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Abstract

Empirical evidence shows that deep vision networks represent concepts as directions in latent
space, vectors which we call concept embeddings. For each concept, a latent factor—a
scalar—indicates the degree of its presence in an input patch. For a given patch, the latent
factors of multiple concepts are encoded into a compact vector representation by linearly
combining concept embeddings, with the latent factors serving as coefficients. Since these
embeddings enable such encoding, we refer to them as encoding directions. A latent factor
can be recovered from the representation by taking the inner product with a filter, a vector
which we call a decoding direction. These encoding-decoding direction pairs are not directly
accessible, but recovering them unlocks significant potential to open the black-box nature
of deep networks, enabling understanding, debugging, and improving deep learning models.
Decoding directions help attribute meaning to latent codes, while encoding directions help
assess the influence of the concept on the predictions, and both directions may assist model
correction by unlearning concepts irrelevant to the network’s prediction task. Compared
to previous matrix decomposition, autoencoder, and dictionary learning approaches which
rely on the reconstruction of feature activations, we propose a different perspective to learn
these direction pairs. We base identifying the decoding directions on directional clustering
of feature activations and introduce signal vectors to estimate encoding directions under a
probabilistic perspective. Unlike most other works, we also take advantage of the knowledge
encoded in the weights of the network to guide our direction search. For this, we illustrate
that a novel technique called Uncertainty Region Alignment can exploit this knowledge
to effectively reveal interpretable directions that influence the network’s predictions. We
perform a thorough and multifaceted comparative analysis to offer insights on the fidelity
of direction pairs, the advantages of the method compared to other unsupervised direction
learning approaches, and how the learned directions compare in relation to those learned
with supervision. We find that: a) In controlled settings with synthetic data, our approach is
effective in recovering the ground-truth encoding-decoding direction pairs; b) In real-world
settings, the decoding directions correspond to monosemantic interpretable concepts, often
scoring substantially better in interpretability metrics than other unsupervised baselines; c)
In the same settings, signal vectors are faithful estimators of the concept encoding directions
validated with a novel approach based on activation maximization. At the application
level, we provide examples that demonstrate how the learned directions can help to a)
understand global model behavior; b) explain individual sample predictions in terms of
local, spatially-aware, concept contributions; and ¢) intervene on the network’s prediction
strategy to provide either counterfactual explanations or correct erroneous model behavior.
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Figure 1: Linear Representation Hypothesis: A hypothesis suggesting that deep networks encode high-level concepts,
such as sky or boat, in distinct directions of their latent space, respectively s1 and s2. The illustration shows the
encoding of two concept latent factors (i.e., the degree of concept presence) o', o2 within a patch’s representation Tp
by utilizing the concept embedding directions s. Additionally, it demonstrates how a filter w; can be employed to
extract one of these latent factors from the representation. The illustration omits depicting the latent space bias for
brevity. We use the terms {encoding direction, concept embedding, signal direction} and the terms {filter, decoding
direction} interchangeably throughout this article.

1 Introduction

The linear representation hypothesis suggests that deep neural networks encode high-level concepts in direc-
tions of their latent space (Bereska & Gavves| [2024]). This hypothesis is sufficiently supported by empirical
evidence, mostly by the effectiveness of linear probing. In the latter, a single linear layer can be trained on
top of feature representations originating from the upper part of deep neural networks to solve semantic tasks
with great success (Szegedy et al., 2014; Alain & Bengiol 2018; Zhou et al., [2018; Kim et al. |2018; [Elhage|
let al., 2022; INanda et al., 2023). In the concept encoding mechanism suggested by the linear representation
hypothesis, the concept content of an input patch is written to its embedding as a linear combination of
concept embeddings: directions in the latent space represented as vectors, each one associated with a concept.
The corresponding scalar coefficient in the linear combination constitutes the concept’s latent factor that
encodes the degree of concept presence in the input. Due to its utility in encoding the latent factor to a
vector representation, we also refer to the concept embedding as the concept’s encoding or signal direction.
Retrieving the latent factor back can be accomplished by taking the inner product between the patch em-
bedding and a filter, another vector which we term a decoding direction. (Fig. An encoding-decoding
direction pair is interpretable whenever it is related to a concept that is aligned with human intuition; and is
influential whenever it is related to a concept that the network consistently uses to make predictions. The
latter can be quantified using methods for concept sensitivity testing, such as Kim et al| (2018) and [Pfau|

et L] (2020).

On the one hand, since the decoding direction extracts the concept’s latent factor from the representation
and the concept factor is related to the presence of the concept, it enables understanding of representations,
attributing meaning to latent codes (Zhou et al [2018} [Kim et al., 2018). On the other hand, the encoding
direction allows one to assess the influence of the concept on the network’s predictions (Fel et all) 2023c;
[Pahde et al., 2024), and both directions may be used to force the network to unlearn concepts irrelevant to
its prediction task (Anders et all [2022} [Pahde et al., 2023} Dreyer et al. [2024a)). Most previous approaches
(Zhou et all [2018; [Kim et al., 2018} Zhang et all, 2021} [Fel et al.l 2023c} |[Doumanoglou et all, 2023} [Pahde|
let al., 2024} Doumanoglou et al., [2024)) usually focus on identifying decoding or encoding directions in
isolation, limiting their applicability to specific appropriate tasks. Moreover, many of them do not explicitly
make this distinction and consider using the concepts’ decoding directions in use cases where the encoding
direction is a better fit. This has recently been pinpointed in the context of concept sensitivity testing and
model correction in [Pahde et al.| (2024).

The encoding - decoding mechanism of concepts for a pre-trained network is not directly accessible. Instead,
it is a latent mechanism that needs to be inferred by any means of reverse engineering. Top-down approaches
(Zhou et al., [2018; Kim et al., |2018; [Pahde et al., [2024) typically guess a concept of interest and subsequently
verify whether the network encodes it by linear probing. However, this approach suffers from the need
for concept speculation and the access to supervision via expensive annotations. In contrast, bottom-up,
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unsupervised approaches overcome these limitations, but face significant challenges. Previous unsupervised
approaches that attempt to uncover such mechanisms include matrix decomposition (based on principal
component analysis or non-negative matrix factorization)(Zhang et al., 2021} |Graziani et al., 2023bl), sparse
autoencoders (SAEs) and dictionary learning (Bricken et al., 2023} [Lim et al.| [2024; |(Cunningham et al.,
2024; Bussmann et al.| 2025). These approaches rely on a decompose-then-reconstruct regime of feature
activations. However, attempting to explain every tiny bit of information in the components of latent feature
representations is particularly challenging. In addition, not all components may be of interest, as some of
them may be noisy distractors (Haufe et al.||2014; |Kindermans et al.,|2017)). Additionally, the reconstruction
error of feature activations constitutes dark matter (Engels et al.l |2025), which remains largely unexploited.
Last, for effective utilization to downstream tasks of interpretability, it is of paramount importance that
the identified direction pairs correspond to interpretable concepts, that is, concepts that align as much as
possible with human intuition. However, alignment with human intuition should not be a strict criterion,
as bottom-up approaches may also reveal counterintuitive concepts that are used by the network to make
predictions, possibly exposing an unintended model behavior or a novel strategy to solve a task. SAEs
attempt to uncover interpretable direction pairs by learning the directions with a sparsity objective in the
units of latent concept factors. However, matrix decomposition approaches do not explicitly optimize for
any interpretability criterion.

Unlike previous attempts that rely solely on reconstructing feature activations, in this work we take a
different approach in learning the concept encoding-decoding direction pairs. In the proposed approach,
we learn the direction pairs jointly, in an unsupervised manner. Decoding directions are identified by
directional clustering of feature activations and serve as an anchor to estimate encoding directions under
a probabilistic perspective. Additionally, we exploit the network’s strategy baked in its weights
when making predictions to guide our direction search. Unlike SAEs that focus on sparsity within units of
the latent factors when learning the directions, we emphasize sparsity in the soft binary semantic space of
concepts. Our method identifies direction pairs without relying on feature reconstruction, sidestepping the
dark matter issue of SAEs [Engels et al.| (2025 and ignoring noisy distractors in data Haufe et al.| (2014);
Kindermans et al.| (2017, while not being limited by the relative sizes of concept and embedding spaces,
which is another limitation when using SAEs. We model the decoding directions using the principles of
the recently introduced unsupervised interpretable basis extraction (Doumanoglou et al., [2023) EI, a bottom-
up approach that uncovers the directional structure of the embedding space through directional clustering
of feature activations. Since concepts are often encoded as directions, this approach has the potential to
discover the decoding mechanism of meaningful concepts. This method provides an explicit binary and
linear classification rule for concept detection by learning the decoding direction together with an additional
threshold to ascertain the presence of a concept. We term this classification rule as a concept detector
due to its ability to detect the presence of a concept. Additionally, we introduce signal vectors that serve
as estimators for the encoding direction of a concept under a probabilistic perspective, by extending the
estimator of a single concept model (Kindermans et al.| [2017)) to multiple concepts. Furthermore, we also
show that the alignment between the uncertainty region of the network, that is, the subspace where the
network’s predictions are uncertain, with the uncertainty region of the concept detectors, that is, the subspace
of ambiguous concept predictions, through a process that we call Uncertainty Region Alignment (Fig. @ can
increase the interpretability and influence of the discovered direction pairs.

Our experimental analysis is multifaceted, providing insight into how our method relates to other unsuper-
vised and even supervised direction learning approaches. Using the decoding directions, we assess the ability
of our approach to identify interpretable and monosemantic concepts, while we validate the fidelity of signal
vectors to the concepts’ encoding directions in the challenging real-world settings using a novel approach
based on activation maximization (Olah et al.,|2017; Nguyen et al.l [2019; [Fel et al.| [2023al). The experiments
cover synthetic data with known ground-truth and real-world setups with four families of state-of-the-art
deep vision architectures. First, in a controlled setting, the experiments show the efficacy of the proposed ap-
proach in identifying the ground-truth concept encoding-decoding direction pairs when previous work fails.
Second, in real-world setups, the learned decoding directions identify highly interpretable monosemantic
concepts, often scoring significantly higher than the previous unsupervised state-of-the-art baselines in most

1Even though it is termed a basis, according to our definitions this method identifies decoding directions.
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Figure 2: Our Encoding-Decoding Direction Pairs (EDDP) powers a range of applications, highlighting both the
generality and the precision of our approach. The figure summarizes applications that we selected to discuss in this
work.

of the interpretability metrics, while evidence from the experiment with activation maximization concludes
that the encoding-decoding direction pair is faithful, with the learned signal vector being a reliable estimate
for the concept’s encoding direction. Finally, we demonstrate the utility of our learned directions by i) in-
tegrating with the state-of-the-art to address global model behavior understanding, ii) introducing Concept
Contribution Maps to provide detailed and spatially-aware local explanations, and iii) providing concrete
steps to intervene on the model’s prediction strategy, enabling counterfactual explanations and correction of
flawed model behavior. Figure 2] summarizes the applications of our method that we selected to discuss in
this paper.

2 Related Work

2.1 Direction Learning

We categorize related work into supervised and unsupervised direction learning approaches. In each cate-
gory, we go through the previous methods, describing the limitations, differences, and similarities with the
approach proposed here.

Supervised Concept Direction Learning Typical approaches |Zhou et al| (2018); [Kim et al.| (2018) to
concept direction learning make use of a binary linear classifier together with the annotations of a concept
dataset. This classifier distinguishes representations of samples with the concept from those without and
must rely on the concept content encoded within the representations, thereby requiring its weight vector
(filter) to extract (decode) the concept factors from these representations. Known as Concept Activation
Vectors (CAVs), these filter weights are approximations to the concept decoding directions, and they are not
exact due to possible distractor-noise content in feature components (Haufe et al., 2014} Kindermans et al.|
[2017; [Pahde et al| 2024). Regarding the encoding directions, assuming that the positive cluster contains
representations of samples with the concept and the negative cluster contains those without it, Pattern-CAVs
(PCAVs (Pahde et all, |2024)) estimate the encoding direction of the concept by computing the difference
between the cluster means. These approaches, though, rely on linear probing, requiring the practitioner not
only to provide annotations but also to speculate on the name of the concept to be identified. In contrast
to that, our approach is unsupervised and bottom-up, reading the structure of the latent space, overcoming
both concept speculation and the need for expensive annotations.
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Unsupervised Concept Direction Learning A significant amount of related work in unsupervised di-
rection learning is based on methods for matrix decomposition. These methods decompose the matrix of
feature activations and may identify the encoding directions of concepts without the need for annotations,
but with some limitations. For instance, Principal Component Analysis (PCA) (Graziani et al., |2023a) and
Singular Value Decomposition (SVD) (Graziani et al.l |2023b)) are limited by orthogonality and cannot rep-
resent concepts that do not affect variance (Fel et al., [2023b). Likewise, Non-negative Matrix Factorization
(NMF) (Zhang et al., 2021} [Fel et al.,2023c) only assumes positive components and lacks latent space bias,
which limits expressivity. While the transpose of both the PCA matrix and the matrix of the left singular
vectors in SVD correspond to the concept decoding directions, NMF lacks a simple equivalent. Instead, at
inference time, in which a test sample is examined for its concept content, NMF requires an optimization
problem to be solved for each one of the samples, making the approach computationally more expensive
than the calculation of an inner product. Our method overcomes all these limitations.

In Dictionary Learning (Bricken et al.| 2023 [Yun et al. 2023 and Sparse Autoencoders (SAEs) (Sharkey
et al., 2022} |Cunningham et al., |2024; Bussmann et al.l |2025), the goal is to learn decoding-encoding direc-
tions by decomposing representations into latent factors and subsequently reconstructing them, and this is
done while enforcing sparsity in units of the latent variables. The latter constrains these approaches to be
applicable only in cases where the space of latent factors is sufficiently larger than the size of the embedding
space. Contrariwise, our method uses a different principle for identifying direction pairs, independent of
feature reconstruction, avoiding dealing with the dark matter problem of SAEs (Engels et all 2025) and
the noisy distractor components that may be present in the data (Haufe et al. [2014; Kindermans et al.
2017), while not being restricted by the size of the concept space in relation to the size of the embedding
space. This is achieved by enforcing sparsity in the semantic, soft-binary vector space of concepts, instead
of sparsity in the units of the latent variables. Since it is independent of feature reconstruction, the pro-
posed approach uses a different way to estimate the concept encoding directions than SAEs, still coupled to
the learned decoding directions and the feature activations themselves. Finally, our approach additionally
considers linking the directions to their use by the model, a fact that, to our knowledge, is less explored by
prior work. More details on the relation of our approach with SAEs can be found in Section

In contrast to the aforementioned techniques, the method of [Doumanoglou et al.| (2023; 2024) learns filter
directions of linear classifiers, using a concept detector model as in|Zhou et al.| (2018)); Kim et al.[ (2018]), but
without requiring supervision. Guided by a sparsity objective and the structure of the latent space, these
classifiers map feature representations to a soft-binary concept space, essentially implementing a method
for directional clustering. Since the method is guided by the directional structure of the latent space and
concepts are often encoded as directions, this process often unveils decoding directions that correspond
to highly interpretable, monosemantic concepts. We ground our approach on this model and additionally
enhance it by removing orthogonality constraints, feature space standardization, and adding loss terms to a)
sustain or improve the interpretability of the identified concepts and b) reduce the impact of distractor-noise
on filter weights. Although Doumanoglou et al.| (2024)) proposed a technique to exploit the utilization of the
directions by the network in direction search, our uncertainty region alignment approach shows a notable
relative improvement over this previous approach (by up to 22.56% in the interpretability metrics), in 3 of
4 cases. Finally, our work also considers the estimation of concept encoding directions, an aspect that was
not addressed in these previous works. More details on this comparison can be found in Section [A-2]

2.2 Applications of Directions

Our learned direction pairs enable a series of applications, from global model understanding and detailed
spatially-aware local explanations down to model intervention, which allows for counterfactual explanations
and model correction. Typical previous enablers of such applications are the Concept Bottleneck Models
(CBMs) (Koh et al., [2020). The principal idea behind CBMs is to create an inherently interpretable model
which is comprised of a backbone, a concept bottleneck, and a linear head. This model makes class predictions
in two steps. In the first, the concept bottleneck predicts the concept content of the image based on the
features extracted from the backbone, while in the second, the head predicts the image class based on
the previously extracted concept content. What makes this architecture interpretable is the fact that the
concept vector, i.e, the output of the concept bottleneck, is trained to have each dimension aligned with
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an interpretable concept. More recent CBM variants (Yuksekgonul et al., 2023 |Oikarinen et al.l 2023))
proposed techniques to turn any non-interpretable model into a CBM. For the latter, the original model’s
backbone is kept frozen and the last linear head is discarded. Instead, a concept bottleneck is introduced
as a projection layer that translates the embeddings of the backbone to the concept space. Finally, a last
sparse linear head maps the concept vector to the output classes. To learn the concept bottleneck without
annotations, |Yuksekgonul et al.|(2023); |Oikarinen et al.| (2023)) leveraged CLIP Radford et al.| (2021)), whose
visual prompt capabilities (Shtedritski et al.l 2023]) were later exploited by Benou & Raviv| (2025) to train
a concept bottleneck that is additionally spatially-aware. This last approach can localize concept content
within the input image, improving upon previous methods that could only predict concepts at the image
level rather than at the patch level. Finally, recently, [Rao et al.| (2024)) leveraged SAEs (Cunningham et al.
2024) to learn a CBM for CLIP itself.

All these approaches require training the last sparse linear head with access to the model’s training dataset.
Furthermore, some of them also require a dataset with concept annotations or utilize a foundation model
(CLIP) to learn the concept bottleneck. Unlike all of them, our work is fundamentally different, enabling all
the previous applications while remaining completely non-intrusive without the need to train any network
components. Overall, in this work, we show that it is possible, at least to some extent, to get the benefits
of CBMs without the need to train additional heads, access concept annotations, or precisely reconstruct
features. We discover directions that correspond to concepts that the model already knows and subsequently
we harness them in applications of mechanistic interpretability (Saphra & Wiegreffe, [2024; [Kastner & Crook|,
2024; Bereska & Gavves|, [2024).

3 Background

The latent factor of a concept is a scalar linked to the concept’s presence, embedded in the latent space via
multiplication with its encoding direction, also called the concept’s signal direction. For this reason, we also
refer to this latent factor as the signal value. Feature activations are considered as linear combinations
of signals and noisy directional components called distractors. In the proposed approach, a filter is a
decoding direction that, through the inner product with a feature representation, extracts the signal’s value.
Below we provide a more formal explanation of these terms and provide details essential to understand our
contributions.

3.1 Preliminaries

Let X € REXWXD denote the feature representation of an image in an intermediate layer of a deep neural
network with spatial dimensions H, W € N* and latent space dimensionality D € NT. Let also z, € RP
denote a pixel element of this representation at the spatial location p = (w,h), w € {0,1,...W — 1}, h €
{0,1,..., H — 1}. Since z,, is related to a patch within the input image of the network, we also refer to it as
patch embedding.

3.2 Signals, Distractors, Filters, Concept-Detectors

In encoding a single concept i, [Kindermans et al.| (2017)); Pahde et al.| (2024)) proposed a model for the data
generation process of feature representations: x, = aps; + fpd, s;,d € IR{D,ozp,Bp € R. Here, s; is the
signal direction that carries the information of whether x, is part of concept i. The concept information
lies within the signal value «y. Larger oy, suggests greater confidence that x, belongs to concept i. d is
the distractor direction, modeling noise, or information not related to the concept. B, follows a random
distribution, typically the gaussian or uniform distribution, and is independent of whether x, belongs
to concept i. According to Kindermans et al| (2017)), the value of the signal oy can be extracted using a
regression filter w; and the inner product: zp; = wiT:I:p = ap'wiTsi + Bpwde, if we choose w; : w; L d,
and w!'s; = 1. Let o denote the sigmoid function. Since stronger values of a; indicate more confidence
in concept presence, when combined with a threshold b; € R that can be learned from data, this regression
filter can be turned into a concept detector: y,,; = o(zp; — b;), essentially a binary classifier that can
answer the question of whether p belongs to concept i.
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Figure 3: The core concept of Unsupervised Interpretable Basis Extraction (UTBE [Doumanoglou et al. (2023)) is
to learn a set of concept detectors, which are essentially binary linear classifiers with learnable filters and biases.
These detectors aim to transform feature representations to the soft-binary vector space of concepts in which the
newly transformed representations are sparse. In this procedure the input to the method is the network features
corresponding to images coming from a concept dataset (without the need for annotations) and the only learnable
parameters are the previously mentioned filters and biases themselves. Identifying the concept name behind each
detector is done in a post-processing step with a procedure we refer to as Direction Labeling.

With access to the signal value, Haufe et al. (2014); Kindermans et al|(2017) offer a formula to estimate the
concept’s signal direction:

. cov[rp,ap]  covikp, zp.

S; = = (1)

var|oy) var|zp. i

3.3 Unsupervised Interpretable Direction Learning

Recent research (Doumanoglou et all 2023)) introduced an unsupervised method to identify concepts from
the structure of the latent space. Motivated by the directional encoding of concepts, the method partitions
the latent space into linear regions, each represented by a hyperplane and a normal vector, forming clusters.
Feature activations from an unlabeled concept dataset, possibly activations of images from the network’s
training set, are assigned to these clusters. The method learns W and b of a feature-to-cluster membership
function, a mapping to the semantic space, with y, = o(W7Tx, —b) € [0,1]/,W € RP*/ b e R, and I
as the cluster count. By softly assigning features to a small number of clusters, the interpretability of the
clustering is improved. This is grounded in the idea that an image patch generally holds only a few semantic
labels from a larger set, reflecting sparsity in the semantic space. Sparsity in the assignments is achieved
using two loss terms: the first is Sparsity Loss (L£?), and the second is Maximum Activation Loss (L™%),
which ensures binary cluster membership:

Lo =Ep[Ly], LM = —Ep[ql logy(yp)],

s y (2)
Ly, = Higp), ap= m

with H denoting entropy. Under a different interpretation perspective, a column of W together with a
corresponding element of b (i.e., w;, b;) forms a linear classifier or concept detector y, ; = o(w! @, —b;). This
method also optimizes linear separability by minimizing the inverse of the classification margin M; = m
(Mazimum Margin Loss - £™™) and penalizes clusters with few assignments using the Inactive Classifier
Loss - £ (Doumanoglou et al.l [2024) (See Fig. [3| and more details in Section . Despite the potential
misalignment with human intuition, the sparse nature of the feature-to-cluster assignments facilitates concept

definition or identification.
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3.4 Direction Labeling

When learning directions in an unsupervised manner, the name of the concept represented by each encoding-
decoding direction pair is unknown. In a real-world setting, the concept name could be identified by manually
inspecting the samples that (maximally) activate the decoding direction. However, in a benchmark setting,
where interpretability needs to be quantified in terms of metrics and without human involvement, it is
necessary to automate the assignment of a concept label to each of the direction pairs. We refer to this process
as direction labeling and employ Network Dissection Bau et al. (2017)) for its implementation. In essence,
Network Dissection assigns a semantic label to each of the concept detectors based on their segmentation
performance in a dataset with annotated concepts. Although it was originally proposed as a method to assign
labels to each of the basis vectors in the natural latent space basis, Network Dissection is capable of assigning
labels to any set of directions after basis change. Despite possible biases against unsupervised learning due to
annotation limitations, we adopt and expand on this labeling protocol as a best-effort approach to evaluate
the interpretability of our concept detectors and the rest of the unsupervised state-of-the-art.

3.5 Concept Sensitivity Testing

Given the intermediate representation of an image belonging to class k and the direction of concept ¢ in the
latent space, RCAV (Pfau et al.l 2020 measures the sensitivity of the model to concept ¢ when predicting
class k. This is accomplished by perturbing the representation towards the direction of the concept with
strength «, and subsequently comparing the output probability of the network for the same class before
and after the perturbation. Subsequently, an overall dataset score in the range [—1,1] is computed, where
zero means inconsistent use of the concept by the model, while extremes indicate consistent and strong
positive or negative concept contributions to predict class k. A statistical test compares concept sensitivity
against sensitivity towards random directions to ensure significance. In our evaluations, we refer to directions
of significant influence in cases where the directions meet the criteria of this statistical significance test.
Although the initial work used CAVs to test concept sensitivity, a recent study (Pahde et al., 2024) suggests
that the appropriate direction for this purpose is the concept’s encoding direction, an aspect that we consider
in our evaluations.

