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Abstract

Recent advancements in LLMs have showcased001
their remarkable role-playing capabilities, able002
to accurately simulate the dialogue styles and003
cognitive processes of various roles based on004
different instructions and contexts. Studies in-005
dicate that assigning LLMs the roles of ex-006
perts, a strategy known as role-play prompt-007
ing, can enhance their performance in the cor-008
responding domains. However, the prompt009
needs to be manually designed for the given010
problem, requiring certain expertise and iter-011
ative modifications. To this end, we propose012
self-prompt tuning, making LLMs themselves013
generate role-play prompts through fine-tuning.014
Leveraging the LIMA dataset as our founda-015
tional corpus, we employ GPT-4 to annotate016
role-play prompts for each data points, result-017
ing in the creation of the LIMA-Role dataset.018
We then fine-tune LLMs like Llama-2-7B and019
Mistral-7B on LIMA-Role. Consequently, the020
self-prompt tuned LLMs can automatically gen-021
erate expert role prompts for any given ques-022
tion. We extensively evaluate self-prompt tuned023
LLMs on widely used NLP benchmarks and024
open-ended question test. Our empirical re-025
sults illustrate that self-prompt tuned LLMs026
outperform standard instruction tuned base-027
lines across most datasets. This highlights the028
great potential of utilizing fine-tuning to en-029
able LLMs to self-prompt, thereby automating030
complex prompting strategies. We release the031
dataset, models, and code at this url.032

1 Introduction033

Recent advances in large language models (LLMs)034

such as GPT-3 (Brown et al., 2020), PaLM (Chowd-035

hery et al., 2022), Llama (Touvron et al., 2023),036

and Mistral (Jiang et al., 2023) have dramatically037

reshaped the field of natural language processing038

(NLP). These models exhibit exceptional text un-039

derstanding and generation capabilities, with per-040

formance that critically depends on the quality of041

the prompts used. To sufficiently unleash the po- 042

tential of LLMs, a range of innovative prompting 043

strategies have emerged. These include, but are 044

not limited to, chain-of-thought prompting (Wei 045

et al., 2022b), tree-of-thought prompting (Yao et al., 046

2023), step-back prompting (Zheng et al., 2024), 047

and the increasingly popular role-play prompting 048

(Wu et al., 2023; Salewski et al., 2023; Kong et al., 049

2023). This paper concentrates on the development 050

of self-prompt tuning to facilitate autonomous role- 051

play prompting, a flexible method that may also be 052

adapted for other prompting strategies. 053

Modern LLMs can seamlessly embody human 054

characters1 and non-human entities2, exhibiting 055

incredible role-playing capabilities. While role- 056

playing brings novel modes of interaction, it can 057

also serve as a prompting strategy, termed role-play 058

prompting, to enhance the performance of LLMs 059

in various downstream NLP tasks. For instance, 060

Wu et al. (2023) have LLMs impersonate judges 061

with distinct personas and backgrounds to improve 062

their summary assessment quality. In multi-domain 063

QA tasks, Salewski et al. (2023) instruct LLMs to 064

act as domain experts, leading to improved perfor- 065

mance. Furthermore, Kong et al. (2023) assign 066

diverse expert roles to LLMs more immersively 067

through multi-turn dialogue, boosting their reason- 068

ing abilities. Despite its efficacy, role-play prompt- 069

ing faces two significant limitations common to 070

many popular prompting strategies: 071

(i) It is task-specific. The role selection and 072

prompt design must be tailored to individual tasks, 073

and prompts are often not transferable to different 074

tasks. 075

(ii) The prompt design is labor-intensive, requir- 076

ing significant domain expertise and iterative re- 077

finement, which can be time-consuming. 078

1Character.AI offers LLMs impersonating celebrities, such
as Albert Einstein.

2DeepMind researcher requires ChatGPT to act as a Linux
terminal in the blog.
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User: A sound wave with frequency f travels through air 
at speed v … Which one is the correct answer?

Assistant: … Therefore, the speed of the sound wave is 
given by the same formula, with 𝑓 replaced by 4𝑓:

𝑣 =
𝛾𝑝

𝜌
=

𝛾4𝑓

𝜌
= 2

𝛾𝑝

𝜌
= 2𝑣

Therefore, the answer is C.

