
Under review as submission to TMLR

Parameter-Efficient Fine-Tuning for Large Models:
A Comprehensive Survey

Anonymous authors
Paper under double-blind review

Abstract

Large models represent a groundbreaking advancement in multiple application fields, en-
abling remarkable achievements across various tasks. However, their unprecedented scale
comes with significant computational costs. These models, often consisting of billions of
parameters, require vast amounts of computational resources for execution. Especially, the
expansive scale and computational demands pose considerable challenges when customizing
them for particular downstream tasks, particularly over the hardware platforms constrained
by computational capabilities.
Parameter Efficient Fine-Tuning (PEFT) provides a practical solution by efficiently adjust-
ing the large models over the various downstream tasks. In particular, PEFT refers to
the process of adjusting the parameters of a pre-trained large models to adapt it to a spe-
cific task or domain while minimizing the number of additional parameters introduced or
computational resources required. This approach is particularly important when dealing
with large-scale language models with high parameter counts, as fine-tuning these models
from scratch can be computationally expensive and resource-intensive, posing considerable
challenges in the supporting system platform design.
In this survey, we present comprehensive studies of various PEFT algorithms, examining
their performance and computational overhead. Moreover, we provide an overview of ap-
plications developed using different PEFT algorithms and discuss common techniques em-
ployed to mitigate computation costs for PEFT. In addition to providing an extensive survey
from an algorithmic standpoint, we also examine various real-world system designs to in-
vestigate the implementation costs associated with different PEFT approaches. This survey
serves as an indispensable resource for researchers aiming to understand both the PEFT al-
gorithm and its system implementation, offering detailed insights into recent advancements
and practical applications.

1 Introduction

Large Models (LMs) have recently captured considerable public interest. Their ability to understand context
and nuances enables them to proficiently handle diverse tasks across multiple domains, including natural
language processing (NLP), computer vision (CV), etc. In the field of NLP, Large Language Models (LLMs)
have achieved significant advancements across various tasks including text generation (Brown et al., 2020;
Zhuang et al., 2023), translation (Zhu et al., 2023c; Hadi et al., 2023), personalized chat-bots (Xu et al.,
2023a; Li et al., 2023a; Wu et al., 2023c), and summarization (Zhang et al., 2023a), demonstrating remarkable
proficiency.

Earlier studies (Brown et al., 2020) has suggested that LLMs exhibit high levels of generalization, enabling
them to apply their acquired knowledge to new tasks not included in their original training. This capability
is commonly known as zero-shot learning. Nevertheless, fine-tuning remains essential to further enhance
LLMs for optimal performance on new user datasets and tasks.

Due to its scale, a widely adopted strategy for fine-tuning LLMs involves adjusting a limited number of
LLM parameters while keeping the remainder unchanged. This technique, termed Parameter-Efficient-Fine-

1

Under review as submission to TMLR

Background

Computational
flow for LLM

PEFT
Taxonomy

Selective
PEFT

Additive
PEFT

System Design
Challenge

System Design
for PEFT

Centralized PEFT
Serving System

PEFT for
LLMs

Distributed PEFT
Training System

Hybrid
PEFT

PEFT
overview

Reparameterized
PEFT

Efficient PEFT
Design

KV-cache
Management for
PEFT Efficiency

PEFT Pruning

PEFT
Quantization

Memory-efficient
PEFT

Parallel PEFT
Training System

Apply PEFT for
other Applications

PEFT for
ViTs

PEFT for
VLAs

PEFT for
Diffusion Models

Downstream
tasks

Section 2 Section 3 Section 4 Section 5 Section 6

2.1

2.2

2.3

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

5.1

5.2

5.3

5.4

6.1

6.2

6.3

6.4

Figure 1: A content overview covered in the survey.

Tuning (PEFT), involves selectively adjusting a small proportion of their parameters, while keeping the rest
unaltered. Furthermore, the application of PEFT extends beyond the realm of NLP and quickly attracts
interest in the CV community for handling fine-tuning vision models with large parameters, such as Vision
Transformers (ViT) and diffusion models, as well as disciplinary models such as vision-language models.

In this survey, we systematically review and categorize recent advancements in PEFT algorithms as well as
the system implementation costs associated with various PEFT algorithms across diverse scenarios. Figure 1
presents the overview content for this survey. In section 2, we present some fundamental concepts for LLM
and PEFT, including computational flow for LLM, basic knowledge of PEFT, and commonly used datasets
and tasks. We categorize all types of PEFT algorithms in Section 3 according to their computational flow. In
Section 3.1, we detail additive algorithms that either introduce new weight parameters or modify activations.
Algorithms that only require fine-tuning of existing parameters are categorized as selective approaches, which
are introduced in Section 3.2. In Section 3.3, we explore reparameterized PEFT, which constructs a (low-
dimensional) reparameterization of original model parameters for training while transforms the weights back
to maintain the inference speed. Additionally, there exist algorithms that combine the above techniques,
and we have classified these as hybrid approaches, elaborating on them in Section 3.4. We also investigate
strategies for further reducing the computational complexity of different PEFT algorithms, including KV-
cache management, pruning, quantization, and memory optimization, in Section 4.

In Section 5, we expand the scope of this survey beyond the computational perspective to involve various
potential application scenarios. Specifically, we explore innovations that applying PEFT techniques to dif-
ferent model architecture, including LLMs (Section 5.1), Vision Transformer (Section 5.2), Vision-Language
alignment models (Section 5.3), and Diffusion models (Section 5.4), for varied downstream tasks, under-
scoring PEFT’s versatility and applicability in a range of scenarios. After that, in Section 6, we explore
the system design challenge for PEFT methods. The discussion includes three advanced system solutions
for practical PEFT deployment: PEFT query serving (Section 6.2), distributed tuning (Section 6.3), and
concurrent PEFT tuning (Section 6.4). Finally, in Section 7, we summarize our survey and propose several
potential future directions from both algorithmic and systemic perspectives, aiming to offer valuable insights
for further research and development in the field.

2 Background

In this section, we first discussed the computation flow of LLM, including its fundamental components,
computational complexity, and the flow of computations it involves as a case study. We then provide a brief
overview of different PEFT algorithms in section 2.2.

2

Under review as submission to TMLR

2.1 Computation flow for LLaMA

In order to gain a deeper understanding of LLM and other Transformer-based models, we employ LLaMA-
7B, a cutting-edge open-source LLM model, to scrutinize the architecture of LLM as well as Transformer.
As shown in Figure 2 (a), LLaMA consists of three major components: an embedding block, a stack of
decoder blocks and a head block which consists of linear and softmax layer. The embedding layer’s primary
role is to transform unstructured textual information, into chunks of discrete numerical vectors (tokens) to
facilitate subsequent processing. The embedded tokens are then delivered to the decoder layers for further
processing. Each LLaMA decoder is composed of two fundamental components: Multi-head Self-Attention
(MSA) and Feedforward Network (FFN). In the MSA module, each of the tokens will be clustered by an
attention map obtained by a dot production between two linear mappings of the input tokens. Then the
grouped tokens will be further processed by a Feedforward Neural network. Additionally, Root Mean Square
Layer Normalization (RMSNorm) (Zhang & Sennrich, 2019) is adopted in LLaMA as a replacement for Layer
Normalization to ensure efficient training.

LLM distinguishes itself from other deep neural network (DNN) models such as convolutional neural net-
works (CNN) in two significant ways. Firstly, LLM exhibits an inherent autoregressive nature, necessitating
multiple iterations to complete the generation task. Moreover, LLM incorporates an attention mechanism,
a component with computational complexity that scales quadratically with the length of the inputs. On the
other hand, the inherent computation characteristic of LLM lies in the attention blocks inside each decoder
layer. Figure 2 (c) depicts the high-level overview of the computation flow in the attention block.

During the inference process, each decoder takes a three-dimensional tensor x P Rbˆlˆd as the input tokens.
The input tokens are first multiplied with three weight matrices WQ, WK , and WV , producing the output
referred to as query(Q), key(K) and value(V). Given the MSA module’s inability to recognize positional
data and the inherent auto-regressive nature of LLMs, the query and key will undergo a process using Rotary
Positional Embedding (Su et al., 2021a) (RoPE, denoted as Rp.q in Eq 1) to encode the position information.
Subsequently, the key and value will be combined with prior tokens.