4 Method
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Figure 4: The proposed method analyzes the latent space to uncover its directional structure. Because many concepts
are naturally encoded as specific directions, this process often reveals the encoding-decoding mechanism of meaningful,
monosemantic, and highly interpretable concepts. The figure depicts an overview of the method’s components.
L denotes loss terms. Purple indicates contributions of this work, while light gray indicates loss terms from
[Doumanoglou et al.| (2023} [2024)).




Under review as submission to TMLR

For a specific network layer, our method receives as input the feature representations of images sourced from
a concept dataset, that is, an unlabeled dataset of images coming from the domain of the network depicting
concepts that the network might use to make predictions, and utilizes the upper part of the network f+
after the layer of study. The aim of our approach is to read the structure of the embedding space in the
specific layer and learn encoding-decoding direction pairs that explain this structure. Since concepts are often
encoded in latent space directions, reading the structure may reveal the mechanisms to encode and decode
meaningful, monosemantic, and highly interpretable concepts. The method is unsupervised, and therefore,
the identified direction pairs may correspond to concepts that do not align with human intuition. However,
they reflect clear directional clusters in the latent space of the network. Thus, this approach has the potential
to reveal erroneous strategies exploited by the model to make predictions (Section . In an attempt to
make these clusters as meaningful as possible, we optimize for a sparsity property of interpretability in the
feature-to-cluster assignments (Section . Additionally, to ensure that those clusters are influential to the
network’s predictions, we exploit the uncertainty region of the model.

We extend the previous signal-distractor data model (Section from the encoding of a single concept
to multiple concepts (Section and learn concept detectors {W, b} using the objectives of Section
In the new data model, we remove the constraints of [Doumanoglou et al.| (2023) regarding feature space
standardization and the orthogonality between filters, allowing for a more flexible clustering which, as we
show in the experiments, reduces redundancy. However, when lifting those constraints, we found that
they additionally acted as regularizers that prevented direction collapse and trivial clustering; thus, we
address their removal with additional loss terms discussed in Section [4.2] that sustain or even improve the
interpretability of the clustering. We additionally estimate concept signal directions using learnable signal
vectors §; (Section . Furthermore, we propose Uncertainty Region Alignment (Section, a loss that
can assist in improving the interpretability of the directions or in aligning signal vectors with directions of
significant influence. Finally, we propose to learn the direction pairs using e-constrained optimization via
the Augmented Lagrangian Loss which we describe in Section [I.5] In summary, concept detectors and signal
vectors are learned together in an end-to-end process, influenced by the losses of Sections [3.3] [1.2] [.3] and
under the optimization scheme of Section An overview of our method and the interconnections
between its components is provided in Figures [4] and

4.1 Multi-Concept Signal-Distractor Data Model

We introduce an extended signal-distractor data model for the latent space, which models the encoding of
multiple concepts. Each patch embedding x,, is considered as a linear combination of latent concept signals
S € RP*! and distractors D € RP*¥ F < D — I. We also consider a latent space bias ¢ € R”, common
for all xp.

zp =Sap+ DB, +c (3)

with a, € R and B, € RY. S is a matrix of I € N*, D-dimensional, unit-norm concept signal directions
and D a matrix denoting a basis for distractor components. Each signal direction encodes the presence of a
distinct concept. We apply the same assumptions for individual signal values ay ; (the i-th element of ap)
and distractor coefficients 3p ; as in Section Finally, we further assume that only a limited number of
semantic concepts are assigned to x,, among many possible semantic labels.

4.2 Interpretability Losses to Recover Implicit Regularizations

We propose Self~-Weighted Reduction (Rsy ) as an aggregation method to estimate the maximum element
in a set. Consider the set of elements {(x}, ¢ € R* k € N. The Self-Weighted Reduction is defined as:

v+1
Rew({Gh)) = szck (4)

which is equal to the weighted average of elements in {(;} with each element being weighted by ¢}/, v >
1,v € Rt a sharpening factor. This aggregation may be seen as a soft differentiable version of the max
operation, since the largest value in the set {(} is weighted with the largest weight.
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Figure 5: Left: The learnable parameters of the method S , W, b and intermediate variables zp, yp, gp. Top Right:
Feature manipulation and Uncertainty Region Alignment. Bottom Right: Loss terms £ with their dependencies.
Purple indicates loss contributions of this work, while light gray indicates loss terms from [Doumanoglou et al.|

(2023, 29)

Excessively Active Classifier Loss (£°*¢) This loss penalizes excessively large clusters to prevent trivial
solutions where all inputs are assigned to a single cluster. It relies on a hyper-parameter p € (0,1), similar
to sparse autoencoders , which sets a proportional bound on cluster size. The unreduced
formula for the i-th cluster is below, with v > 1,7 € R as a sharpening factor, 1 — p normalizing the loss
in the range [0, 1] and p varying across all pixels and image representations in the concept dataset:

1
L5 = ERGLU(EH?J;A - p) (5)

The final loss uses Rgw: L£%° = Rsw ({£5%¢,1 € {0,1,....,1 —1}})

Focal Sparsity Loss (£/*) Inspired by Focal Loss (Lin et al.| (2017)), we introduce Focal Sparsity Loss,
which puts more emphasis on sparsifying the feature-to-cluster assignments of the most challenging patch

embeddings. To this end, for each &, we calculate a coefficient 0, € [0, 1], which is related to the number of
clusters assigned to xp:

0p =1— (Rsw({@p,i,i € {0,1,....] —1}}))*, u € RT (6)

with 4 a sharpening factor and g, € [0, 1] an intermediate variable with elements inversely proportional to
the patch’s number of cluster assignments, calculated as in (2). If £j, denotes the Sparsity Loss for pixel
p, the Focal Sparsity Loss is defined as:

_ Zp OpLs

Lfe==2"F
Zp 917

Similar to the previous case, in @ p varies across all spatial elements and image representations in the
concept dataset. When we use Focal Sparsity Loss we use it as a replacement for the Sparsity Loss L° of
[Doumanoglou et al.| (2023).

(7)

4.3 Signal Vectors as Concept Signal Estimators

In this paragraph, we consider the new data model that was outlined in Section and try to validate
whether can be used to estimate the signal direction of a concept. Suppose that our objective is to
estimate the signal direction of concept ¢ when we have access to a collection of patch embeddings {xp} and
their signal values {ap;}. Starting from the approach of Kindermans et al.| (2017), it is easy to prove that
whenever ay, ; is independent of all ap, ;, j # i and SBp, ¢ the following property holds: cov]zy,—ap isi,ap.] =0,
which, according to|Kindermans et al.| (2017) directly implies that (1)) can be utilized to estimate the direction
of the signal.

10
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Uncertainty Region Alignment @ dusty road
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© region of uncertainty

/" improved direction interpretability
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Concept airplane: 50%
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Concept motorbike: 50%
Image class: moto-cross: 0.1%
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Figure 6: The uncertainty region of the network is defined as the subspace where all network’s predictions are
maximally uncertain. The uncertainty region of the concept detectors is defined as the intersection of all their decision
hyperplanes, i.e. the subspace of ambiguous concept predictions. Aligning these two through feature manipulation
may improve direction pair interpretability or serve as a balance between the interpretability and influence of the
learned direction pairs.

However, while ap ; can be considered independent of distractor coefficients 3p  that represent noise, the
independence assumption between ap ; and ap j,j 7 ¢ is easily violated in practice. Some pairs of variables
ap,; and ap j,j 7 ¢ may indeed be independent and this would be the case when concepts 7 and j belong to
different groups of mutually-exclusive concepts, for example when concept i belongs to the group of objects
and concept j to the group of colors and the concepts of the first group are independent of those of the
second. However, when the concepts ¢ and j belong to the same group of mutually exclusive concepts (for
instance, when concept ¢ corresponds to car and concept j to tree and both concepts belong to the group
of objects), there may be an anti-correlated relationship between the variables ap ; and ap;,j # i due to
the fact that whenever ap; > b, ap; < b;. However, the latter bias can be eliminated if we consider only
samples with the concept instead of both positive and negative samples. In that case, among that subset of
the data, the signal values a,; and ap ; can be considered independent by assumption, as we now removed
the biases b;, b; due to sub-sampling. This allows us to still consider as a signal estimator, even under the
extended data model of multiple concepts, provided that in the computation of the covariance and variance
terms of we subsample the patch embeddings based on their concept label, i.e. keep only samples with
the concept, instead of additionally considering samples without it. The latter can be easily accomplished
when employing the respective concept detector.

We refer to the signal estimator of concept i that is obtained under these conditions as the signal vector
§;. However, we still require access to the signal values. As explained in Section [3.2] estimating signal values
can be attributed to the filters of the concept detectors. They can serve this purpose if the weight vector w;
is orthogonal to all s; where j # 7, as well as the distractor subspace D.

Thus, we employ the following Filter-Signal Vector Orthogonality Loss when learning the directions:

Ll = \/]Ez‘,j (1= di)w] 55)?] ¥

with d; ; the kronecker delta and w, 5 denoting the L2-normalized filter weights and signal vectors.

To achieve accurate signal value extraction, w; should additionally be orthogonal to the distractor basis;
however, we do not explicitly estimate the distractors. Instead, we use the Uncertainty Region Alignment
loss from Section [4.4] to ensure alignment of the directions with utilization by the network.

4.4 Uncertainty Region Alignment to Discover Meaningful Concepts of Influence

The presence or absence of a concept in a representation can provide neutral, supportive, or opposing evidence
against the prediction of a class. Since the concept-class pair association is unknown when learning concept

11



Under review as submission to TMLR

directions, a straightforward strategy to perform concept arithmetic on the features in order to find their
utility by the network lacks ground-truth information on how concepts affect class predictions. To overcome
this difficulty, we can make a simple but more elegant hypothesis that uncertain network predictions occur
when the representation has ambiguous concept information. We propose improving the direction search by
aligning the uncertainty regions of the network and the concept detectors. The uncertainty region of the
network is the subspace where its predictions are most uncertain, and the uncertainty region of the concept
detectors is the subspace where their decision hyperplanes intersect. Figure [0] illustrates the concept of
Uncertainty Region Alignment.

To accomplish the alignment, all the patch embeddings x, in an image are manipulated towards the direction
—dxy, to arrive at a:’p = xp — dx,. Based on our estimates of w;, b;, and §;, we select the direction dx, so
that the shifted w; lies at the intersection of the concept detectors’ decision hyperplanes. Then, we ensure
the network’s prediction for the resulting manipulated image representation is highly uncertain, effectively
aligning both uncertainty regions. More specifically, we define two types of feature manipulation for this

purpose:

Unconstrained Feature Manipulation (UFM) in which z,, = gp(zp; W) = x, — dx;, and dx,, such
that:

w] @y, — b = 0= w/ (zp — dxp) — b; =0, Vi,
wWT(z, —dx,) —b=0= dx, = (W) T (W', —b) (9)

with A* denoting the pseudo-inverse of A.

Constrained Feature Manipulation (CFM) in which we avoid manipulating features towards datapoints
that fall outside the concept encoding manifold of the network, by restricting feature manipulation to occur
within the span of the signal vectors, i.e. dx, = Svy, v, € R, with S € RP*T denoting the matrix whose
columns correspond to the learned signal vectors §;,4 € {0,1,...,] — 1}. The feature manipulation formula
for a patch embedding @, is hy(xp; W, 8) = &, — da,, with dx, given by:

T

w;

Wl (z, —dxy) —b=0= W' (z, - Sv,) —b=0=
WiSv, = W'z, —b= v, = (WI'S)*(WTx, —b) = (10)
dx, = Sv, = SWTS)*(WTx, —b) (11)

%

x, — b =0= w/ (xp — dxp) — b; =0, Vi,

These manipulations are carried out for all p in the image representation X simultaneously, leading to a
manipulated image representation X’ = g(X; W) or X' = h(X;W,S), based on the manipulation type

(Fig. [5).
Finally, the Uncertainty Region Alignment Loss (£"") is:

£ = Ex [H(FH(X)] (12)

with H denoting entropy and fT denoting the part of the network after the layer of study that provides
output class probabilities. When we manipulate the representations via either UFM or CFM, we use the
layer’s activation function (typically a ReLU) to keep the features in the input domain of the next layer.
Throughout the experiments, we will denote Uncertainty Region Alignment loss with UFM as £**" and with
CFM as L£". We consider the use of £L**" and L*" to be mutually-exclusive. We either use the first or the
second type of manipulation when computing the Uncertainty Region Alignment Loss and never both types
at the same time.

4.5 Augmented Lagrangian Loss for Effective Direction Learning

Most of the loss terms that we use in our method are highly antagonistic. For example, concept detectors can
make more confident predictions (£™®) when the separation margin (£L™™) between positive and negative

12
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samples is small (while we seek to maximize it). In our experiments, we also observed that a high separation
margin is also antagonistic to the sparsity of the clustering (£* or £/*). Therefore, if we linearly combine the
loss terms, the implementation of our approach across various network architectures and datasets necessitates
meticulous adjustment of the loss weights within the objective function. The latter can be particularly
laborious and time-consuming. Additionally, adjusting the loss weights only indirectly controls the quality
of the clustering, as the final loss values can vary significantly with different weight sets. For these reasons, we
choose a different strategy to learn our direction pairs. We base our method on e-constrained optimization,
formulating our objective as a minimization problem with inequality constraints. We use the Augmented
Lagrangian formulation (Hestenes, |1969; [Bertsekas, 2014)) to solve the following optimization problem:

Ema S Tma

Eic < Tic

E'mm < Tmm

. fs pf 1 >

min  NELIT ALY st P~ (13)
Efso < 7_fso

ECS < TCS

with Af*, A\ € R* the only loss weight coefficients. In this formulation, we assign a target value 7 to each
individual loss term participating in the inequalities and, as shown in the experiments, subsequently optimize
for interpretability (L£f*, £“%"), or a balance between interpretability £* and influence L£°%".

5 Encoding-Decoding Direction Pairs in Applications

Moving forward to the application level, in this Section we discuss how to read concept information from
the embeddings, how to intervene on the encoding of concepts (Section [5.1)) and how to capitalize on the
learned direction pairs to obtain local, detailed, and spatially-aware concept explanations (Section [5.2)).

5.1 Reading Concept Information and Intervening on their Encoding

Reading Concept Information from the Embeddings Reading concept information from a patch
embedding ends up in estimating the concept’s signal value that is encoded in the representation. Supposing
that the related conditions are met, in Section [3.2]it was shown that the filter direction can serve as a means
to extract this value. While in the data-model of Section [3.2] the extraction of the signal’s value is exact,
under the multi-concept signal-distractor data model of Section [.I] the considered latent space bias ¢ is
interfering with this value. More specifically, if we suppose w; : w; L 8;,i # j,w] 8; = 1 and w; L D, the
inner product between the filter and the embedding results in:

T T4 T T T
W; Tp = 0p; W; §; +W; ¢ = W; Tp = p; + W, C (14)
—— ~——
=1 const

Thus, when considering our extended data model, the filter can be used to extract the signal’s value but
with an offset that is constant, regardless of x,. Due to the offset being constant, the difference between
two projected embeddings is equal to the difference of their signal values, e.g.:

T T T
w; (mpl - .’sz) = Qp,i T W; €= Qp,j — W; C= Qp,j — Qp, g (15)
In applications, we can exploit this property to estimate the signal value that is encoded in a patch embedding
with respect to another patch embedding of reference. We found that two reference points are of particular
interest. First, the average embedding over a collection of embeddings. In that case, we can estimate the

signal value of x, with respect to the average signal value in the collection:

T T T T

w; xp —w; Ep [wp] =w; Tp — Ep [wi ‘l’p} =ap,; — Ep [ap,i] (16)
And second, the concept’s point of uncertainty. Given a query point x,, the concept’s point of uncertainty
Uy is the point that lies on the concept detector’s hyperplane (thus corresponds to a point of maximum
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concept ambiguity) and the line that is defined by the query point and the direction of the signal vector.
More specifically, the point of uncertainty is equal to 4, = xp — Kp8; With kp; € R corresponding to the
solution of the following system of equations:

0. — k& T
Up =X Kp.i8 w; T, — b;
P P P22t T ~ _ T A _ _ Wi dp i T
T = w; Up — b =0= w; (Tp — Kpi8i) — b =0=kp; = ——F—— =w,; Tp — b;
wiup—blv:O w; S;

N——

=1

(17)

Typically 4, depends on ¢, but we drop this index for brevity. What is interesting about the point of
uncertainty is that the following difference corresponds to centering the signal value of x, around the value
that represents uncertainty:

T Tpa _ T T AN T T
i Tp —W; Up = w; Tp — W, (Tp — Kp,i8i) = Kip; W; 8i = kip; = W; Tp — b; (18)

1

w

Since corresponds to the function of the concept detector, this difference is positive whenever the concept
is present in x, and negative whenever the concept is absent. Thus, centering the signal value of a patch
embedding around its point of uncertainty can be simply done by computing rp,; using (17).

Intervening on Concept Encoding Altering the concept content that is encoded in a patch embedding
ends up overwriting the signal value of the concept with a target value of interest. The target value is meant
to be copied from a target embedding. Let x, denote the patch embedding that we aim to intervene on and
sc;, denote the target embedding. Let z;, denote the altered embedding after the intervention. Supposing
that we aim to intervene on the value of concept i, :c;, becomes:

(I); =Tp + Iipﬂ;gi (19)

with kp,; € R. Since we want a:’p and :cz, to have the same signal value for concept i, we make use of 1]
and compute kp ; such that:

T .t T
wlzl —w!x
T/ 1 t\ T o N Wity PP T ¢ T _ T
w; (T, —x,) = 0= w; (Tp + Kpi8i —Tp) =0= kp,; = T =w; T, ~W; Tp =1 —w; Ty
w; §; —_——
N——" t

(20)

with ¢ denoting the projected target value. In applications, we are typically interested in altering the concept
content of an embedding towards the presence or absence of a concept. To accomplish that, two natural
choices arise: first, to overwrite the signal value of the embedding based on the average signal value of samples
with or without the concept, and second, to overwrite the signal value of the embedding to match the value
of a top (or bottom) quantile of signal values in a collection. In the first case, we can use w; =E, [mp],
with the average taking place along the patches with (or without) the concept. For the second case, we can
directly work in the projection space, by computing the quantile of interest over the projected embeddings
w! 'z, and use that value in place of .
5.2 Using Encoding-Decoding Direction Pairs and the Regions of Uncertainty to Provide
Concept-Based Local Explanations and Detailed Spatially-Aware Concept Contribution Maps

In this Section, we discuss how our learned Encoding-Decoding Direction Pairs can be leveraged in order to
provide concept-based local explanations for any network prediction. For simplicity, we will be discussing
the application in Convolutional Neural Networks (CNNs) with a Global Average Pooling (GAP) layer and
a ReLU activation function, but adaptation to other architectures could be possible.

5.2.1 Terminology and Definitions

Suppose that we want to explain the prediction of an image classifier f for image Z. Let X denote this image’s
representation at the penultimate layer of the network (in CNNs; this is typically the last convolutional layer
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before GAP). Let also &, € RP denote a patch embedding in X at the spatial location p = (w, h). Following
the previously introduced methodology, we assume that we have learned Encoding-Decoding Direction Pairs
for this layer, i.c. filters W and signal vectors S. Let I, € R denote the network’s output logit for class ¢
regarding input Z. Typically, ¢ will be chosen such that [. is the maximum logit among the output class
logits, but other choices are also valid, for instance when we want to explain why the prediction deviated
from a specific class. Let also X" € RF*WXD denote a baseline point in the uncertainty region of the
model. We call it baseline because this point corresponds to an artificial image representation for which
the prediction of the network is highly uncertain. Let [;® € R denote the prediction logit for class c that
corresponds to X", i.e. [I" = fT(X™). We define the following quantity:

lo=1.—1" (21)

an explanation logit (I.), which is equal to the difference in predicting class ¢ for image Z compared to a
highly uncertain prediction for the same class. Let w. and b, denote the class vector and the corresponding
bias of the network’s last fully connected layer. Then, the explanation logit becomes:

le =1.— 1" = wl'GAP(X) + b, — (wIGAP(X™) + b.) (22)

Our goal is to express this quantity in terms of the identified concepts. Based on our previous discussions
in Sections [4.4] and we conclude that an intuitive point of reference for expressing concept content is a
baseline point in the uncertainty region of the concept detectors. Any image representation X has
a corresponding baseline point X¢ € RI*W>D in that region, which can be obtained by h(X; W, S’) If
it weren’t for the layer’s activation function, we could choose X" to be equal to X}, due to the alignment
of the two uncertainty regions during direction learning. However, in practice, there is a shift between
the two points, since X" = ReLU(X}). For this reason, we treat X]* similar to X, i.e. as an artificial
image representation whose concept content can be expressed with respect to a baseline point X;"¢ in the
uncertainty region of the concept detectors. Slmllar to X, X["¢ can be calculated by h(X}"; W, S)
Finally, let v, and vb be equal to the expression of ) when computlng baseline points in the concept
detectors’ uncertalnty region for X and X", respectlvely

5.2.2 Logit Difference Decomposition in terms of Concepts

Based on the aforementioned definitions, we have:

le =1.— 1" = w!'GAP(X) + b, — (w GAP(X]") + b.) =
lo = wlGAP(X — X{) — wlGAP(X]" — X"°) + wl GAP(X{ — X[™°) (23)

Due to the linearity of GAP, can be written as:

I = Ep [wl (@ — a5,)| = Ep 0] (@, — @) + Ep [l (@5, — 25)] (24)
where N and acp i elements at the bpatlal location p of Xy, X" and X}"*¢ rebpectlvely By definition,
we have xp — x, |, = S'vp, and x"), — Sv , Up, v € R, Given these, can be written as:

le=E, [wCTS'(vp )} +E, {w rp} (25)

with rp = wp b~ Tpp € RP a residual that is not going to be explained in terms of concepts. The first
part of (25)) can be interpreted as follows: the contribution of concept i to the explanation logit is equal to
w; sz(vpﬂ — v;’m) This means that the explanation logit depends on a global concept contribution factor
w?§¢ which is constant regardless of the sample to be explained, and a local contribution factor which
depends on the sample and is equal to the difference in concept content between the sample itself and a
synthetic baseline sample that corresponds to a highly uncertain network prediction. Since both x;,, and

x,'; lie in the uncertainty region of the concept detectors, their difference in terms of concept content is

zero, and the residual does not carry any concept-related information.
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Figure 7: Description of the synthetic dataset that we use in the experiments: a) Concept set: {0,1,2} b) Image
Classes: {a,b,c} with each class corresponding to a unique pair of concepts. c¢) Each image is comprised of two patch
representations xp, , Tp,.

Let p 4 (@Z,i) denote the signal value of x,, (z',) for concept i centered around the value corresponding to the
concept ambiguity (i.e. by considering x, (wgfb) as a query point and using the concept’s point of uncertainty

as a reference). As discussed in Section positive O, ; (94

».i) indicates concept presence, while negative oy ;

(0} ;) indicates concept absence. by ; (05 ;) and vp; (v} ;) would be exactly the same if w] 8; = 0Vi # j and
also if each w; is perpendicular to the basis of distractors D. In practice, these orthogonality constraints

are only approximately fulfilled. To obtain intuitive explanations without compromising fidelity, we re-write

as:

I =E, [wCTS’(ﬁp — 08 + w8 (vp — b — (0] — @g)] +E, [wcTr,,] = (26)
le=E, [w?ﬁﬁp} -E, [wzgﬁg} +E, [wzg(vp — Up — (vf, - ﬁ;’,)} +E, ['wCTrp} (27)
sample concept baseline concept correction residual

Based on , the explanation logit [, is linearly expressed in terms of patches and concepts, giving detailed,
spatially-aware information for concept contributions. We split into four parts. The first part corre-
sponds to contributions of concepts included in the sample (sample concept), the second to the contribution
of concepts contained in an artificial baseline point of an uncertain prediction (baseline concept), the third
part to a correction factor to account for imperfect direction learning convergence, and finally a residual
that we do not explain. If the correction factor for concept ¢ was zero, concept ¢ would have a positive
contribution to the explanation logit whenever the difference in contributions between the sample and the
baseline is positive. In the case of imperfect learning conditions, this difference must exceed the negative of
the correction factor.