Instruction Tuned LLM
User: A sound wave with frequency f travels through air 
at speed v. With what speed will a sound wave with 
frequency 4f travel through the air? A. v/4 B. v C. 2v D. 
4v Which one is the correct answer?

Assistant: [This question is a physics problem involving 
sound waves and their speed through different mediums. 
From now on, I will think like a physics professor who 
specializes in the study of sound and its behavior in 
different environments.]

The speed of sound through air is given by the formula

𝑣 =

where 𝛾 is the ratio of specific heats, 𝑝 is the air 
pressure and 𝜌 is the air density. Since the frequency 
is not involved in this formula, the speed of sound is 
independent of frequency. Therefore, the speed of a 
sound wave with frequency 4𝑓 is

𝑣 =
𝛾𝑝

𝜌
=

𝛾𝑝

𝜌
= 𝑣

The correct answer is therefore B.

Self-Prompt Tuned LLM

User: From now on, you are an excellent physics teacher. 
A sound wave with frequency f travels through air at 
speed v … Which one is the correct answer?

Assistant: At a frequency 𝑓 , the pressure variation

is given by 𝑝 = 𝑝 sin 2𝜋𝑓𝑡 … The speed of a sound wave of

frequency 4𝑓 is therefore

𝑣 =
1.4𝑅𝑇

𝑀
sin(8𝜋𝑡)

Hence the answer is C.

Instruction Tuned LLM with Manul Role-Play Prompting

Figure 1: Examples of standard instruction tuned LLM, instruction tuned LLM with manual role-play prompting,
and self-prompt tuned LLM on the same physics question. Manual and automatic role-play prompts are highlighted
in gray and blue respectively. LLM used here is Mistral-7B.

To address these limitations, could we leverage079

LLMs themselves to generate prompts, thereby re-080

ducing the reliance on human intervention? A nat-081

ural idea is to utilize prompts to instruct models to082

generate prompts themselves. The NLP commu-083

nity has attempted to automatically situate LLMs084

in the appropriate role for the user across multi-085

ple rounds of dialogue guided by well-designed086

prompts3. However, this prompt-based automation087

method tends to complicate the interaction process088

and introduce an excessive number of additional089

tokens, leading to diminished practicality.090

While prompting strategies have positively mod-091

ulate the behavior of LLMs in a cost-efficient man-092

ner, the pursuit of directly adjusting model parame-093

ters has led to the emergence of new methods like094

instruction tuning (IT) (Wei et al., 2022a; Wang095

et al., 2023a; Zhou et al., 2023a). Through fine-096

tuning LLMs on a collection of datasets described097

via instructions, IT enables LLMs to follow huamn098

instructions without any additional prompts. Build-099

ing on this foundation, this paper introduces self-100

prompt tuning, an innovative approach that en-101

ables LLMs to autonomously establish an appro-102

priate role (i.e., role-play prompting) and respond103

accordingly through fine-tuning. Specifically, we104

leverage GPT-4 with in-context learning to recon-105

struct LIMA (Zhou et al., 2023a), a small scale106

3https://github.com/JushBJJ/Mr.-Ranedeer-AI-Tutor

IT datasets, by adding corresponding role descrip- 107

tions to each question. The resulting dataset is 108

termed LIMA-Role. Subsequently, we fine-tune 109

LLMs, such as Mistral-7B and Llama-2-7B, on 110

this augmented dataset. The self-prompt tuned 111

LLMs can automatically generate corresponding 112

role-play prompts for a given question as shown 113

in Figure 1. We compare self-prompt tuned LLMs 114

with instruction tuned baselines using 8 traditional 115

benchmarks and an open-ended question test. Our 116

results demonstrate consistent improvements over 117

standard instruction tuned baselines on the major- 118

ity of datasets, proving the efficacy of self-prompt 119

tuning. 120

To the best of our knowledge, self-prompt tuning 121

is the first to make LLMs themselves to generate 122

prompts by fine-tuning. Our method opens a new 123

avenue for automating diverse prompting strate- 124

gies. We believe our work will catalyze further 125

exploration in automating more advanced prompt- 126

ing techniques, such as least-to-most prompting 127

(Zhou et al., 2023b) and tree-of-thought prompting 128

(Yao et al., 2023). 129

Our main contributions are as follows: 130

• We propose self-prompt tuning, a novel ap- 131

proach achieving automation of role-play 132

prompting through fine-tuning LLMs. 133

• We release LIMA-Role, an enhanced version 134

of the LIMA dataset annotated with role-play 135
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prompts using GPT-4, alongside LLMs fine-136