After the positional embedding, the intermediate activation will then undergo a series of multiplication,
softmax, and residual addition to generate MSA output as described in Eq 9. To be noted here, dk in the
equation refers to the number of feature dimensions in the multi-head attention mechanism.

Q, K, V “ RpWqxq, RpWkxq, Wvx (1)

SApxq “ Softmaxp
QKT

?
dhead

qV (2)

MSApxq “ rSA1pxq; SA2pxq; . . . ; SAkpxqsWo (3)

The SA output will then be forwarded to the FFN blocks for further processing. The FFN block will have
another three matrices Wup, Wdown, and Wgate and the computation can be illustrated by:

FFNLLaMapxq “ WuppSiLUpWgatexq d pWdownxqq ` x, (4)

where x denotes the input of the FFN layer, and SiLU is the nonlinear function used in LLaMA. In the
original Transformer, the FFN block can be demonstrated by:

FFNT ransfomerpxq “ WuppReLUpWdownxqq ` x. (5)

The output of the last decoder layer will be sent to a linear layer, which then generates a probability
distribution spanning the complete vocabulary to predict the next token in the sequence. The produced
token will then be concatenated with the previous tokens and used as the input for the next round of
processing. This generating process repeats in an auto-regressive manner until a full sequence of tokens,
referred to as a completion, is produced (Figure 2 (b)). For training, the computation flow is similar to
that for inference, except that the generated sentences are directly compared to the ground truth output

3

Under review as submission to TMLR

<BOS>

FFN

SA

LLaMA

ML

ML is

LLaMA LLaMA

is

awesome

LLaMA

awesome <EOS>

Decoder

Decoder

Decoder

Linear &
Softmax

…

Q K V

Lo
R
A

FC

FC

ReLU

A
da
pt
er

D
ecoder

SA

FF
N

Wdown

Wup

Input tokensPrompt
(c)

Embedding

(b)(a)

Figure 2: (a) LLaMA architecture. (b) LLaMA auto-regressive pattern. (c) Three common PEFT operations.
All the learnable components are highlighted in red, while the frozen components are highlighted in grey.
LoRA is applied on all the Query, Key, and Value blocks. The adapter targets the FFN module. Soft-Prompt
focused on tuning the input activation of each decoder. We only show one decoder for illustration simplicity.

Table 1: Configuration parameters and computation operation for LLaMA-7B architecture

Operation Weights Symbol Weights Dimension Input Tensor Dimension Complexity
Eq. 1 WQ, WK , WV d ˆ k ˆ d

k b ˆ l ˆ d Oplq

Eq. 2 - - b ˆ l ˆ 3 ˆ k ˆ d
k Opl2q

Eq. 3 Wo d ˆ d b ˆ l ˆ d Oplq

Eq. 4 Wup, Wdown, Wgate d ˆ 4d b ˆ l ˆ d OR l ˆ b ˆ 4d Oplq

and generate the training loss. Gradients will then be computed across the LLM weights to minimize this
training loss.

To analyze the computation cost and memory overhead in LLM, we also set a series of parameters used in
later section 3. Table 1 shows the parameter size and computation dimension in the LLaMA-7B model as a
starting example.

LLM models generate tokens (words) one for each round, depicted in Fig 2, based on the previous prompt
(input) and previously generated sequence. This process will be repeated until the model outputs hits and
termination token. To accelerate the inference process in LLM models, people take the strategy of storing
the previous Keys and Values in Key-Value cache (KV-cache), so they don’t need to recalculate them for
each new token. Mathematically, we can represent the total decoders’ kv-cache memory cost in equation 6.
In the equation, l and b are the context length and batch size and L refers to the number of layers. The
dhead is the head dimension and nhead is the number of heads.

Size “ L ˆ 2 ˆ b ˆ l ˆ dhead ˆ nhead (6)

2.2 Overview on Parameter Efficient Fine Tuning

Fine-tuning remains essential to enhance LLM performance on unseen user datasets and tasks. With the size
of the model growing (e.g. 1.5B in GPT-2 to 175B in GPT-3), standard full fine-tuning paradigm requires
thousands of GPU work in parallel, which is highly inefficient and unsustainable. A type of algorithm
has been raised namely Parameter-efficient fine-tuning (PEFT) which aims to tune minimal parameters to
achieve better performance over full tuning on downstream tasks.

4

Under review as submission to TMLR

In parallel developments, large-scale pre-trained models in vision and multimodal domains have also demon-
strated their effective representational learning capabilities, enabling adaptation from large datasets to
smaller ones or across various data modalities through fine-tuning. Consequently, this capability has made
PEFT increasingly attractive to the wider research community.

We categorized the PEFT algorithms into additive, selective, reparameterized, and hybrid fine-
tuning based on their operations. As Figure 3 depicts, three major additive fine-tuning algorithms are
normally used: (1) Adapter; (2) Soft Prompt; (3) Others. They differ from each other in terms of the
different additional tunable modules or parameters. Selective fine-tuning, on the other hand, doesn’t
require any additional parameters, it selects a small subset of parameters from the backbone model and only
makes them tunable while keeping the majority of parameters untouched during fine-tuning on downstream
tasks. We categorized selective fine-tuning based on the grouping of chosen parameters: (1) Unstructural
Masking; (2) Structural Masking. Reparametrization represents transforming model parameters between
two equivalent forms. Specifically, reparametrized fine-tuning introduces additional low-rank trainable
parameters during training, which are then integrated with the original model for inference. This approach
is categorized into two main strategies: (1) Low-rank Decomposition, and (2) LoRA Derivatives. Hybrid
fine-tuning explores the design spaces of different PEFT methods and combines their advantages.

2.3 Downstream Tasks for LLM Evaluation

Two types of tasks have been widely used for LLM evaluation, the first type is the General Language Under-
standing Evaluation (GLUE) (Wang et al., 2018) benchmark, which integrates nine sentence or sentence-pair
language understanding tasks (CoLA, SST-2, MRPC, STS-B, QQP, MNLI, QNLI, RTE, and WNLI), cho-
sen for their diversity in dataset sizes, text genres, and difficulty levels, and is based on established existing
datasets. It also includes a diagnostic dataset specifically designed to evaluate and analyze model perfor-
mance across various linguistic phenomena inherent in natural language. Additionally, it features a public
leaderboard to track performance on the benchmark and a dashboard to visualize model performance on the
diagnostic set.

The other type of dataset that has been used in recent LLM papers is common sense reasoning which
integrated into our study caters to a variety of research facets: (1) OpenBookQA (Mihaylov et al., 2018) is
curated to foster research in advanced question-answering, delving into a profound understanding of both the
subject matter and the language in which it is articulated. (2) PIQA (Bisk et al., 2020) primarily emphasizes
everyday scenarios, demonstrating a predilection for unconventional solutions. (3) Social IQA (Sap et al.,
2019) emerges as a novel question-answering benchmark tailored for gauging social commonsense intelligence.
(4) HellaSwag (Zellers et al., 2019) serves as a dataset, the essence of which is to ascertain the capability of
machines in aptly concluding sentences. (5) BoolQ (Clark, 2019) is a dataset dedicated to question-answering,
particularly for binary responses (yes/no queries). (6) WinoGrande (Sakaguchi et al., 2021) is introduced as
a fresh compilation, encompassing a substantial 44,000 problems. (7) ARC-easy (Clark et al., 2018) presents
itself as a novel dataset constituting genuine grade-school level multiple-choice science questions, designed
to invigorate research in intricate question-answering. (8) ARC-challenges (Clark et al., 2018), distinctively,
encompasses solely those questions that were inaccurately addressed by both a retrieval-based algorithm and
a word co-occurrence algorithm.

Image recognition is the primary benchmark and application for vision models, exemplified by benchmarks
such as fine-grained visual categorization (FGVC) and visual task adaptation benchmark (VTAB). Beyond
image classification, video action recognition is another key application area, involving datasets like Kinetics-
400 (Kay et al., 2017), SSv2 (Goyal et al., 2017), and HMDB51 (Kuehne et al., 2011). Additionally, PEFT
has been utilized for dense prediction tasks, using datasets like MSCOCO (Lin et al., 2014), ADE20K (Zhou
et al., 2017), and PASCAL VOC (Everingham et al., 2010).

