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Abstract

Most causal discovery procedures assume that there are no latent confounders
in the system, which is often violated in real-world problems. In this paper, we
consider a challenging scenario for causal structure identification, where some
variables are latent and they form a hierarchical graph structure to generate the
measured variables; the children of latent variables may still be latent and only
leaf nodes are measured, and moreover, there can be multiple paths between every
pair of variables (i.e., it is beyond tree structure). We propose an estimation proce-
dure that can e�ciently locate latent variables, determine their cardinalities, and
identify the latent hierarchical structure, by leveraging rank deficiency constraints
over the measured variables. We show that the proposed algorithm can find the
correct Markov equivalence class of the whole graph asymptotically under proper
restrictions on the graph structure.

1 Introduction
In many cases, the common assumption in causal discovery algorithms–no latent confounders–may
not hold. For example, in complex systems, it is usually hard to enumerate and measure all task-
related variables, so there may exist latent variables that influence multiple measured variables,
the ignorance of which may introduce spurious correlations among measured variables. Much
e↵ort has been made to handle the confounding problem in causal structure learning. One research
line considers the causal structure over measured variables, including FCI and its variants [Spirtes
et al., 2000, Pearl, 2000, Colombo et al., 2012, Akbari et al., 2021], matrix decomposition-based
approaches [Chandrasekaran et al., 2011, 2012, Frot et al., 2019], and over-complete ICA-based
ones [Hoyer et al., 2008, Salehkaleybar et al., 2020].

Another line focuses on identifying the causal structure among latent variables, including Tetrad
condition-based approaches [Silva et al., 2006, Kummerfeld and Ramsey, 2016], high-order moments-
based ones [Shimizu et al., 2009, Cai et al., 2019, Xie et al., 2020, Adams et al., 2021, Chen
et al., 2022], matrix decomposition-based approach Anandkumar et al. [2013], copula model-based
approach [Cui et al., 2018], mixture oracles-based approach [Kivva et al., 2021], and multiple
domains-based approach [Zeng et al., 2021]. Moreover, regarding the scenario of latent hierarchical
structures, previous work along this line assumes a tree structure [Pearl, 1988, Zhang, 2004, Choi
et al., 2011, Drton et al., 2017], where there is one and only one undirected path between every pair
of variables. This assumption is rather restrictive and the structure in real-world problems could be
more complex–beyond a tree.

In this paper, we consider a more challenging scenario where latent causal variables form a hierarchical
graph structure to generate measured variables—the children of latent variables may still be latent
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Figure 1: Example hierarchical graphs that our method can handle,
where Xi are measured variables and Li are latent variables.

Pa: Parents
PCh: Pure children
PDe: Pure descendants
Gp: Grandparents
Sib: Siblings
M: Measured

pure descendants
Table 1: Graphical

notations.

and only the leaf nodes are measured, and moreover, there can be multiple paths between every pair
of variables (see the example hierarchical graphs in Figure 1). We aim to find out identifiability
conditions of the hierarchical structure that are as mild as possible, and meanwhile, develop an
e�cient algorithm with theoretical guarantees to answer the following questions. (1) How can we
locate latent parents for both measured and latent variables, as well as determining the cardinality of
the latent parents, by only providing the leaf nodes? (2) How can we identify the causal relationships
among latent variables and those from latent variables to measured variables?

Interestingly, we can answer these questions by properly making use of rank deficiency constraints;
finding and leveraging rank properties in specific ways enable us to identify the Markov equivalence
class of the whole graph, under appropriate conditions. Our contribution is mainly two-fold:

• We propose a structure identification algorithm that can e�ciently locate latent variables (in-
cluding their cardinalities) and identify the latent hierarchical structure, by leveraging the rank
deficiency.
• We show that the proposed algorithm can find the correct graph asymptotically under mild

restrictions of the graph structure. Roughly speaking, we show that it is su�cient to have k + 1
pure children (which can be latent), as well as another k + 1 neighbors, to identify the latent
variable set with size k (see the detailed conditions in Definition 4 and Condition 1).

It is worth mentioning that rank constraints have been used in previous methods [Silva et al., 2006,
Kummerfeld and Ramsey, 2016], but they assume that each latent variable has three measured ones
as children and each measured variable has only one latent parent. There are also other methods for
latent structure learning; for instance, Anandkumar et al. [2013], which uses matrix decomposition,
needs 3k measured children, and the GIN-based method [Xie et al., 2020], which makes use of
high-order statistics, needs 2k measured children. However, all those developments require that
every latent variable should have measured variables as children. Very recently, Xie et al. [2022]
proposes an approach for latent hierarchical structure by leveraging the GIN condition under linear
non-Gaussian models, but it assumes that each variable has only one parent, where both figures in
Figure 1 do not satisfy.

