

1: Define Composed Actor and Critic Q̃
2: Define Decomposed Actor(s) and Critic(s) Q̃i

3: for k = 0, 1, . . . do
4: for t = 0 to T − 1 do
5: Sample trajectories for τt : {ŝt, at, ŝt+1}
6: Define ℓ̃(st) with Decomposed Critics Q̃i(st) (Theorems 1 & 2)
7: Composed Critic update:

ω ← ω − βk∇ωQ̃(τt) ·
(
Q̃(τt)−Bγ [Q̃, r̃](τt)

)
8: Compute Bellman-GAE Aλ

HJ with Bγ

9: (Standard) update Composed Actor
10: Decomposed Critic update(s):

ω ← ω − βk∇ωQ̃i(τt) ·
(
Q̃i(τt)−Bγ

i [Q̃i](τt)
)

11: Compute Bellman-GAE Aλ
i with Bγ

i
12: (Standard) update Decomposed Actor(s)
13: end for
14: end for
15: return parameter θ, ω

In Algorithm 1, the Bellman update Bγ [Q̃, r̃] differs for the RAA task and RR task, and the Bγ
i [Q̃]

differs between the reach, avoid, and reach-avoid tasks. These Bellman updates are explicitly specified
in the Supplementary Material.

E.1 DO-HJ-PPO Stochastic Relaxation

Per the assumptions made in the relaxation, the discounted contractions for the RAA (and similarly
RR) take the following form,

Ṽ γ,π
RAA(s) = (1− γ)min {rRAA(s), q(s)}+ γEa∼π

[
min

{
max

{
Ṽ γ,π

RAA (f(s, a)) , rRAA(s)
}
, q(s)

}]
.

Q̃γ,π
RAA(s, a) = (1− γ)min {rRAA(s), q(s)}+ γmin

{
max

{
Ṽ γ,π

RAA (f(s, a)) , rRAA(s)
}
, q(s)

}
.

The PPO advantage function is then given by Ãπ
RAA = Q̃RAA − ṼRAA [53].

28

E.2 The special Bellman updates and the corresponding GAEs

Akin to previous HJ-RL policy algorithms, namely RCPO [6], RESPO [3] and RCPPO [4], DO-HJ-
PPO fundamentally depends on the discounted HJ Bellman updates [1]. To solve the RAA and RR
problems with the special rewards defined in Theorems 1 & 2, DO-HJ-PPO utilizes the Reach, Avoid
and Reach-Avoid Bellman updates, given by

Bγ
R[Q | r](s, a) = (1− γ)r(s) + γmax {r(s), Q(s, a)} , (39)

Bγ
A[Q | q](s, a) = (1− γ)q(s) + γmin {q(s), Q(s, a)} , (40)

Bγ
RA[Q | r, q](s, a) = (1− γ)min {r(s), q(s)}+ γmin {q(s),max {r(s), Q(s, a)}} . (41)

To improve our algorithm, we incorporate the Generalized Advantage Estimate corresponding to
these Bellman equations in the updates of the Actors. As outlined in Section A of [4], the GAE
may be defined with a reduction function corresponding to the appropriate Bellman function which
will be applied over a trajectory roll-out. We generalize the Reach GAE definition given in [4]
to propose a Reach-Avoid GAE (the Avoid GAE is simply the flip of the Reach GAE) as all will
be used in DO-HJ-PPO algorithm for either RAA or RR problems. Consider a reduction function
ϕ
(n)
RA : Rn → R, defined by

ϕ
(n)
RA(x1, x2, x3, . . . , x2n+1) = ϕ

(1)
RA(x1, x2, ϕ

(n−1)
RA (x3, . . . , x2n+1)), (42)

ϕ
(1)
RA(x, y, z) = (1− γ)min {x, y}+ γmin {y,max {x, z}} . (43)

The k-step Reach-Avoid Bellman advantage A
π(k)
RA is then given by,

A
(k)
RA(s) = ϕ

(n)
RA

(
r(st), q(st), . . . , r(st+k−1), q(st+k−1), V

(st+k)
)
− V (st+k). (44)

We may then define the Reach-Avoid GAE Aλ
RA as the λ-weighted sum over the advantage functions

Aλ
RA(s) =

1

1− λ

∞∑
k=1

λkA
(k)
RA(s) (45)

which may be approximated over any finite trajectory sample. See [4] for further details.