tuned on this dataset.137

• We thoroughly evaluate self-prompt tuned138

LLMs using 8 traditional benchmarks and an139

open-ended question test, demonstrating the140

efficacy of self-prompt tuning.141

2 Related Work142

2.1 Instruction Tuning143

Original pre-trained large language models (LLMs)144

excel as few-shot learners but struggle in zero-shot145

scenarios. Wei et al. (2022a) propose instruction146

tuning, a technique that fine-tunes LLMs on a di-147

verse set of NLP datasets described via instruc-148

tions, significantly improving their zero-shot perfor-149

mance. Following this approach, subsequent works150

like T0 (Sanh et al., 2022), FLAN-T5 (Chung et al.,151

2024), and ZeroPrompt (Xu et al., 2022) expand152

the variety of tasks and the scale of data used for153

instruction tuning, further enhancing the models’154

capabilities. However, the data utilized in these155

works originated from traditional NLP datasets,156

which still lack diversity and complexity compared157

with real queries of human users. To solve this158

problem, researchers have attempted to leverage hu-159

man annotators or LLMs to construct new datasets160

that better align with real-world human instructions.161

OpenAssistant (Köpf et al., 2023) is an open-source162

assistant-style conversation corpus annotated by163

worldwide crowd-sourcing. Self-Instruct (Wang164

et al., 2023a) generates 52k instruction-response165

pairs based on 175 manually-written prompts using166

LLMs. Evol-Instruct (Xu et al., 2024) also relies on167

an initial set of instructions and employs LLMs to168

iteratively rewrite them into more complex instruc-169

tions. LIMA (Zhou et al., 2023a) trains a LLM that170

approaches the capabilities of proprietary models171

using small-scale but high-quality data collected172

from wikiHow, Stack Exchange, and Reddit. Orca173

(Mukherjee et al., 2023) progressively fine-tunes174

LLMs on a massive corpus generated by GPT-4175

to enhance their reasoning abilities. Essentially,176

instruction tuning alleviates the burden on users177

to craft prompts. And our proposed self-prompt178

tuning takes a further step by automating more179

complex prompting strategy.180

2.2 Role-playing Abilities of LLMs181

Modern LLMs exhibit remarkable adaptability and182

interactive capabilities in role-playing tasks. These183

models can flexibly adjust their output style ac- 184

cording to the needs of different roles, providing 185

users with a customized conversation experience. 186

Shanahan et al. (2023) advocates LLMs as role 187

simulators and warns against falling into the trap 188

of anthropomorphism. Wang et al. (2023b) pro- 189

pose RoleLLM, a role-playing framework of data 190

construction and evaluation. Beyond facilitating 191

immersive interactions, role-playing can also en- 192

hance the model’s performance across downstream 193

NLP tasks. Wu et al. (2023) employ LLMs to 194

emulate judges possessing unique personas and 195

backgrounds, thereby enhancing the quality of 196

their summarization assessments. Salewski et al. 197

(2023) direct Large Language Models (LLMs) to 198

embody domain-specific expertise, leading to en- 199

hanced performance in multi-domain QA tasks. 200

Kong et al. (2023) immerse LLMs in diverse expert 201

roles via multi-turn dialogues, thereby augment- 202

ing their reasoning capabilities. Role-play is also 203

employed in LLM-based multi-agent frameworks 204

(Park et al., 2023; Xiong et al., 2023; Liang et al., 205

2023). These studies utilize role-play prompting to 206

facilitate the cooperative interaction among multi- 207

ple agents. While the efficacy of role-play prompt- 208

ing has been demonstrated, the need of manually 209

crafting prompts for each task hinders its broader 210

application. To alleviate this bottleneck, we pro- 211

pose self-prompt tuning, a novel approach that auto- 212

mates prompt design by LLMs themselves, thereby 213

minimizing human intervention. 214

2.3 Prompting Strategies 215

Extensive research and practice have demonstrated 216

that prompts significantly impact the performance 217

of LLMs. To fully unlock the potential of LLMs, 218

various complex prompting strategies, not just role- 219

play prompting, have been developed. Least-to- 220

most prompting (Zhou et al., 2023b) decomposes 221

the original problem into simpler subproblems and 222

solves them in sequence. Self-refine prompting 223

(Madaan et al., 2023) generates an output first and 224

then employs the same LLM to provide feedback 225

and refinement, iteratively improving the initial out- 226

put. Tree-of-thought (Yao et al., 2023) prompting 227

represents potential reasoning paths as a branching 228

tree structure and utilizes search algorithms like 229

DFS or BFS to explore and identify the correct 230

reasoning path. Step-back prompting (Zheng et al., 231

2024) involves abstracting information to derive 232

high-level concepts and first principles, which are 233

then utilized to guide the reasoning process. These 234
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USER: Next, I will provide you with a question, and you should select a role who is suitable to answer this

question. The selection of roles should adhere to the following principles:

1. Try to choose a role that is skilled at answering the given question.

2. Try to choose specific professions.

3. Try to choose the roles that match the difficulty level of the problem.

No need to actually answer the question. Please format your response as follows:

A: This question is a [] problem involving []. To better solve it, I will act as a [] who [].

Here is an example:

A: This question is a mathematical problem involving basic arithmetic and logic. To better solve it, I will act

as an excellent math teacher who can always provide clear explanations for math-related problems.

Here is the question I need you to deal with: 

Q: Can brain cells move? By movement I mean long distance migration (preferably within the brain only).

ASSISTANT (GPT-4): A: This question is a neuroscience problem involving cell biology and migration. To better

solve it, I will act as a neuroscientist who specializes in the study of the brain and its cellular behaviors.

Generation of Role-Play Prompts by GPT-4

Below is a chat between a user and an AI assistant.

USER: Can brain cells move? By movement I mean long distance migration (preferably within the brain only).

ASSISTANT: [This question is a neuroscience problem involving cell biology and migration. To better solve it, I

will act as a neuroscientist who specializes in the study of the brain and its cellular behaviors.]

The question is relatively broad and one should take into account that the brain not only consists of neurons,

but also glial cells (supportive cells) and pre-mitotic neuronal stem cells ... Most notably, post-mitotic

neurons destined to fulfill peripheral functions have to migrate over relatively long distances from the neural

crest to their target locations (Neuroscience, 2nd ed, Neuronal Migration).

Data Format for Fine-tuning LLMs on LIMA-Role

Figure 2: An illustration of LIMA-Role dataset construction process. The upper sub-image displays the prompt
used for GPT-4 role-play prompt annotation. The lower sub-image shows how role-play prompts are utilized to
construct LIMA-Role. The question to be annotated and the corresponding role-play prompts generated by GPT-4
are highlighted in gray and blue, respectively.