This paper is organized as follows. In Section 2, we give formal definitions of the latent hierarchical
causal model under investigation and give conditions that are essential to the identifiability of the
graph structure. In Section 3, we propose an e�cient algorithm that makes use of rank-deficiency
constraints to identify the latent hierarchical structure. Moreover, we show theoretically in Section
4 that the proposed algorithm outputs the correct Markov equivalence class of the whole graph
asymptotically. In Section 5, we empirically validate the proposed approach on synthetic data.
Notations for graphical representations that are used in the paper are provided in Table 1.

2 Latent Hierarchical Causal Model
In this paper, we focus on latent hierarchical causal model with graph structure G, where both
measured variables XG = {X1, · · · , Xm} and latent variables LG = {L1, · · · , Ln} are generated by their
latent parents in a directed acyclic graph (DAG) with linear relationships:

Xi =
P

Lj2Pa(Xi) bi jL j + "Xi , Lj =
P

Lk2Pa(L j) c jkLk + "Lj , (1)
where bi j and c jk are the causal strength from Lj to Xi and from Lk to Lj, respectively, and "Xi and
"L j are noise terms that are independent of each other. Without loss of generality, we assume that all
variables in XG and LG have zero mean.

Below, we first give the general definition of a linear latent hierarchical graphical model in Definition
1. Then we give more detailed conditions on the graph structure (Definitions 2-4) that are essential to
formalize the identifiability condition of the latent hierarchical structure.
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Definition 1 (Linear Latent Hierarchical (L2H) Model). A graphical model, with its graph G =
(VG,EG), is a linear latent hierarchical model if:

1. VG = XG
S

LG, where XG is the set of measured variables and LG is the set of latent variables,

2. there is at least one undirected path between every pair of variables, and

3. each variable in XG and LG are generated by the structural equation models in Eq. 1.

Generally, without further constraints, the causal structure of the L2H model is hard to be identified.
It has been shown that if the underlying graph structure satisfies a tree [Pearl, 1988], then the structure
is identifiable. However, this structural constraint may be too strong to hold in many real-world
problems. In this paper, we give su�cient conditions that are much milder than previous ones, as
well as an e�cient search algorithm, for the identifiability of the causal structure.

We now give the corresponding definitions, including pure children, pure descendants, and e↵ective
cardinality, that will be used in the identifiability condition, together with illustrative examples.
Definition 2 (Pure Children). Variables V are pure children of a set of latent variables L in a graph
G, if PaG(V) = L and V \ L = ;. That is, V have no other parents than L. We denote the pure
children of L by PChG(L).

Accordingly, Pure Descendants of a set of latent variables L are defined as all recursive pure children
of L (including PChG(L), PChG(PChG(L)), etc.), denoted by PDeG(L). Furthermore, measured
variables that are pure descendent of L are called Measured Pure Descendants, denoted byMG(L).
Example 1. In Figure 1(a), the pure children of {L2, L3} are {L6, · · · , L10}, its pure descendants are
{L6, · · · , L10, X1, · · · , X11}, and its measured pure descendants are {X1, · · · , X11}.
Definition 3 (E↵ective Cardinality). For a set of latent variables L, denote by C the largest subset of
PChG(L) such that there is no subset C0 ✓ C satisfying |C0| > |PaG(C0)| and |PaG(C0)| < |L|. Then,
the e↵ective cardinality of L’s pure children is |C|.

In the case when L and its pure children are fully connected, the e↵ective cardinality is just the
cardinality of the pure children of L. However, for Figure 1(a), the e↵ective cardinality of the pure
children of {L7, L8} is 3, because here the largest subset that satisfies the condition is {X5, X6, X7}.

We further define latent atomic cover that constrains the number of pure children and neighbours for
latent variables, which are essential for structural identifiability.
Definition 4 (Latent Atomic Cover). Let L = {L1, ..., Lk} be a set of latent variables in graph G, with
|L| = k. We say that L is a latent atomic cover if the following conditions are met:

1. there exists a subset of pure children C0 ✓ PChG(L) with e↵ective cardinality � k + 1;

2. there exists a neighbour set B to L s.t. B
T

C0 = ; and |B| = k + 1;

3. there does not exist a partition of L = L1 [ L2, so that both L1,L2 satisfy conditions 1 and 2 and
{PChG(L1) [ PChG(L2)}\L = PChG(L).

Example 2. In Figure 1(a), L = {L2, L3} is a latent atomic cover with k = 2, because (1) there exists
a subset of pure children C0 = {L6, L7, L8} with e↵ective cardinality 3 = k + 1, (2) there exists a
neighbor set B = {L1, L9, L10}, s.t. B \ C0 = ; and |B| = 3 = k + 1, and (3) neither {L2} or {L3}
satisfies the above two conditions.