E.3 Modifications from standard PPO

To address the RAA and RR problems, DO-HJ-PPO introduces several key modifications to the
standard PPO framework [53]:

Additional actor and critic networks are introduced to represent the decomposed objectives.
Rather than learning the decomposed objectives separately from the composed objective, DO-HJ-PPO
optimizes all objectives simultaneously. This design choice is motivated by two primary factors:
(i) simplicity and minor computational speed-up, and (ii) coupling between the decomposed and
composed objectives during learning.

The decomposed trajectories are initialized using states sampled from the composed trajectory,
we refer to as coupled resets.
While it is possible to estimate the decomposed objectives independently—i.e., prior to solving the
composed task—this approach might lead to inaccurate or irrelevant value estimates in on-policy
settings. For example, in the RAA problem, the decomposed objective may prioritize avoiding
penalties, while the composed task requires reaching a reward region without incurring penalties.
In such a case, a decomposed policy trained in isolation might converge to an optimal strategy
within a reward-irrelevant region, misaligned with the overall task. Empirically, we observe that
omitting coupled resets causes DO-HJ-PPO to perform no better than standard baselines such as
CPPO, whereas their inclusion significantly improves performance.

The special RAA and RR rewards are defined using the decomposed critic values and updated
using their corresponding Bellman equations.

29

This procedure is directly derived from our theoretical results (Theorems 1 and 2), which establish
the validity of using modified rewards within the respective RA and R Bellman frameworks. These
rewards are used to compute the composed critic target as well as the actor’s GAE. In Algorithm 1,
this process is reflected in the critic and actor updates corresponding to the composed objective.

F DDQN Demonstration

As described in the paper, we demonstrate the novel RAA and RR problems in a 2D Q-learning
problem where the value function may be observed easily. We juxtapose these solitons with those
of the previously studied RA and R problems which consider more simple objectives. To solve
all values, we employ the standard Double-Deep Q learning approach (DDQN) [54] with only the
special Bellman updates.

F.1 Grid-World Environment

The environment is taken from [2] and consists of two dimensions, s = (x, y), and three actions,
a ∈ {left, straight, right}, which allow the agent to maneuver through the space. The deterministic
dynamics of the environment are defined by constant upward flow such that,

f((xi, yi), ai) =


(xi−1, yi+1) ai = left
(xi, yi+1) ai = straight
(xi+1, yi+1) ai = right

(46)

and if the agent reaches the boundary of the space, defined by x ≥ |2|, y ≤ −2 and y ≥ 10, the
trajectory is terminated. The 2D space is divided into 80 × 120 cells which the agent traverses
through.

In the RA and RAA experiments, the reward function r is defined as the negative signed-distance
function to a box with dimensions (xc, yc, w, h) = (0, 4.5, 2, 1.5), and thus is negative iff the agent is
outside of the box. The penalty function q is defined as the minimum of three (positive) signed distance
functions for boxes defined at (xc, yc, w, h) = (±0.75, 3, 1, 1) and (xc, yc, w, h) = (0, 6, 2.5, 1),
and thus is positive iff the agent is outside of all boxes.

In the R and RR experiments, one or two rewards are used. In the R experiment, the reward function
r is defined as the maximum of two negative signed-distance function of boxes with dimensions
(xc, yc, w, h) = (±1.25, 0, 0.5, 2), and thus is negative iff the agent is outside of both boxes. In the
RR experiment, the rewards r1 and r2 are defined as the negative signed distance functions of the
same two boxes independently, and thus are positive if the agent is in one box or the other respectively.

F.2 DDQN Details

As per our theoretical results in Theorems 1 and 2, we may now perform DDQN to solve the RAA
and RR problems with solely the previously studied Bellman updates for the RA [2] and R problems
[1]. We compare these solutions with those corresponding to the RA and R problems without the
special RAA and RR targets, and hence solve the previously posed problems. For all experiments,
we employ the same adapted algorithm as in [2], with no modification of the hyper-parameters given
in Table 1.

G Baselines

In both RAA and RR problems, we employ Constrained PPO (CPPO) [8] as the major baseline as
it can handle secondary objectives which are reformulated as constraints. The algorithm was not
designed to minimize its constraints necessarily but may do so in attempting to satisfy them. As a
novel direction in RL, few algorithms have been designed to optimize max/min accumulated costs
and thus CPPO serves as the best proxy. Below we also include a naively decomposed STL algorithm
to offer some insight into direct approaches to optimizing the max/min accumulated reward.