3 PEFT Taxonomy

The PEFT strategies can be broadly classified into four categories: additive PEFT (Section 3.1), which
modifies the model architecture by injecting new trainable modules or parameters; selective PEFT (Sec-

5

Under review as submission to TMLR

P
E

FT
M

et
ho

ds
fo

r
P

LM
s

Additive
Fine-tuning

Adapter-based
Fine-tuning

Adapter
Design

Serial Adapter (Houlsby et al., 2019), Parallel Adapter (He et al., 2021), CIAT (Zhu et al., 2021),
CoDA (Lei et al., 2023)

Multi-task
Adaptation

AdapterFusion (Pfeiffer et al., 2020), AdaMix (Wang et al., 2022a), PHA (Zhao et al., 2023b),
AdapterSoup (Chronopoulou et al., 2023), MerA (He et al., 2023b), Hyperformer (Mahabadi et al., 2021)

Soft
Prompt-based

Fine-tuning

Soft Prompt
Design

Prefix-tuning (Li & Liang, 2021), Prefix-Propagation (Li et al., 2023b), p-tuning v2 (Liu et al., 2021a),
APT (Zhang et al., 2023h), p-tuning (Liu et al., 2021b), prompt-tuning (Lester et al., 2021),
Xprompt (Ma et al., 2022), IDPG (Wu et al., 2022), LPT (Liu et al., 2022b), SPT (Zhu & Tan, 2023),
APrompt (Wang et al., 2023a)

Training
Speedup

SPoT (Vu et al., 2021), TPT (Su et al., 2021b), InfoPrompt (Wu et al., 2023b),
PTP (Chen et al., 2023c), IPT (Qin et al., 2021), SMoP (Choi et al., 2023), DePT (Shi & Lipani, 2023)

Others (IA)3 (Liu et al., 2022a), MoV (Zadouri et al., 2023), SSF (Lian et al., 2022), IPA (Lu et al., 2023)

Selective
Fine-tuning

Unstructural
Masking

U-Diff pruning (Guo et al., 2020), U-BitFit (Lawton et al., 2023), PaFi (Liao et al., 2023a), FishMask (Sung et al., 2021),
Fish-Dip (Das et al., 2023), LT-SFT (Ansell et al., 2021), SAM (Fu et al., 2023), Child-tuning (Xu et al., 2021)

Structural
Masking

S-Diff pruning (Guo et al., 2020), S-BitFit (Lawton et al., 2023), FAR (Vucetic et al., 2022), Bitfit (Zaken et al., 2021),
Xattn Tuning (Gheini et al., 2021), SPT (He et al., 2023a)

Reparameterized
Fine-tuning

Low-rank
Decomposition

Intrinsic SAID (Aghajanyan et al., 2020), LoRA (Hu et al., 2021), Compacter (Karimi Mahabadi et al., 2021),
KronA (Edalati et al., 2022), KAdaptation (He et al., 2023c), HiWi (Liao et al., 2023a), VeRA (Kopiczko et al., 2023),
DoRA (Liu et al., 2024b)

LoRA
Derivatives

Dynamic
Rank

DyLoRA (Valipour et al., 2022), AdaLoRA (Zhang et al., 2023e), SoRA (Ding et al., 2023),
CapaBoost (Haobo et al., 2023), AutoLoRA (Zhang et al., 2024a)

LoRA
Improvement

Laplace-LoRA (Yang et al., 2023a), LoRA Dropout (Lin et al., 2024), PeriodicLoRA (Meng et al., 2024),
LoRA+ (Hayou et al., 2024), MoSLoRA (Wu et al., 2024a)

Multiple
LoRA

LoRAHub (Huang et al., 2023a), MOELoRA (Liu et al., 2023b), MoLORA (Zadouri et al., 2023),
MoA (Feng et al., 2024), MoLE (Wu et al., 2024b), MixLoRA (Li et al., 2024)

Hybrid
Fine-tuning

UniPELT (Mao et al., 2021), S4 (Chen et al., 2023a), MAM Adapter (He et al., 2021), NOAH (Zhang et al., 2022b),
AUTOPEFT (Zhou et al., 2023), LLM-Adapters (Hu et al., 2023a), S3PET (Hu et al., 2022)

Figure 3: Taxonomy of Parameter-Efficient Fine-Tuning Methods for Large Models.

Output

Combine

Frozen Learnable
Input

Output

Input

(c) Reparameterization PEFT(a) Additive PEFT (b) Selective PEFT

Merge

Output

Input Input (train)

Figure 4: Different types of PEFT algorithms.

tion 3.2), which makes a subset of parameters trainable during fine-tuning; reparameterized PEFT (Sec-
tion 3.3), which constructs a (low-dimensional) reparameterization of the original model parameters for
training, then equivalently transforms it back for inference; and hybrid PEFT (Section 3.4), which com-
bines advantages from different PEFT methods to build a unified PEFT model. A overview of different
types of PEFT algorithms is depicted in Figure 4.

3.1 Additive PEFT

Standard full fine-tuning entails substantial computational expenses and also could potentially harm the
model’s generalization ability. To mitigate this problem, a widely employed approach is to maintain the
pre-trained backbone unchanged and introduce only a minimal number of trainable parameters that are
strategically positioned within the model architecture. While fine-tuning for a specific downstream task,
only the weights of these additional modules or parameters are updated, which results in a substantial
reduction in storage, memory, and computational resource requirements. Due to their characteristic of
adding parameters, these techniques can be termed as Additive Tuning, as shown in Figure 4 (a). Next, we
discuss several popular Additive PEFT algorithms.

6

Under review as submission to TMLR

Transformer
Module

Adapter

Transformer
Module

(a) Serial Adapter (b) Parallel Adapter

Transformer
Module

(c) CoDA

all tokens all tokens top-k tokens all tokens

(d) Adapter Layer

Wdown

Wup

ReLU

Adapter Adapter

Figure 5: Illustration of three representative adapter-based fine-tuning algorithms. Blue represents frozen,
while yellow represents trainable.

3.1.1 Adapters

Adapter approaches involve the insertion of small adapter layers within Transformer blocks. Typically, an
adapter layer consists of a down-projection matrix Wdown P Rrˆd, followed by a non-linear activation function
σp¨q, and an up-projection matrix Wup P Rdˆr. In this context, d represents the dimension of the hidden
layer, and r serves as the bottleneck dimension, which is a hyperparameter used in configuring the adapters.
Denote hin as the input to the adapter, the computation within the adapter module (with residual) can be
summarized as follows:

Adapterpxq “ WupσpWdownxq ` x. (7)

The concept of adapters in the field of NLP was initially introduced by Serial Adapter (Houlsby et al.,
2019) as shown in Figure 5 (a). In their approach, each Transformer block is enhanced by adding two
adapter modules, with one positioned after the self-attention layer and the other after the FFN layer,
respectively. Subsequent research has aimed to address the additional computational cost associated with
adapter layers. A modified framework AdapterFusion (Pfeiffer et al., 2020) was proposed, where adapter
layers are inserted only after the ’Add & Norm’ step following the FFN layer to enhance the computational
efficiency. The adapters mentioned above follow a sequential design, placing adapter layers as bottlenecks
within the Transformer blocks. This approach may potentially reduce the model’s parallelism and require
a trade-off between inference efficiency and accuracy. In contrast, He et al. (2021) introduced a parallel
adapter (PA) approach as depicted in Figure 5 (b), which reorganizes the traditionally sequential adapter
layers into a parallel side-network that runs alongside each Transformer sublayer. Similarly, CIAT (Zhu
et al., 2021), CoDA (Lei et al., 2023) and KronA (Edalati et al., 2022) also adopts a parallel adapter design.
Except for the parallel design, CoDA employs a sparse activation mechanism to improve the inference
efficiency as shown in Figure 5 (c). Specifically, CoDA use a soft top-k selection process that identifies k
important tokens in each layer, which will be processed by both the frozen pre-trained Transformer layer and
the adapter branch to maintain model accuracy. In contrast, those unimportant tokens are only processed
by the adapter branch while skip the heavy pre-trained layer, therefore optimizing for inference efficiency
without compromising overall performance.