We now give the conditions for structural identifiability from measured variables XG alone, including
those on the structural constraints (Condition 1) and rank faithfulness assumption (Condition 2).
Condition 1 (Irreducible Linear Latent Hierarchical (IL2H) Graph). An L2H graph G is an IL2H
graph if

1. every latent variable L 2 L in G belongs to at least one latent atomic cover,

2. for any pair of latent atomic covers (LA,LB), if PDeG(LA)
T

PDeG(LB) , ;, then either (a)
LA ⇢ LB or (b) LA ⇢ PDeG(LB) or (c) LB ⇢ LA or (d) LB ⇢ PDeG(LA), and

3. for any three latent atomic covers LA,LB,LC, if the causal structure satisfies LA ! LB ! LC or
LA  LB ! LC, and |LB| = k, then LB has 2k neighbors, except for LA,LC and the parents in
the v structure where LB is a collider.
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Next, we give the faithfulness assumption, which holds for generic covariance matrices consistent
with G [Spirtes, 2013].
Condition 2 (Rank Faithfulness). A probability distribution P is rank faithful to a DAG G if every
rank constraint on a sub-covariance matrix that holds in P is entailed by every linear structural
model with respect to G.

We will show in Section 4 that if the underlying latent hierarchical graph satisfies an IL2H graph
and the rank faithfulness holds, then the location and cardinality of latent variables, and the causal
structure among latent atomic covers and that from latent atomic covers to measured variables, are
identifiable with appropriate search procedures. Below, let us first present the identification procedure.

3 Structure Identification with Rank-Deficiency Constraints
We propose an identification algorithm (Algorithm 1) to identify the structure of IL2H graphs, by
leveraging rank-deficiency constraints of measured variables. In particular, the algorithm includes
three phases: finding causal clusters and assigning latent atomic covers in a greedy manner (“find-
CausalClusters"), refining incorrect clusters and covers due to the greedy search (“refineClusters"),
and refining edges and finding v structures (“refineEdges").

Algorithm 1: Latent Hierarchical Causal Structure Discovery
Input :Date from a set of measured variables XG
Output :Markov equivalence class G0

1 G0 = findCausalClusters (XG) ; // find clusters and assign latent covers greedily

2 G0 = refineClusters (G0) ; // refine incorrect clusters and covers from greedy search

3 G0 = refineEdges (G0) ; // refine some edges and find v structures

Before describing the identification algorithm, we first give a theorem that relates the graphical
structure of an IL2H graph to the rank constraints over the covariance matrix of measured variables.
Theorem 1 (Graphical Implication of Rank Constraints in IL2H Graphs). SupposeG satisfies an IL2H
graph. Under the rank faithfulness assumption, the cross-covariance matrix ⌃XA,XB over measured
variables XA and XB in G (with |XA|, |XB| > r) has rank r, if and only if there exists a subset of latent
variables L with |L| = r such that L d-separates XA from XB, and there is no L0 with |L0| < |L| that
d-separates XA from XB. That is,

rank(⌃XA,XB ) = min{|L| : L d-separates XA from XB}.

For instance, in Figure 1(a), rank(⌃{X1,X2},{X3,X4}) = 1, because L6 d-separates {X1, X2} from {X3, X4}
with |L6| = 1.

Rank Test. We test rank deficiency by leveraging canonical correlations [Anderson, 1984]. Specif-
ically, the number of non-zero canonical correlations between two random vectors is equal to the
rank. Denote by ↵i the i-th canonical correlation coe�cient between XA and XB. Then under the
null hypothesis that rank(⌃XA,XB)  r, the statistics �(N� (p + q + 3)/2)

Pmax(p,q)
i=r+1 log(1 � ↵2

i ) is
approximately �2 distributed with (p � r)(q � r) degrees of freedom, where p = |XA|, q = |XB|, and N
is the sample size.

We further show that for any subset of latent variables in an IL2H graph, we can use the measured
variables as surrogates to estimate the rank, as indicated in the following theorem.
Theorem 2 (Measurement as a surrogate). Suppose G is an IL2H graph. Denote by A,B ✓ VG two
subsets of variables in G, with A \ B = ;. Furthermore, denote by XA the set of measured variables
that are d-separated by A from all other measures, and by XB the set of measured variables that are
d-separated by B from all other measures. Then rank(⌃A,B) = rank(⌃XA,XB ).

A special case when Theorem 2 holds is that XA and XB are the measured pure descendants of A
and B, respectively. Note that Theorem 1 is a special case of Theorem 2.8 in Sullivant et al. [2010]
when applied to IL2H graphs. Di↵erent from the setting in Sullivant et al. [2010] where access to the
full covariance matrix ⌃VG,VG is assumed, we only have access to the covariance matrix ⌃XG,XG over
the measured variables XG, which we will use to infer the causal structure over the entire graph G.
For this reason, although we can infer the number of latent variables that d-separate any two sets of
measured variables XA,XB, we cannot directly know the exact location of these variables in the graph.
Fortunately, the structure constraints of the IL2H graph and Theorem 2 will allow us to reconstruct
the graph with certain search procedures, as shown below.
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3.1 Phase I: Finding Causal Clusters
We start to discover clusters in a recursive and greedy manner, by performing rank-deficiency tests
over measured variables. We denote by S a set of active variables that is under investigation; S is set
to XG initially and will be updated to include latent atomic covers when rank deficiency is discovered.
Below, we first give the definition about set size and the definition of atomic rank-deficiency set,
which will be used in Rule 1 and Algorithm 2.
Definition 5 (Set Size). Suppose S is a set. We denote by |S| the cardinality of S; that is, |S| is
the number of elements S i in S, for S i 2 S. We denote by kSk the number of variables in S, where
kSk = |

S
i S i|, for S i 2 S.