In the experiments, we will be reporting Concept Contribution Maps (CCMs) where each spatial element p
will be equal to:

¢fo = ’wchi(@p,i - @Zz) (28)
visualized as a heatmap over the original image for a given concept i. Finally, we will be referring to the
quantity wl'§; as the Concept-Class Relation Coefficient (CCRC).

6 Experiment on Synthetic Data

In this section, we test our method on synthetic data which follow the data generation process detailed in
Section We validate three aspects: a) the effectiveness of signal vectors in estimating the concept’s
encoding direction given ground-truth signal values, b) the efficacy of our unsupervised approach to
reliably identify the ground-truth concept encoding-decoding direction pairs, under challenging conditions
for conventional techniques, c) the necessity of Filter-Signal Orthogonality loss £/%° for reliable estimation
of encoding directions.

We consider synthetic image representations with two spatial elements p;,po, i.e. W =2 and H = 1.
Every pixel p is presumed to be associated with just one concept from a set of I = 3 concepts. Let
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Table 1: Evaluating the performance of the concept detectors in classifying patch embeddings in the experiment on
synthetic data. The metric is Intersection over Union (IoU). Rows correspond to concept detectors and columns to
ground-truth concept classes. Clearly, each detector is aligned with one distinct ground-truth concept.

Concept
#0  H#1 #2

#0 0 10 0
#1 10 0 0
#2 0 0 1.0

Detector

c(p) € {0,1,2} represent the concept label of p, and k € {a,b,c} denote an image class. We construct
image representations as follows: for k = a, ¢(p1) = 0 and ¢(p2) = 1; for k = b, ¢(p1) = 0 and ¢(p2) = 2;
and for k = ¢, ¢(p1) = 1 and ¢(p2) = 2 (Fig. [7). We set the embedding space dimensionality to D = 8,
the size of the distractor basis to F' = 2 and randomly create unit-norm vectors to construct the matrices
S and D. Using those principles and hyper-parameters we generate patch embeddings x,,, xp, for each
image according to . The latent signal values and distractor coefficients follow the uniform distribution:
ap; ~ U(0.0,2.25) if p is not part of concept ¢ and ap; ~ U(2.75,5.0), otherwise, while 5, ; ~ U(0,5.0)
is independent of the patch’s concept label. We introduce a bias of ¢ = 10 across all dimensions of the
representations to maintain them in the positive quartile, similar to the impact of a ReLU layer. We
generate a balanced dataset with each class being represented by 1000 images.

Given the aforementioned synthetic dataset, we train a network to predict the image class based on the
concept content of its patches. The network we use is composed of just two layers (corresponding to the
top part of a potentially larger deep network). The first is an average-pooling layer, and the second is a
linear layer with K = 3 output classes. After training, the network attains 96.33% accuracy on a test set,
randomly generated based on the previous principles. More details regarding the setup of this experiment
are provided in Section [A74]

6.1 Evaluation of the Signal-Vector Estimator

Based on the synthetic pixel dataset {xp,} U {xp,} and the ground-truth signal values a,; that we
randomly generated, we put the estimator of Kindermans et al.| (2017)) and our signal vectors under test.
The difference between the two estimators is the sub-sampling procedure that we proposed in Section [£.3]
Given the ground-truth matrix of signal directions S we are able to calculate cosine similarities between
the estimated signal directions and the respective ground-truth. The results of this experiment are depicted
in Fig. (in blue and green). Since we make use of the ground-truth signal values, this experiment
evaluates the efficacy of signal vectors under perfect input conditions. The figure showcases the effectiveness
of our proposed sub-sampling procedure when using as in all cases signal vectors demonstrate perfect
alignment with the ground-truth directions, while in the absence of sub-sampling, the estimation is less
reliable. Conclusively, the sub-sampling technique that we proposed in Section successfully adapts to the
new assumptions that we make about the data.

6.2 Evaluation of the Encoding-Decoding Direction Pairs

In this experiment, signal vectors are jointly learned with the concept detectors in an unsupervised fashion,
employing every proposed facet of the method as laid out in Section [d] Concept detectors are evaluated
for their ability to detect each one of the ground-truth concepts, while signal vectors are evaluated for their
alignment with the ground-truth concept encoding directions.

Decoding Directions (Concept Detectors): Using the synthetic pixel dataset {xp, } U {xp,}, we assess
the ability of each learned concept detector in detecting each one of the ground-truth concepts. Since the
method is unsupervised, the name of the concept that each detector detects is unknown. For this reason, we
need to implement direction labeling (Section [3.4). In Table [I] we present the Intersection over Union scores
for each detector against actual concept classes. Zero values indicate complete purity and no mixing of the
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Figure 8: 1) Cosine similarity between the ground-truth concept encoding directions and their estimation via Kinder-
mans et al calculated without our proposed feature sub-sampling. In this experiment, the estimation of signal
directions uses ground-truth signal values. 2) Cosine similarity between the ground-truth concept encoding
directions and their estimation via Signal-Vectors, i.e. using calculated with our proposed feature sub-sampling.
Similarly to the previous experiment this one uses ground-truth signal values. Under ideal input conditions,
Signal-Vectors are proven to be faithful signal estimators. 3) Cosine similarity between ground-truth concept en-
coding directions and their estimation via our proposed Encoding-Decoding Direction Pairs (EDDP). In constrast
to the previous two experiments, in this one Signal Vectors are learned in an unsupervised manner using all the
aspects of the proposed method. Without access to ground-truth signal values, our overall unsupervised approach is
capable of recovering the ground-truth concept encoding directions. 4) Cosine similarity between the ground-truth
concept encoding directions and their estimation via our proposed Encoding-Decoding Direction Pairs (EDDP). This
experiment is identical to (3) but omits the Filter-Signal Orthogonality Loss £5%° from the objective function. In
that case, the encoding direction estimation is inferior compared to when employing £7°°.

concepts, while scores of 1.0 indicate perfect concept detection. As an additional step, we also examine how
well the learned filters extract signal values from representations. Since distractors and the latent space
bias ¢ are not directly estimated by our method, we can only quantify the extracted signal values as a
deviation from the dataset’s average value (See also and Section . The Root Mean Squared Error
(RMSE) between these extracted values and the ground truth, after subtracting the mean signal value, is
noted as 0.06. We also verified that in this experiment where the distractor components are independent
of the concept content contained in the features, the learned filters were orthogonal to all the vectors in the
distractor basis D, without explicitly enforcing this to happen.

Encoding Directions: Fig. [8|- orange indicates perfect alignment between the learned signal vectors
and the ground-truth concept encoding directions. We stress the fact that in this experiment signal vectors
were learned in an unsupervised manner together with the concept detectors, and this is different from the
approach we took in Section[6.1} where we evaluated signal vectors as estimators under ideal input conditions.

6.3 Ablation Study

In this synthetic experiment we also consider a case study where we learn the direction pairs by omitting
L£7%° from the objective function, i.e. learning the direction pairs without (/wo) it. In that case, the concept
detectors still discovered the ground-truth directional clusters, as in Table [l However, the decoding direc-
tions were less reliable in extracting the ground-truth signal values. The RMSE between the extracted values
and the ground truth, after subtracting the mean signal value, was found to be 0.31, which is substantially
inferior to the standard case discussed above. The latter has an impact on the fidelity of the signal vectors.
Fig. [§| purple visualizes the cosine similarity between the learned signal vectors and the ground-truth en-
coding directions for this case. The experiment shows that the signal direction estimation is less effective
compared to when £/9° is taken into account.
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6.4 Evaluation against other State-of-the-Art

The ground-truth encoding directions of this example (Table [14]in Appendix contain both positive and
negative components, and the relationship among the encoding directions (and the distractors) is in general
not orthogonal. In theory, and without the need for practical experiments, this example cannot be addressed
by NMF, K-Means, or PCA. NMF would produce a signal basis of non-negative components. Similarly,
the cluster centers of K-Means would point toward the positive quartile where the centroids reside. Finally,
the non-orthogonal nature of the ground truth encoding directions implies that the PCA’s solution space is
insufficient.

7 Experiments on Deep Image Classifiers

In this section we apply our method in real-world scenarios. We perform a multifaceted analysis with the
aim to shed light on every merit of the method, the method’s relation to other supervised and unsupervised
direction learning approaches, and finally its utility in real-world applications. In the following sections we a)
assess the faithfulness of the learned encoding-decoding direction pairs b) provide qualitative segmentation
results obtained by utilizing our learned concept detectors ¢) compare with the unsupervised state-of-the-art
in interpretability and influence terms d) conduct an ablation study to quantify the contribution of each
proposed component e) compare with supervised direction learning with the aim to provide more insights
on the interpretability and influence of the directions f) provide application use cases in which the learned
direction pairs assist in providing global, local and counterfactual model explanations g) provide an example
application in model correction.

7.1 Direction Learning and Evaluation Protocol

We apply our Encoding-Decoding Direction Pairs (EDDP) on the last convolution layer of five different
networks: ResNet18 (He et al 2016) trained on Places365 (Zhou et al., [2017)), ResNet50 (He et al., [2016)
trained on Moments in Time (MiT) (Monfort et al. 2019) as well as EfficientNet (b0) (Tan & Le, 2019)),
Inception-v3 (Szegedy et al., [2016) and VGG16 (Simonyan & Zisserman) [2014) trained on ImageNet (Deng
et al., |2009). For learning the direction pairs and quantitatively assessing their interpretability and their
influence on network predictions, we expand on the protocol introduced in [Doumanoglou et al.| (2023). For
all the networks that we study, when learning the direction pairs we use the Broden (Bau et al.l 2017)
concept dataset, except for ResNet50 for which we use Broden-Action Ramakrishnan et al.| (2019). The
concept datasets feature dense pixel annotations; Broden includes 1197 concepts across 63K images in 5
concept categories (object, part, material, texture, color), while Broden-Action incorporates an additional
action category with 210 labels and 23K more images. We emphasize that when learning the direction pairs
we do not make use of the annotations that complement the concept datasets.

For baselines, we consider directional clusterings based on either PCA, NMF, or the natural latent space
basis. For our EDDP, we examine two variants, namely EDDP-U and EDDP-C. These are differentiated
based on the choice of feature manipulation strategy used in Uncertainty Region Alignment, with EDDP-U
referring to UFM and EDDP-C to CFM. Unless stated otherwise, our Encoding-Decoding Direction Pairs use
the Augmented Lagrangian Loss from Section all losses from Sections and (except L%), along with
either £ (EDDP-U) or £ and £f*° (EDDP-C) from Sections and Other method parameters for
each case are detailed in Section We emphasize that EDDP-U does not include the use of £7%° to learn
the directions. We remind that the main purpose of £/%° is to contribute towards a faithful estimation of the
encoding directions. While this was critical for the experiment on synthetic data, in real-world experiments,
we see that the value of this loss is sufficiently low even when not directly minimizing it, possibly due to
working in a high-dimensional embedding space where two random vectors are approximately orthogonal.
A detailed discussion regarding £7%° is provided in Sections and with the conclusions presented
in the main body of the article being mostly aligned with the conclusions that stem from detailed ablation
studies.

After learning the directions, either with our method or with methods from the unsupervised state-of-the-art,
we use the annotations available in the concept datasets to label the directions using Network Dissection
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Figure 9: Our approach to assess the faithfulness of the direction pair: Starting from an image with the concept, we
use deep dream to maximize the concept’s decoding direction and collect, during “dreaming”, the patch embeddings
from the dream images at the regions with the concept. Subsequently, we fit a parametric line to those features
in order to estimate the direction towards which they are moving when “dreaming”. We term this direction as the
dreaming direction.

(Bau et al.l 2017). As described in Section we make a basis change by projecting the network feature
activations onto the learned decoding directions (for PCA and EDPP) or by directly utilizing the concept

factors learned by NMF. While our approach is explicitly learning binary classifiers {w;,b;} as concept
detectors, PCA and NMF lack the estimation of an explicit classification threshold b. To form concept
detectors in those cases, we follow and for each direction we choose b to be equal to the top
k-quantile among the projected activations sourced from the concept dataset. For NMF we use k£ = 0.005,
as suggested in Bau et al| (2017)), while for PCA we use k = 0.2 as suggested in |Graziani et al.| (2023al).
In our experiments we also consider comparing with the clustering obtained using the natural latent space
basis, i.e. the neuron directions, which in the tables we refer to as Natural. In that case, the classification
threshold of the considered concept detectors is set to the top 0.005 quantile of the feature activations in the
direction of the neuron, as originally suggested in Network Dissection.

7.2 Faithfulness Assessment of the Encoding-Decoding Direction Pairs

In this section, we aim to evaluate the faithfulness of the encoding-decoding direction pairs, i.e. to assess
whether the signal value extracted by the decoding direction is indeed encoded in the direction of the signal
vector. Although we already validated that the direction pairs are faithful in the case of synthetic data
(Section @, in this paragraph, we aim to make the same evaluation in the case of real data, in the absence
of ground truth. Based on activation maximization (Nguyen et al., [2019), we propose the following novel
approach to address this evaluation. Suppose that we evaluate the faithfulness of a particular direction pair
w, § and let b denote the respective concept detector’s bias. We use the concept detector (w, b) in order to
collect a set of images containing the concept. Subsequently, using these images as an initialization point,
we use Deep Dream (Olah et al., 2017) to compute pre-images (Mahendran & Vedaldi, 2015} [2016), that is,
images that maximize the decoding direction w at the spatial locations of where the concept was initially
found. In this manner, we start from an image containing the concept and ask Deep Dream to amplify (in the
input pixel space) whatever concept the detector can detect. We keep running the activation maximization
loop for K iterations and keep a record of how the features (at the locations with the concept) evolve while
optimizing. Finally, we use all the recorded features collected during the “dreaming” optimization in order
to fit a parametric line and estimate the direction that best describes feature evolvement while dreaming.
We call the direction of this line the dreaming direction (Fig. E[) We conclude by comparing the dreaming
direction of the concept for each image with the respective signal vector in terms of cosine similarity. In
Figures [11] and [I2] we provide histograms of these cosine similarities when applying our method to ResNet18
and EfficientNet. In all cases, even the ones without considering £/%°, approximately 90% of the signal
vectors have cosine similarity with the dreaming directions above 0.7, indicating sufficient faithfulness. The
effect of £f%° is to push the distribution to become more Gaussian. To validate the effectiveness of the
sub-sampling strategy proposed in Section we also provide histograms of cosine similarities between
signal vectors and dreaming directions in the absence of sub-sampling. The results are depicted in Fig.
where, in that case, the deviation of the signal vectors from the dreaming direction is evident. Example
dreaming pre-images for two cases are provided in Fig. [I0]and further details and experiments may be found
in Sections and
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Figure 10: Dreaming pre-images from the process of estimating the dreaming directions. Left: Maximizing a concept
detector learned for the latent space of ResNet18 and labeled with the concept name skyscraper. Right: Maximizing

a concept detector learned for the latent space of EfficientNet and labeled with the concept name tvmonitor. Both
images regard directions learned with EDDP-C.
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Figure 11: Cosine similarity histogram between dreaming directions and signal vectors. Left: Directions learned
for ResNet18 trained on Places365 (I = 448). Right: Directions learned for EfficientNet trained on ImageNet
(I =1120). These histograms regard EDDP-C, i.e. directions learned with £°*" and L£rse.
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Figure 12: Cosine similarity histogram between dreaming directions and signal vectors. Left: Directions learned
for ResNet18 trained on Places365 (I = 448). Right: Directions learned for EfficientNet trained on ImageNet
(I =1120). These histograms regard EDDP-U, i.e. directions learned with £*“" but without £°.
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Figure 13: Cosine similarity histogram between dreaming directions and signal vectors learned without sub-
sampling. Left: Directions learned for ResNetl8 trained on Places365 (I = 448). Right: Directions learned
for EfficientNet trained on ImageNet (I = 1120). These histograms regard EDDP-U, i.e. directions learned with
L% but without £7%°.

7.3 Interpretability Evaluation of Concept Detectors: Qualitative Segmentation Results and
Interpretability Statistics

Figure [14] depicts qualitative segmentation results obtained using our concept detectors. Visualizations are
obtained using Network Dissection (Bau et all 2017). In the figures, the Intersection over Union (IoU)
scores refer to the whole validation split of the concept dataset and not individual image segmentations.
We can verify that concept detectors appear to be mostly monosemantic. For each network architecture,
we additionally report interpretability statistics provided by Network Dissection. In this report, a concept
detector is considered to be interpretable whenever its IoU performance with the best possible concept in the
concept dataset exceeds the threshold of 0.04, which is equal to what was suggested in Network Dissection.
Table[2]depicts this summary for ResNet18, while for the rest of the architectures, the results are summarized
in Tables of the Appendix (Section . More qualitative visualizations and visual comparisons with the
unsupervised state-of-the-art are also included in the same Section of the Appendix.

Table 2: Network Dissection statistics for ResNet18 trained on Places365. For each concept category in Broden, we
report two numbers: First, the number of concept detectors that were labeled with the name of a concept belonging
to the category and second, the number of unique concept labels from the category that have been assigned to the
set of the concept detectors. The table summarizes statistics for methods of the unsupervised state-of-the-art and
for different values of the cluster count hyper-parameter I.

ResNet18 / Places365
I Method Color Object Part  Material Scene Texture Total

PCA 0/0 22/13 5/2 1/1 28 /16 117 /32 173/ 64
agq NMF 0/0 94/42 7/4 2/2 189/101 47/26 339 /175
EDDP-U 2/2 118/54 8/7 3/3 151/114 21 /17 303 /197
EDDP-C 2/2 117/51 9/6 4/4 153 /114 22 /17 307 /194
PCA 0/0 22/13 5/2 1/1 28 /16 127 /33 183/ 65
1y NMF 0/0 95/46 97 1/1  234/120 33/20 372/194
EDDP-U 2/2 137/62 6/6 5/5 1937129 21 /18 364 / 222
EDDP-C 2/2 136/60 5/5 5/5 194/133 22/18 364 /223
Natural 0/0 107/43 11/8 1/1  269/135 26/17 414 /204
519 PCA 0/0 22/13 5/2 1/1 27 /15 125 /32 180/ 63

EDDP-U 1/1 127/66 10/10 4/4  236/161 29/22 407 / 264
EDDP-C 1/1 128/66 11/11 4/4  236/165 27/22 407 /269

As an exemplar interpretation of the report, Table [2| shows that when learning direction pairs for ResNet18
with I = 512, Network Dissection reported that EDDP-C can identify 269 different concepts in the following
categories: 66 objects, 165 scenes, 11 parts, 4 materials, 22 textures, and 1 color. The total number of
interpretable concept detectors is 407. This preliminary statistical report together with the visualizations
is given in order to provide an intuition regarding the interpretability of the concept detectors. A rigorous
evaluation with comparisons is conducted in the Sections that follow.
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Figure 14: Qualitative segmentations using the concept detectors learned with our method as reported by Network
Dissection. Rows correspond to concept detectors learned for different networks. For ResNet18 and EfficientNet the
results were obtained using CFM while for Inception-v3, VGG16 and Resnet50 using UFM.
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7.4 Metrics
7.4.1 Evaluation of Clustering Quality via Cluster Statistics

We report two statistical measures regarding the directional clustering. First, Coverage measures the percent
of patches in the concept dataset that are classified positively by at least one of the concept detectors in
the set, and second, Redundancy measures the average number of classifiers making a positive prediction for
each patch in the dataset. Coverage may also be interpreted as the percent of pixels that have been assigned
to at least one cluster, or the percent of pixels explained by the clustering, and redundancy may also be
interpreted as the average number of clusters to which each patch belongs.

7.4.2 Evaluation of the Decoding Directions: Interpretability

Classification Let 7; denote the binary classification task of predicting whether a patch belongs to concept
i. Given the concept label [ which was assigned to a concept detector from Network Dissection, we assess the
detector’s performance on 7; using the standard binary classification metrics of Precision, Recall, F1, and
Average Precision (AP). For each metric, we report average and standard deviation scores by aggregating
across all detectors in the learned set.

Segmentation We additionally consider the performance of concept detectors in the binary semantic seg-
mentation task and employ two metrics from Doumanoglou et al.| (2023). Specifically, let ¢;(c, K) the
Intersection Over Union for concept detector i in identifying concept ¢ within the dataset . Define
¢; = argmax, ¢;(c, K;), indicating the concept label detected best by concept detector ¢ within the training
subset of the dataset (K;). With K, as the validation subset, we use the following interpretability scores S!
and S

11-1

S :/o ;1x25(¢i(6:,]cu))d§ )

1
5% = / et |30 : dileh K) > E)]de (30)

The first metric S! counts concept detectors with an IoU performance that exceeds a score threshold £. The
second metric S? uses the cardinality of the set |.| to count the unique concept labels detected by the concept
detectors with IoU above €. Both metrics become threshold-agnostic, by integrating on all € € [0,1]. Viewing
it from a different angle, S' pertains to the segmentation efficiency of each concept detector individually,
whereas S? concerns the clustering diversity, meaning the capability of the detector ensemble to recognize
a wide array of distinct concepts. Finally, we also report the standard mean Intersection over Union (mlIoU)
score, which is the average IoU performance score aggregated across all the detectors in the set.

Monosemanticity Even though Precision is a natural classification metric that can capture the monose-
manticity of the clustering, it has the drawback of relying on the explicit labels that are available in the
concept dataset. To overcome this labeling limitation, and inspired by Dreyer et al.| (2024b), we additionally
quantify the monosemanticity of the concepts identified by the concept detectors by utilizing the embedding
space of CLIP ViT/B-16 (Radford et al.|2021)). In particular, for each concept detector, we pick images from
the validation split of the concept dataset for which the detector is most confident about the presence of the
concept. We pick 100 unique images from the top confident predictions. Subsequently, we crop a rectangle
around the area of the concept and obtain the CLIP embedding for this crop. Let k% and k% denote image
indices in the set of selected images with k¢ ki € {0,1,...99} and i denote the i-th concept detector. We
use the following monosemanticity metric, which measures the average distance between CLIP embeddings
(e,ﬁ: €k ) within a cluster, aggregated over all clusters:

M :E[ E (llex —ex
i Lin

3] (31)
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7.4.3 Evaluation of the Encoding Directions: Influence

In the context of this evaluation, we relate concept influence to the sensitivity of the network with respect
to that concept when making class predictions. We assess the ability of our method to identify influential
concepts to model predictions using RCAV [Pfau et al.| (2020). As we already mentioned in Section
RCAYV originally used CAVs to accomplish this. Here we follow the proposition of |Pahde et al.| (2024) and
use the learned encoding directions in their place. For sensitivity scores, we spatially replicate the learned
encoding directions across all spatial locations in the image representation. Direction significance is tested
with RCAV’s label permutation test to generate random directions, with the significance threshold set to
0.05 and Bonferroni correction. For RCAV’s hyper-parameter o we use o = 5.0, as originally suggested. In
the ablation studies, two metrics summarize the results: Significant Direction Count (SDC) and Significant
Class-Direction Pairs (SCDP). SDC represents the number of signal vectors that significantly influence at
least one model class, while SCDP tallies class-direction pairs where the signal vectors significantly affect
the class. In those metrics significance is measured by taking into account the influence of random directions
on the network predictions as it was already discussed in Section [3:5] In studies without £°", we report
influence metrics for signal vectors that were estimated post learning the directions with the subsample
strategy discussed in Section Let also Sc¢,; ; denote the sensitivity of the model to concept ¢ when
predicting class k (as measured by RCAV and scaled in the range [—1.0,1.0]). When comparing against the
unsupervised state-of-the-art, we use the following influence metric Z' which is defined as:

' =E;x [|SCzk|} (32)
i.e. the average sensitivity of the model across all concepts and classes.