prompting strategies necessitate providing few-shot235

examples to guide LLMs in following a specific236

thought pattern. Our proposed self-prompt tuning237

introduces a novel approach that involves construct-238

ing a dataset embodying the desired thought pro-239

cess and then fine-tuning LLMs to inject this think-240

ing pattern into their parameters. Our experiments241

have demonstrated the success of this method in242

role-play prompting. And we leave the extension243

of self-prompt tuning in other prompting strategies244

to future work.245

3 Self-Prompt Tuning246

In this section, we introduce our proposed self-247

prompt tuning in detail. Self-prompt tuning con-248

sists of two steps as follows: (1) Modify an ex-249

isting instruction tuning dataset to include role-250

play prompts. (2) Fine-tune LLMs on the resulting251

dataset to enable them automatically generate role-252

play prompts tailored to the specific questions.253

3.1 Construct LIMA-Role Dataset 254

The small scale yet high-quality instruction tun- 255

ing dataset, LIMA (Zhou et al., 2023a), comprises 256

1,000 single-turn dialogues and 30 multi-turn di- 257

alogues, making it highly suitable to serve as a 258

foundational dataset. Studies by Salewski et al. 259

(2023); Kong et al. (2023) demonstrate that taking 260

on expert roles for a given task can typically en- 261

hance the model’s performance. Building on this 262

premise, we employ GPT-4 in one-shot manner to 263

generate expert role-play prompts for each training 264

instance in LIMA (only consider the first ques- 265

tion for multi-turns data). These role-play prompts 266

are then prefixed to the corresponding answers, 267

yielding a new dataset, LIMA-Role. Inspired by 268

chain-of-thought prompting (Wei et al., 2022b), the 269

question summarization is also designed into the 270

role-play prompt, aiming to help generate correct 271

role descriptions. We provide prompts utilized for 272

GPT-4 and an example illustrating the process of 273

modifying one data instance in Figure 2. Addi- 274

tionally, GPT-4 declines to generate role prompts 275

to some unsafe, biased or unethical questions in 276
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LIMA, 14 in total. We manually design prompts277