For example, suppose S =
�
{L1}, {L6}, {L7, L8}, {L9, L10}

 
. Then |S| = 4 and kSk = 6.

Definition 6 (Atomic Rank-Deficiency Set). Given a graph G0. Denote by S ✓ VG0 an active set
of variables that is under investigation. Let A ⇢ S and B = S\A. Denote by XA = MG0(A) and
XB =MG0(B) the measured pure descendants of A and B, respectively. If (1) ⌃A,B is rank deficient,
i.e., rank(⌃A,B) < min{kAk , kBk}), and (2) no proper subset of A is rank deficient, then A is called
an atomic rank-deficient set, and ⌃A,B can be estimated by ⌃XA,XB .

For example, in Figure 1(a), suppose now we have the measured variables XG under investigation, so
the active variable set S = XG. A = {X1, X2} ⇢ S forms an atomic rank-deficiency set because the
cross-covariance matrix of XA against all other measures has rank 1 (i.e., rank deficient). According
to Theorem 1, the rank deficiency occurs because the latent parent L6 of {X1, X2} d-separates them
from all other measures. This naturally leads to the following rule that assigns a latent atomic cover
over the rank-deficiency set:

Rule 1: If A is a rank-deficiency set with rank(⌃XA,XB ) = k, then assign a latent atomic cover L of
size k as the parent of every variable Ai 2 A.

Later in Phase II, we will show that Rule 1 may not correctly identify the latent atomic cover
in some cases, and, accordingly, we will further provide an e�cient revision procedure in Phase
II. At the current phase, we use Rule 1, together with certain search procedures, to identify the
clusters and latent atomic covers. The detailed search procedure of Phase I is given in Algorithm
2 (findCausalClusters), which tests for rank deficiency recursively to discover clusters of variables
and their latent atomic clusters. The set of active variables S is set to XG initially (line 1) and will be
updated as the search goes on (line 14). We start to identify the latent atomic cover with size k = 1
(line 1). We consider any subset of the latent atomic covers in S and replace them with their pure
children, resulting in S̃ (line 4). Then we draw a subset of variables A ⇢ S̃ with cardinality at least
k + 1 and conduct a rank deficiency test of A against S\A by estimating the rank of rank(⌃XA,XB)
(lines 6-7). Note that here XA and XB are the measured pure descendants of A and B, respectively,
in the currently learned graph. This step is repeated until all subsets are tested (lines 5-9). If rank
deficiency is found, we merge the overlapping groups into a cluster and add latent covers over the
cluster (lines 10-14). We further reset k = 1 and resume the search (line 15). Otherwise, if no latent
cover is found, we increment k = k+ 1 (line 17). This procedure is repeated until no more clusters are
found. Finally, we connect the elements in S into a chain structure (line 19). Figure 2 illustrates an
example procedure of finding new clusters by applying findCausalClusters to the measured variables
XG generated from the structure in Figure 1(a).

3.2 Phase II: Refining Clusters
As we have mentioned above, the naive assignment of causal clusters in Algorithm 2 (findCausal-
Clusters) may not be correct in some cases. In this section, we provide a precise characterization
of the cases where findCausalClusters incorrectly clusters variables and, accordingly, propose an
e�cient algorithm to correct such cases.

Take Figure 3(a) as an example to illustrate the issue. By applying findCausalClusters to the measured
variables XG, at k = 2, we discovered that {X9, X10, X11} form a cluster and then set a 2-latent atomic
cover {L01, L

0

2} over it (Figure 3(b)). This is not correct, because X9, X10, X11 actually belong to three
di↵erent 1-latent atomic covers, L1, L2, L3, respectively. The incorrect clustering and covering are
because when discovering the rank-deficiency set {X9, X10, X11}, the latent covers {L4, L5}, {L6, L7}
have not been identified yet. If {L4, L5} had already been discovered, we would correctly find that
{X9, L4, L5} form a 1-latent atomic cover, and the algorithm would proceed correctly thereafter. More
generally, findCausalClusters may set incorrect cluster for the rank-deficiency set {X9, X10, X11}, in
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Algorithm 2: Phase I: findCausalClusters
Input :Data from a set of measured variables XG
Output :Graph G0

1 Active set S XG; k  1;
2 repeat
3 repeat
4 draw a set of latent atomic covers L̃ ⇢ S; let S̃ = (S\L̃) [ ([Li2L̃PCh(Li));
5 repeat
6 draw a set of test variables A ⇢ S̃, with kAk � k + 1, and let B S̃\A;
7 k0  rank(⌃XA ,XB ) estimated by rank deficiency test;
8 if k0 < k + 1 then rank deficiency found and keep track of this set A ;
9 until all subsets A exhausted;