7.5 Interpretability and Influence Comparison with the Unsupervised State-of-the-Art

For comparing with the unsupervised state-of-the-art in direction learning, we consider baselines based on
PCA and NMF which have been previously used in [Zhang et al| (2021); [Fel et al.| (2023c|) and |Graziani
et al.| (2023a3bl). While these previous works have demonstrated the effectiveness of PCA and NMF to reveal
interpretable directions in the latent space of deep networks, their evaluation mostly relied on subjective
human experiments. Going beyond subjective evaluation, in this work, we take a best effort approach to
compare them with our method in quantitative terms of interpretability and influence. In the Appendix
(Section, we also compare with the methods we extend (Doumanoglou et al., 2023} 2024) but under a
different protocol for a fair comparison. For each network, we consider three sizes for the clustering, namely
I=3/4D, 1 =17/8D, and I = D. When I = D, NMF trivially resolves to the natural latent space basis,
i.e. the neuron directions. When studying EfficientNet we disregard NMF, since this network uses the SiLU
activation function (Ramachandran et al., [2017)) which allows negative feature activations, rendering NMF
non-applicable. Tables[3J[4] (] [0} [7] summarize the comparative analysis for ResNet18, EfficientNet, Inception-
v3, VGG16 and ResNet50, respectively. In the following subsections, we make a detailed discussion on those
tables.

7.5.1 Analysis for ResNet18 trained on Places365

Clustering Quality: Regarding dataset coverage, both our EDDP variants explain 86% of the dataset
regardless of cluster count. Specifically, this means that 86% of the patch embeddings in the concept
dataset have been assigned to at least one cluster. This number is substantially higher than the coverage
of the clustering obtained via NMF (which is at most 57%) or the natural latent space basis (49%) and
still significantly higher than the coverage of the clustering obtained via PCA (at most 77%). As far as
redundancy is concerned, the EDDP variants minimize multiple cluster assignments to individual patches,
as they attain the lowest redundancy scores (at most 1.33 cluster assignments per patch). While NMF and
the natural basis rank 3rd in redundancy terms with more than 1.77 assignments per patch, PCA is ranked
last with the same number exceeding 7.27.

Interpretability: In classification metrics, the clustering of EDDP-U is the most interpretable of all, scoring
higher than alternative clusterings, especially in Precision and AP terms. In most cases, clustering with
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Table 3: Comparative Analysis of our Encoding-Decoding Direction Pairs (EDDP) against the Unsupervised State-of-
the-Art. This table summarizes metrics for ResNet18 trained on Places365. EDDP-U stands for using Unconstrained
Feature Manipulation and EDDP-C for using Constrained Feature Manipulation.

ResNet18 / Places365

I Method  Coverage T Redundancy | Precision T Recall 1 F1 71 AP 1 ML St S§24 mloUt TI'7¢
PCA 0.72 7.27 0.26+0.13 0.14+£0.11 0.18+0.11 0.1740.11 747  16.57 5.6 0.04 0.73

384 NMF 0.57 2.06 0.62+0.19 0.21£0.14 0.314+0.17 0.4+0.18 6.88  29.56 17.43 0.08 0.68
EDDP-U 0.86 1.29 0.82+0.21 0.23+0.16 0.33+0.18 0.53+0.19 6.61 41.73 28.01 0.12 0.58
EDDP-C 0.86 1.32 0.814+0.21 0.23+0.16 0.33+0.17 0.5+0.19 6.67 41.5 27.49 0.12 0.61

PCA 0.75 8.89 0.25+0.12 0.14+0.11 0.17£0.11 0.16+0.1 7.48 18.06 5.62 0.04 0.73

448 NMF 0.51 1.79 0.67+0.18 0.21£0.14 0.31£0.17 0.43+0.18 6.96 31.77 18.16 0.07 0.69
EDDP-U 0.86 1.32 0.83+0.19 0.22+0.16 0.32+0.18 0.53+0.19 6.64 47.5 32.07 0.11 0.59
EDDP-C 0.86 1.33 0.82+0.2 0.21£0.16 0.31£0.18 0.4940.19 6.72 46.3 31.34 0.11 0.61
Natural 0.49 1.79 0.6940.18 0.240.13 0.3+0.16 0.434+0.17 7.02  34.61 18.74 0.07 0.69

512 PCA 0.77 10.05 0.2540.12 0.14+0.11 0.17£0.11 0.16£0.1 7.5 19.41 5.62 0.04 0.74
EDDP-U 0.86 1.28 0.82+0.22 0.21+0.17 0.31£0.19 0.51+0.21 6.66 52.51 37.78 0.11 0.61
EDDP-C 0.86 1.28 0.81+0.24 0.2+0.16 0.29£0.19 0.47£0.2 6.73  50.29 36.99 0.1 0.63

EDDP-C attains scores close to clustering with EDDP-U. Thus, EDDP-C is ranked 2nd in all classification
metrics except in the case of F1 score and I = 512, in which the natural basis is slightly better by a score
point of 0.01. With only the latter exception, in all classification metrics, NMF and the natural basis are
ranked 3rd, while PCA is ranked last.

The high precision of our concept detectors (approximately 0.82 on average) indicates that the learned
directions are highly monosemantic. The latter is additionally confirmed by the monosemanticity metric
based on CLIP embedding distances, in which EDDP variants are attributed the lowest M score. Comparing
with the rest of the approaches, all of the clusterings obtained by NMF, the natural basis, and PCA are less
monosemantic, often by a large margin (0.67 precision for NMF, 0.26 precision for PCA and 0.69 for the
natural basis).

Similar conclusions can be drawn from the segmentation metrics, in which the concept detectors of EDDP
score substantially higher than the previous approaches. For example, when I = 448, EDDP-C achieves
46.3 score points in S, surpassing NMF’s 31.77, and reaches 0.11 mlIoU points in contrast to NMF’s 0.07.
Finally, the EDDP variants also achieve the most diverse clustering, covering a variety of visual concepts, as
justified by the substantially higher values of S? compared to the rest of the approaches. Furthermore, this
diversity is consistently improved with the increase in cluster count, a phenomenon that is less prominent
for the rest of the state-of-the-art baselines.

Influence: To rank the methods based on the network’s sensitivity to the identified concepts (metric Z1),
starting from the most influential clustering, we would list PCA first, then NMF, followed by the Natural
basis, and finally EDDP-C and EDDP-U. In this case, it appears that there is a clear anti-correlated rela-
tionship between interpretability and influence, with the most interpretable clustering being less influential
on the overall model outcomes. We will be discussing this further at the end of the section.

7.5.2 Analysis for EfficientNet trained on ImageNet

Clustering Quality: Clusters created by the EDDP variants attain a Coverage score of 85%, while the
best values for PCA and the natural basis in the same metric are 68% and 51%, respectively. In Redundancy
terms, EDDP achieves scores less than 1.65, while the minimum scores for PCA and the natural basis are
19.29 and 5.44, respectively.

Interpretability: In terms of classification metrics, the directional clusterings obtained via EDDP-U and
EDDP-C are approximately equally interpretable and notably more interpretable than the directional clus-
tering of PCA. For instance, when I = 1120, the mean Precision of PCA’s concept detectors is 0.28, the
mean Recall 0.13, the mean F1 score 0.17, while the mean AP is equal to 0.19. For EDDP-U, the mean
scores for the same metrics are 0.76 for Precision, 0.2 for Recall, 0.28 for F1 score, and 0.39 for AP. Similar
conclusions about the improved interpretability of EDDP can be drawn when comparing with the natural
latent space basis in the case of I = 1280.

26



Under review as submission to TMLR

Table 4: Comparative Analysis of our Encoding-Decoding Direction Pairs (EDDP) against the Unsupervised State-
of-the-Art. This table summarizes metrics for EfficientNet (b0) trained on ImageNet. EDDP-U stands for using
Unconstrained Feature Manipulation and EDDP-C for using Constrained Feature Manipulation.

EfficientNet / ImageNet

I Method  Coverage © Redundancy | Precision T Recall 1 F11 AP 1 ML St 824 mloUt TI'1
PCA 0.63 19.29 0.29£0.08 0.13£0.07 0.1840.07 0.19£0.07 7.44 35.26 2.62 0.04 0.95

960 EDDP-U 0.85 1.51 0.75+0.22 0.2+0.17 0.274+0.17 0.3840.16 6.74 27.92 14.71 0.03 0.94
EDDP-C 0.85 1.48 0.72£0.23 0.2+0.18 0.27+0.17 0.38+0.17 6.75 25.92 14.45 0.03 0.94

PCA 0.67 24.7 0.2840.07 0.134+0.07 0.17+0.07 0.1940.07 7.44 42.33 2.7 0.04 0.95

1120 EDDP-U 0.85 1.61 0.76+0.21 0.2+0.17 0.28+0.17 0.39+0.17 6.73 31.36 16.54 0.03 0.94
EDDP-C 0.85 1.54 0.74+0.22 0.24+0.18 0.28+0.19 0.39+0.17 6.74 28.62 16.38 0.03 0.94
Natural 0.51 5.44 0.56+0.13 0.1440.07 0.214+0.1 0.29+0.12 7.35 35.94 7.09 0.03 0.95

1280 PCA 0.68 26.71 0.28+0.08 0.134+0.07 0.1740.07 0.18+0.07 7.44 48.01 3.12 0.04 0.95
EDDP-U 0.85 1.65 0.74+0.21 0.19+0.16 0.27+0.16 0.36+0.17 6.81 40.38 19.12 0.03 0.94
EDDP-C 0.85 1.6 0.73£0.21  0.19+0.17 0.26+£0.17 0.36+0.17 6.88 36.95 18.98 0.03 0.94

Regarding monosemanticity, the concept detectors of EDDP attain a mean Precision score which is better
than 0.72, in contrast to the ones of PCA, which attain mean Precision scores below 0.29. The same gap
between PCA and EDDP is similarly reflected in the M score. For example, when I = 1120, the M score
of EDDP-C is 6.74 while the score of PCA is 7.44. EDDP also demonstrates a substantial improvement in
monosemanticity compared to the natural basis. EDDP-C attains a mean Precision score of 0.73, while the
score of the natural basis for the same metric is only 0.56. Additionally, EDDP-C attains 6.88 points in
terms of M, which is significantly lower than the 7.35 points of the natural basis.

In the context of segmentation, when I = 1120, PCA’s concept detectors exhibit improved performance
concerning S', exceeding EDDP-U by roughly 12 points. In mIoU terms, PCA still scores higher (0.04), but
EDDP follows closely (0.03). Yet, PCA exhibits a narrow diversity in the clustering, discovering substantially
fewer concepts than EDDP, as reflected in S? in which EDDP-U surpasses PCA by up to approximately 14
points. When considering the natural basis as an alternative directional clustering, EDDP scores better in
terms of S! and 8% and equally well in mIoU.

Influence: With respect to the impact of the learned directions on the network predictions, EfficientNet
shows a significant sensitivity to the direction set determined by PCA or the neuron directions from the
natural basis, with a Z' score of 0.95. Even though the model is less influenced by the directions learned
with EDDP, this is only by a small margin, as the Z' scores for EDDP variants are 0.94.

7.5.3 Analysis for Inception-v3 trained on ImageNet

Table 5: Comparative Analysis of our Encoding-Decoding Direction Pairs (EDDP) against the Unsupervised State-
of-the-Art. This table summarizes metrics for Inception-v3 trained on ImageNet. EDDP-U stands for using Uncon-
strained Feature Manipulation and EDDP-C for using Constrained Feature Manipulation.

Inception-v3 / ImageNet

I Method  Coverage T Redundancy | Precision Recall T F11 AP 1 M| S S§?1 mloUt T'1
PCA 0.7 32.29 0.26£0.12 0.12+0.1 0.16+0.1 0.17+0.1 7.39 54.5 4.19 0.04 0.95

1536 NMF 0.7 9.26 0.53+0.17 0.16+0.12 0.24+0.14 0.28+0.16  7.24 70.68 14.92 0.05 0.95
EDDP-U 0.87 2.41 0.844+0.18 0.284+0.24 0.38+0.26 0.53+0.26 6.79 156.46 28.03 0.11 0.93
EDDP-C 0.85 1.9 0.86+0.19  0.23+0.16 0.33+£0.19 0.58+0.24 6.87 125.64  27.46 0.08 0.94

PCA 0.68 33.26 0.28+0.12 0.124+0.1 0.17+0.1 0.17+0.1 7.39 59.18 4.1 0.03 0.95

1792 NMF 0.64 7.71 0.6+0.18 0.1640.13 0.25%+0.16 0.32+0.17  7.29 72.86 15.86 0.04 0.95
EDDP-U 0.9 2.96 0.86+0.16  0.33+0.25 0.43+0.26 0.58+0.25 6.77 210.44 25.77 0.13 0.93
EDDP-C 0.86 2.19 0.89+0.16  0.24+0.16 0.36+0.19 0.62+0.21 6.92 174.0 24.69 0.1 0.94
Natural 0.63 10.29 0.58+0.17 0.17+0.13 0.25%0.15 0.31+£0.17  7.35 84.62 14.27 0.04 0.95

2048 PCA 0.71 42.35 0.26+0.12 0.1240.1 0.16+0.1 0.17+0.1 7.38 69.87 4.24 0.03 0.95
EDDP-U 0.86 2.36 0.85+0.2 0.31+0.29 0.4+0.29 0.54+0.28 6.95 170.81 32.13 0.09 0.94
EDDP-C 0.93 3.98 0.75+£0.18  0.16+£0.12  0.24+0.14  0.38+0.16 7.09  92.67  31.18 0.05 0.94

Clustering Quality: On par with the experiments on the previous architectures, EDDP variants explain
more than the 85% of the concept dataset, as noted by the respective Coverage scores. This score is still
significantly higher than the ones attained from NMF (up to 70%), the natural basis (63%) or PCA (up to
71%). As far as Redundancy is concerned, on one hand, EDDP does not exceed 3.98 cluster assignments
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per patch. On the other hand, NMF assigns a patch to more than 7.71 clusters, while for PCA this number
exceeds 32.29. Finally, in the clustering obtained by the use of the natural basis, each patch is assigned to
10.29 clusters.

Interpretability: For I = 1536 and I = 1792, the concept detectors of the EDDP variants score substan-
tially higher in the classification metrics than the rest of the approaches. For example, when I = 1792,
EDDP-C attains a Precision score of 0.89, whereas the same score for NMF is 0.6 and for PCA 0.28. For
the same I, EDDP-U attains an F1 score of 0.43, which is a notable improvement over NMF’s 0.25 and
PCA’s 0.17. Finally, in terms of AP, EDDP-C achieves a score of 0.62 points, which is significantly more
competitive than the score of NMF (0.32) and PCA (0.17). For I = 2048, concept detectors from EDDP-U
consistently score higher in the classification metrics than any other approach. Unlike what we have seen
in the rest of the experiments, in that case, EDDP-C did not follow EDDP-U closely in the classification
metrics. Instead, it is clearly ranked 2nd, surpassing PCA and the natural basis in Precision and AP while
remaining comparable with the natural basis in Recall and F1 score.

Regarding monosemanticity, EDDP-U attains Precision scores close to 0.84, while for the cases of I = 1536
and [ = 1792, EDDP-C exceeds this number, achieving scores up to 0.89 but attains a lower score of 0.75
when I = 2048. The best Precision score for NMF is 0.6 for I = 1792, while for PCA this score is 0.28.
Finally, when clustering with the directions of the neurons, i.e. the natural basis, the Precision score is
0.58. When measuring monosemanticity with the CLIP embedding distances, the EDDP variants achieve a
substantially lower score compared to the rest of the approaches. For instance, when I = 1792, the EDDP-U
clustering attains a score of 6.77, EDDP-C 6.92, NMF 7.29 and PCA 7.39. Interestingly, unlike what we
have seen when using the labeled dataset in terms of Precision, when I = 2048 EDDP-C and EDDP-U score
similarly in M, with EDDP-U attaining a score of 6.95 and EDDP-C 7.09.

As far as segmentation is concerned, the ranking of the methods is consistent across all metrics: EDDP-U
comes first, followed by EDDP-C, then NMF or the natural basis, and finally PCA. Beyond just ranking, the
gap in the scores between EDDP and other approaches is large. For instance, when I = 1536, the EDDP-U
score in terms of St is 156.46 when NMF’s is 70.68. Similarly, for the same case, EDDP-U’s S? is 28.03
when NMF’s is 14.92, while for mIoU, EDDP-U’s score is 0.11 when NMF’s is 0.05.

Influence: Regarding the sensitivity of the model with respect to the identified concepts, Inception-v3 is
more sensitive to the PCA and NMF directions with a Z! score of 0.95. The network is slightly less sensitive
to the concepts identified by EDDP-C and EDDP-U, but once again by a small margin. EDDP-C attains a
T score of 0.94 and EDDP-U a score in {0.93,0.94}.

7.5.4 Analysis for VGG16 trained on ImageNet

Table 6: Comparative Analysis of our Encoding-Decoding Direction Pairs (EDDP) against the Unsupervised State-
of-the-Art. This table summarizes metrics for VGG16 trained on ImageNet. EDDP-U stands for using Unconstrained
Feature Manipulation and EDDP-C for using Constrained Feature Manipulation.

VGG16 / ImageNet

I Method  Coverage T Redundancy | Precision T Recall 1 F1 71 AP 1 ML St S§24 mloUt I'7¢
PCA 0.64 7.31 0.2940.09 0.15£0.07 0.19£0.07 0.16£0.07 7.85 2244 2.98 0.06 0.87

384 NMF 0.55 1.6 0.6+0.16 0.17£0.11 0.26+0.13  0.31+0.14 744 2273 9.7 0.06 0.87
EDDP-U 0.82 1.17 0.61+0.18 0.18+0.09 0.27+0.09 0.31+0.12 6.88 29.98 9.39 0.08 0.91
EDDP-C 0.79 1.07 0.63+0.18 0.16+0.09 0.244+0.09 0.31+0.12 6.92 26.23 8.89 0.07 0.9

PCA 0.67 8.91 0.28+0.08 0.15+0.07 0.19£0.07 0.16£0.06 7.86 25.8 3.12 0.06 0.87

448 NMF 0.5 1.44 0.62+0.16 0.16+0.1 0.25+0.12 0.31+0.14 7.44 24.82 9.86 0.06 0.87
EDDP-U 0.84 1.35 0.594+0.18 0.18+0.09 0.26+0.09 0.3+0.11 6.93 34.67 10.29 0.08 0.91
EDDP-C 0.82 1.22 0.614+0.18 0.16+0.08 0.24+0.09 0.3+0.11 6.93 30.91 9.26 0.07 0.9
Natural 0.58 2.12 0.58+0.16 0.1640.1 0.25+0.12 0.2940.12 7.5 30.61 10.28 0.06 0.87

512 PCA 0.69 9.62 0.2940.08 0.1540.06 0.1940.07 0.1640.06 7.87  30.25 3.51 0.06 0.86
EDDP-U 0.85 1.43 0.61+0.18 0.18+0.08 0.27+0.09 0.31+0.11 6.95 41.2 11.11 0.08 0.91
EDDP-C 0.85 1.37 0.62+0.18  0.1540.09 0.24+0.09 0.3+0.11 7.09 33.91 10.83 0.07 0.9

Clustering Quality: In terms of clustering quality metrics, the EDDP variants attain higher Coverage and
lower Redundancy scores than either one of NMF, PCA, or the natural basis, in a similar fashion as in the
rest of the architectures.
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Interpretability: Unlike the rest of the architectures, in classification metrics, NMF and the EDDP variants
perform on par. For example, when I = 448, NMF attains a Precision score of 0.62 exceeding EDDP-U’s
0.59. In Recall and F1 score terms, EDDP-U achieves the highest scores of 0.18 and 0.26, respectively, while
for NMF these numbers are 0.16 and 0.25. In terms of AP, NMF scores 0.31 while both EDDP variants
attain a score of 0.30. In most cases, all of NMF, the natural basis, and EDDP substantially surpass the
clustering of PCA in the classification metrics.

Even though EDDP, NMF and the natural latent space basis score similarly in Precision terms, when
monosemanticity is measured via the CLIP embedding distances, the EDDP variants achieve the best scores,
often by a substantial margin. For instance, when I = 384, NMF achieves an M score of 7.44, PCA a score
of 7.85, while EDDP-U a score of 6.88.

Finally, in segmentation metrics, EDDP variants achieve the highest scores in S' and mloU, while in S2,
EDDP-U is ranked 1st in two of the three cases (I = 448 and I = 512) while ranked 2nd, after NMF in the
third case (I = 384).

Influence: Regarding the sensitivity of VGG16 with respect to the concepts, the network is the most
sensitive towards the directions learned with EDDP-U (Z' score of 0.91), followed by EDDP-C (Z! score of
0.9) and last, by NMF, the natural basis, or PCA with Z' scores close to 0.87.

7.5.5 Analysis for ResNet50 trained on Moments in Time

Table 7: Comparative Analysis of our Encoding-Decoding Direction Pairs (EDDP) against the Unsupervised State-
of-the-Art. This table summarizes metrics for ResNet50 trained on Moments in Time (MiT). EDDP-U stands for
using Unconstrained Feature Manipulation and EDDP-C for using Constrained Feature Manipulation.

ResNet50 / MiT

1 Method  Coverage ¥ Redundancy | Precision T  Recall 1 F1 1 AP ¢ Ml St S?21 mloUt T'1
PCA 0.7 30.77 0.1640.06 0.1£0.05 0.124+0.05 0.14+0.04 7.34 58.51 3.55 0.04 0.88

1536 NMF 0.54 9.07 0.46+£0.17 0.1640.11 0.2340.13 0.27£0.13  6.91 73.38 17.31 0.05 0.85
EDDP-U 0.84 2.13 0.724+0.22 0.17+0.12 0.26+0.15 0.36+0.16 6.25 127.83 33.67 0.08 0.85
EDDP-C 0.88 2.37 0.75+0.19 0.17+0.11 0.26+0.13 0.45+0.14 6.49 98.52 34.81 0.06 0.84

PCA 0.72 36.06 0.16£0.06 0.1+0.05 0.1240.05 0.14+0.04 7.35 65.82 3.58 0.04 0.88

1792 NMF 0.42 6.02 0.574+0.15 0.15+0.08 0.23£0.1 0.3£0.11 6.95 77.02 19.0 0.04 0.85
EDDP-U 0.85 2.47 0.784+0.16 0.1940.1 0.29+0.13 0.44+0.14 6.24 162.86 34.17 0.09 0.85
EDDP-C 0.88 2.62 0.76+0.16 0.164+0.11 0.25+0.13  0.44+0.13 6.5 113.9 36.68 0.06 0.84
Natural 0.5 11.18 0.4740.16 0.154+0.09 0.2240.11 0.26+0.12  6.97 90.35 16.63 0.04 0.85

2048 PCA 0.76 43.2 0.1540.06 0.1£0.05 0.124+0.05 0.14+0.04 7.35 74.3 3.61 0.04 0.88
EDDP-U 0.86 3.15 0.72+0.2 0.21+0.13 0.31+0.16 0.43+0.16 6.29 209.2 33.04 0.1 0.85
EDDP-C 0.88 2.83 0.72+0.16  0.15+0.11 0.24+0.12  0.43+0.13 6.61 126.46  35.98 0.06 0.84

Clustering Quality: Once again, in clustering quality terms, the EDDP variants demonstrate both larger
Coverage and lower Redundancy compared to the rest of the approaches, often with a large margin. When
I = 1792, the coverage score for EDDP-C is 0.88 while for NMF it is 0.42. The gap between the two is more
than twice the score of NMF. Similarly, the redundancy score of EDDP-C is 2.62 whereas NMF’s is 6.02,
with a similar conclusion regarding the gap between the two.

Interpretability: The clustering obtained via EDDP is more interpretable in terms of classification metrics,
especially in Precision, AP, and sometimes in the F1 score as well. Regardless of whether monosemanticity
is measured via Precision or distances between CLIP embeddings, the EDDP variants score better, similar
to the rest of the experiments.

When considering segmentation, both EDDP variants demonstrate consistent superiority in terms of S' and
S? and mloU. Interestingly, in this experiment, EDDP-C scores the highest in S?, indicating a clustering
that captures a larger variety of concepts.