with the role of "AI assistant" for these questions.278

While LLMs have demonstrated remarkable ca-279

pabilities in data annotation tasks (Wang et al.,280

2023a; Xu et al., 2024, 2023), it remains neces-281

sary to validate the data quality of LIMA-Role. We282

conduct a random selection of 100 entries from the283

dataset to undergo manual evaluation, focusing on284

three key aspects: formatting, question summariza-285

tion, and role description. The assessment reveals286

that 100% of the entries maintain a consistent for-287

mat, 96% correctly summarize the questions, and288

97% offer appropriate role descriptions. Therefore,289

we conclude that the data quality of LIMA-Role290

meets our criteria.291

3.2 Fine-tune LLMs on LIMA-Role292

After completing the construction of LIMA-Role,293

we fine-tune original pre-trained LLMs like Mistral-294

7B on that dataset with the standard supervised loss.295

We organize the data in the form of interaction296

between "AI assistant" and "user", and set a fixed297

system prompt, as shown in Figure 2.298

4 Experiments299

4.1 Tasks and Datasets300

Initial investigations into instruction tuning (Zhou301

et al., 2023a; Xu et al., 2024) involved compar-302

ing various LLMs’ responses to open-ended ques-303

tions, utilizing both human and GPT-4 assessments304

to gauge their quality. Gudibande et al. (2024)305

highlighted that relying solely on this evaluation306

method may result in an overestimation of model307

quality. Therefore, we combine traditional NLP308

benchmarks and open-ended questions to compre-309

hensively evaluate the efficacy of self-prompt tun-310

ing.311

NLP Benchmarks We hope that self-prompt tuned312

LLMs can automatically generate expert role-play313

prompts for different questions. Therefore, datasets314

containing multi-domain problems are highly suit-315

able for evaluation. MMLU (Hendrycks et al.,316

2021) is a multi-domain QA dataset and has been317

widely used to evaluate LLMs. We sample 2000318

questions from MMLU, balanced across 10 cate-319

gories (35 subcategories). CSQA (Talmor et al.,320

2019), StrategyQA (Geva et al., 2021), TruthfulQA321

(Lin et al., 2022), and OpenBookQA (Mihaylov322

et al., 2018) are also muti-domain datasets and323

included. We additionally add GSM8K (math)324

(Cobbe et al., 2021), HumanEval (code) (Chen325

et al., 2021), Date Understanding (reasoning) (Sri- 326

vastava et al., 2023) to enrich the form and content 327

of the evaluation. More details can be found in 328

Table 2. 329

Open-ended Questions We leverage the LIMA 330

test set, comprising 300 challenging questions au- 331

thored by real users, to assess the capabilities of 332

LLMs. See more details in Table 2. 333

4.2 Experimental Setup 334

Models We self-prompt tune original Mistral-7B 335

and Llama-2-7B, which are the leading open- 336

source LLMs at the time of writing. 337

Baselines In addition to comparing self-prompt 338

tuned LLMs on LIMA-Role and instruction tuned 339

LLMs on original LIMA, we also present the exper- 340

imental results of ChatGPT (gpt-3.5-turbo-0125), 341

Llama-2-chat (the official version), and Mistral- 342

instruct (the official version) to enhance our com- 343