10 if any groups with rank deficiency are found then
11 merge overlapping clusters; identify lowest rank k0 found;
12 foreach discovered cluster of variables A with rank k0 do
13 create latent cover L with cardinality k0 as parents of A;
14 S = (S\A) [ L;
15 k = 1; break;
16 until all subsets L̃ exhausted;
17 if no group with rank deficiency is found then k = k + 1;
18 until no more clusters are found;
19 for all S i 2 S, connect them into a chain structure;
20 return G0
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Figure 2: An illustration of Algorithm 2 that discovers new clusters in sequence (marked with gray circle)
by applying findCausalClusters to the measured variables XG generated from the structure in Figure 1(a).
Specifically, we first set k = 1 and the active set is S =

�
X1, · · · , X16

 
and S̃ = S, and we can find the

clusters in (a), and no further cluster can be found with k = 1. Then we increase k to 2 with the active set
S = {

�
L6}, {L7}, X6, · · · , X16

 
and S̃ = S, and then we can find the clusters in (b). Then, the active set is

S =
�
{L4, L5}, {L6}, {L7, L8}, {L9, L10}

 
and we set back k = 1, and when S̃ = {{L4, L5}, X1, · · · , X11} we find the

cluster in (c). Note that when testing the rank over {L4, L5} against other variables, we use their measured pure
descendants in the currently estimated graph instead. The above procedure is repeated to further find the cluster
in (d). Finally, when there are no enough variables for testing, we connect the elements in the active variable set:
connecting {L2, L3} to {L7, L8} in (e).

the case when their parents L1, L2, L3 split the graph into two or more disconnected graphs. This
result is formally stated in the following definition and theorem.

Definition 7 (Bond Set). Consider a set of measured variables X ✓ XG, and a minimal set of latent
variables L ✓ LG that d-separate X from all other measures X0 B XG\X. We say that X is a bond
set if L also d-separates some partition XA ⇢ X0,XB ⇢ X0 from one another.

From the previous example, we have seen that with the existence of bond sets, findCausalClusters
may end up with incorrect clusters and covers. The following theorem shows that the presence of
bond sets is the only reason for incorrect clusters and covers with findCausalClusters.

Theorem 3 (Correct Cluster Condition). Suppose G is an IL2H graph with measured variables XG.
Consider the output G0 from applying findCausalClusters over XG. If none of the clusters in G0 is the
bond set in G, then all latent atomic covers have been correctly identified.

However, without access to the true graph G, we are not able to identify which clusters formed from
findCausalClusters are bond sets. Fortunately, the following properties of the clusters formed over
bond sets provide a way to remove bond sets in our discovered graph even without such knowledge,
so that the clusters and latent covers can be correctly identified.
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Theorem 4 (Correcting Clusters). Denote by G0 the output from findCausalClusters and by G the
true graph. For a latent atomic cover L0 in G0, if the measured pure descendants of L0 is a bond set
in the true graph G, then there exist a set of siblings S of L0 in G0, a set of children C of L0, and a set
of grandparents P of L0, such thatMG0 (S [ C [ P) forms a cluster that is not a bond set in G.

The above theorem shows that whenever forming a bond set, the siblings and grandparents of the
latent cover are the key to correcting the incorrect clusters and covers. Specifically, we will remove
such a cover and use its children to form new clusters with the siblings and grandparents (see details
in Algorithm 3), and Theorem 4 guarantees that these new clusters will not contain bond sets, and
thus, providing correct clusters.
Example 3. In Figure 3(b), the formed cluster {X9, X10, X11} is the bond set in the true graph in
Figure 3(a), and the covers {L01, L

0

2}, {L
0

7}, and {L08} are not correct. Illustration of the algorithm for
this example, including refining the incorrect clusters and covers, is given in Appendix A5.7.
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(b) Output from findCausalClusters
Figure 3: An example where findCausalClusters fails.

Furthermore, with Theorem 4, we give the following rule for correcting the clusters and covers.

Rule 2: For each discovered latent atomic cover L, let V = GpG0(L)
S

S ibG0(L)
S

ChG0(L) and
apply findCausalClusters to V to refine the clusters.

Before introducing the detailed refining algorithm refineClusters based on Rule 2, we first introduce
an operator makeRoot that will be used in the algorithm, which will not change the rank deficiency
constraints (Lemma 5).
Definition 8 (makeRoot). Give a graph G0 and a latent atomic cover L in G0. A makeRoot operator
of L, denoted by makeRoot(L), reorients all outgoing edges of L to L, such that L is a root variable.
Lemma 5 (Rank Invariance). Denote by G0 the output from findCausalClusters and by L a latent
atomic cover in G0. Then all rank constraints, that are possible to be executed by findCausalClusters
prescribed by G0, before and after the operator makeRoot(L) are identical.