To enhance the performance and generalization of adapters, various studies have implemented multi-
task learning strategies, such as AdapterFusion (Pfeiffer et al., 2020), AdaMix (Wang et al., 2022a),
PHA (Zhao et al., 2023b), AdapterSoup (Chronopoulou et al., 2023), MerA (He et al., 2023b), and
Hyperformer (Mahabadi et al., 2021). AdapterFusion keeps all pre-trained adapters in the model and
employs a fusion module to merge the multi-task informations. Unlike AdapterFusion, MerA merges pre-
trained adapters into a single one through optimal transport based on weights and activations. This approach
avoids introducing any additional trainable parameters, thereby enhancing computational efficiency. Hyper-
former stores the multi-task information in a shared hypernetwork, which generates task and layer-specific
adapter parameters conditioned on task and layer id embeddings. Given a new task, only an additional task
embedding needs to be learned, therefore reducing the number of trained parameters.

3.1.2 Soft Prompt

Alternatively, prompt tuning presents an additional approach for refining the model to achieve improved
performance through fine-tuning. Instead of optimizing discrete token representations through in-context

7

Under review as submission to TMLR

learning, there is a prevailing belief that the continuous embedding space of soft prompts inherently contains
more information (Petrov et al., 2023). Drawing inspiration from this concept, researchers directly append
adjustable vectors, referred to as soft prompts, to the start of the input sequence. This can be represented
as follows:

Xplq “ rsplq
1 , . . . , splq

NS
, xplq

1 , . . . , xplq
NX

s (8)

where Xplq is the sequence of input tokens for layer l, including soft prompt tokens splq
i followed by the

original input tokens xplq
i . NS is the number of soft prompt tokens, and NX is the number of original input

tokens.

Prefix-tuning (Li & Liang, 2021) introduces learnable vectors that are prepended to keys k and values
v across all Transformer layers. To ensure stability during the optimization process, Prefix-tuning adopts
a reparameterization strategy, which utilizes an MLP layer to generate these prefix vectors rather than
optimizing them directly. After fine-tuning, only the prefix vectors are saved for inference. This technique
is adapted and improved in several studies (Li et al., 2023b; Liu et al., 2021a; Zhang et al., 2023h). For
instance, p-tuning v2 (Liu et al., 2021a) removes reparameterization and expands its usage to broader
model scales and NLP tasks. APT (Adaptive Prefix Tuning) (Zhang et al., 2023h) enhances Prefix-tuning
by introducing adaptive gate mechanism to control the prefix importance in each layer. Concurrent work
p-tuning (Liu et al., 2021b) and prompt-tuning (Lester et al., 2021) apply learnable vectors only at the
initial word embedding layer rather than all layers to enhance training and inference efficiency. It’s important
to highlight that prompt-tuning demonstrates its effectiveness primarily in the context of large models,
specifically those with over 11 billion parameters (Lester et al., 2021). Complementing this, Xprompt (Ma
et al., 2022) eliminates the negative prompt tokens through a hierarchical structured pruning, which closes
the performance gap at smaller model scales. Wang et al. (2023c) provides some theoretical analysis
towards prompt tuning, demonstrating its universality and limitations in limited-depth Transformers. IDPG
(Instance-Dependent Prompt Generation) (Wu et al., 2022) improves prompt tuning by generating prompts
based on each input sentence with a lightweight prompt generator. In a related approach, LPT (Late
Prompt Tuning) (Liu et al., 2022b) also leverages a prompt generator to obtain instance-aware prompt.
Unlike previous work, LPT adds these prompts only after an intermediate layer, rather than at the initial or
all layers. This strategic placement eliminates the gradient calculation below the intermediate layer, thereby
significantly accelerating the training speed. Simultaneously, LPT can improve the overall performance due to
the shorter backpropagation path preserves more task-related information. Inspired by LPT, SPT (Selective
Prompt Tuning) (Zhu & Tan, 2023) delves deeper into the importance of prompt inserting strategies. It
introduces a learnable probabilistic gate in each layer to determine whether to use the prompt propagated
from the previous layer or inject a newly generated prompt. APrompt (Wang et al., 2023a) employs
another prompt inserting strategy. In addition to input prompts inserted at the beginning of the input
sequence for each Transformer layer, APrompt also prepends additional learnable prompts to the respective
query, key, and value matrices in the self-attention blocks to learn new attention patterns. Besides, APrompt
incorporates the learning of a task-specific head.

The concept of soft prompts has been employed for various downstream tasks (Choi & Lee, 2023; Wu & Shi,
2022), although their training can be prone to instability and slow convergence. To address this, SPoT (Vu
et al., 2021) uses a source prompt learned from one or multiple tasks to initialize prompts for new tasks.
Similarly, transfer of soft prompts from one task to initialize another is proposed in TPT (transferable
prompt tuning) (Su et al., 2021b), which demonstrates that a better prompt initialization results in a large
training convergence speedup. InfoPrompt (Wu et al., 2023b) develops two mutual information based loss
functions, i.e., head loss and representation loss, to find better prompt initialization and learn sufficient
task-relevant information, thereby also expediting convergence. PTP (Chen et al., 2023c) delves into the
root causes of training instability. It identifies the steep nature of the loss landscape in conventional prompt
tuning, where minor variations in input data can lead to significant loss fluctuations. To mitigate this,
PTP introduces perturbation-based regularizers to smooth the loss landscape and consequently stabilize the
training process. DePT (Shi & Lipani, 2023) decomposes the soft prompt into a shorter soft prompt with
a pair of low-rank matrices, which are optimised with two distinct learning rates. This strategy not only
improves the performance but also enhances training and inference efficiency. SMoP (Sparse Mixture-of-

8

Under review as submission to TMLR

V K Q

⊙

lk

lv lff

⊙

softmax

Wdown

𝛔

⊙

Wup

(a) (IA)3

⊙ ⊕

O
pe

ra
tio

n
1

O
pe

ra
tio

n
2

(b) SSF

scale shift

Figure 6: Illustration of (IA)3 and SSF. Blue represents frozen, while yellow represents trainable.

Prompts) (Choi et al., 2023) reduce the training and inference cost by utilizing short soft prompts. During
training, multiple short soft prompts are trained, each tailored to specific subsets of the dataset. During
inference, SMoP integrates a gating mechanism that routes each input instance to an appropriate short
prompt. This technique not only increases efficiency in both training and inference stages but also retains
performance comparable to those achieved with longer soft prompts. To further cut down the number of soft
prompt parameters, IPT (Intrinsic Prompt Tuning) (Qin et al., 2021) identifies an intrinsic task subspace
by training an auto-encoder on multiple tasks. Tuning on new tasks then requires adjusting only a few
parameters within this subspace, significantly reducing the number of training parameters.

3.1.3 Other Additive Methods

Apart from the methods mentioned above, there appears other approaches that strategically incorporate
additional parameters during the fine-tuning process. For example, (IA)3 (Liu et al., 2022a) introduces
three learnable rescaling vectors: lk P Rdk , lv P Rdv , and lff P Rdff , to rescale the key, value, and FFN
activations, respectively, as depicted in Figure 6 (a). The operations within the self attention block can be
described as follows:

SApxq “ Softmaxp
Qplk d KT q

?
dhead

qpplv d V q. (9)

In FFN, the rescaling can be denoted as:

FFNT ransfomerpxq “ Wupplff d σpWdownxqq, (10)

where d is Hadamard product. Furthermore, the scale vectors lk and lv can be seamlessly integrated into
the weight matrices of AQ and AW . This integration effectively eliminates the extra computational costs
during inference. A similar technique SSF (Lian et al., 2022) also performs linear transformation to the
model activations, as illustrated in Figure 6 (b). Specifically, after each operation (i.e., MSA, FFN and layer
normalization) in the pre-trained model, a SSF-ADA layer is injected, which performs scaling and shifting to
the features generated from the operation. During fine-tuning, only those SSF-ADA layers can be updated,
while during inference, similar to (IA)3, these SSF-ADA layers can be merged into model weights, so no
additional inference overhead would be incurred. IPA (Inference-Time Policy Adapters) (Lu et al., 2023)
offers a novel approach to align LLMs, such as GPT-4, with user-specific requirements without modifying
the base model’s parameters. This is particularly significant when dealing with models whose parameters are
extremely large and often not directly accessible. IPA achieves this by combining (through multiplication
and normalization) the output distribution of a base LLM (base policy) with that of a smaller-sized model
(adapter policy) during the decoding phase. During training, the policy adapter’s parameters are fine-tuned
using reinforcement learning, while the base policy’s parameters remain fixed. During inference, IPA decodes
with the combined distribution of the base model and the trained policy adapter, tailoring it to fulfill specific
user-defined criteria.