prehension of the models’ capabilities. 344

Training Details In line with prior research (Zhou 345

et al., 2023a), we respectively conduct fine-tuning 346

of Mistral-7B on LIMA and LIMA-Role datasets 347

for 4 epochs, employing AdamW optimization with 348

parameters β1 = 0.9, β2 = 0.999, and a weight 349

decay of 0.1. We initialize the learning rate to 350

1e − 5 without warmup, implementing a cosine 351

decay schedule that decreases to 0 by the end of 352

training. The batch size is set to 64, with a maxi- 353

mum token limit of 4096. To mitigate overfitting, 354

dropout is applied to attention calculations, starting 355

at pd = 0.0 at the bottom layer and linearly raising 356

the rate to pd = 0.25 at the last layer. We utilize 357

FlashAttention-2 (Dao, 2024) to optimize memory 358

usage and expedite training. The method and pa- 359

rameter settings for fine-tuning Llama-2-7B mirror 360

those of Mistral-7B, differing only in the number 361

of training epochs, which is set to 8. Training is 362

performed on 4 A100-80G. Due to the small data 363

scale of LIMA dataset, model performance exhibits 364

variability; hence, we fine-tune four models for the 365

same dataset using different seeds and average their 366

performance across NLP benchmarks. 367

Evaluation Details For both NLP benchmarks and 368

the LIMA test set, evaluations are conducted in a 369

zero-shot manner, without any few-shot exemplars. 370

Consistent with prior studies (Kojima et al., 2022; 371

Kong et al., 2023), we employ greedy decoding 372

with a temperature of 0 to ensure deterministic 373

results. While averaging the performance of four 374

models fine-tuned on the same dataset across NLP 375
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Model MMLU CSQA Strategy Truthful OpenBook HumanEval GSM8K Date AVG

ChatGPT 67.3 76.9 61.7 60.2 81.6 68.3 80.8 67.8 70.6

Llama-2-7B

Llama-Chat 44.0 58.6 59.0 40.4 63.6 13.7 29.3 49.3 44.7

Llama-LIMA 40.4 48.6 55.5 39.7 48.2 9.4 13.5 43.1 37.3
Llama-Role 42.9 57.3 59.5 47.8 52.1 8.7 13.6 43.1 40.6

Llama-LIMA† 41.8 49.5 57.2 38.9 50.6 9.4 14.0 44.2 38.2
Llama-Role† 44.1 58.0 59.6 48.0 50.2 8.5 14.5 42.8 40.7

Mistral-7B

Mistral-Instruct 51.1 66.4 60.2 51.8 72.2 33.2 35.2 56.4 53.3

Mistral-LIMA 53.2 52.6 58.5 43.9 63.1 25.9 22.4 40.6 45.0
Mistral-Role 56.0 59.8 61.9 46.1 68.2 26.6 25.8 42.7 48.4

Mistral-LIMA† 53.4 54.8 59.3 42.7 63.4 27.9 20.4 42.5 45.6
Mistral-Role† 57.1 61.3 62.8 45.3 69.6 27.8 27.1 42.0 49.1

Table 1: The performance of self-prompt tuned LLMs, standard instruction tuned LLMs (LIMA version and official
version), and ChatGPT on each dataset. Without †: average performance of the four models. With †: results from
the model with the best average performance among the four models.

Dataset Nq Lq Format

MMLU 2000 79.4 option (A-D)
CSQA 1221 27.8 option (A-E)
StrategyQA 2290 9.6 yes or no
TruthfulQA 817 47.3 option (A-D)
OpenbookQA 500 26.5 option (A-D)
HunamEval 164 67.7 code
GSM8K 1319 46.9 arabic number
Date 369 35.0 Option (A-F)

LIMA-Test 300 21.3 free

Table 2: Relevant information of benchmarks and LIMA
test set. Nq denotes the number of questionsin each
dataset. Lq denotes the average words of questions in
each dataset. Format denotes the answer format of each
dataset.