Influence: In terms of the concept sensitivity metric Z', NMF, EDDP-C, EDDP-U and the natural basis
perform on par, with an approximate score of 0.85. On the contrary, PCA achieves a score of 0.88, which
brings it further ahead of the competition.
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7.5.6 Discussion

From the previous experiments, we can draw the following, mostly straightforward, conclusions: a) EDDP’s
directional clusters are monosemantic, often surpassing the previous state-of-the-art by a significant margin
in monosemanticity metrics. b) EDDP also excels in terms of F1 score, where EDDP-U is consistently
ranked first among the competition, and EDDP-C is often ranked second. c¢) In terms of segmentation and
specifically S', EDDP-U is consistently ranked first, except for EfficientNet in which the clustering of PCA
scores better, yet with substantially inferior performance in most of the other interpretability metrics. In
the same metric, EDDP-C is often ranked second. d) In terms of discovering a diverse set of concepts (S?)
the EDDP variants score the best, often by a large margin, except for one case in VGG16 where they score
on par with the best method. e) In terms of influence, in all cases except VGG16, the EDDP variants are
ranked last. However, in many cases, the respective score is not far behind the competition.

In most cases, and in a broader sense, we observe that interpretability is somewhat negatively correlated
with influence. Less interpretable directions may represent complex interactions (i.e. correspond to less pure
human-understandable concepts) and, as a result, they are more impactful on the network predictions, in
the sense that they affect many output classes. On the contrary, more interpretable directions may have a
more targeted impact on specific output classes, and thus score lower in the respective metric.

7.6 Ablation Study

7.6.1 Interpretability Losses

Table 8: Ablation study with respect to the interpretability losses. For ResNetl8 I = 448, and for EfficientNet
I =1120.

Ortho L£7*  £°° Coverage T Redundancy | Precision 1 Recall T F11 AP 1 M| STt S?1  mloU 1
ResNet18 / Places365
v X X 0.89 2.25 0.71£0.19 0.3+0.18 0.4+0.19 0.47+0.19 6.44 54.28 26.4 0.13
X X X 0.86 1.09 0.88+0.17  0.18+0.12  0.29£0.15 0.54+0.17 6.57  40.92 19.1 0.1
X v X 0.83 1.13 0.85+0.19 0.194+0.14  0.294+0.16  0.53+0.18  6.57 39.26  25.36 0.1
X 4 v 0.85 1.29 0.834+0.19 0.22+0.15  0.31£0.17  0.52+0.18 6.64 47.14 29.0 0.11
EfficientNet / ImageNet
v X X 0.9 3.36 0.67+0.19 0.17+£0.14  0.25+£0.14  0.344+0.14 7.0 46.9 14.42 0.04
X X X 0.84 1.29 0.78+0.23 0.23+0.21 0.3+0.2 0.39+£0.18 6.81 19.54 13.29 0.02
X v X 0.86 1.59 0.78+0.2 0.24+0.16 0.29+0.16  0.4+0.17 6.68 25.42 14.1 0.03
X v v 0.85 1.57 0.7410.2 0.22+0.18  0.3+£0.17 0.384+0.17 6.68 28.72 16.02 0.03

As already discussed previously, the motivation behind the loss terms that we introduced in Section 2]
is to sustain or improve the interpretability of the clustering when moving from an orthogonal decoding
direction set to a non-orthogonal one. In Table [8] we present interpretability metrics for the cases when
we learn the directions with £f°, both £ and £°%, or without any of them. We also provide metrics
for the case of orthogonal decoding directions (marked as Ortho). The latter is equivalent to learning with
the method of [Doumanoglou et al.| (2023)) using the Augmented Lagrangian loss of Section We provide
results regarding the directions learned for ResNet18 and EfficientNet. In these experiments, we exclude any
form of Uncertainty Region Alignment.

In both network case studies, starting without our interpretability losses and gradually adding them one
after the other, we observe that the different variations a) compare similarly in coverage and redundancy
terms and b) achieve comparable performance in classification and monosemanticity metrics. However, the
impact of the loss terms on the segmentation metrics is more significant, especially in terms of S' and
S2%. We emphasize the improvement in S? since this metric captures the variety of the identified concepts.
Compared to the orthogonal direction set, directions learned without orthogonality constraints a) result in
a less redundant clustering, b) the monosemanticity of the clustering in terms of Precision is improved, and
¢) the clustering becomes more diverse, capturing a variety of different concepts.
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Table 9: Ablation study with respect to the Unconstrained Uncertainty Region Alignment loss. For ResNet18 I = 448,
for EfficientNet I = 1120, and for ResNet50 I = 1792.

Ortho £"""  Coverage T Redundancy | Precision 1 Recall T F11 AP ¢t M| ST S?1  mloU ¢
ResNet18 / Places365

v X 0.89 2.25 0.71+0.19 0.3+0.18 0.4£0.19 0.47+0.19 6.44 54.28 26.4 0.13

v v 0.88 2.2 0.71+0.18 0.31+£0.18 0.41+0.19 0.48+0.19 6.52 54.56 26.06 0.13
X x0T 1.29 0.83%£0.19 0.22+0.15 0.31£0.17 = 0.5240.18  6.64 47.14  29.0 ~ 0.11

X v 0.86 1.32 0.83+0.19 0.22+0.16 0.32+0.18 0.53+0.19 6.64 47.5 32.07 0.11

EfficientNet / ImageNet

v X 0.9 3.36 0.67+0.19  0.174+0.14 0.25+0.14 0.3440.14 7.0 46.9 14.42 0.04

v v 0.9 3.34 0.68+0.2 0.174+0.14 0.25+0.14 0.36+0.15 6.98 52.94 16.38 0.05
X X 08 1.57 0.74+0.2 ~ 0.22+0.18 0.34£0.17  0.384+0.17 6.68 2872 16.02  0.03

X v 0.85 1.61 0.76+0.21 0.24+0.17 0.28+0.17 0.39+0.17 6.73 31.36 16.54 0.03

ResNet50 / MiT

v X 0.88 3.44 0.72+0.15 0.16+0.1 0.254+0.13 0.35+0.14 6.47 121.67 29.41 0.07

v v 0.88 3.31 0.73+0.16 0.18+0.1 0.27+0.13 0.37+0.13 6.49 137.76 33.0 0.08
X x T o8y 2.42  0.75%0.19 ~ 0.15+0.12  0.24%0.15  0.3240.14 6.1 15754 30.81  0.09

X v 0.85 2.47 0.78+0.16 0.19+0.1 0.29+0.13 0.4+0.14 6.24 162.86 34.17 0.09

Table 10: Ablation study with respect to the Uncertainty Region Alignment losses. For ResNetl18 [ = 448, for
EfficientNet I = 1120, and for ResNet50 I = 1792.

Luwr o gevr - Coverage T Redundancy | Precision 1 Recall 1 F11 AP 1 M| STt S§21 mloU1T SDCt SCDP 1
ResNet18 / Places365
X X 0.85 1.29 0.83+0.19 0.22+0.15 0.31+£0.17 0.52+0.18 6.64  47.14 29.0 0.11 291 2104
v X 0.86 1.32 0.83+0.19 0.224+0.16 0.32+0.18 0.53+0.19 6.64 47.5 32.07 0.11 264 1565
X v 0.86 1.33 0.8240.2 0.214+0.16 0.31£0.18 0.494+0.19 6.72 46.3 31.34 0.11 304 1692
EfficientNet / ImageNet
X X 0.85 1.57 0.74+0.2 0.22+0.18 0.3+0.17 0.384+0.17  6.68 28.72 16.02 0.03 93 216
v X 0.85 1.61 0.76+0.21 0.24+0.17 0.2840.17  0.39+0.17 6.73 31.36 16.54 0.03 107 243
X v 0.85 1.54 0.74%0.22 0.240.18 0.2840.19  0.39+0.17 6.74 28.62 16.38 0.03 673 1484
ResNet50 / MiT
X X 0.83 2.42 0.75+0.19 0.1510.12 0.24%0.15 0.32+0.14 6.1 157.54  30.81 0.09 370 548
v X 0.85 2.47 0.78+0.16 0.19+0.1 0.29+0.13 0.44+0.14 6.24 162.86 34.17 0.09 393 570
X v 0.88 2.62 0.76+0.16 0.1640.11 0.254+0.13  0.44+0.13 6.5 1139  36.68 0.06 1353 3913

7.6.2 Uncertainty Region Alighment

In this section we study how Uncertainty Region Alignment may affect the interpretability of the clustering
and the discovery of concepts with significant influence on the network predictions. For this study we consider
three network architectures: ResNet18, EfficientNet, and ResNet50 trained on the datasets already discussed
in Section [.1]

In Table [9] we compare, in quality and interpretability terms, the clusterings obtained with and without
the Unconstrained Uncertainty Region Alignment loss (£%“"). We consider learning the decoding directions
both with and without orthogonality constraints (Ortho). Some simple conclusions that can be drawn from
the experiments are: a) Coverage may be improved when using it but Redundancy can be slightly worsened,
b) the Precision and AP of the concept detectors are consistently improved by its use, ¢) it consistently
improves the performance of concept detectors in terms of S!, and d) £*“" can significantly improve the
variety of concepts captured by the direction set (S? metric).

In Table [I0] we focus on comparing between the two Uncertainty Region Alignment variants by additionally
considering metrics of concept influence. For the latter, we use RCAV’s statistical significance test in which
we ground our SDC and SCDP metrics (Section . Some key takeaways drawn from these experiments
for using £ are: a) Coverage may be improved by its use, but Redundancy can be a bit worsened, b) the
concept detectors’ interpretability in terms of classification metrics is slightly inferior but somewhat compa-
rable to when using £%*", ¢) in two of the three cases (ResNet18 and EfficientNet) the segmentation metrics
across Uncertainty Region Alignment variants are mostly comparable, but in the third case (ResNet50) £4"
leads to a more diverse clustering (improved S?) but at the cost of a lower S! score. d) In all cases, when
comparing the two uncertainty region variants, the influence metrics favor £*". In two of the three cases
(EfficientNet and ResNet50) this improvement is substantially higher than what can be achieved when us-
ing £**". For a more complete picture regarding the effect of £/%°, which is used in EDDP-C but not in
EDDP-U, see also Section
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Overall, by this ablation study, we could conclude that the use of £L*%" can improve the diversity of the
clustering by capturing a larger variety of concepts, compared to when not using it. Using £ instead of
L% may perform on par or improve this diversity, while substantially increasing the influence of the learned
signal vectors on the network predictions, in a statistically significant sense.

7.7 Insights on Interpretability and Influence in comparison to Supervised Direction Learning

In this section, we compare our method with supervised direction learning, aiming to draw insights regarding
interpretability and influence of concept directions. For this reason, we experiment with the last convolutional
layer of ResNet18 trained on Places365. We consider our method with the constrained feature manipulation
strategy, and two supervised learning approaches: a) IBD (Zhou et all 2018) for supervised learning of
decoding directions (i.e. concept detectors) and b) Pattern-CAVs (PCAVs) (Pahde et al.,[2024) for supervised
estimation of concept encoding directions. The supervised concept detectors and PCAVs are learned for the
labels assigned to EDDP’s concept detectors at the direction labeling phase (Section .

Interpretability: In the interpretability analysis, we consider three variants for the proposed method: a)
the exact outcome of our method, marked as EDDP, b) combining directions with a shared label (post initial
learning) using a binary linear classification layer which classifies representations positively if any detector
with the same label does (marked as EDDP - Linear OR), and c) considering the learned directions but
optimizing the classification threshold in a supervised manner, in a post-learning step, to enhance the F1
Score (marked as EDDP /w sup thres). This last approach assesses direction alignment to the concept by
relaxing the sparsity constraint of the method. Table [11] summarizes metrics for this comparison. Results
show that the classifiers of the proposed method achieve high Precision, comparable to the supervised ones,
but suffer from low recall. The latter could be related to the strict sparsity objective of EDDP, as IBD
exhibits significantly higher Redundancy. Combining classifiers with the same label improves recall, which
indicates that different detectors capture different parts of the dataset, while supervised optimization of the
classification bias further enhances F1 scores by relaxing sparsity.

Influence: In the concept influence analysis, we aim to answer whether PCAVs, that correspond to di-
rections of high interpretability due to learning them with supervision, are more influential to the network
predictions than signal vectors. Since Network Dissection can assign identical labels to multiple Encoding-
Decoding Direction Pairs, direct comparison with Pattern-CAVs becomes less straightforward. We propose
the following metric to help us draw some conclusions. Let j € {0,1,..., N; — 1} index EDDP’s signal vectors
sharing the same concept label [, and S; L 1 represent the RCAV sensitivity score of the network relative to
the j-th signal vector of label [ when predlctmg class k. Similarly, let S . denote the sensitivity score of
the network relative to the Pattern-CAV for the same label and class. Insplred by RCAV, we regard signal
vectors as noise vectors and compare the sensitivity of the network with respect to PCAVs and signal vectors
that share the same label. We define a metric 72, which when above 0.5 indicates that PCAVs have more
influence than signal vectors on the network predictions at the statistical significance level of § = 0.05 with

Table 11: Comparison of EDDP (with CFM) with supervised direction learning |Zhou et al.| (2018). Comparing
between: a) standard EDDP, b) combined concept detectors (Linear-OR) c¢) EDDP with the thresholds of concept
detectors learned with supervision in a post initial direction learning step (/w sup thres), and d) IBD: a set of
classifiers learned in a supervised way. The network here is ResNet18 and I = 512.

ResNet18 / Places365

Method Coverage T Redundancy | Precision 1 Recall 1 F11 AP 1 St S?1  mloU 1
IBD Zhou et al.[(2018) 0.95 3.08 0.84+0.13 0.6+0.17 0.68+0.15  0.77+£0.15  54.71  54.71 0.2
~~ EDDP 086 T 128 0.81+0.24  0.2£0.16 ~ 0.29+0.19 047402 50.29 36.99 0.1
EDDP - Linear OR N/A N/A 0.73+0.25  0.354+0.26 0.4+0.22  0.53+£0.21 30.77  30.77 0.11
EDDP - /w sup thres N/A N/A 0.6£0.19  0.43+0.18 0.49+0.18  0.47£0.2 N/A N/A N/A
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Bonferroni correction:

I? =By []1(17171@ < %)}
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PLk = Z 1(|S5 ] > |Spl)
J

For RCAV o = 5.0, Z? is equal to 0.34, which is less than 0.5 indicating the Pattern-CAVs are less influential
on the network predictions than signal vectors. This outcome could also be linked to the discussion of Section
It looks like less interpretable directions (in that case EDDP’s) have more influence on the network
predictions compared to more interpretable ones.

7.8 Application: Global Model Explanations via Concept Sensitivity Testing

Concept Influence Diagram for Places-365 Class: airfield Concept Influence Diagram for Places-365 Class: bathroom
Network: Resnet18 Network: Resnet18

Concepts with Positive Influence Concepts with Negative Influence Concepts with Positive Influence Concepts with Negative Influence
grass=10U:0.29 street-s-IoU:0:42mm carrousel-s-IoU:0:47@m
mmconference_room-s-IoU:0.15 chequered:IoU:0:35mm street"s-IoU:0:42em
mmairplane-IoU:0.14 ceiling=loW:0:33mm bed-IoU:0:35c2
mmairplane=1oy:0.13 mountain=IoU:0:3mm cloister=indoor-s-IoU:0:31e=
mmswivelchair=IoW:0:12 — pool:table=IoU:0:26&= waffled-IoU:0:2962
mmairplane=IoW: 012 airfielE pooltable=IoU:0:26mm mm bathroom=s-ToU: 0.42: tent=-IoW:0:28 mm
airplane=ToU:0.1 livingroom-s-ToU: 0242 mmchequered-1oU:0:35 bathroom ball=pit=s=IoU:0:28=m
mairplane=ToU: 0.1 lined-ToU:0:23e= mmcountertop-IoU:0.03 gymnasium=indoor=s=IoU:0:26mm
C3airplane-IoU:0:08 kitchen-s-IoW:0:23c=a mmbasketball_court-indoor-s-ToU:0.02 windmill-s=ToV:0:25mm
mmairplane-ToU:0.06 pool table-ToUs0:22mm living_room-s-ToW:0:24==

Figure 15: Concept Influence Diagram for ResNet18 trained on Places365. The model is sensitive to the depicted
concepts with an absolute score above 0.99. (We use RCAV to quantify the sensitivity, and re-scale the score to
[-1,1]) Positive influencing and negative influencing concepts are provided. The number of concepts have been
limited to 10. When concepts appear more than once, they correspond to different signal directions (as labeling the
classifiers with NetDissect may assign the same concept name to more than one directions.) Here we report results
for EDDP-C and I = 512.

Concept Influence Diagram for MiT Class: speaking Concept Influence Diagram for MiT Class: driving
Network: Resnet50 Network: ResnetS0

Concepts with Positive Influence Concepts with Negative Influence Concepts with Positive Influence Concepts with Negative Influence

dotted-ToU:0.51 sky-IoU:0:34mm road=1oU:0.34 batters_box-s-IoU:0:23mm
mmbanded-1oU:0:23 unloading-loU:0=25mm mmstreet=s-1o0U: 032 diving-IoU:0:17mm
mmpreachingzloU: 017 welding=loU:0:22@m mmcar-loU:0.29 bookstore:s:IoU:0:16mm
mmprotestingz=IoU:0.16 sawing=loU:0:15m= e carzinterior-backseat-s-ToU:0. 21 stitching-ToU:0:13e=
mmgrooming=loU:0:1. marching=IoU:0=15mEm mmceiling=IolU:0=17 —— grooming=loU:0:12mm
mmgolfaputting=IoU70:07 2peakig balloon=blowing=ToU:0x14wm mmhighway=s-ToU:0:16 dEivinG tying=tie=IoW:0:12mm
lecturing=16U70.07, dunking=ToU:0s13c= sky=ToW:0HE swinging=ToW:0s126=
eaprotesting-IoU:0:07. stitching-ToW: 0132 awaffled=ToU.0.13 football=field-s-ToW:0rile=
agolfeputting-1o0U:0.07 grooming-ToU=0r2c3 ogrooming-IoU:0.08 dining_room-s-ToU:0xeD
mmceiling“ToU:0.07 blotchy - ToUz0x11mm mmhighway-s-IoU:0.08 dining ToUz0: 1 mm

Figure 16: Concept Influence Diagram for ResNet50 trained on Moments in Time (MiT). The model is sensitive to
the depicted concepts with an absolute score above 0.99. (We use RCAV to quantify the sensitivity, and re-scale
the score to [—1,1]) Positive influencing and negative influencing concepts are provided. The number of concepts
have been limited to 10. When concepts appear more than once, they correspond to different signal directions (as
labeling the classifiers with NetDissect may assign the same concept name to more than one directions.) Here we
report results for EDDP-C and I = 2048.

Figures depict concrete examples of how each concept’s signal direction impacts the ResNet18’s
class predictions. Figures and depict similar examples for ResNet50. Concepts appearing more
than once correspond to different directions that have been attributed the same label by Network Dissection.
Seemingly irrelevant concepts with positive influence may have three possible explanations: a) the network
has some sensitivity to those concepts (as ResNet18’s topl accuracy is 56.51% and ResNet50’s 28.4%) b)
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Unit: 274 | grass | loU: 0.32 Unit: 286 | grass | loU: 029

baseballfield | 19.7 Unit: 63 | cavern-indoor-s | IoU: 0.06 ~ Unit: 208 | martial_arts_gym-s | loU: 0.08 ~ Unit: 235 | batters_box-s | loU: 0.17

martial_arts_gym-s | 0.39 grass|-054 grass|-1.49

Figure 17: Left: Original image. The caption contains class prediction and output class logit. Top Row: Seg-
mentation Maps obtained by the concept detectors. The caption contains classifier index (unit), concept-name and
IoU score in the validation split of the dataset. Bottom Row: Concept Contribution Maps. The caption contains
concept-name and contribution of the concept to the class logit.

Unit: 331 meshed | loU: 0.10 Unit: 342 | tree | loU: 0,05 Unit: 390 | wall | loU: 0.13 Unit: 405 | stadium-baseball-s| loU; 0.24 Unit: 475 | sky | IoU: 016

meshed | 053 tree| 2.63 wall|-1.01 stadium-baseballs | 459 sky| 0.1

Figure 18: Top Row: Segmentation Maps obtained by the concept detectors. The caption contains classifier index
(unit), concept-name and IoU score in the validation split of the dataset. Bottom Row: Concept Contribution
Maps. The caption contains concept-name and contribution of the concept to the class logit.

their impact might be low, since RCAV only considers the sign of the class prediction difference before and
after the perturbation, regardless of its magnitude, (thus those concepts may influence the prediction class
positively, but by only a small amount) and c) their label may be misleading as the respective concept
detectors do not reliably predict the concept (i.e. they exhibit a low IoU score).

7.9 Application: Local Model Explanations via Concept Contribution Maps

In this section, we apply the concept contribution analysis of Section [5.2]to provide a detailed local explana-
tion for a prediction of ResNet18 in an image of Places365. In this example, we use direction pairs learned
via EDDP-C and I = 512. The example input image (Fig. top left) is correctly predicted to belong to the
baseball-field class. The output class logit for this image is [ = 19.7, the baseline logit is I;* = 0.0003 and
the unexplainable residual of is 7 = 0.2816. The top rows of Figures [17] and [I§| provide segmentations
which were obtained by applying our concept detectors to the patch embeddings of the input and subse-
quently upscaled to the original resolution. Each segmentation map highlights the region of the input that
belongs to the detected concept. Above each segmentation map, we provide the index ¢ of the respective
concept detector (marked as unit), the name of the concept that was attributed to the concept detector by
Network Dissection, and the dataset-wide Intersection over Union score of the detector when detecting the
concept in the validation split of Broden. Below each segmentation map, we provide the respective Concept
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Concept Analysis for Class Prediction: baseball-field | Active Concept Contributions Concept Analysis for Class Prediction: baseball-field | Active Concept Contributions
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Figure 19: Concept Analysis for predicting an image of the baseball-field class. The figure depicts concepts found in
the image. Even though concepts may share the same name, they correspond to different direction pairs.
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Figure 20: Concept Analysis for predicting an image of the baseball-field class. The figure depicts top positive and
top negative contributing concepts. Even though concepts may share the same name, they correspond to different

direction pairs.

Contribution Map (CCM). Each spatial element p of CCM for concept i corresponds to the quantity ¢§, of
. i, contributes positively to the prediction in two cases: 1) whenever p; — ﬁf”- > 0 (i.e. when the
concept content in the sample is more than the concept content in the baseline point) and the Concept-Class
Relation Coefficient (CCRC) w?'8; is positive and 2) whenever oy, ; — ﬁg’i < 0, (i.e. when the concept content
in the sample is less than the one in the baseline) and CCRC is negative. CCMs incorporate CCRC and thus
they do not necessarily highlight the regions with the concept, as the sign of CCRC is integrated into the
heatmaps (for instance: Unit 390). Above each CCM we provide the name of the concept together with the
contribution of the CCM to the prediction logit after additionally integrating the correction factor of .
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Figure 21: Counter-factual explanations via manipulating the patch embeddings in the representation space using
directional concept arithmetic. From Left to Right: 1) original image, 2) segmentation map obtained by applying
the learned concept detectors on the original image representation. The image is correctly predicted as driveway with
confidence 69%. 3) Manipulate the latent representation and replace the road with the encoding of a building. Now
the image is classified as apartment-building-outdoor with confidence 22%. 4) Manipulate the latent representation
and replace the (whole) building with the encoding of an airplane. The manipulated image is classified as runway
with confidence 57%.

Figures [19) and [20] depict image-level concept contributions by breaking down the explanation logit in parts
of . In these Figures, CCRC indicates the Concept-Class Relation Coefficient and the total equals sample
concept - baseline-concept + correction, exactly as in , excluding the small residual term.

The concepts that affect the prediction positively the most (Fig. are batters-boz-s and stadium-baseball-s
as well as the absence of train and forest-road-s. As we can see in the Figures, in most cases, e.g. for
the concepts grass-1, batters-boz-s, stadium-baseball-s, meshed, martial-arts-gym-s, cavern-indoor-s, tree,
forest-road-s,ice-skating-rink-indoor-s the sign of the difference in concept contribution between the sample
and the baseline does not change with the consideration of the correction factor. However, there are some
cases in which the imperfect state of convergence when learning the directions has an impact on the quality
of the explanation; e.g. for the concepts grass-2,sky,wall,pool-table,train,highway-s,volleyball-court-outdoor-
s,airplane. In those cases, the consideration of the correction factor changes the sign of the total concept
contribution. Many of the cases that fall into this last category exhibit marginal differences in concept
contribution scores between the sample and the baseline; for instance: grass-2, sky, wall, train, airplane,
which could justify, at least partially, this behavior.