9

Under review as submission to TMLR

3.2 Selective PEFT

Rather than additive PEFT, which increases the model complexity by adding more parameters, selective
PEFT fine-tunes a subset of the existing parameters to enhance model performance over downstream tasks,
as depicted in Figure 4 (b).

Specifically, given a model with parameters θ “ tθ1, θ2, ..., θnu where each θi denotes an individual model
parameter and n represents the total count of these parameters, the process of selective PEFT is represented
by applying a binary mask M “ tm1, m2, ..., mnu to these parameters. Each mi in M is either 0 or 1,
indicating whether the corresponding parameter θi is selected (1) or not selected (0) for fine-tuning. The
updated parameter set θ1 after fine-tuning is given by:

θ1
i “ θi ´ η ¨ mi ¨

BL
Bθi

(11)

where η represents the learning rate, and BL
Bθi

is the gradient of the loss function with respect to the pa-
rameter θi. In this formulation, only the parameters that are selected (i.e., mi “ 1) are updated during
backpropagation.

Diff pruning (Guo et al., 2020) is a representative work that applies a learnable binary mask to the model
weights during fine-tuning. To achieve parameter efficiency, the mask is regularized by a differentiable
approximation of the L0-norm penalty. PaFi (Liao et al., 2023a) simply select model parameters with the
smallest absolute magnitude as trainable. FishMask (Sung et al., 2021) determines parameter importance
using the approximate Fisher information. It then selects the top k parameters based on this information to
form the mask M . Similarly, Fish-Dip (Das et al., 2023) also uses Fisher information to calculate M , but
the mask will be re-calculated dynamically in each train period. LT-SFT (Ansell et al., 2021) introduces
another technique to determines parameter importance inspired by the Lottery Ticket Hypothesis (Frankle
& Carbin, 2018; Malach et al., 2020), where the the subset of parameters that change the most during an
initial fine-tuning stage is selected to form the mask M . SAM (Fu et al., 2023) proposes a second-order
approximation method, which approximates the original problem with an analytically solvable optimization
function, to help decide the parameter mask. Child-tuning (Xu et al., 2021) proposes two approaches to
select a child network during each training iteration, where only the parameters within this child network
can be updated.

(a) Unstructural
Masking

(b) Structural
Masking

Frozen Learnable

Figure 7: Illustration of two pa-
rameter masking methods.

However, above unstructured parameter masking results in an uneven
distribution of non-zero masks and diminished hardware efficiency when
implementing PEFT. As shown in Figure 7, the structured mask orga-
nize parameter masking in regular patterns, unlike unstructured ones that
apply it randomly, thus can enhances computational and hardware ef-
ficiency during training. Therefore, various structured selective PEFT
techniques have undergone extensive investigation. Diff pruning pro-
poses a structured pruning strategy by partitioning the weight parameters
into local groups and strategically eliminating them together. Similarly,
FAR (Vucetic et al., 2022) fine-tunes BERT models by grouping weights
of the FFN in Transformer blocks into nodes, then rank and select the
learner nodes using L1 norm. To further reduce the memory access fre-
quency, they also reconfigure the FFN by grouping the learner nodes to-
gether. Bitfit (Zaken et al., 2021) is proposed to only fine-tunes the bias parameters of each DNN layer, and
achieves competitive results for small models. However, this method fails to handle large models. Lawton
et al. (2023) applies NAS to Bitfit, where S-BitFit keeps the structural nature in Bitfit that restrict
NAS algorithm must choose whether δb “ 0 or not for each bias module. Similar to Bitfit that fine-tunes
a specific module in Transformer, Xattn Tuning (Gheini et al., 2021) fine-tunes only the cross-attention
layers. SPT (sensitivity-aware visual parameter-efficient fine-tuning) (He et al., 2023a) first identifies the
sensitive parameters measured by the loss reduction when being tuned. This sensitivity is calculated using a
first-order Taylor expansion, derived from a single forward and backward pass before fine-tuning in oneshot.
Next, SPT finds the weight matrices whose number of sensitive parameters exceeds a pre-defined threshold,

10

Under review as submission to TMLR

Pre-trained
Weights

W0 ∊ Rd×k Wdown ∊ Rr×k

Wup ∊ Rd×r

(a) LoRA

× d

d
rmax

r

r

rmax

Wdown↓r

Wup↓r

Wup Wdown

×

(b) DyLoRA

Pre-trained
Weights

Decompose

W0 ∊ Rd×k
Pre-trained

Weights

Magnitude

Direction

m∊ R1×k

1/॥V+ΔV॥c

×
V ∊ Rd×k

Wup ∊ Rd×r

Wdown ∊ Rr×k

×

(c) DoRA

Figure 8: Illustration of three representative reparameterized PEFT algorithms. Blue represents frozen,
while yellow represents trainable.

and then applies a selected PEFT technique (e.g., LoRA and Adapter) to these targeted weights to achieve
structural tuning.

3.3 Reparameterized PEFT

Reparameterization stands for equivalently transforming a model’s architecture from one to another via
transforming its parameters. In the context of PEFT, this often means constructing a low-rank parameteri-
zation to achieve the goal of parameter efficiency during training. For inference, the model can be converted
to its original weight parameterization, ensuring unchanged inference speed. This procedure is depicted in
Figure 4 (c).

Earlier research studies (Aghajanyan et al., 2020) have shown that common pre-trained models exhibit an
exceptionally low intrinsic dimensionality. In other words, it is possible to find a low-dimensional reparam-
eterization that is effective for fine-tuning as the entire parameter space. Intrinsic SAID (Aghajanyan
et al., 2020) is the pioneering work in investigating the intrinsic dimension feature during the fine-tuning
of LLMs. However, the most widely recognized reparameterization technique is LoRA (Low Rank Adap-
tation) (Hu et al., 2021; Fomenko et al., 2024), as shown in Figure 8 (a). For a given pre-trained weight
matrix W0 P Rdˆk, LoRA introduces two trainable weight matrices, Wup P Rdˆr and Wdown P Rrˆk where
the rank r ! minpd, kq, operating in parallel to W0. Let hin represent the input. Under normal conditions,
the output through W0 is hout “ W0hin. Instead, LoRA modifies this output by introducing an incremental
update ∆W that encapsulates task-specific knowledge:

hout “ W0hin `
α

r
∆Whin “ W0hin `

α

r
WupWdownhin, (12)

where α denotes a scaling factor. At the onset of training, Wdown is initialized using a random Gaussian
distribution, while Wup is initialized to zero, ensuring that ∆W initially holds a value of zero. LoRA is
straightforward to implement and has been evaluated on models with up to 175 billion parameters. Fig 8
(c) used a single decoder as an example, the frozen and learnable components are highlighted in grey and
red, respectively. Once fine-tuning is complete, LoRA’s adaptive weights seamlessly integrate with the pre-
trained backbone weights. This integration ensures that LoRA maintains the model’s efficiency, adding no
extra burden during inference.