benchmarks, we select the model with the best376

average performance from the four and evaluate it377

on the LIMA test set. The quality of their responses378

is assessed using GPT-4 (gpt-4-1106-preview, we379

adopt the prompt proposed by Zhou et al. (2023a)).380

Role-play prompts generated by self-prompt tuned381

LLMs are invisible to GPT-4 to ensure fairness.382

4.3 Results on NLP Benchmarks383

Detailed experimental results on NLP benchmarks384

are presented in Table 1. We report both the aver-385

age performance and peak performance of LLMs386

simultaneously. For HumanEval, the evaluation387

metric utilized is pass@1, whereas accuracy serves 388

as the metric for the remaining datasets. 389

Average Performance Comparison As shown in 390

Table 1, self-prompt tuned LLMs consistently out- 391

perform those instruction-tuned on LIMA across 392

the majority of benchmarks, demonstrating the effi- 393

cacy of our approach. Delving deeper, we compare 394

the performance of Mistral-Role and Mistral-LIMA 395

on domain-specific subsets within the MMLU. Ac- 396

cording to the results in Figure 3, Mistral-Role out- 397

performs Mistral-LIMA in 9 out of 10 domains (28 398

out of 34 subcategories) revealing that self-prompt 399

tuning is beneficial across a diverse range of fields. 400

Moreover, to assess the capability of self-prompt 401

tuned LLMs to automate role-play prompting, we 402

extract roles automatically generated by Mistral- 403

Role for questions in each domain-specific subset 404

in MMLU. By identifying and visualizing the most 405

frequent roles through word clouds in Figure 4, 406

we observe that Mistral-Role assigns appropriate 407

expert roles to questions across different domains. 408

This highlights that self-prompt tuning successfully 409

enables LLMs to autonomously generate role-play 410

prompts. We also observe that self-prompt tuned 411

LLMs exhibit unstable performance improvement 412

on single-domain tasks compared to multi-domain 413

QA tasks (Llama-Role on HumanEval, GSM8K, 414

and Date). Kong et al. (2023) reveal that while ex- 415

pert roles generally brings performance gains, this 416

improvement is not guaranteed. In single-domain 417
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Figure 3: The performance comparison between Mistral-LIMA and Mistral-Role across various domain-specific
subsets in MMLU. Mistral-Role outperforms Mistral-LIMA in 9 out of 10 domains and underperforms in chemistry.
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Figure 4: Word clouds based on roles generated by Mistral-Role across domain-specific subsets in MMLU. Words
characterized by larger font sizes and deeper color correspond to higher frequencies.

tasks, where the format of questions tends to be418

highly consistent, the role-play prompts generated419

by self-prompt tuned LLMs are quite similar. This420

lack of diversity in the prompts likely contributes421

to the observed instability in performance improve-422

ments. Conversely, for multi-domain QA tasks,423

the diversity in the generated role-play prompts424

is notably higher, leading to stable improvement.425

Thus, the limited improvement of Llama-Role in426

single-domain tasks can be attributed to this factor.427

Peak Performance Comparison Self-prompt428

tuned LLMs with the best average performance still429

surpass standard instruction tuned baselines as in-430

dicated in Table 1. However, when comparing with431

official instruction-tuned versions, the self-prompt432

tuned LLMs tend to underperform. It’s crucial to433

emphasize that both Llama-Role and Mistral-Role434

are fine-tuned on only 1030 data points, whereas435

the official versions are fine-tuned on datasets ex-436

ceeding 10,000 data points and undergo complex437

RLHF (Ouyang et al., 2022). This discrepancy in 438

training dataset scale and methodology accounts 439

for the performance differences observed. 440

4.4 Results on Open-ended Questions 441

We select self-prompt tuned and standard instruc- 442

tion tuned Mistral-7B with the best average perfor- 443

mance to conduct open-ended question test. Re- 444

sults annotated by GPT-4 are depicted in Figure 445

5. Despite only inserting non-substantive role-play 446

prompts into the LIMA dataset, Mistral-Role still 447

generate better responses than Mistral-LIMA 5% 448

of the time, further underscoring the widespread 449

effectiveness of self-prompt tuning. Nonetheless, 450

Mistral-Role exhibits subpar performance com- 451

pared to the official version and ChatGPT, indi- 452

cating that merely 1,030 high-quality data points 453

are insufficient for effectively fine-tuning a 7B- 454

parameter model. 455
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No. Prompt MDQA SDTask