7.10 Application: Counterfactual Explanations

In this section, we provide a concrete example of how the learned Encoding-Decoding Direction Pairs can be
harnessed in order to provide counter-factual explanations. In this case study, we will be studying ResNet18
trained on Places365 and EDDPs learned with CFM and I = 512. We consider the input image depicted
in Fig. - left. This image is correctly predicted by the network as driveway with confidence 69%. The
second image of the same figure depicts a segmentation map of that image based on the learned concept
detectors. To keep the visualization simple, we only show the most dominant detected concepts. We explore
two interventions in the representation space: a) concept removal: encoding the absence of a particular
concept in a patch embedding b) concept addition: encoding the presence of a particular concept in a
patch embedding. For both cases we make use of .

To compute target projected values ¢t we use the training split of Broden. When we do concept removal, we
choose t to be equal to the lowest 0.005% quantile of projected feature activations on filter w;. Similarly,
when we do concept addition, we choose t to be equal to the top 0.005% quantile of projected feature
activations. This process ensures that the signal value of xj, for concept ¢ after the intervention matches the
signal value of samples with or without the concept.

We consider two counter-factual scenarios. In the first, we study how the prediction would change if the
road was replaced by a building, and second, how the same prediction would change if the building was
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replaced by an airplane. To accomplish that, for each scenario, we perform two interventions one after the
other: a concept removal followed by a concept addition. In the first scenario, the prediction is changed to
apartment-building-outdoor with confidence 22%, while in the second, the prediction is changed to runway
with confidence 57%. (Fig. [2I). In both cases, the change in the prediction outcome aligns with human
intuition.

7.11 Application: Toy Model Correction

Table 12: Network accuracy and confusion matrix for the network trained on the Chess Pieces dataset. Rows corre-
spond to ground-truth labels and colums to network predictions. Three classes are considered: bishop/knight/rook.
The rows of the confusion matrix are normalized against ground-truth element count. Three datasets are also con-
sidered: Clean (without watermarks), Poisoned (with watermarks) and Clean & Poisoned which is the union of
the previous two.

Dataset: Clean Poisoned Clean & Poisoned
Accuracy: 0.93 0.34 0.64
b n r b n r b n r
b 0.95(0.05| 0.0 [ 00|00 | 10 | 048 | 0.02 0.
n 0 0.95 ] 0.05 00| 00| 10| 0.0 | 048 0.52
r 0.04 | 0.04 | 0.92 | 0.0 | 0.0 | 1.0 | 0.02 | 0.02 0.96

In this experiment we demonstrate how the proposed approach may be utilized to correct a toy model that
relies on controlled confounding factors to make its predictions. For the purposes of this toy experiment we
use a small convolutional neural network with 5 Conv2d layers each one followed by a ReLU activation. The
top of the network is comprised of a Global Average Pooling (GAP) layer and a linear head. After each
convolutional layer, except the last, there is a Dropout layer with p = 0.3. All Conv2d layers have kernel
size 3x3 and stride 2 except the last one which has stride 1. Furthermore, the latent space dimensionality
is set to 16 for all convolutional units. We consider the task of predicting the chess piece name from an
image depicting the piece. We use the Chess Pieces dataset from Kaggle E| which contains a collection of
images depicting chess pieces from various online platforms (i.e., piece images appearing in online play). The
spatial resolution of those images is 85x85. For simplicity, we consider 3 chess pieces to be classified by the
network, namely: bishop, knight, rook, thus the network predicts K = 3 output classes. The total number
of images in the dataset is 210, 67 for bishop, 71 for knight and 72 for rook. We make a stratified train-test
split with the training set ratio set to 0.7. To encourage the model to learn a bias to make its predictions,
we poison half of the rook images of the training set with the watermark text “rook” on the top left of each
rook image. With the introduction of this bias on half of the images, we expect that the network learns that
the watermark concept has a positive influence on the rook class, while not being the only feature of positive
evidence for the same class, since we include rook images in the training set without the watermark.

7.11.1 Network Training and Evaluation

We train the network with cross-entropy loss and the Adam optimizer with learning rate 0.005 for 1000
epochs. In the (poisoned) training set, the model achieves 100% accuracy. For evaluation, we construct
three datasets based on the test split that we created earlier. First, we consider a clean test set, a dataset
comprised of test images without any watermarks (Clean). Second, we consider the previous clean set
but with all the images being poisoned with the watermark (Poisoned) and c¢), we consider the union of
the previous two datasets (Clean & Poisoned). Table [12| summarizes the performance of the network in
each one of the three datasets. As evidenced by the Poisoned section of the detailed confusion matrix, the
watermark is a strong feature that, whenever it is present in the image, directs the prediction towards the
rook class.

7.11.2 Direction Learning for Watermark ldentification

We now consider the application of the proposed method in identifying the watermark direction, from the
bottom up, without relying on annotations. As we’ve shown in the previous sections, the proposed approach

2Chess Pieces Dataset (85x85): https://www.kaggle.com/datasets/s41lnan/chess-pieces-dataset-85x85
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is unsupervised and is able to identify directions influential to the model’s predictions. Since we already
identified that the watermark actually influences the predictions of the network in a consistent manner,
we seek to answer the following two research questions: a) can the proposed EDDP method identify the
watermark as a concept? That is, is any of the learned classifiers responsible for detecting the watermark?
b) Supposing the answer to (a) is positive, given the watermark’s concept detector and the respective learned
signal vector, can we fix the network in order to not rely on the watermark for its predictions ?

Direction Learning We consider the last convolutional layer as our layer of study. This layer has spatial
dimensionality 2x2. To learn the latent directions, we apply our method by following the learning process
described in section[A-3]and we use the network’s training set as our concept dataset. Furthermore, for stable
learning, we learn the directions with the Augmented Lagrangian loss scheme of Section [£.5] We optimize
NS LFs 4 \ewr £our with the target constraints 7™¢ = 0.8, 7°¢ = 0.01, 7°%¢ = 0.01, 7™™ = 8.0, 7/%° = 0.1, and
weights A\f* = 2.6 and A.,, = 0.25 . The most important hyper-parameter to tune is the dimensionality of
the concept space I.

Watermark Direction Identification We found that, when learning with I = 6, the proposed approach
is able to identify the watermark direction. By using the learned classifiers as concept detectors, we are
able to group the spatial features of the 2x2 image representations into clusters of the same concept. When
applied on an image representation, each learned classifier produces a form of a binary label-map, with each
element of the label-map indicating whether the part of the image behind the spatial representation belongs
to the concept. In Fig. 22 we provide example image segmentations based on those label-maps. From the
qualitative visualizations, we see that classifier 5 identifies the watermark. Although annotations were not
required to learn the direction, since this is a controlled experiment and we know in which images we injected
the watermark, we are able to quantify how well this classifier can detect the concept by evaluating its IoU
performance on the concept dataset. We found that this classifier detects the watermark concept with IoU
0.85.

7.11.3 Influence Testing with RCAV

We use RCAV to measure the sensitivity of the model with respect to the watermark signal vector. The
sensitivity scores reported by RCAV are —1 for the classes bishop and knight while it is 1 for the class rook.
This implies that when the image has the watermark it becomes more rook and less bishop or knight. This
quantitative score aligns with our intuition regarding the watermark.

7.11.4 Signal Vector Faithfulness to the Watermark Concept

Leveraging our knowledge of which images contain the watermark, we can determine the watermark’s encod-
ing direction by calculating the watermark’s Pattern-CAV (Pahde et al., 2024]). Subsequently, we quantify
the directional alignment between the Pattern-CAV, which was learned with supervision, and the signal
vector, which was learned without. We found that the cosine similarity between these two is 0.99, indicating
estimations that agree.

7.11.5 Model Correction by Using the Watermark’s Encoding and Decoding Directions

Let w and b denote the learned parameters of the watermark concept detector and § denote the respective
learned signal vector. Without re-training or fine-tuning the network, we are going to suppress the watermark
artifact component from the representation whenever it is detected by the concept detector. We propose the
following feature manipulation strategy that we apply at the features of the last convolutional layer.

x;, = ReLU(zp — mks),m = o(w” xp — b) (33)

with k chosen such that wT:c'p = Epen [wT:cp], N = {p:wlz, — b < 0}; see also 1D This choice of
k ensures that the signal value associated with the watermark concept within the patched representation
matches the mean value found in the collection of patches lacking the watermark. The ReLU in ensures

that the manipulation does not move the features out of the domain of the linear head.
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Classifier 1 Classifier 2

Classifier 3 Classifier 4

Classifier 5 Classifier 6

Figure 22: Example image segmentations based on the concept detectors learned for the model correction experiment.
Top rows illustrate pictures with the concept and bottom rows illustrate pictures without. Classifier 5 detects the
watermark.

7.11.6 Evaluation of the Corrected Model

We evaluate the corrected model according to the same protocol that we did in Section [7.I1.1} The results
are depicted in Table Compared to the performance of the original network (Table , we see that the
corrected model: a) has comparable accuracy as the original model on the clean test set b) is significantly
more accurate on images of the poisoned dataset with an absolute improvement of +31% and ¢) performs
substantially better on the union of clean and poisoned datasets with an absolute improvement of +14%.
We also compare our correction strategy to using a random manipulation direction with the same k as
before. (i.e. using a random vector in place of the learned signal vector in ) In a series of 10 trial
evaluations on the Poisoned Test set, we verified that, in 9 out of 10 cases, no improvement was achieved:
the classification accuracy was the same as the original model and the confusion matrix was still the same
as in Table [[2}Middle. The same observation holds when considering the learned filter direction in place of
the learned signal vector. The remaining case demonstrated an improvement of +15% which is still inferior
to +31% when using the signal vector.
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Table 13: Network accuracy and confusion matrix for the corrected network trained on the Chess Pieces dataset.
Rows correspond to ground-truth labels and columns to network predictions. Three classes are considered:
bishop/knight/rook. The rows of the confusion matrix are normalized against ground-truth element count. Three
datasets are considered: Clean (without watermarks), Poisoned (with watermarks) and Clean & Poisoned which
is the union of the previous two.

Dataset: Clean Poisoned Clean & Poisoned
Accuracy: 0.92 (-1%) 0.65 (+31%) 0.78 (+14%)
b n r b n r b n r
b 095005 0.0 | 0.5 | 0.2 | 0.3 | 0.73|0.12 0.15
n 0.0 1.0 | 0.0 | 0.14 | 0.72 | 0.14 | 0.07 | 0.86 0.07
r 0.05 | 0.13 | 0.82 | 0.05 | 0.22 | 0.73 | 0.05 | 0.18 0.77

8 Limitations

Our method builds on the linear representation hypothesis, assuming that concepts are encoded as direc-
tions in the latent space. While this view aligns with several prior works, alternative formulations such as
multidimensional concept discovery (Vielhaben et al., 2023 or linear subspaces (Chormai et al., |2024) exist
but fall outside the scope of our study. Additionally, we constrain our experiments to settings where the
number of discovered concepts is smaller than the embedding dimensionality. As such, we do not compare
with methods like Sparse Autoencoders (SAEs) (Lim et al., 2024} |(Cunningham et al., |2024; [Sharkey et al.,
2022) that assume an overcomplete representation. Even though we restricted our experiments as such,
future studies may consider this analysis, since our method is not technically limited in this regard. While
we evaluated our approach across multiple CNN architectures, we did not investigate applications to Vision
Transformers (ViTs) (Caron et all 2021; [He et al. 2022), despite existing literature suggesting that similar
linear assumptions may apply in that context (Kaltampanidis et al., |2025)—this remains a promising di-
rection for future work. Moreover, unlike some unsupervised baselines that operate on class-specific image
subsets constructed from model predictions, we applied our method to unlabeled data without class filtering,
due to the lack of dense annotations in the training sets. Nevertheless, our framework could, in principle,
be adapted for class-conditional analysis. Finally, our study aimed to minimize hyperparameter tuning by
relying on prior work (Doumanoglou et all 2023; |2024) and empirical preliminary experiments; however,
further tuning or exploration of additional hyperparameters may yield improvements in clustering quality,
interpretability, or influence (Section .

9 Conclusion

We introduced an innovative unsupervised technique to uncover pairs of latent space encoding-decoding
directions that align with interpretable concepts of influence. This research offers a new perspective on
the unsupervised identification of concept directions, unlike previous methods which are based on feature
reconstruction or matrix decomposition. We believe that our work opens the door to richer model diagnostics,
fine-grained explanations, and targeted interventions, paving the way for future research on scalable concept
discovery, dynamic model editing, and integration into decision-making systems.
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. Details for the Experiment on Synthetic Data

. Extracting Signal Values with the Filters of Concept Detectors

. Details on the Faithfulness Assessment of Encoding-Decoding Direction Pairs
+ [A7 Details for the Experiments on Deep Image Classifiers

. Hyper-Parameter Study with Respect to Target Separation Margin

. Additional Experiments on the Faithfulness Assessment of the Encoding-Decoding
Direction Pairs

. Ablation Study with respect to Filter-Signal Orthogonality Loss

. Comparison with Unsupervised Interpretable Basis Extraction and Concept-Basis
Extraction in Practical Experiments

. More Qualitative Segmentations and Statistics for Evaluating the Interpretability
of the Concept Detectors

. More Global Model Explanations via Concept Sensitivity Testing
. More Local Explanations with Concept Contribution Maps
. Relation to Sparse AutoEncoders (SAEs)

A.1 Unsupervised Interpretable Basis Extraction and Concept-Basis Extraction Losses

This Section complements Section by providing further details on the loss terms of Unsupervised In-
terpretable Basis Extraction (UIBE) (Doumanoglou et al) [2023) and Concept Basis Extraction (CBE)
(Doumanoglou et al., |2024]).

Sparsity Loss (£°) (Doumanoglou et al. 2023) Based on the observation that the number of semantic
labels that may be attributed to an image patch is only a fraction of the set of possible semantic labels, this
loss enforces sparsity on the number of concepts that may be attributed to a patch embedding. In particular,
the sparsity loss for pixel p is based on minimizing entropy and is defined as:

s Yp.i
Lp=-— Z Up,il0820pis  Upi = = (34)
p > i Ypi

The aggregated sparsity loss L£? is:

L =E,[L]] (35)

Maximum Activation Loss (£™%) (Doumanoglou et al., [2023)

With the complement of this loss, the cluster membership variables y;, ; are enforced to become binary:

L7 =Ep [ - Z qmbgzyp,i] (36)

Inactive Classifier Loss (£) (Doumanoglou et al., 2024

This loss ensures that each concept detector in the set classifies positively at least v € [0, 1] percent of pixels
in the concept dataset, avoiding clusters with few assignments.

L =E, BReLU(u ~E, [y;i])} (37)
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withv =%, v>1,7¢€ R* denoting a sharpening factor and 7 € [0, 1] denoting a percent of pixels in the
dataset to be evenly distributed among the I classifiers in the set.

Maximum Margin Loss (£™™) In the original formulation of Doumanoglou et al.| (2023), the Maximum
Margin Loss was defined as L™ = ﬁ with M being a single parameter for the whole set of classifiers
since the optimization was performed in the standardized space with shared parameters for the margins M
and biases b. In this work, we removed the standardized space constraints and instead, we have a margin
parameter M; for each classifier in the set. Thus, we modify the Maximum Margin loss to become:

mm _ 1§~ 1
L *JE;MI» (38)

A.2 Theoretical Comparison with Concept-Basis Extraction

To improve the interpretability of the discovered directions, [Doumanoglou et al.| (2024) made a first attempt
to exploit the knowledge encoded in the network, through feature manipulation. In particular, it was
suggested that uncertain network predictions shall occur when there is no positive concept content in the
features. This previous approach is similar to ours in the sense that it uses feature manipulation and
subsequent entropy maximization on the network’s prediction outcomes. Yet, the fundamental difference
with what we propose here lies within the feature manipulation strategy. This previous approach suggested
that representations x, should be manipulated towards the concept detectors’ hyperplanes, only for the
concepts that are present in x, (i.e. manipulating towards the negative direction of the filter weights,
when the respective concept detectors classify x, positively). Features were not manipulated in the
direction of the weights to bring them towards the separating hyperplane, when they lie in the subspace
of negative concept classification. While this previous attempt tried to exploit the uncertainty region of
the model, it was essentially suggested that the network’s predictions should be uncertain when for all x,,
none of the classifiers makes positive predictions, without minding about confident negative ones. This
is fundamentally different from what we propose in the present work, as here we suggest that uncertain
network predictions are linked to uncertain concept information. We enforce the latter by manipulating
all all features towards the hyperplanes, regardless of whether features were positively or negatively
classified for the presence of a concept. We once again emphasize that here we suggest that the network’s
predictions should be maximally uncertain when for all &, none of the classifiers makes confident predictions,
either positive or negative. Additionally, in Doumanoglou et al.| (2024)), signal directions were completely
overlooked.

A.3 Direction Learning Process

We learn the directions of the proposed method in a four-step process: a) we first learn the parameters w;, b;
following [Doumanoglou et al.| (2024), replacing the CNN Classifier Loss with the proposed L£**"; b) we then
continue optimizing w;, b;, removing the orthogonality and standardization constraints while keeping L£%*"
and incorporating the additional losses from Section ¢) next, we learn the signal vectors using the filters
of the learned classifiers as regressors in to initialize {S’ }; and d) finally, we jointly optimize §;, w,, b;,
using all previous losses, replacing £ with £¢" and adding £/%° from Sections and

A.4 Details for the Experiment on Synthetic Data

We train the network using cross-entropy loss and the Adam (Kingmal |2014) optimizer, with learning rate
0.0005 and batch size 1024 for 4000 epochs. In principle, we follow the process defined in Section[AZ3] but due
to the simplicity of the example, during (a) we don’t use L**", we omit step (b) and proceed directly from
(a) to (c). In both steps (a) and (d) we use the Augmented Lagrangian Loss, the Adam optimizer, and the
Cosine Annealing learning rate scheduler (Loshchilov & Hutter, 2016]). In step (a), we omit the constraints
of the Augmented Lagrangian loss that are not applicable. The Augmented Lagrangian formulation greatly
stabilizes learning and avoids local optima. For step (a) we solve the constrained optimization problem of
minimizing £° with 7m¢ = 0.8, 7™ = 5 and 7% = 0.0. For step (d) we minimize AL/ 4+ \¢4" £ with
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Table 14: Left: Data matrices S and D for the experiment on synthetic data. Right: Cosine similarities for
every pair of vectors in S, D, i.e.: CTC,C = [S|D).

S D
0.6368 | 0.8583 | 0.5259 0.4008 | 0.6659
0.1561 | -0.3371 | 0.1561 0.4585 | 0.6038
0.1633 | -0.1533 | 0.7557 0.3337 | -0.2065
0.2617 | 0.1643 | -0.1580 || 0.5797 | -0.2154
0.6226 | -0.1607 | -0.1643 || -0.1596 | 0.1687
-0.1759 | 0.1607 | -0.1594 || 0.2744 | 0.1617
-0.1592 | 0.1531 | -0.1567 || 0.2232 | 0.1567
-0.1760 | 0.1554 | -0.1612 || 0.1763 | 0.1546

Cosine-Similarities
1.0 0.3319 | 0.4204 | 0.3188 | 0.4526
0.3319 1.0 0.2087 | 0.3649 | 0.4111
0.4204 | 0.2087 1.0 0.3621 | 0.2195
0.3188 | 0.3649 | 0.3621 1.0 0.4296
0.4526 | 0.4111 | 0.2195 | 0.4296 1.0

M = (.5, 7™M = 15, 7' = 0.0, 7°%¢ = 0.0, 7/%° = 0.01. The learning rate we use for step (a) is 0.00025 and
for step (b) is 0.0005. The number of learning epochs is set to 10000 and 20000, for each step respectively.
For the loss weights we use A'* = 2.6 and A*" = 0.25. The sharpening factor v of £ is set to v = 2.0, the 7
hyperparameter of the same loss is set to 7 = 1.0, the v sharpening factor of Ry to v = 2.0, the p of L%
is set to p = 5/3 and the p sharpening factor of £7* is set to 2.0.

The specific values of matrices S and D used in this experiment, and the cosine similarities between every
pair of vectors, are provided in Table [T4]

A.5 Extracting Signal Values with the Filters of Concept Detectors

As discussed in Section [I.3] signal values, which are required to estimate the encoding direction of a concept,
are extracted using the filter weights of the concept detectors. Yet, as we discussed in that Section, in order
for this to happen, the filter weights w; need to be orthogonal to s; and D. Since we do not explicitly
estimate distractors in this work, there may be an inevitable error when extracting the value of the signal
(we say maybe, because this might also be mitigated by the Uncertainty Region Alignment losses or filters
converge to become perpendicular to distractors due to the fact that they contain information independent
of concept content). Here we study on the order of this error. From [3[ we have:

Tp =Sop+ DB, +c
When extracting the signal value with a filter, the estimation becomes:

T — 00T T T
Zp = W; Tp = w; Sop +w; DB, +wj ¢

T T
W Dg, Lwie (39)
T, ~ pi T T T
i Si w; 8 w;S;

From and as we’ve already seen in (14)), we notice that the latent space bias ¢ introduces an additional
constant error term when estimating the signal values. In the real-world scenario when this ¢ is not known,
we can use the following estimator G, ; which depends on the average of features x,:

w/z, _ w] Ep[z,)] _

d ;= =
Pt wls, wl's;
G = w/z, _ w! siEplap,i] _ w/ DEyp|[By) (40)

st T
P wl's; wl's; wl's;

T
. w; D
api = ap; — Eplap] + 7szs» (Bp — Ep[Bp])

i Si

The latter is an estimator of ap; with respect to the mean Eylap ;] and with an error term depending on
distractors, irrespective of constant bias.
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Table 15: Hyper-parameters used to learn the Direction Pairs

ResNet18 / Places365 ResNet50 / MiT

I Step | Epochs LR I Step | Epochs LR
384/448/512 a 500 0.005 1536/1792/2048 a 1300 0.001
384/448/512 b 2500 0.00025 1536/1792/2048 b 2600 0.00025
384/448/512 d 1250 | 0.00005 1536/1792/2048 d 1300 0.0001

EfficientNet / ImageNet VGG16 / ImageNet

I Step | Epochs LR I Step | Epochs LR
960/1120/1280 a 800 0.001 384/448/512 a 1000 0.001
960,/1120/1280 b 3500 | 0.00005 384/448/512 b 1000 0.0001
960,/1120/1280 d 1750 | 0.00005 384/448/512 d 500 0.0001

Inception-v3 / ImageNet
1 Step | Epochs LR
1536/2048 a 1500 0.001
1536/1792/2048 b 3000 0.00005
1536/1792/2048 d 1500 0.00005
1792 a 1500 0.01

A.6 Details on the Faithfulness Assessment of Encoding-Decoding Direction Pairs

Due to the considerable computational load required to conduct this experiment, we make some simplifi-
cations. First, we consider a subset of the learned direction pairs by randomly choosing 100. Candidate
pairs are the ones with a concept detector that is considered interpretable by Network Dissection (i.e. the
detector exhibits an ToU performance greater than 0.04 when detecting the concept). Second, to construct
the image set that contains the concept, we consider 10 unique images within the set of the most confident
(patch-level) predictions of the concept detector. For each image, we run the deep dream optimization for
K = 40 iterations, and we record the patch embeddings (feature activations) containing the concept with an
interval of 5 steps. For dreaming, we don’t use zooming, but we do use the robustness transforms originally
proposed in Olah et al.|(2017). Regarding the line fitting process, we consider a parametric line as ¢ + A\d,
A € R, with ¢ € RP denoting the line’s origin and d € R? its direction (the dreaming direction). At the
end of the dreaming optimization loop and after recording the feature activations of the concept, we mini-
mize the average distance from each feature to the line. Finally, we make sure that the dreaming direction
points towards the direction of feature evolvement across iterations by considering making a sign flip, i.e.
multiplying d with —1.