30

Table 1: Hyperparameters for DDQN Grid World

DDQN hyperparameters Values
Network Architecture MLP
Numbers of Hidden Layers 2
Units per Hidden Layer 100, 20
Hidden Layer Activation Function tanh
Optimizer Adam
Discount factor γ 0.9999
Learning rate 1e-3
Replay Buffer Size 1e5 transitions
Replay Batch Size 100
Train-Collect Interval 10
Max Updates 4e6

G.1 CPPO Baselines

Although CPPO formulations do not directly consider dual-objective optimization, the secondary
objective in RAA (avoid penalty) or overall objective in RR (reach both rewards) may be transformed
into constraints to be satisfied of a surrogate problem. For the RAA problem, this may be defined as

maxπ Eπ

[∞∑
t

γt max
t′≤t

r(sπt′)

]
s.t. min

t
q(sπt) ≥ 0. (47)

For the RR problem, one might propose that the fairest comparison would be to formulate the
surrogate problem in the same fashion, with achievement of both costs as a constraint, such that

maxπ Eπ

[∞∑
t

γt min

{
max
t′≤t

r1(s
π
t′),max

t′≤t
r2(s

π
t′)

}]
s.t. min

{
max

t
r1(s

π
t),max

t
r2(s

π
t)
}
≥ 0,

(48)
which we define as variant 1 (CPPO-v1). Empirically, however, we found this formulation to be the
poorest by far, perhaps due to the abundance of the non-smooth combinations. We thus also compare
with more naive formulations which relax the outer minimizations to summation in the reward

maxπ Eπ

[∞∑
t

γt max
t′≤t

r1(s
π
t′) + max

t′≤t
r2(s

π
t′)

]
s.t. min

{
max

t
r1(s

π
t),max

t
r2(s

π
t)
}
≥ 0,

(49)
which we define as variant 2 (CPPOv2), and additionally, in the constraint

maxπ Eπ

[∞∑
t

γt max
t′≤t

r1(s
π
t′) + max

t′≤t
r2(s

π
t′)

]
s.t. max

t
r1(s

π
t) + max

t
r2(s

π
t) ≥ 0, (50)

which we define as variant 3 (CPPOv3). This last approach, although naive and seemingly unfair,
vastly outperforms the other variants in the RR problem.

G.2 STL Baselines

In contrast with constrained optimization, one might also incorporate the STL methods, which in the
current context simply decompose and optimize the independent objectives. For the RAA problem,
the standard RA solution serves as a trivial STL baseline since we may attempt to continuously
attempt to reach the solution while avoiding the obstacle. In the RR case, we define a decomposed
STL baseline (DSTL) which naively solves both R problems, and selects the one with lower value to
achieve first.

31

H Details of RAA & RR Experiments: Hopper

The Hopper environment is taken from Gym [55] and [4]. In both RAA and RR problems, we define
rewards and penalties based on the position of the Hopper head, which we denote as (x, y) in this
section.

In the RAA task, the reward is defined as

r(x, y) =
√
∥x− 2∥+ |y − 1.4∥ − 0.1 (51)

to incentive the Hopper to reach its head to the position at (x, y) = (2, 1.4). The penalty q is defined
as the minimum of signed distance functions to a ceiling obstacle at (1, 0), wall obstacles at x > 2
and x < 0 and a floor obstacle at y < 0.5. In order to safely arrive at high reward (and always
avoid the obstacles), the Hopper thus must pass under the ceiling and not dive or fall over in the
achievement of the target, as is the natural behavior.

In the RR task, the first reward is defined again as

r1(x, y) =
√
∥x− 2∥+ |y − 1.4∥ − 0.1 (52)

to incentive the Hopper to reach its head to the position at (x, y) = (2, 1.4), and the second reward as

r2(x, y) =
√
∥x− 0∥+ |y − 1.4∥ − 0.1 (53)

to incentive the Hopper to reach its head to the position at (x, y) = (0, 1.4). In order to achieve both
rewards, the Hopper must thus hop both forwards and backwards without crashing or diving.

In all experiments, the Hopper is initialized in the default standing posture at a random x ∈ [0, 2] so
as to learn a position-agnostic policy. The DO-HJ-PPO parameters used to train these problems can
be found in Table 2.