Algorithm 3 introduces the procedure of refining clusters based on Rule 2. Starting with the output
G
0 from findCausalClusters, we proceed in a breadth-first search from the root variable (lines 1-3, 5).

Because the root is trivially not over a bond set, Theorem 4 guarantees that for each child of the root,
we will form new clusters that are not over bond sets. For each cover L, if it has only one child, we
will recursively consider the children of its child instead, since if L is over a bond set then its single
child will also be. We add the first set of children into the search set V (line 4). We construct the
search set (line 6) and remove the covers we are refining (lines 7-8). Finally, we make L the root
(line 8) and conduct the search to form new clusters (line 9). The algorithm ends after refining every
latent cover in G0. With this refining procedure, we will derive the correct latent covers for the graph
in Figure 3(a).

3.3 Phase III: Refining Edges
With findCausalClusters and refineClusters, the output G0 correctly identifies the latent variables.
Moreover, G0 correctly identifies the following d-separation: for every L 2 LG0 , its parents PaG0(L)
d-separates L and its descendants from the ancestors of PaG0 (L), and thus, there cannot be any edges
from each L to any of its ancestors beyond its own parents. However, G0 may still have incorrect
edges locally. Specifically, each time we create an atomic cover L in findCausalClusters, the implicit
assumption is that each of its children is conditionally independent of the other children given the
parents L. However, this assumption is not necessarily true, as (i) the children of L may be directly
connected to one another, and (ii) L may only be directly connected to a subset of its children. In
other words, previous steps did not consider condition independence relationships across clusters.
Hence, we need a further step to correct edges over each L and its children.

For example, consider the true graph in Figure 4(a), which ends up with the graph in Figure 4(b) with
the first two phases. However, note that the first two phases did not consider the d-separation between
L02 and L03, and thus the edges among L01, L

0

2, L
0

3, L
0

4 may not be correct, including the v structure. In
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Algorithm 3: Phase II: refineClusters
Input :Output graph G0 from Phase I
Output :Refined graph G0

refineClusters (G0):
1 Let Q be an empty queue; Q.enqueue(PChG0 (Root(G0)));
2 repeat
3 L Q.dequeue();
4 while ChG0 (L) is a single atomic cover do remove ChG0 (L) and add ChG0 (ChG0 (L)) as children of L ;
5 for each atomic cover C 2 ChG0 (L) do Q.enqueue(C) ;
6 V GpG0 (L)

S
S ibG0 (L)

S
ChG0 (L) ; // variables for finding new clusters

7 R L
S

PaG(L) ; // atomic covers to be removed

8 G
0
 makeRootG0 (L); remove R and all adjoining edges from G0;

9 G
00
 findCausalClusters(V); update G0 with new clusters from G00 ; // find new clusters

10 until Q is empty;
11 return G0

particular, in the true graph, L1 d-separates L2 from L3, while {L1, L4} does not d-separate L2 from
L3, but these d-separations are not reflected in the discovered G0 in the first two phases. Thus, we
need to refine the edges. To this end, we first set L01, L

0

2, L
0

3 and L02, L
0

3, L
0

4 to be fully connected, and
consider testing A = {L02, X1} against B = {L03, X2}, where we partition the children of L01 into two
sets and put them inA and B, respectively. By doing so, we force L01 in G0 to be in the separating set.
Since rank(⌃A,B) = 1, it implies that no other variable is in the separating set, and therefore we can
conclude that L01 d-separates L02 from L03. This principle is characterized in the following lemma.
Lemma 6 (Cross-Cover Test). Given a set of variables S, consider two latent atomic covers LA,LB 2
S, and a potential separating set C = {LCi } ✓ S\{LA,LB}. For each LCi , consider CA

i ,CB
i ✓

PCh(LCi ) with CA
i ,CB

i , ; and CA
i \ CB

i = ;, and denote the cardinality kA
i B min(|LCi |, |CA

i |),
kB

i B min(|LCi |, |CB
i |), respectively. Then there is no edge between LA and LB if and only if there exists

a separating set C such that rank(⌃A,B) < min(|LA|+
P

i kA
i , |LB|+

P
i kB

i ), whereA = {LA,CA
1 ,C

A
2 , ...}

and B = {LB,CB
1 ,C

B
2 , ...}. In this case, we say that C satisfies the cross-cover test of LA against LB.

Note that in order to find rank deficiency when performing the cross-cover test, LCi needs to satisfy
the third condition in Condition 1. Based on Lemma 6, we use the following rule to refine the edges.

Rule 3: For a pair of latent covers (LA,LB), let A  {LA,CA
1 ,C

A
2 , ...} and B  {LB,CB

1 ,C
B
2 , ...}.

If there exists such A,B such that rankG0(⌃A,B) is rank deficient, then remove all edges
between LA,LB in G0.

Furthermore, with Rule 3, Algorithm 4a (CrossCoverTest) in Appendix A gives the procedure of
refining the edges over a set of latent variables S to correct the causal skeleton.