0 None 54.3 29.6

1 [Question Description]. 53.8 29.5
2 [Question Description]. As a result, I will solve it like [Role Description]. 57.3 31.0
3 [Question Description]. Therefore, I will answer it as [Role Description]. 57.4 31.8
4 [Question Description]. To solve this problem, I will act as [Role Description]. 57.9 24.7
5 [Question Description]. So I will become [Role Description]. 58.6 31.3
6 [Question Description]. Fortunately, I am [Role Description]. 58.4 32.9
7 [Question Description]. For this reason, I will be [Role Description]. 57.4 30.6
8 [Question Description]. From now on, I will think like [Role Description]. 58.4 31.7

Table 3: The performance of Mistral-Role adopting different prompt designs. Similarly, we train four models for
each prompt design with different random seeds and report the average performance here.

4.5 Ablation Study456

While the performance of LLMs is highly sensitive457

to the prompt in various prompting strategies, the458

influence of prompt design on fine-tuning models459

remains unexplored. Given the high cost of access-460

ing GPT-4, we maintain the question description461

and role description, only modifying the left sec-462

tions of the prompt. The prompts we design and463

their practical results on Mistral are summarized464

in Table 3. Prompt 1, containing only the ques-465

tion description, achieves the lowest performance,466

thereby eliminating interference from question de-467

scriptions. Prompts 2-8, which add role descrip-468

tions with variations at the junctions, consistently469

show improvements in both multi-domain QA tasks470

and single-domain tasks. Among these, Prompts 6471

and 8 exhibit relatively optimal performance. We472

ultimately select Prompt 8, which demonstrates the473

most balanced performance improvement across474

each dataset, as the final design. The results in-475

dicate that prompt design also impacts the perfor-476

mance of fine-tuning LLMs, but not as sensitively477

as in non-fine-tuning scenarios.478

5 Conclusion479

In this paper, we propose self-prompt tuning, a480

novel approach that enables large language mod-481

els (LLMs) to autonomously generate role-play482

prompts through fine-tuning. By first construct-483

ing the LIMA-Role dataset, which augments the484

LIMA dataset with expert role-play prompts gen-485

erated by GPT-4, and then fine-tuning LLMs on486

this dataset, self-prompt tuned LLMs gained the487

ability to automatically generate relevant expert488

role-play prompts tailored to any given question.489

Comprehensive evaluations on 8 traditional NLP490

benchmarks and an open-ended question test reveal491

28%

20%

10%

49%

44%

37%

23%

36%

53%

L I M A

O f f i c i a l

C h a t G P T

Role wins Tie Role loses

Figure 5: Preference evaluation on LIMA test set using
GPT-4 as the annotator. In this context, LIMA refers to
Mistral-LIMA, while Role denotes Mistral-Role.

that self-prompt tuned LLMs consistently outper- 492

form standard instruction tuned baselines across the 493

majority of datasets. The results highlight the effi- 494

cacy of self-prompt tuning in automating role-play 495

prompting. Overall, this work paves a promising 496

new path for automating diverse complex prompt- 497

ing strategies. 498

Limitations 499

Due to its small scale and ease of modification, we 500

select the LIMA dataset as the foundational dataset. 501

However, the data scale of 1,030 samples is in- 502

sufficient to fully fine-tune a 7B parameter model, 503

rendering our models unable to make a meaningful 504

performance comparison with ChatGPT and the of- 505

ficial versions. Moreover, we only manually make 506

limited attempts at designing role-play prompts 507

for the LIMA-Role dataset, and cannot guarantee 508

that the optimal effects of self-prompt tuning were 509

achieved. Last, owing to limited computational 510

resources, we are unable to apply our method on 511

LLMs with larger parameter scales. Consequently, 512
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we could not obtain conclusions about how the513

effects of self-prompt tuning vary as the scale of514

model parameters increases.515
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