A.7 Details for the Experiments on Deep Image Classifiers

Learning Details In Table [15| we provide the main hyper-parameters to train the direction pairs for each
step. The learning rate that we provide (LR) is considered as the reference learning rate for a batch size of
4096. In practice, we scale both the learning rate and the batch size based on the available GPU memory
and the number of GPUs. We use the Adam [Kingma) (2014)) optimizer and the cosine annealing learning
rate scheduler (Loshchilov & Hutter| 2016). While for step (a) we follow the hyper-parameter setup of
Doumanoglou et al| (2024)), for steps (b) and (d) we make different choices. For £ and £°*¢ we set their
hyper-parameters 7 and p as follows: For ResNet18 and VGG16, 7 and p are set such that the minimum
cluster size is equal to 400 and the maximum 50000. For EfficientNet and Inception-v3, the same numbers
are 520 and 65000, while for ResNet50 the minimum cluster size is set to 920 and the maximum to 75000.
These are all set based on the statistics of the concept datasets. The u sharpening factor of £* and the v
sharpening factor of Rgy are set to 2.0.

For Augmented Lagrangian Loss, in all cases we used the following hyper-parameters: \/$ = 2.6, A" = 0.25,
e = 0.8, 7% = 0,7°%¢ = 0,77%° = 0.01. For ResNet18, EfficientNet and VGG16 we use 7™ = 5.0, while
for Inception-v3 and ResNet50 we used 7™ = 6.0.

When using £**" and L“", we observed better results when manipulating features with a stochastic mag-
nitude in the direction dxp, i.e. shifting representations as x;, = &, — kdx, with k£ a random number in
[0.1,0.5]. In practice, we separate filter directions from their magnitude 1/M; and learn them independently
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Figure 23: Interpretability Comparison. Histogram of differences in binary metrics: Precision, Recall, F1Score
between the Linear-OR set of concept detectors learned with EDDP-C, I = 512, and classifiers learned in a supervised
way (IBD|Zhou et al.| (2018)). The network here is ResNet18 trained on Places365.

as suggested in [Doumanoglou et al|(2024]). For enforcing ||w;||s = 1 (i.e. unit norm filter vectors) we use
parametrization on the unit hyper-sphere.

Details on Datasets used to Compute Concept Sensitivity with RCAV To conduct concept sen-
sitivity testing with RCAV we need access to a labeled dataset coming from the domain of the model. In
practice, it is common to use the validation split of the dataset used to train the model. To mitigate the
required computation time, we limited the size of the validation datasets as follows: For ImageNet, we used
the validation split of ImageNet-S-300|Gao et al.|(2022), and for Moments-in-Time, we considered Moments-
In-Time Mini. Since Moments-In-Time is a video dataset, but the model that we studied works in the image
domain, we constructed an image dataset by sampling 3 frames equally apart from each video (i.e. the first,
the mid, and the last frame of the video). For Places365, we didn’t make a size reduction as the validation
split of the dataset was manageable with our resources.

Details on RCAV’s Statistical Significance Test In all experiments, we set RCAV’s perturbation hyper-
parameter, to o = 5. For direction significance testing, we use RCAV’s label permutation test. To construct
random noise signal vectors, we (a) construct a dataset of feature-(binary) label pairs based on the decision
rule of each one of the concept detectors. To deal with great class imbalance, we construct a pool of negative
samples that is at most 20 times more than the positive ones; (b) we construct N noisy versions of that
dataset by label permutation; (¢) we learn a noise-classifier to distinguish features based on the permuted
labels, and (d) we concurrently estimate a noise-signal vector using and the subsampling process described
in Section [£.3] To learn each one of the noise signal vectors, and before permuting the labels, we construct a
balanced dataset of at most 5000 samples, picked randomly from the pool. We train the noise classifiers using
Adam for 100 epochs and a learning rate 0.01. By using noise signal vectors as RCAV’s noisy directions, and
with the number of those vectors per classifier set to N = 100, we subsequently calculate RCAV’s p-values.
We apply Bonferroni correction to all p-values by dividing the significance threshold 0.05 by the number of
concept detectors I and the number of model classes.

Learning Details for NMF When learning directions with NMF, we used the implementation found in [Yu
(2020). To make computations manageable, we reduce the spatial dimensionality of image representations
by applying Adaptive Average Pooling to a (2,2) resolution, in a similar way as it was done in |Fel et al.
(2023¢). In all cases, we learn the NMF decomposition by running the algorithm for 100000 iterations.

Details for Comparing with the Supervised Approach When learning directions with IBD, for each
concept, a dataset is assembled that includes up to 20 times more negative samples than positive ones to
address the significant imbalance. Additionally, we use hard negative mining as originally suggested in |[Zhou
et al.| (2018]).

Figure [23] plots a histogram of classification metric differences between the Linear-OR set of classifiers and
the classifiers learned in a supervised way. The differences are based on the concept labels, effectively taking
the difference of metrics that regard two classifiers (the first from the Linear-OR set and the second from
Zhou et al|(2018)) with the same concept name.
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Figure 24: Interpretability Comparison. Exact Precision/Recall/F1Scores for specific concepts in Broden: comparison
between the Linear-OR set of classifiers learned with EDDP-C, I = 512, and classifiers learned in a supervised way

(IBD (2018)). The network here is ResNet18 trained on Places365.

Figures 24] 25 [26] depict concrete binary classification metrics for some of the concept detectors in the
Linear-OR set of classifiers, comparing them with concept detectors learned with supervision.
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Figure 25: Interpretability Comparison. Exact Precision/Recall/F1Scores for specific concepts in Broden: comparison
between the Linear-OR set of classifiers learned with EDDP-C, I = 512, and classifiers learned in a supervised way

(IBD (2018)). The network here is ResNet18 trained on Places365.
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Figure 26: Interpretability Comparison. Exact Precision/Recall/F1Scores for specific concepts in Broden: comparison
between the Linear-OR set of classifiers learned with EDDP-C, I = 512, and classifiers learned in a supervised way

(IBD (2018)). The network here is ResNet18 trained on Places365.
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A.8 Hyper-Parameter Study with Respect to Target Separation Margin

Table 16: Comparing EDDP variants based on varying target margin loss 7™"". The network here is ResNet18 trained
on Places365 and I = 448.

ResNet18 / Places365

Method 7™ Coverage T Redundancy | Precision 1 Recall F11 AP 1 M| STt S?+  mloU ¢
EDDP-U 4.0 0.85 1.27 0.82£0.21  0.23+0.18 0.32+0.19 0.54+0.19 6.62 4592 32.29 0.12
EDDP-U 5.0 0.86 1.32 0.83+0.19 0.22+£0.16 0.32+0.18 0.53+£0.19 6.64  47.5  32.07 0.11
EDDP-U 6.0 0.86 1.32 0.83+0.2  0.21+0.15  0.31+£0.17  0.52+£0.19 6.7 48.84 32.44 0.11
"EDDP-C° 40 ~ 0.86 1.27 ~  0.83+£0.21 0.2240.17 0.31£0.19 ~0.52+0.2 ~ 6.67 44.71 31.73  0.11
EDDP-C 5.0 0.86 1.33 0.824+0.2 0.21+£0.16  0.31+0.18 0.49+0.19 6.72  46.3  31.34 0.11
EDDP-C 6.0 0.86 1.31 0.83+0.2 0.2+0.15 0.294+0.17 0.5+0.18 6.75 46.01 30.97 0.1

Table 17: Comparing EDDP variants based on varying target margin loss 7. The network here is EfficientNet
trained on ImageNet and I = 1120.

EfficientNet / ImageNet

Method 7™™  Coverage T Redundancy | Precision Recall F1 71 AP 1 M| S't  S21 mloU?
EDDP-U 4.0 0.85 1.54 0.77+0.22 0.22+0.18 0.3£0.19 0.424+0.19 6.74 37.45 23.0 0.03
EDDP-U 5.0 0.85 1.61 0.76+0.21 0.2+0.17 0.28+0.17  0.394£0.17 6.73 31.36  16.54 0.03
EDDP-U 6.0 0.85 1.6 0.76+£0.21  0.22+0.17 0.3+0.17 0.39+0.17 6.72 30.46 16.09 0.03

"EDDP-C 40 0.8 1.52 0.77£0.22  0.22+0.18 0.3£0.19 0.42+0.19 6.79 34.93 22.28 0.03

EDDP-C 5.0 0.85 1.54 0.74+0.22 0.2+0.18 0.28+0.19  0.394+0.17 6.74 28.62 16.38 0.03

EDDP-C 6.0 0.85 1.57 0.75+0.21 0.21+£0.18  0.294£0.17  0.39+0.17  6.77 28.24  16.19 0.03

Tables [16] and [17] consider varying the target margin 7™ when learning EDDP. For EfficientNet, increasing
the target classification margin (i.e. the linear separability of patch embeddings) leads to a substantial
improvement in both S! and S? for both EDDP-C and EDDP-U. We stress the fact that increasing the
margin is accomplished by decreasing 77", as the margin is inversely proportional to the target loss. For
ResNet18, the results are more mixed: for EDDP-U, decreasing the margin improves S' and S2, while for
EDDP-C there is an improvement in S' but at the cost of a slightly inferior S? score. We emphasize that
when 7™ = 4.0, the results for EfficientNet are substantially better than the metrics we reported in the
main body of the paper, for which we used 7™™ = 5.0 (Section .

A.9 Additional Experiments on the Faithfulness Assessment of the Encoding-Decoding Direction
Pairs

Figures [27] and 28] complement the experiments presented in Figures [II] and [I2] for the remaining combina-
tions regarding £/°°. Even though less prominent in ResNet18, together with Section the experiments
sufficiently support that £7%° pushes the distribution of cosine similarities between dreaming directions and
signal vectors to become more bell-shaped. Overall, the experiments in this section, similar to the exper-
iments presented in Section indicate that in approximately 90% of the cases, these cosine similarities
exceed 0.7. In a less rigorous but more qualitative sense, we found that when learning EDDP with £/5°, this
loss converges to values close to =~ 0.02, whereas measuring the loss value for a direction set learned without
L5 often leads to a value close to ~ 0.1, which is still not that far from indicating orthogonality between

filters and signal vectors.
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Figure 27: Cosine similarity histogram between dreaming directions and signal vectors. Left: Directions learned
for ResNet18 trained on Places365 (I = 448). Right: Directions learned for EfficientNet trained on ImageNet
(I =1120). These histograms regard directions learned with £°*" but without £f*°.
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Figure 28: Cosine similarity histogram between dreaming directions and signal vectors. Left: Directions learned
for ResNet18 trained on Places365 (I = 448). Right: Directions learned for EfficientNet trained on ImageNet
(I = 1120). These histograms regard directions learned with £**" and £/*°.

A.10 Ablation Study with Respect to Filter-Signal Orthogonality Loss

Table 18: Ablation study of the method with respect to Uncertainty Region Alignment Losses £““", £L“" and the
use of Filter-Signal Orthogonality Loss £7°°. The network here is ResNet18 trained on Places365.

ResNet18 / Places365

I L Lewr LT Coverage T Redundancy | Precision T Recall T F1 1 AP 1 M| S't S+ mloUtT ZI'7
4 X X 0.86 1.29 0.82+0.21 0.23+0.16 0.33+0.18 0.53+0.19 6.61 41.73 28.01 0.12 0.58

384 X v X 0.86 1.26 0.824+0.22  0.2240.16 0.32+0.18 0.524+0.19 6.62 40.43  27.17 0.12 0.6
v X v 0.86 1.3 0.81+0.21  0.23+0.16 0.33+0.17 0.52+0.19 6.65 4143  27.58 0.12 0.61

X v v 0.86 1.32 0.81+0.21  0.23+0.16 0.33+0.17 0.5+0.19 6.67 41.5 27.49 0.12 0.61

v X X 0.86 1.32 0.83+0.19 0.22+0.16 0.32+0.18 0.53+0.19 6.64 47.5 32.07 0.11 0.59

448 X v X 0.86 1.29 0.83+0.19  0.214+0.16 0.3£0.18 0.524+0.19 6.66 45.21 31.1 0.11 0.6
v X v 0.86 1.33 0.824+0.2 0.224+0.16 0.32+0.18 0.51+0.19 6.68 47.57 31.95 0.11 0.61

X v v 0.86 1.33 0.824+0.2 0.21+0.16 0.31+0.18 0.494+0.19 6.72 46.3 31.34 0.11 0.61

v X X 0.86 1.28 0.824+0.22 0.21+0.17 0.31+0.19 0.51+0.21 6.66 52.51 37.78 0.11 0.61

512 X v X 0.85 1.23 0.82+0.23 0.21+0.17 0.3+0.19 0.51+0.2 6.67 50.63 37.35 0.1 0.62
v X v 0.86 1.3 0.824+0.21 0.21+0.17 0.31+0.19 0.4840.2 6.72 52.3 37.71 0.1 0.62

X v v 0.86 1.28 0.81+0.24 0.240.16 0.29+0.19 0.474+0.2 6.73  50.29  36.99 0.1 0.63

In this Section we conduct a detailed ablation study with respect to the use of Filter-Signal Orthogonality
Loss (£/%°) that was introduced in Section In Section we discussed the impact of £%° on the
faithfulness of the direction pairs, while in this Section we discuss the effects of £7%°, in interpretability and
influence terms. Tables[I8] [I9] 20} 21} 22} 23] depict results in terms of interpretability and influence metrics.

The main observations can be summarized to the following: a) When £7%° is not used, using any of the
two Uncertainty Region Alignment variants, in the majority of the cases, results in comparable sets of
directions, with £*" typically leading to more interpretable directions than £¢%". b) In case £f*° is taken
into account, the use of £ can significantly improve interpretability compared to £**" (S! in VGG-16 and
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Table 19: Ablation study of the method with respect to Uncertainty Region Alignment Losses £““", £L°“" and the
use of Filter-Signal Orthogonality Loss £7°°. The network here is EfficientNet trained on ImageNet.

EfficientNet / ImageNet

I L gevr Lo Coverage T Redundancy | Precision T Recall F11 AP 1 M| STt St mloUtT ZI'7
v X X 0.85 1.51 0.75+0.22 0.24+0.17 0.27+0.17 0.38+0.16 6.74 27.92 14.71 0.03 0.94

960 X v X 0.85 1.48 0.744+0.22 0.24+0.18 0.27+0.17 0.37+£0.16 6.74 26.5 14.57 0.03 0.94
) v X v 0.85 1.49 0.744+0.23 0.24+0.18 0.27+0.17 0.38+0.17 6.76 26.74 14.58 0.03 0.94
X v v 0.85 1.48 0.724+0.23 0.2+0.18 0.27+0.17 0.384+0.17 6.75  25.92 14.45 0.03 0.94

v X X 0.85 1.61 0.76+0.21 0.2+0.17 0.28+0.17 0.39+0.17 6.73 31.36 16.54 0.03 0.94

1120 X v X 0.85 1.56 0.76+0.21  0.2+0.18 0.28+0.17 0.38+0.17 6.72 29.79 16.39 0.03 0.93
v X v 0.85 1.56 0.744+0.22 0.24+0.18 0.28+0.18 0.39+0.17 6.76 29.54 16.48 0.03 0.94

X v v 0.85 1.54 0.744+0.22 0.24+0.18 0.28+0.19 0.39+0.17 6.74 28.62 16.38 0.03 0.94

v X X 0.85 1.65 0.744+0.21 0.194+0.16 0.27+0.16 0.36+0.17 6.81 40.38 19.12 0.03 0.94

1280 X v X 0.85 1.67 0.744+0.21 0.19+0.17 0.27+0.17 0.36+0.17 6.8 36.5 18.67 0.03 0.93
v X v 0.85 1.63 0.73+0.2 0.1940.17 0.26+0.17 0.36+0.17 6.9 37.67  18.96 0.03 0.94

X 4 v 0.85 1.6 0.73+£0.21  0.19+0.17 0.26+£0.17 0.36+0.17 6.88 36.95 18.98 0.03 0.94

Table 20: Ablation study of the method with respect to Uncertainty Region Alignment Losses £“"", £L°“" and the
use of Filter-Signal Orthogonality Loss £7%°. The network here is Inception-v3 trained on ImageNet.

Inception-v3 / ImageNet

I L gewr £ Coverage T Redundancy | Precision 1 Recall T F11 AP 1 M| ST+ S21 mloUf Z'1
v X X 0.87 2.41 0.844+0.18  0.28+0.24  0.38+£0.26  0.53+0.26 6.79 156.46 28.03 0.11 0.93

1536 X v X 0.85 2.09 0.85+0.19  0.3+£0.23  0.4+0.25 0.56+0.25 6.86 156.42  27.88 0.11 0.93
v X v 0.85 1.94 0.854+0.21  0.22+0.16  0.33£0.19  0.57+0.24 6.88 123.85 27.08 0.08 0.94

X v v 0.85 1.9 0.86+0.19 0.23+0.16  0.33+0.19 0.58+0.24 6.87 125.64 27.46 0.08 0.94

v X X 0.9 2.96 0.86+0.16  0.33+0.25 0.43+£0.26  0.58+0.25 6.77 210.44 25.77 0.13 0.93

1792 X v X 0.85 2.45 0.88+£0.16 0.33+0.25 0.444+0.26 0.59+0.24 6.84 208.6 24.98 0.12 0.93
v X v 0.87 2.23 0.89+0.16  0.24+0.16  0.35+0.19  0.62+0.21  6.89  173.17  24.93 0.1 0.94

X v v 0.86 2.19 0.89+0.16  0.24+0.16  0.36+£0.19  0.62+0.21  6.92 174.0 24.69 0.1 0.94

v X X 0.86 2.36 0.85+0.2 0.31+0.29 0.4+0.29 0.54+0.28 6.95 170.81 32.13 0.09 0.94

2048 X v X 0.9 4.85 0.77+0.18 0.3+0.27 0.39+£0.27  0.48+0.26 6.91 165.65  30.12 0.08 0.94
v X v 0.92 4.0 0.75+0.18  0.16+0.12  0.24+0.14  0.38+0.16  7.09  92.53 31.14 0.05 0.94

X v v 0.93 3.98 0.754+0.18  0.16+0.12  0.24+0.14  0.38+0.16  7.09  92.67  31.18 0.05 0.94

ResNet50) or remain comparable to £%*" (ResNet18, EfficientNet, and Inception-v3). ¢) When comparing
among the same type of Uncertainty Region Alignment with and without £7%°, in most cases, the use of
L£7%° hurts interpretability (especially F1-Score and S') with the latter being more prominent in Inception-v3
(I = 2048) and all cluster sizes of VGG-16 and ResNet50. An interesting exception is that the use of £/5°
improves cluster diversity (§2) in ResNet50. d) Under the same £/° setting, using £°*" leads to directions
with greater significant influence (SDC & SCDP metrics) compared to £““", except for when using L£75°
in ResNet50. e) When considering the same Uncertainty Region Alignment loss variant, the use of £7%°
leads to an improvement in the SDC and SCDP metrics, with a notable exception being when using £*" in
ResNet18.
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Table 21: Ablation study of the method with respect to Uncertainty Region Alignment Losses £““", £L“" and the
use of Filter-Signal Orthogonality Loss £f°°. The network here is VGG16 trained on ImageNet.

VGG16 / ImageNet

I L Lewr LT Coverage T Redundancy | Precision T Recall T F11 AP 1 M| STt St mloUtT ZI'7
v X X 0.82 1.17 0.61+0.18 0.18+0.09 0.27+£0.09 0.31+0.12 6.88 29.98 9.39 0.08 0.91

384 X v X 0.8 1.09 0.62+0.17 0.17+0.09 0.26£0.09 0.31+0.11 6.87 28.12 9.09 0.07 0.9
v X v 0.79 1.05 0.6+0.17 0.16+0.09 0.24+0.09 0.31+0.11 7.12 2342 8.51 0.06 0.9

X v v 0.79 1.07 0.63+0.18  0.1640.09 0.24+0.09 0.31+0.12 6.92 26.23 8.89 0.07 0.9

v X X 0.84 1.35 0.59+0.18  0.18+0.09 0.26+0.09 0.3+0.11 6.93 34.67 10.29 0.08 0.91

448 X v X 0.82 1.22 0.6+0.18 0.17+0.08 0.25+0.09 0.3+0.11 6.92 32.18 9.53 0.07 0.9
v X v 0.82 1.18 0.584+0.17 0.154+0.08 0.23+0.09 0.3+0.11 714  26.72 8.75 0.06 0.9

X v v 0.82 1.22 0.61+0.18 0.16+0.08 0.24+0.09 0.3+0.11  6.93 3091 9.26 0.07 0.9

v X X 0.85 1.43 0.61+0.18 0.18+0.08 0.27+0.09 0.31+0.11 6.95 41.2 11.11 0.08 0.91

519 X v X 0.85 1.39 0.62+0.17 0.18+0.08  0.26:£0.09 0.3+0.11 6.96 39.23 10.88 0.08 0.9
v X v 0.85 1.35 0.59+0.18 0.15+0.09 0.2240.09 0.2940.11 7.23  28.62 10.4 0.06 0.9

X v v 0.85 1.37 0.62+0.18 0.1540.09 0.24+0.09 0.3+0.11 7.09 3391 10.83 0.07 0.9

Table 22: Ablation study of the method with respect to Uncertainty Region Alignment Losses £““", L“" and the
use of Filter-Signal Orthogonality Loss £7%°. The network here is ResNet50 trained on Moments in Time.

ResNet50 / MiT

I L gewr £Fso Coverage T Redundancy | Precision T Recall T F1 1 AP 1 ML STt S21+ mloUt Z'1
v X X 0.84 2.13 0.72£0.22 0.174£0.12 0.26+0.15 0.36+£0.16 6.25 127.83 33.67 0.08 0.85

1536 X v X 0.83 2.33 0.75+0.16 0.17+0.12 0.26+0.15 0.35+0.15 6.25 141.4 30.12 0.09 0.85
v X v 0.88 2.39 0.74+0.19 0.17+0.12 0.25+0.14 0.444+0.14 6.59 94.24 35.05 0.06 0.84

X v v 0.88 2.37 0.754+0.19 0.17+0.11 0.26+0.13 0.45+0.14 6.49 98.52 34.81 0.06 0.84

v X X 0.85 2.47 0.784+0.16 0.19+0.10 0.29+0.13 0.44+0.14 6.24 162.86 34.17 0.09 0.85

1792 X 4 X 0.83 2.61 0.76+0.16 0.19+0.11 0.29+0.14 0.38+0.15 6.27 164.82 30.63 0.09 0.85
v X v 0.89 2.66 0.75+0.17 0.16+0.11 0.254+0.13 0.43+0.13 6.55 109.36 36.48 0.06 0.84

X v v 0.88 2.62 0.76+0.16 0.16+0.11 0.254+0.13  0.44+0.13 6.5 113.9 36.68 0.06 0.84

v X X 0.86 3.15 0.724+0.2 0.21+0.13 0.31+0.16 0.43+0.16 6.29 209.2 33.04 0.1 0.85

2048 X v X 0.83 2.7 0.76+0.15 0.24+0.11 0.3+£0.14 0.424+0.15 6.36  205.22 32.78 0.1 0.85
v X v 0.89 2.9 0.724+0.16 0.154+0.11 0.23£0.12 0.414+0.13 6.61 120.5 35.09 0.06 0.84

X v v 0.88 2.83 0.724+0.16 0.154+0.11 0.244+0.12 0.43+0.13 6.61 126.46 35.98 0.06 0.84

Table 23: Ablation study of the method with respect to Uncertainty Region Alignment Losses £“*", L“" and the use
of Filter-Signal Orthogonality Loss £5°°. The Table depicts metrics of statistical significant influence. For ResNet18,
I = 448, for EfficientNet, I = 1120 and for ResNet50, I = 1792.

ResNet18 / Places365 | EfficientNet / ImageNet | ResNet50 / MiT
Luergowr plso PO SCDP SDC SCDP SDC SCDP
4 X X 264 1565 107 243 393 570
X v X 322 2285 426 714 1154 2250
VX /2960 1786 | 668 1445 | 1676 7946
X v v 296 1892 673 1484 1353 3913
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A.11 Comparison with Unsupervised Interpretable Basis Extraction and Concept-Basis Extraction in
Practical Experiments

Table 24: Comparison and Ablation with respect to method enhancements that we propose in this work. £% stands
for Augmented Lagrangian Loss and £ refers to the CNN Classifier loss that was proposed in |Doumanoglou et al.
(2024)). Methods below the dashed line correspond to variations that use the contributions we make in this work.
Here the network is ResNet18 and I = 512.

ResNet18 / Places365
Method Ortho L« foo fwwr  pfeuwr Sl S?