Furthermore, we are going to identify the v structures among latent atomic covers. In the output
G
0 from phase II, for any L0 with a child C0i and parent P0, it is not possible to have a collider

C0i ! L0  P0 in the ground-truth graph, because in this case the cluster would not have been rank
deficient. Therefore, the only v structures in the graph are amongst the variables in L0 [ PChG0 (L0),
and similar to crossCoverTest, we only need to test for v structures locally. Continue to consider
the example in Figure 4. The edge between L02 and L03 is missing because the rank over {L02, X1} and
{L03, X2} is 1, implying that L01 d-separates L02 from L03, as is done in crossCoverTest. Now, since
L02�L04�L03 forms an unshielded triplet, we want to test if a collider exists at L04. We find that the rank
overA = {L02, L

0

4, X1} and B = {L03, X2} is 2 > 1, and the rank overA = {L02, X1} and B = {L03, L
0

4, X2}
is 2 > 1, so L02 ! L04  L03. For general cases, the rule for finding v structures are formulated in the
following lemma and Algorithm 4b (findColliders) in Appendix A.
Lemma 7 (V-Structure Test). For any unshielded triangle LA � LC � LB, let A,B be the set of
variables in Lemma 6 such that ⌃A,B was rank deficient. Let k = rank(⌃A,B), k1 = rank(⌃A[LC ,B),
and k2 = rank(⌃A,B[LC ). Then, LA ! LB  LC if and only if k < min(k1, k2).

As mentioned above, we only need to perform cross-cover test and v-structure test locally in the
estimated graph G0. Algorithm 4 (Phase III: refineEdges) combines the search procedure of the two
components together with the output G0 from refineClusters as the input. Specifically, for each latent
cover L0 in G0, we only need to consider testing for edges amongst L0 and its children C = ChG0 (L0).
Thus, we perform a depth-first traversal of the output graph G0 starting from Root(G0) (lines 1-3), and
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apply the cross-cover test at each L to refine the skeleton of G0 (lines 4-7, 11) and the collider test to
identify the v structures (lines 10, 11). After determining v-structures, we can find more directions by
applying Meek’s rule (line 12), analogous to that in the PC algorithm [Spirtes et al., 2000].

Algorithm 4: Phase III: refineEdges
Input :Learned graph G0 from phase II
Output :Markov equivalence class G0

refineEdges (G0):
1 foreach latent atomic cover L0 in G0 do
2 if L0 does not have latent children then return G0 ;
3 foreach latent child Ci of L0 do G0  refineEdges(G0,Ci) ;
4 if C B PChG0 (L0) is a single latent cover then S L0 [ C [ PChG0 (C) ;
5 else S L0 [ C ;
6 G

00
 makeRootG0 (L0) and remove all edges amongst S in G00 ; // temp graph

7 Edgeset E crossCoverTest(S,G00);
8 if no conditional independencies found then return G0;
9 else

10 Collider set C findColliders(S,E,G00);
11 in G0, remove all edges amongst S and use E,C to connect variables in S;
12 apply Meek’s rule to G0;
13 convert G0 to its Markov equivalence class;
14 return G0

L1

L2 L3

L4

X1
X2

X3 X4

X5

X6

X7

X8

(a) An IL2H graph with v struc-
ture.

L01
L02 L03

L04

X1
X2

X3 X4

X5

X6

X7

X8

(b) Possible Output from Phase
II.

L01
L02 L03

L04

X1
X2

X3 X4

X5

X6

X7

X8

(c) Output from phase III.

Figure 4: Illustrations for refineEdges.

4 Theoretical Results
In this section, we show the correctness of the algorithms proposed in Section 3. In particular, by
making use of the rank constraints of only the measured variables, the proposed algorithms output
the correct Markov equivalence class of the IL2H graph asymptotically, under the minimal-graph
operator and skeleton operator, with their definitions given below.
Definition 9 (Markov Equivalence Class of IL2H graphs). Two IL2H graphs G1 and G2 are in the
same Markov equivalence class, denoted by G1 ⇡ G2, if and only (1) they have the same set of
variables (both measured and latent variables), (2) have the same causal skeleton, and (3) have the
same V-structures Li ! Lk  L j, where Li,L j,Lk represent latent atomic covers.

Definition 10 (Minimal-Graph Operator). Suppose G is an IL2H graph. For every latent atomic
cover L in G, merge L to its parents P if the following conditions hold: (1) L is the pure children of
P, (2) |L| = |P|, and (3) the pure children of L form one latent atomic cover, or the siblings of L form
one latent atomic cover. We call such operator the minimal-graph operator and denote it by Omin(G).
Definition 11 (Skeleton Operator). SupposeG is an IL2H graph. A skeleton operator ofG, denoted by
Os(G) is defined as follows: for any latent atomic cover L, draw an edge from l j 2 L to ck 2 PChG(Li),
if l j and ck are not directly connected in G.