In LoRA training, selecting an appropriate rank has always been a challenging issue. To address this,
DyLoRA (Valipour et al., 2022), as depicted in Figure 8 (b), trains LoRA module on a range of ranks
within a predefined training budget, rather than adhering to a single, fixed rank. Specifically, for a given
rank range R “ trmin, rmin `1, . . . , rmaxu, DyLoRA dynamically chooses a rank r P R at each iteration of the
training process. Consequently, the matrices Wdown and Wup are tailored for the selected rank r, resulting
in truncated versions WdownÓr “ Wdownr1 : r, :s and WupÓr “ Wupr:, 1 : rs, and the subsequent forward and
backward pass during this iteration will be restricted on WdownÓr and WupÓr instead of Wdown and Wup.
With this dynamic and search-free approach, DyLoRA significantly reduces the training time required to
find an optimal and fixed LoRA rank for specific tasks. AdaLoRA (Zhang et al., 2023e) reformulates the

11

Under review as submission to TMLR

∆W with a singular value decomposition (SVD), denoted as ∆W “ PΛQ, where P P Rdˆr and Q P Rrˆk

are orthometric, Λ is a diagonal matrix containing sigular values tλiu1ďiďr. All the three weight matrices
are made learnable. During training, the singular values are pruned iteratively based on their importance
scores, which are constructed from moving average of the magnitude of gradient-weight product. To ensure
the orthogonality between P and Q, i.e., P T P “ QQT “ I, an additional regularizer term is included in the
loss:

RpP, Qq “
›

›P T P ´ I
›

›

2
F

`
›

›QQT ´ I
›

›

2
F

. (13)

This adaptive approach enables the model to dynamically adjust the rank within each LoRA module, effec-
tively managing its parameter counts based on the significance of the weight matrices. However, according to
SoRA (Ding et al., 2023), the importance scores used in AdaLoRA is heuristically constructed, which lacks
rigorous theoretical motivation. Additionally, both moving average operation and calculation of Eq. 13 intro-
duces extra computation cost during training. To address this, SoRA eliminates the orthogonality premise
of P and Q. Instead, a gating unit g P Rr between Wup and Wdown is directly applied and optimized:

hout “ Wuppg d pWdownhinqq, (14)

where d is Hadamard product. The gate g is updated using a variation of proximal gradient iteration
for l1 loss (Beck & Teboulle, 2009; Chambolle et al., 1998), which has a clear mathematical meaning and
do not need the heuristic premise. After training, the zeroed-out gate units are pruned by removing the
corresponding columns and rows in Wdown and Wup.

Several subsequent studies have aimed to improve LoRA’s performance in various aspects. For instance,
Laplace-LoRA (Yang et al., 2023a) notices that fine-tuned LLMs often exhibit overconfidence. To enhance
the calibration of fine-tuned LLMs, Laplace-LoRA utilizes a Bayesian approach, specifically a post-hoc
Laplace approximation (MacKay, 1992; Antorán et al., 2022), to the posterior over the LoRA parameters.
LoRA Dropout (Lin et al., 2024) introduces random noises to the learnable low-rank matrices and increases
parameter sparsity to reduce the risk of overfitting. LoRA+ (Hayou et al., 2024) proposes to set different
learning rates for the LoRA matrices Wdown and Wup, such that ηup “ ληdown with λ ą 1 fixed and tune
ηdown. MoSLoRA (Mixture-of-Subspaces LoRA) (Wu et al., 2024a) decomposes LoRA into subspaces
via structural reparameterization, then employs a learnable mixer, trained jointly with the original LoRA
weights, to fuse the subspaces. Similarly to LoRA, MoSLoRA can also be merged into the original weights.

Thanks to the modular design of LoRA, many studies incorporate multiple LoRA modules in their frameworks
to enhance performance. For example, LoRAHub aggregates various LoRA modules trained on different
tasks. Given a handful of examples from a new task, LoRAHub can autonomously compose compatible
LoRA modules without human intervention via a gradient-free method Shiwa (Liu et al., 2020). MOELoRA
employs a Mixture-of-Experts (MOE) approach to train LoRA in a multi-task setting, resulting in multiple
expert LoRA modules. To retrieve parameters for certain task, MOELoRA utilizes a task-motivated gate
function that assigns contribution weights to each expert based on the task ID, and the final parameters is
calculated through a weighted sum of all experts.

In addition to LoRA, several other reparameterization techniques are emerging with significant potential.
For instance, Compacter (Karimi Mahabadi et al., 2021) introduces a light-weight adapter modules by
parameterizing the Wdown and Wup as W “

řn
i“1 Ai b Bi, where Ai P Rnˆn, Bi P R r

n ˆ d
n , and b denotes

the Kronecker product. They further decrease the parameter count by designating Ai as shared parameters
and reparameterizing Bi using the product of two low-rank matrices, effectively reducing the parameter
complexity from Oprdq to Opr ` dq. Related studies, such as KronA (Edalati et al., 2022) and KAdap-
tation (He et al., 2023c), also employ the Kronecker product to reparameterize adapter weights, aiming to
achieve parameter reduction. HiWi (Liao et al., 2023a) proposes an adapter fine-tuning method that applies
an adapter directly to pre-trained parameters instead of hidden representations as:

W 1 “ W ` σpWWdownqWup, (15)

where W denotes the weights or biases within the Transformer block’s feed-forward layer. Notably, during
inference, this method computes W 1 in advance, ensuring that the model’s inference latency remains on par
with that of traditional full fine-tuning. VeRA (Vector-based Random Matrix Adaptation) (Kopiczko et al.,

12

Under review as submission to TMLR

2023) employs a single pair of frozen low-rank matrices Wup and Wdown that are shared across all layers, and
adapts these matrices by learning small, trainable scaling vectors represented as b and d (formally denoted
by diagonal matrices Λb and Λd). Specifically, the reparameterization is given by:

hout “ W0hin ` ΛbWupΛdWdownhin, (16)

where both Wup and Wdown are initialized using a random Gaussian distribution. Similar to LoRA, the scaling
vector b is initialized to zeros to ensure that the weight matrix is unaffected during the first forward pass. This
method significantly reduces the number of trainable parameters compared to LoRA yet maintains the same
performance, enabling the fine-tuning of larger models on a single GPU. DoRA (Weight-Decomposed Low-
Rank Adaptation) (Liu et al., 2024b) presents a novel approach as illustrated in Figure 8 (c) by decomposing
model weights W0 P Rdˆk into magnitude and direction as follows:

W0 “ m
V

}V }c
“ }W0}c

W0

}W0}c
, (17)

where m P R1ˆk is the magnitude vector, V P Rdˆk is the directional matrix, with } ¨ }c being the vector-wise
norm of a matrix across each column. Subsequently, DoRA adopts a unique fine-tuning strategy for m and
V . While both are tunable, only V undergoes LoRA reparameterization, defined as:

W 1 “ m
V ` ∆V

}V ` ∆V }c
“ m

W0 ` WupWdown

}W0 ` WupWdown}c
, (18)

where ∆V is the incremental directional update learned by LoRA, and the underlined parameters denote
the trainable parameters. Through this methodology, DoRA consistently outperforms LoRA across various
tasks and models, demonstrating its superiority.

3.4 Hybrid PEFT

The efficacy of various PEFT methods can significantly differ across different tasks. As a result, numerous
studies aim to either combine the advantages of diverse PEFT approaches or seek to establish a unified
perspective by analyzing the similarities among these methods. For instance, UniPELT (Mao et al., 2021)
integrates LoRA, prefix-tuning, and adapters into each Transformer block. To control which PEFT submod-
ules should be activated, they also introduce a gating mechanism. This mechanism consists of three small
FFNs that each produce a scalar value G P p0, 1q, which is then applied to the LoRA, prefix, and adapter
matrices, respectively. Across various setups, UniPELT has consistently shown improvements in accuracy
ranging from 1% to 4%. S4 (Chen et al., 2023a) explores design spaces for several PEFT methods (i.e.,
Adapter (A), Prefix (P), BitFit (B), and LoRA (L)) to uncover underlying design patterns. After a series
experiments, their findings include: (1) Applying the spindle grouping partitioning for Transformer layers,
which results in four layer groups Gi for i P t1 . . . 4u. Layers in one group have similar behaviors together,
which means should be apply similar PEFT strategies. (2) Allocating the number of trainable parameters
to layers uniformly. (3) Tuning all the groups. (4) Assigning different PEFT strategies in different group.
The resulting design space that has the best performance is:

G1 : pA, Lq, G2 : pA, P q, G3 : pA, P, Bq, G4 : pP, B, Lq

MAM Adapter(He et al., 2021) explores the intrinsic similarity between three additive PEFT methods:
adapters, prefix-tuning, and LoRA, which leads to the development of three variants: Parallel Adapter,
which places adapter layers alongside specific layers (SA or FFN) instead of after them; Multi-head Parallel
Adapter, which divides the parallel adapter into multiple heads, each affecting the head attention output
in SA; and Scaled Parallel Adapter, which adds a scaling term after the parallel adapter layer, similar to
LoRA. Extensive experimentation revealed that the most effective configuration involves using prefix-tuning
in the SA layer and the scaled parallel adapter in the FFN layer, which is called MAM Adapter. LLM-
Adapters (Hu et al., 2023a) builds an easy-to-use framework that incorporates various PEFT techniques
into LLMs. Through comprehensive benchmarking across multiple datasets, the study reveals several key
insights: (1) The most effective locations for series adapters, parallel adapters, and LoRA are after the

13

Under review as submission to TMLR

E
ffi

ci
en

t
P

E
FT

D
es

ig
n

PEFT Pruning AdapterDrop (Rücklé et al., 2020), SparseAdapter (He et al., 2022b), SPLoRA (Hedegaard et al., 2022), LoRAPruning (Zhang et al., 2023d),
ProPETL (Zeng et al., 2023b)

PEFT
Quantization

BI-Adapter (Jie et al., 2023), PEQA (Kim et al., 2023), QLoRA (Dettmers et al., 2023), LoftQ (Li et al., 2023d), LQ-LoRA (Guo et al., 2023),
QA-LoRA (Xu et al., 2023c), INT2.1 (Chai et al., 2023b), QDyLoRA (Rajabzadeh et al., 2024), BitDelta (Liu et al., 2024a)

Memory-efficient
PEFT

Side-Tuning (Zhang et al., 2020), LST (Sung et al., 2022a), Res-Tuning (Jiang et al., 2023), MEFT (Liao et al., 2023b),
LoRA-FA (Zhang et al., 2023b), HyperTuning (Phang et al., 2023), PEFT Plug-in (Jin et al., 2023), MeZO (Malladi et al., 2023),
GaLore (Zhao et al., 2024)

Figure 9: Taxonomy of Efficient PEFT Design.

MLP layers, alongside the MLP layers, and simultaneously following the Attention layers and MLP layers,
respectively. (2) Smaller LLMs utilizing PEFT can achieve competitive or even superior results on certain
tasks when compared to their larger counterparts. (3) With appropriate in-distribution fine-tuning data,
smaller models are capable of surpassing larger models in task-specific performance.

Several studies leverage neural architecture search (NAS) to find better PEFT combination approaches.
For example, NOAH (Zhang et al., 2022b) discovers that different PEFT configurations are specifically
tailored for different tasks. To address this issue, NOAH employs NAS to identify the most effective PEFT
configurations for each dataset. Specifically, NOAH’s searching space encompasses three PEFT methods:
Adapter, LoRA, and Visual Prompt Tuning (VPT). It utilizes AutoFormer (Chen et al., 2021a), a one-shot
NAS algorithm, for the efficient discovery of optimal prompt modules. In a related vein, AUTOPEFT (Zhou
et al., 2023) first establishes a searching space that includes serial adapters, parallel adapters, and prefix
tuning. After that, they proposes an effective NAS methods based on a high-dimensional multi-dimensional
Bayesian optimisation (Frazier, 2018). Both NOAH and AUTOPEFT demonstrate the capability of NAS in
enhancing PEFT configurations across a variety of tasks.

4 Efficient PEFT design

Processing latency and peak memory overhead are pivotal factors to consider from a computational stand-
point. This section introduces a key characteristic in LLMs aimed at balancing between latency and memory
usage (Section 4.1). Following this, we explore strategies for developing efficient PEFT methods to address
computational challenges, including PEFT pruning (Section 4.2), PEFT quantization (Section 4.3), and
memory-efficient PEFT techniques (Section 4.4), each designed to enhance model performance while
minimizing resource consumption. It is noteworthy that quantization inherently addresses memory over-
head concerns. However, given its distinct characteristics, we address these quantization methods separately
rather than incorporating them under the memory-efficient PEFT section.

4.1 KV-cache Management for PEFT Efficiency

The core of the LLMs model lies an autoregressive Transformer model, depicted in Figure 2. When we
look at autoregression characteristic, it becomes a major challenge in designing an inference system, because
every time a new token is generated, the entire LLM model has to transfer all the weights from different
memories to the memory of the graphics processor, which is very unfriendly to single-user task scheduling or
multi-user work-load balance. The challenging part of serving the auto-regressive paradigm is all previous
sequences have to be cached and saved for the next proceeding iteration, the cached activation generated
from the previous sequences is stored as the Key-Value Cache (KV-cache).

The storage of KV-cache will cost both memory space and IO performance, yielding in workload memory-
bounded and under-utilizing the computation power of the system. Previous works proposed a series of
solutions like KV-cache control management (Kwon et al., 2023) or KV-cache compression (Sheng et al.,
2023b) to improve throughput or reduce latency. When designing PEFT methods, it is crucial to consider
the characteristics of the KV-cache to complement its features. For instance, when applying soft prompts
in the inference phase, efficiently leveraging the KV-cache for these additional inputs can help accelerate
response times by ensuring prompt-related data is readily accessible.

14

Under review as submission to TMLR

4.2 Pruning Strategies for PEFT

The inclusion of pruning can substantially enhance the efficiency of PEFT methods. In particular, Adap-
terDrop (Rücklé et al., 2020) explores the removal of adapters from lower transformer layers and multi-task
adapters in AdapterFusion (Pfeiffer et al., 2020), which shows that the pruning can improve the training
and inference efficiency with minimal decrease in performance. SparseAdapter (He et al., 2022b) investi-
gates different pruning methods and finds that high sparsity ratios (80%) can outperform standard adapters.
Additionally, the Large-Sparse configuration, which increases the bottleneck dimension while maintaining
a constant parameter budget (e.g., doubling dimensions with a 50% sparsity), substantially enhances the
model’s capacity, resulting in improved performance. SPLoRA (Hedegaard et al., 2022) adopts channel-
based pruning to the LoRA weights Wdown and Wup. This pruning affects not only the source weights W0,
but also the LoRA parameters Wup and Wdown. Similarly, LoRAPruning (Zhang et al., 2023d) adopts
structured pruning not only to the pretrained model weights but also to the LoRA weights. In contrast
to unstructured LoRA pruning methods, which primarily focus on sparsifying model weights while leaving
LoRA weights dense, thus making weight merging challenging to achieve, LoRAPruning enables the weights
to be merged easily. Additionally, this work also introduces a novel criterion that utilizes LoRA’s gradients as
an approximation of the gradients for the pre-trained weights, enabling the estimation of weight importance.
ProPETL (Zeng et al., 2023b) constructs a single shared prototype (e.g., adapter, prefix, or LoRA) across
layers and tasks. In addition, ProPETL learns binary masks to prune different sub-networks in different
layers and tasks. As a result, the parameters can be reused in across layers and tasks, largely increasing the
parameter efficiency.