UIBE (Doumanoglou et al.||2023) 4 X X X X 60.93  28.39
CBE (Doumanoglou et al.|[2024) v X v X X 69.43 31.53

" CBE /w L% ] /X X /X 613 3216
EDDP-U X v X 4 X 52.51 37.78
EDDP-C X v o X X v 50.29  36.99

Table 25: Comparison and Ablation with respect to method enhancements that we propose in this work. £% stands
for Augmented Lagrangian Loss and £ refers to the CNN Classifier loss that was proposed in |Doumanoglou et al.
(2024)). Methods below the dashed line correspond to variations that use the contributions we make in this work.
Here the network is ResNet50 and I = 2048.

ResNet50 / MiT
Method Ortho L [oe fuwr  four St S?

UIBE (Doumanoglou et al.||2023) 4 X X X X 124.73 1847
CBE (Doumanoglou et al.||2024) v X v X X 131.73  26.94

- CBE/w L% SV X X /X 15876 33.02
EDDP-U X v X v X 209.2 33.04
EDDP-C X v X X v 12646 35.98

Tables [24] and [25| briefly present comparisons of our work with the previous works that we extend, in terms
of interpretability. First, with other aspects of Concept Basis Extraction (CBE) (Doumanoglou et al.l [2024)
being intact, we assess the efficacy of our Unconstrained Uncertainty Region Alignment loss in improving
the interpretability of the clustering, compared to the CNN Classifier Loss £ that was proposed previously
in [Doumanoglou et al.| (2024). This case is referred to in the tables as CBE /w L**". We observe that in
three out of the four cases, our Uncertainty Region Alignment loss leads to a notable relative improvement,
by up to 22.56% in S?, which indicates a clustering with improved concept diversity. When we additionally
take into account the rest of our contributions, and compare EDDP-U with CBE, we find that in the same
three out of four cases, interpretability is further improved by up to 58.8% in terms of S'. Transitioning
from CBE to EDDP-C, may lead to further improvements in S2 by up to 33.5%, yet with a decreased score
in terms of S*.

A.12 More Qualitative Segmentations and Statistics for Evaluating the Interpretability of the
Concept Detectors

Figures depict qualitative segmentation results obtained using the con-
cept detectors that were learned with the proposed method for the architectures that we studied in this
work. Visualizations are obtained using |[Bau et al.| (2017). We can verify that concept detectors appear to
be monosemantic. In some cases, there are more than one concept detector detecting the same concept.
However, in most cases, the sets of positively classified samples across detectors are disjoint. Figures[35|and
depict qualitative segmentations obtained via NMF and PCA. In some of the depicted examples, it is
evident that the identified concepts are less monosemantic. Tables[26] [27] 28] and 29 summarize the statistics
obtained by Network Dissection regarding the interpretability of the clusterings considered in this work.
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Figure 29: Qualitative segmentations using the concept detectors learned with our method. Here the network is
ResNet18 trained on Places365, the method is using CFM, and I = 512.
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Figure 30: Qualitative segmentations using the concept detectors learned with our method. Here the network is
ResNet18 trained on Places365, the method is using CFM, and I = 512.
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Figure 31: Qualitative segmentations using the concept detectors learned with our method. Here the network is
EfficientNet trained on ImageNet, the method is using CFM, and I = 1280.
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Figure 32: Qualitative segmentations using the concept detectors learned with our method. Here the network is
EfficientNet trained on ImageNet, the method is using CFM, and I = 1280.
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Figure 33: Qualitative segmentations using the concept detectors learned with our method. Here the network is
EfficientNet trained on ImageNet, the method is using CFM, and I = 1280. All these concept detectors exhibit IoU
scores less than 0.04 and Network Dissection does not count them as interpretable. Yet, in many cases these detectors
still detect monosemantic concepts.
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Figure 34: Qualitative segmentations using the concept detectors learned with our method. Here the network is
Inception-v3 trained on ImageNet, the method is using UFM, and I = 1792.
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Figure 35: Qualitative segmentations using the factorization of NMF. Here the network is Inception-v3 trained on
ImageNet and I = 1792.
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Figure 36: Qualitative segmentations using the concept detectors learned with PCA. Here the network is Inception-v3
trained on ImageNet, and I = 1792.
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Figure 37: Qualitative segmentations using the concept detectors learned with our method. Here the network is
VGG16 trained on ImageNet, the method is using UFM, and [ = 448.
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Figure 38: Qualitative segmentations using the concept detectors learned with our method. Here the network is
ResNet50 trained on MiT, the method is using UFM, and I = 1792.
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Figure 39: Qualitative segmentations using the concept detectors learned with our method. Here the network is
ResNet50 trained on MiT, the method is using UFM, and I = 1792.
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Table 26: Network Dissection statistics for EfficientNet trained on ImageNet. For each concept category in Broden,
we report the two numbers: First, the number of concept detectors that were labeled with the name of a concept
belonging to the category and second, the number of unique concept labels from the category that have been assigned
to the set of the concept detectors.

EfficientNet / ImageNet

I Method Color Object Part Material Scene Texture Total

PCA 0/0 58/15 58 /4 0/0 14 /5 11 /4 141 / 28
960 EDDP-U 0/0 134/51 14/9 4/4  34/2 21/17 207 /107

EDDP-C 0/0 120/50 13/8 5/4 35/26 21/17 194 /105

PCA 0/0 b57/14 81/4 0/0 16/5 21/11 175734
1120 EDDP-U 0/0 137/51 26/12 5/5 39/34 18/16 225/ 118
EDDP-C 0/0 117/52 18/9 7/5 40 /35 18 /16 200 /117
Natural 0/0 155/29 28/11 1/1 29/20 10/9 223 /70
PCA 0/0 58/15 80/4 0/0 14/5 27/14 179/ 38
EDDP-U 0/0 164/62 74/ 14 5/3 48 /40 22 /18 313 /137
EDDP-C 0/0 132/59 60/ 16 6/4 47/39 22/19 267 /137

1280

Table 27: Network Dissection statistics for Inception-v3 trained on ImageNet. For each concept category in Broden,
we report the two numbers: First, the number of concept detectors that were labeled with the name of a concept
belonging to the category and second, the number of unique concept labels from the category that have been assigned
to the set of the concept detectors.

Inception-v3 / ImageNet

I Method Color Object Part  Material Scene Texture Total
PCA 0/0 58/15 60/2 0/0 18 /7 155 / 26 291 / 50
1536 NMF 0/0 325/44 14/5 4/2 210 /58 174 /42 727 / 151

EDDP-U 0/0 763/73 16/11 8/7 111/81 55/36 953 /208
EDDP-C 0/0 593/76 16/12 7/5 104 /78 47 /31 767 / 202

PCA 0/0 60/156 42/2 0/0 19/8 126/24 247749
1799 NMF 0/0 340/47 14/6 2/1 207 /64 137 /38 700 / 156
EDDP-U 0/0 992/65 12/7  6/5 103/76 33/27 1146 /180
EDDP-C 0/0 87/67 11/10 6/5 95 /72  32/28 1021 / 182
Natural 0/0 394/42 13/5 2/1 270 /56 154 / 34 833 / 138
o4 PCA 0/0 57/15 58/2 0/0 19/8 153/25 287 /5

EDDP-U 0/0 701/85 23/15 6/5 197 / 113 60 / 38 987 / 256
EDDP-C 0/0 488/75 22/13 7/4 263 /113 73 / 38 853 / 243

Table 28: Network Dissection statistics for VGG16 trained on ImageNet. For each concept category in Broden,
we report the two numbers: First, the number of concept detectors that were labeled with the name of a concept
belonging to the category and second, the number of unique concept labels from the category that have been assigned
to the set of the concept detectors.

VGG16 / ImageNet
I Method Color Object Part Material Scene Texture  Total

PCA 0/0 171/11 17275 0/0 6/3 97/13 346/ 32
54 NMF 0/0 109/31 33/15 4/2 24/15 45/18 215/81
EDDP-U 1/1 51/36 203/13 1/1 4/3 20/19 280/ 73
EDDP-C 2/2 45/33 199/12 1/1 4/3 17/16 268 /67
PCA 0/0 211/11 82/5 0/0 5/3 113/15 411/ 34
yg NMF 0/0 124/32 43/13 4/1  24/16 47/20 242 /82
EDDP-U 0/0 63/34 237/13 5/4 10/9 18/16 333/76
EDDP-C 0/0 61/35 238/12 2/1 7/6 15/13 323 /67
Natural 0/0 169/34 48 /14 6/2 26/17 63/23 312/90
s1p PCA 0/0 263/11 84/5 0/0 6/4 117/18 470/ 38

EDDP-U 1/1 71/40 267/14 2/2 11/10 25/19 377/86
EDDP-C  1/1 68/40 260/14 2/2 10/9 26/19 367 /85
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Table 29: Network Dissection statistics for ResNet50 trained on Moments In Time. For each concept category in
Broden, we report the two numbers: First, the number of concept detectors that were labeled with the name of a
concept belonging to the category and second, the number of unique concept labels from the category that have been

assigned to the set of the concept detectors.

ResNet50 / MiT

I Method Color Object Part Material Action Scene  Texture Total
PCA 0/0 15/9 5/2 0/0 1/1 14 /5 657 /29 692 / 46
1536 NMF 0/0 214/32 18/5 0/0 279 /8 109 /44 308 /31 928 / 197
EDDP-U 1/1 585/54 4/4 1/1 509 /134 128 /60 44 /31 1272 / 285
EDDP-C 1/1 459/54 22/5 1/1 386 /143 73 /58 46 /30 988 / 292
PCA 0/0 17/12 5/2 0/0 1/1 13 /4 683 /29 719 / 48
1792 NMF 0/0 199/35 23/5 1/1 468 / 111 99 / 46 144 / 22 934 / 220
EDDP-U 0/0 673/52 4/4 2/2 680 /135 161 /67 35 /23 1555/ 283
EDDP-C  0/0 541/51 29/6 1/1  502/150 81/63 41/24 1195/ 295
Natural 0/0 282/34 20/5 1/1 348 /93 121 /43 362 /29 1134 /205
9048 PCA 0/0 16/10 5/2 0/0 1/1 13 /4 730 / 29 765 / 46
EDDP-U 0/0 768/45 5/5 1/1  709/109 377/75 49/30 1909 / 265
EDDP-C 0/0 542/49 112/5 2/2 648 / 136 94 / 66 51 /31 1449 / 289

A.13 More Global Model Explanations via Concept Sensitivity Testing

This Section complements Section[7.8] Figures [0} [{1]and [42]depict Concept Influence Diagrams for classes of
ResNet18 trained on Places365. while Figures [43] and [44] depict diagrams for ResNet50 trained on Moments

in Time.
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Concept Influence Diagram for Places-365 Class: fastfood-restaurant

Network: Resnetl8

Concepts with Positive Influence
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cat-ToU:0:28mm
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cat-ToUz0r26==2
track-Tol:0:24

Concept Influence Diagram for Places-365 Class: castle
Network: Resnetl8

Concepts with Positive Influence Concepts with Negative Influence

train-IoWU:0:18mm

tent-IoU:0=16mm
bow_window=outdoor-s-IoW:0:11mm
fastfoodrrestaurant-s:loW:0»1-1 =
counter-IoW:0:07=2
porous=ToW:0:07 ==
roof-ToW:0:060mm
hospital-s-Tol:0:06=
signboard-ToW:0.05c2
industrial_park-s-ToU:0:05c=

mmcastle-s-1oU:0.18
mmwall=IoW:0.13
mmdolmen-s-IoU:0.09
EDruin=s=IoU:0:07
Embrick=ToW: 0707
mmarch=s-TolJ:0.05
rstern=IolU:0.05
Omotorbike-I1oW:0.04
=street-s-1oU:0.01

castle

Figure 40: Concept Influence Diagram for ResNet18 trained on Places365. The model is sensitive to the depicted
concepts with an absolute score above 0.99. (We use RCAV to quantify the sensitivity, and re-scale the score to
[-1,1]) Positive influencing and negative influencing concepts are provided. The number of concepts have been
limited to 10. When concepts appear more than once, they correspond to different signal directions (as labeling the
classifiers with NetDissect may assign the same concept name to more than one directions.). Here we report results
for EDDP-C and I = 512.
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Concept Influence Diagram for Places-365 Class: corridor
Network: Resnetl8

Concepts with Positive Influence Concepts with Negative Influence

cockpit-s-ToU:0:46mm

mmdotted-IoU:0.13 skyscraper-s-loU:0:42mm
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e corridor=s=lol:0:06 pool. table-ToW:0:26=
mmcorridor=s=Iol70:06 corridor poolrtable=ToW:0.26mm
mEmcorridor-s-IoU:0.06 windmill-s-ToU:0:25mm
corridor-s-ToU:0:06 lined-ToW:0:23c=
corridor-s-IolU:0.04 fairway-s-Tol:0:233
r—hallway-s-IoU:0.03 pool table-ToU: 022

Concept Influence Diagram for Places-365 Class: reception
Network: Resnetl8

Concepts with Positive Influence Concepts with Negative Influence

cockpit-s-ToU:0:46mm
street-s-IoU:0:42mm
bed-ToU:0:35cD
freckled-ToW:0.30=
pantry-s-IoW:0:29c2

mmwitness. stand-s-IoU:0.1 kitchen-s-TolW:0.27mm
mmreception-s-10U:0709 receplion cat=IoW:0:20mm
Emcounter-IoU:0.07 fairway=s=IolW:0:23mm

parking_garage-indoor-s-IoU:0.03 covered_bridge-interior-s-ToW: 0. 22mm
bicycle-ToW:0:18e=

Figure 41: Concept Influence Diagram for ResNet18 trained on Places365. The model is sensitive to the depicted
concepts with an absolute score above 0.99. (We use RCAV to quantify the sensitivity, and re-scale the score to
[-1,1]) Positive influencing and negative influencing concepts are provided. The number of concepts have been
limited to 10. When concepts appear more than once, they correspond to different signal directions (as labeling the
classifiers with NetDissect may assign the same concept name to more than one directions.) Here we report results
for EDDP-C and I = 512.
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Concept Influence Diagram for Places-365 Class: train-station-platform
Network: Resnetl8

Concepts with Positive Influence Concepts with Negative Influence

pool table-IoU:0:37em

fibrous-IoU:0:34mm

person-loW:0=32mm

poolitable-IoW:0:31=

water=loW=0s31 D
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E®arch-s-ToU:0.01 shoe_shop-s-TolW:0.28mm
ball_pit-s-ToW: 028 mm

stratified-ToW:0.27mm

Concept Influence Diagram for Places-365 Class: waiting-room
Network: Resnetl8

Concepts with Positive Influence Concepts with Negative Influence

washer-IoU:0:393
pool table-IoU:0:37=
bed-ToU:0:35c
poolstable-ToU:0:31mm

mmdotted=TolW:0:44. pantry-s:Iol:0:20mm
mm|living=room=s-ToU:0.24 pool table-IoW:0:26mm
mmpottedplant-ToU.0:43 waiting-room___kitchen-s-ToW:0:23mm
mmwall=Ioll=0.13 pooltable=IoW: 022
mfloor-ToU:0.11: crevasse-s-loW:0.22e3
mmdugout-s-ToU:0.02 crosswalk-Tol:0:22em

Figure 42: Concept Influence Diagram for ResNet18 trained on Places365. The model is sensitive to the depicted
concepts with an absolute score above 0.99. (We use RCAV to quantify the sensitivity, and re-scale the score to
[-1,1]) Positive influencing and negative influencing concepts are provided. The number of concepts have been
limited to 10. When concepts appear more than once, they correspond to different signal directions (as labeling the
classifiers with NetDissect may assign the same concept name to more than one directions.) Here we report results
for EDDP-C and I = 512.
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Concept Influence Diagram for MiT Class: cooking

Concepts with Positive Influence

dotted-IoU:0.51

mmchequered-IoU:0.43
mwskyscraper-s-Tol:0.31
mpolka=dotted-IoU:0:21

mmwaffled=-ToW:0:19
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CJauto mechanics-indoor-s-IoU:0.06
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Network: Resnet50
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Concept Influence Diagram for MiT Class: painting

Concepts with Positive Influence

Lbuilding—IoU:OQS
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emhouse=loW:0.11

mmbathroom=s=Iol:0.09
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mmgolf-putting-IoU:0.04

Figure 43: Concept Influence Diagram for ResNet50 trained on Moments in Time (MiT). The model is sensitive to
the depicted concepts with an absolute score above 0.99. (We use RCAV to quantify the sensitivity, and re-scale
the score to [—1,1]) Positive influencing and negative influencing concepts are provided. The number of concepts
have been limited to 10. When concepts appear more than once, they correspond to different signal directions (as
labeling the classifiers with NetDissect may assign the same concept name to more than one directions.) Here we

report results for EDDP-C and I = 2048.

Network: Resnet50

Concepts with Negative Influence
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sun_deck-s-IoU70:18C3
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74



Under review as submission to TMLR

Concept Influence Diagram for MiT Class: tying
Network: Resnet50

Concepts with Positive Influence
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Concept Influence Diagram for MIT Class: typing
Network: Resnet50

Concepts with Positive Influence

striped-IoU:0.25
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Figure 44: Concept Influence Diagram for ResNet50 trained on Moments in Time (MiT). The model is sensitive to
the depicted concepts with an absolute score above 0.99. (We use RCAV to quantify the sensitivity, and re-scale
the score to [—1,1]) Positive influencing and negative influencing concepts are provided. The number of concepts
have been limited to 10. When concepts appear more than once, they correspond to different signal directions (as
labeling the classifiers with NetDissect may assign the same concept name to more than one directions.) Here we

report results for EDDP-C and I = 2048.
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A.14 More Local Explanations with Concept Contribution Maps

This Section complements Section [7.9] Figures depict CCMs for the prediction of an image belonging
to class beach-house. The respective image concept contribution scores are depicted in Figures and
Figures [49 depict CCMs for the prediction of an image belonging to class bedchamber. The respective
image concept contribution scores are depicted in Figures [f1] and

A.15 Relation to Sparse Auto-Encoders

The superposition hypothesis |Elhage et al.| (2022) assumes that neural networks linearly represent more
features than there are neurons in their hidden layers. In this line of work, a feature is defined to be an
abstract property of the input, which may or may not align with human intuition, and is exploited by the
network to make predictions. Sparse AutoEncoders (SAEs) Bricken et al.| (2023) have been proposed as a
tool to take features out of superposition; that is, given the activations of a network’s intermediate layer,
SAEs try to linearly decompose these activations in terms of latent feature components under a sparsity
objective.

Let & € R” denote the activation of a network in a hidden layer of study and I > D denote the number of
latent features that the network is assumed to represent. While several SAE variants have been proposed,
such as|Lim et al.|(2024); |Cunningham et al.|(2024); Sharkey et al.|(2022)); Bussmann et al.| (2025, in their
baseline form Bricken et al.| (2023) they first extract latent feature components v by:

v = ReLUWZ (2 — bgec) + benc) (41)
and subsequently they aim to reconstruct the original activation by

T = Wyect + bec (42)

with Weype € RPXI Wyeo € RPX by € R and bye. € RP. The objective that drives SAE learning linearly
combines an L2 reconstruction loss between & and & and an penalization in the L1 norm of v.

To relate SAEs with our approach, we first need to make a correspondence in terms of terminology. First,
a SAE feature, which is an abstract property of the input, in our terminology is referred to as a concept.
The number of latent features is related to our concept cluster count, and we refer to both of them as I.
The encoder part of the AutoEncoder which is realized by the matrix W, is related to our decoding
directions W, while the AutoEncoder’s decoder part Wy, is equivalent to our encoding directions (signal
vectors) S. The SAE’s bye. is related to our multi-concept signal-distractor data model’s latent space bias c.
Finally, a feature latent v is somewhat related to the definition of our signal values. In particular, under
our proposed multi-concept signal-distractor data model, W2 (& — bge.) may be considered as a mechanism
to extract signal values.

Despite the conceptual similarities between our method and SAEs, we also have several differences. First,
is conceptually acting as a classifier with positive predictions whenever the extracted signal value exceeds
the threshold in be,.. From one perspective, the same equation acts like centering the signal value around the
classification threshold for the presence of the concept in the representation. In SAEs, sparsity is enforced
in the units of the latent features v, while in our approach, the ReLLU activation function is replaced with a
sigmoid, and thus sparsity is enforced in the semantic space of concepts. Second, in SAEs, Wy are learned
via a reconstruction objective, while in our approach, signal vectors are learned under the properties of a
probabilistic model constrained on the extracted signal values and the feature activations themselves. Third,
we also consider constraining each decoding direction to be perpendicular to the signal vectors of other
concepts, for exact signal value extraction. Finally, we also consider uncertainty region alignment which
additionally exploits the use of the directions by the model.
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beach-house| 115 Unit: 35 | coast-s | loU: 0.12 Unit: 55 | sky | loU: 0.07 Unit: 104 | beach-s | loU: 0.19 Unit: 126 | bookstore-s | loU: 0.17 Unit: 166 | sky | loU: 0.48

bookstore-s |-0.12 sky|0.21

coast-s | -0.07 sky | -0.0 beach-s|2.63

Figure 45: Left: Original image. The caption contains class prediction and output class logit. Top Row: Seg-
mentation Maps obtained by the concept detectors. The caption contains classifier index (unit), concept-name and
ToU score in the validation split of the dataset. Bottom Row: Concept Contribution Maps. The caption contains
concept-name and contribution of the concept to the class logit.

Unit: 171 | kasbah-s | 1oU: 0.08 Unit: 263 | beach-s| IoU: 0.10 Unit: 267 | water |1oU: 031 Unit: 466 | harbors| 1oU: 0.10 Unit; 477 | skyscraper-s| lou: 0.42

kasbah-s| 634 beachs| 7.9 water| 177 harbors|2.1 skyscrapers|-071

Figure 46: Top Row: Segmentation Maps obtained by the concept detectors. The caption contains classifier index
(unit), concept-name and IoU score in the validation split of the dataset. Bottom Row: Concept Contribution
Maps. The caption contains concept-name and contribution of the concept to the class logit.
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Concept Analysis for Class Prediction: beach-house | Active Concept Contributions Concept Analysis for Class Prediction: beach-house | Active Concept Contributions
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Figure 47: Concept Analysis for predicting an image of the beach-house class. The figure depicts concepts found in
the image. Even though concepts may share the same name, they correspond to different direction pairs.
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Figure 48: Concept Analysis for predicting an image of the beach-house class. The figure depicts top positive and
top negative contributing concepts. Even though concepts may share the same name, they correspond to different

direction pairs.
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bedchamber | 12.55 Unit: 27 | ceiling | 1oU: 0.33 Unit: 180 plant | loU: 0.12 Unit: 191 | carpet | loU: 0.05 Unit: 368 | windmill-s | loU: 0.25 Unit: 390 | wall | loU: 0.13
. —

ceiling | -0.69 . wall| 3.07
= -

Figure 49: Left: Original image. The caption contains class prediction and output class logit. Top Row: Seg-
mentation Maps obtained by the Concept Detectors. The caption contains classifier index (unit), concept-name and
IoU score in the validation split of the dataset. Bottom Row: Concept Contribution Maps. The caption contains
concept-name and contribution of the concept to the class logit.

Unit: 438 floor | IoU; 0,14 Unit: 442 | bed | 1oU: 035 Unit: 469 | floor | IoU: 0,10 Unit: 479 | living_rooms | 10U: 024 Unit: 500 living_room-s| IoU: 0.24

floor| 1.6 bed| 1579 floor | 0.64 Ining_room-s|2.43 ving_room-s| 1.47

7

Figure 50: Top Row: Segmentation Maps obtained by the concept detectors. The caption contains classifier index
(unit), concept-name and IoU score in the validation split of the dataset. Bottom Row: Concept Contribution
Maps. The caption contains concept-name and contribution of the concept to the class logit.
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Concept Analysis for Class Prediction: bedchamber | Active Concept Contributions Concept Analysis for Class Prediction: bedchamber | Active Concept Contributions
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Figure 51: Concept Analysis for predicting an image of the bedchamber class. The figure depicts concepts found in
the image. Even though concepts may share the same name, they correspond to different direction pairs.
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Figure 52: Concept Analysis for predicting an image of the bedchamber class. The figure depicts top positive and
top negative contributing concepts. Even though concepts may share the same name, they correspond to different

direction pairs.
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