Note that the minimal-graph operator and the skeleton operator will not change the rank constraints,
or in other words, graphs before and after applying the operators are indistinguishable with rank
constraints. This result is shown in the following lemma.
Lemma 8. Suppose G is an IL2H graph. The rank constraints are invariant with the minimal-graph
operator and the skeleton operator; that is, G and Oskeleton(Omin(G)) are rank equivalent.

These two operators have already been achieved in Algorithm 1, so the output of the algorithm is the
rank-equivalent graph with the minimal number of latent atomic covers.

We next proceed to show that phases I-III will output a graph G0 such that G0 will be in the same
Markov equivalence class as Omin(Os(G)), denoted by G0 ⇡ G. We have already shown earlier in
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Theorem 3 that findCausalClusters gives correct latent covers when there is no bond set. Furthermore,
Theorem 4 shows that even in the presence of bond sets, Phase II refineClusters is able to refine
clusters into those without bond sets. Therefore, Phase I-II can correctly identify the latent atomic
covers of Omin(G), which is given in the following theorem.
Theorem 9 (Identifiability of Latent Variables). Suppose G is an IL2H graph with measured variables
XG. Phases I-II in Algorithm 1 over XG can asymptotically identify the latent atomic covers ofOmin(G),
with only the first two conditions in Condition 1.

Moreover, Phase III refineEdges further guarantees correct skeletons and v structures. Therefore, the
following theorem shows that Algorithm 1, which includes Phases I-III, can asymptotically identify
the Markov equivalence class, up to the skeleton operator and the minimal-graph operator.
Theorem 10 (Identifiability of Causal Graph). Suppose G is an IL2H graph with measured variables
XG. Algorithm 1, including Phases I-III, over XG can asymptotically identify the Markov equivalence
class of Omin(Os(G)).

5 Experimental Results
We applied the proposed algorithm to synthetic data to learn the latent hierarchical causal graph.
Specifically, we considered di↵erent types of latent graphs and di↵erent sample sizes. The causal
strength was generated uniformly from [�5,�0.5][ [0.5, 5], and the noise term was randomly chosen
from a normal distribution with noise variance uniformly sampled from [1, 5]. To the best of our
knowledge, this is the first algorithm that can identify such general latent hierarchical structures, so to
fairly compare with other methods, besides general IL2H graphs, we also considered tree structures
and measurement models. We compared the proposed method with tree-based method–Chow-Liu
Recursive Grouping (CLRG) [Choi et al., 2011], as well as measurement-model-based methods,
including FOFC [Kummerfeld and Ramsey, 2016] and GIN [Xie et al., 2020].

Table 1 gives the estimation results evaluated on three types of latent graphs: IL2H graphs, tree
structures, and measurement models. The performance is measured by the percentage of correctly
identified causal clusters over only measured variables. Our method gives the best results on all types
of graphs, indicating that it can handle not only the tree-based and measurement-based structures,
but also the latent hierarchical structure. The CLRG algorithm does not perform well on tree-based
structure because the metric is rather strict–even a single misclustered variable outputs an error.
Complete experimental settings and more results, including performance measured by other metrics
and the case when the noise terms are uniformly distributed, are given in Appendix B.

Table 1: Performance (mean (standard deviation)) on learning di↵erent types of latent graphs.
IL2H Tree Measurement model

Sample size Ours CLRG FOFC GIN Ours CLRG FOFC GIN Ours CLRG FOFC GIN
2k 0.70 (0.22) 0 0.12 0.35 0.89 (0.12) 0 0.38 0.13 0.92 (0.08) 0 0.38 0.3
5k 0.83 (0.15) 0 0.17 0.40 1.0 (0.00) 0 0.75 0.23 1.0 (0.00) 0 0.65 0.7

10k 0.86 (0.13) 0 0.29 0.44 1.0 (0.00) 0.13 0.87 0.50 1.0 (0.00) 0 1.0 0.7

6 Conclusions and Future Work
In this paper, we formulated a specific type of latent hierarchical causal model and proposed a method
to identify its graph by making use of rank deficiency constraints. Theoretically, we show that the
proposed algorithm can find the correct Markov equivalence class of the whole graph asymptotically
under mild restrictions of the graph structure. For more general graphs, only using the second-order
statistics may result in a rank equivalence class that contains multiple DAGs, so how to further
leverage high-order statistics to distinguish between causal graphs within the equivalence class will
be our future work. Other future research directions include allowing nonlinear causal relationships
and allowing measured variables to cause latent variables (existing techniques, e.g., Adams et al.
[2021], Squires et al. [2022], may help to mitigate this issue).
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the proposed algorithm can find the correct Markov equivalence class asymptotically
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One limitation is that here we only allowed linear models, and we will extend it to allow
nonlinear causal relations as well. Another limitation is that here we did not consider
direct causal edges among the measurement variables. This is because, for such cases,
only using the second-order statistics may only identified to the rank equivalence class,
which may contain multiple DAGs, so how to further leverage high-order statistics to
distinguish between causal graphs within the equivalence class will be our future work.
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