Table 2: Hyperparameters for Hopper Learning

Hyperparameters for DO-HJ-PPO Values
Network Architecture MLP
Units per Hidden Layer 256
Numbers of Hidden Layers 2
Hidden Layer Activation Function tanh
Entropy coefficient Linear Decay 1e-2→ 0
Optimizer Adam
Discount factor γ Linear Anneal 0.995→ 0.999
GAE lambda parameter 0.95
Clip Ratio 0.2
Actor Learning rate Linear Decay 3e-4→ 0
Reward/Cost Critic Learning rate Linear Decay 3e-4→ 0

Add’l Hyperparameters for CPPO
KP 1
KI 1e-4
KD 1

I Details of RAA & RR Experiments: F16

The F16 environment is taken from [4], including a F16 fighter jet with a 26 dimensional observation.
The jet is limited to a flight corridor with up to 2000 relative position north (xPN), 1200 relative
altitude (xH), and ±500 relative position east (xPE).

In the RAA task, the reward is defined as

r(x, y) =
1

5
|xPN − 1500| − 50 (54)

32

to incentivize the F16 to fly through the geofence defined by the vertical slice at 1500 relative position
north. The penalty q is defined as the minimum of signed distance functions to geofence (wall)
obstacles at xPN > 2000 and |xPE | > 500 and a floor obstacle at xH < 0. In order to safely arrive
at high reward (and always avoid the obstacles), the F16 thus must fly through the target geofence
and then evade crashing into the wall directly in front of it.

In the RR task, the rewards are defined as

r1(xPN , xH) =
1

5

√
∥xPN − 1250∥+ |y − 850∥ − 30 (55)

and
r2(xPN , xH) =

1

5

√
∥xPN − 1250∥+ |y − 350∥ − 30 (56)

to incentive the F16 to reach both low and high-altitude horizontal cylinders. In order to achieve both
rewards, the F16 must thus aggressively pitch, roll and yaw between the two targets.

In all experiments, the F16 is initialized with position xPN ∈ [250, 750], xH ∈ [300, 900], xPE ∈
[−250, 250] and velocity in v ∈ [200, 450]. Additionally, the roll, pitch, and yaw are initialized with
±π/16 to simulate a variety of approaches to the flight corridor. Further details can be found in [4].
The DO-HJ-PPO parameters used to train these problems can be found in Table 3.

Table 3: Hyperparameters for F16 Learning

Hyperparameters for DO-HJ-PPO Values
Network Architecture MLP
Units per Hidden Layer 256
Numbers of Hidden Layers 2
Hidden Layer Activation Function tanh
Entropy coefficient Linear Decay 1e-2→ 0
Optimizer Adam
Discount factor γ Linear Anneal 0.995→ 0.999
GAE lambda parameter 0.95
Clip Ratio 0.2
Actor Learning rate Linear Decay 1e-3→ 0
Reward/Cost Critic Learning rate Linear Decay 1e-3→ 0

Add’l Hyperparameters for CPPO
KP 1
KI 1e-4
KD 1

J Broader Impacts

This paper touches on advancing fundamental methods for Reinforcement Learning. In particular, this
work falls into the class of methods designed for Safe Reinforcement Learning. Methods in this class
are primarily intended to prevent undesirable behaviors in virtual or cyber-physical systems, such as
preventing crashes involving self-driving vehicles or potentially even unacceptable speech among
chatbots. It is an unfortunate truth that safe learning methods can be repurposed for unintended use
cases, such as to prevent a malicious agent from being captured, but the authors do not foresee the
balance of potential beneficial and malicious applications of this method to be any greater than other
typical methods in Safe Reinforcement Learning.

K Acknowledgments

This section has been redacted for the purpose of anonymous review.

33

	Introduction
	Related Works
	Problem Definition
	Reachability and Avoidability in RL
	The need for augmenting states with historical information
	Augmentation of the RAA Problem
	Augmentation of the RR Problem

	Optimal Policies for RAA and RR by Value Decomposition
	Decomposition of RAA into avoid and reach-avoid problems
	Decomposition of the RR problem into three reach problems
	Optimality of the augmented problems

	DO-HJ-PPO: Solving RAA and RR with RL
	Stochastic Reach-Avoid Bellman Equation
	Algorithm

	Experiments
	DDQN Demonstration
	Continuous Control Tasks with DO-HJ-PPO

	Conclusion
	Proof of RAA Main Theorem
	Proof of RR Main Theorem
	Proof of Optimality Theorem
	The SRABE and its Policy Gradient
	The DO-HJ-PPO Algorithm
	DO-HJ-PPO Stochastic Relaxation
	The special Bellman updates and the corresponding GAEs
	Modifications from standard PPO

	DDQN Demonstration
	Grid-World Environment
	DDQN Details

	Baselines
	CPPO Baselines
	STL Baselines

	Details of RAA & RR Experiments: Hopper
	Details of RAA & RR Experiments: F16
	Broader Impacts
	Acknowledgments