4.3 Quantization Strategies for PEFT

Quantization serves as another popular technique for improving computational efficiency and reduce mem-
ory usage. For example, by investigating the loss landscape of adapters, BI-Adapter (Jie et al., 2023)
finds that adapters are resistant to noise in parameter space. Building on this insight, the authors intro-
duce a clustering-based quantization approach. Remarkably, they demonstrate that a 1-bit quantization of
adapters not only minimizes storage requirements but also achieve superior performance among all preci-
sion settings. PEQA (Parameter-Efficient and Quantization-aware Adaptation) (Kim et al., 2023) uses a
two-stage pipeline to achieve parameter-efficient and quantization-aware fine-tuning. In the first stage, the
pre-trained FFN weight matrix W P Rnˆm is quantized to W “ s ¨ W , where s P Rnˆ1 represents per-
channel scales and W denotes the quantized weight. In the second stage, W remains fixed, and fine-tuning
is only conducted on s. This approach not only ensures memory efficiency but also facilitates parameter
efficiency. QLoRA (Dettmers et al., 2023) proposes several novel techniques, including a 4-bit NormalFloat,
a Double Quantization, and a Paged Optimizers, to backpropagate a 4-bit quantized pretrained language
model into LoRA. These techniques enable the fine-tuning for a 65B language model on a single 48GB
GPU while maintaining similar performance to the full 16-bit fine-tuning. Similar to the original imple-
mentation (Hu et al., 2021), QLoRA attaches the fixed zero initialized LoRA weights to the quantized
pre-trained model as the training start point. However, when applying the extreme low-bit (e.g., 2-bit)
quantization, the huge quantization error can adversely impact the initialization of LoRA fine-tuning, i.e.,
quantizationpW0q ` WdownWup ‰ W0 where Wdown “ 0, which will harm the fine-tuning performance as
shown in the work by Liao et al. (2023b). To solve this, several quantization strategies are proposed to elimi-
nate the quantization error. For example, LoftQ (LoRA-Fine-Tuning-aware Quantization) (Li et al., 2023d)
presents an innovative framework that provides a superior initialization point of quantized backbone weights
and LoRA weights for subsequent LoRA fine-tuning. This approach addresses the discrepancies caused by
quantization through the optimization of a Frobenius norm objective during network initialization, which
takes both the LoRA weights and the quantized pre-trained backbone into consideration. LoftQ exhibits
superior performance in 2-bit quantization over QLoRA, as well as greater generalization for downstream
tasks. LQ-LoRA (Guo et al., 2023) uses an iterative algorithm inspired by robust principal components
analysis (Zhou & Tao, 2011; Wright et al., 2009) which decomposes the weight W0 such that W0 « Q`L1L2
to resolve the inaccuracy caused by the quantization error, where Q is the quantized component which re-
mains fixed and L1L2 is the trainable low-rank component. Moreover, this approach leverages integer linear
programming to determine a mixed quantization strategy, enabling dynamic quantization configurations for

15

Under review as submission to TMLR

each weight matrix while adhering to a predetermined total bit rate limit. QA-LoRA (Xu et al., 2023c)
address another limitation of QLoRA, which struggles to preserve its quantized property post fine-tuning.
In QLoRA, the quantized pre-trained weight (NF4) have to be recovered to FP16 to match the LoRA weight
precision (FP16) during weight merging. Instead, QA-LoRA uses INT4 quantization and introduces group-
wise operators to enable quantization during inference stage, therefore improve the efficiency and accuracy
compared with QLoRA. BitDelta (Liu et al., 2024a) introduces a novel 1-bit post-training quantization
method that acts on the weight delta between a fine-tuned model and its underlying pre-trained model.
Specifically, given the weight matrices Wfine and Wbase from the fine-tuned and base models respectively,
the weight delta ∆ “ Wfine ´ Wbase is binarized as ∆̂ “ α d Signp∆q. Here, α, a high-precision scalar, is
initialized based on the mean absolute delta value α “ 1

nm

ř

ij |Wij |, with Signp¨q indicating the sign of ∆.
BitDelta further calibrates the scaling factors via distillation on a compact calibration dataset, while the
binary matrices remain unchanged. This approach notably streamlines the deployment of multiple fine-tuned
models on shared servers by utilizing a singular full-precision base model alongside efficiently batched 1-bit
deltas.

4.4 Memory-efficient PEFT Methods

Fine-tuning the full LLMs necessitates substantial training memory owing to their considerable size. While
most PEFT methods primarily target parameter efficiency, they still incur a significant memory overhead
during training because gradient computation and backpropagation are still necessary for these methods.
For example, prevalent PEFT techniques such as adapters and LoRA can only reduce memory usage to
approximately 70% compared to full model fine-tuning according to some literatures (Sung et al., 2022a; Jin
et al., 2023). From a computational perspective, memory efficiency also remains a critical factor that cannot
be overlooked.

To improve memory efficiency, various techniques have been developed to minimize the need for caching
gradients for the entire LLM during fine-tuning, thereby reducing memory usage. For example, both Side-
Tuning (Zhang et al., 2020) and LST (Ladder-Side Tuning) (Sung et al., 2022a) introduces a learnable
network branch parallel to the backbone model. By channeling the backpropagation exclusively through
this parallel branch, it circumvents the need to store gradient information for the main model’s weights,
thus markedly reducing memory requirements during training. Similarly, Res-Tuning (Jiang et al., 2023)
disentangles the PEFT tuners (e.g., prompt tuning, adapter) from the backbone model. On top of the
disentanglement, a memory-efficient fine-tuning framework named Res-Tuning-Bypass is proposed, which
generates a bypass network in parallel with the backbone model by removing the data flow from the de-
coupled tuners to the backbone. This eliminates the requirement for gradient caching within the backbone
model during backpropagation. MEFT (Liao et al., 2023b) (memory-efficient fine-tuning) is an approach
inspired by the reversible model (Gomez et al., 2017). During the training of a reversible model, intermediate
activations are not required to be cached in the forward pass. During backpropagation, they can be recalcu-
lated from the final output. To save the memory during fine-tuning, MEFT investigates how to transform an
LLM to its reversible counterparts without additional pre-training. A critical aspect of this transformation
is the careful initialization of newly-introduced parameters in the pre-trained models. MEFT demonstrates
the importance of the parameter initialization, and suggests that these parameters must be initialized in
a manner that preserves the pre-trained model’s starting point, ensuring that the fine-tuning of the modi-
fied model achieves performance on par with full fine-tuning methods. With this key consideration, MEFT
introduces three distinct methods, each significantly curtailing the memory demands traditionally required
for storing activations. LoRA-FA (Zhang et al., 2023b) addresses a limitation about memory overhead in
LoRA fine-tuning. During training, LoRA modules still require high activation memory consumption. This is
because, during backpropagation, large input activations must be stored during the forward pass to compute
gradients. LoRA-FA resolves this issue by freezing both the pre-trained weights W0 and the projection-down
weights Wdown, and only updating the projection-up weights Wup. Consequently, the input activation hin no
longer needs to be stored, as the intermediate activation Wdownhin is adequate for gradient computation for
Wup. Given that r ! d, the memory requirement for activations in LoRA-FA can be significantly reduced.

To further reduce memory usage during fine-tuning, some methods attempt to circumvent backpropagation
within LLMs to address this issue. HyperTuning (Phang et al., 2023) employs a HyperModel to generate

16

Under review as submission to TMLR

PEFT parameters using only fewshot examples. This approach demonstrates results comparable to those
obtained through full model fine-tuning. PEFT Plug-in (Jin et al., 2023) first trains PEFT modules on
small language models, which is more memory efficient compared to training on large ones. Subsequently,
the research introduces a suite of techniques for seamlessly integrating these trained PEFT modules into
LLMs during inference. This strategy effectively circumvents the necessity of gradient-based optimization
directly on the larger models, resulting in substantial memory savings. However, it is important to note that
both HyperModel and PEFT Plug-in still require additional model training, and this training cost cannot be
entirely overlooked. MeZO (Malladi et al., 2023) introduces a memory-efficient zeroth-order (ZO) optimizer
for LLMs. Unlike conventional PEFT techniques, which rely on backpropagation to compute gradients
for updating model parameters, MeZO fine-tunes LLMs through only forward passes. It accomplishes this
by employing a ZO gradient estimator to calculate the gradient. Notably, MeZO implements an in-place
solution for the classic ZO gradient estimator, effectively mitigating memory consumption during inference
execution. This innovative approach allows for efficient fine-tuning of LLMs containing 30 billion parameters
on a single GPU with 80GB of memory, all while maintaining performance that is comparable to fine-tuning
using backpropagation. Furthermore, it can substantially decrease storage demands in comparison to the
traditional PEFT methods such as LoRA and Adapter.

5 PEFT for DNNs of Other Applications

In Section 3, we outlined four categories of PEFT methods along with their improvements. Nonetheless,
our discussion did not fully extend to the utilization or adaptation of PEFT techniques beyond traditional
architectures (e.g., LLMs) or standard benchmarks (e.g., the GLUE dataset), where the majority of the
discussed PEFT methods are applied. Therefore, in this section, we will highlight and discuss several most
representative works that leverages PEFT strategies for various downstream tasks. We do not aim to cover
all PEFT application scenarios in this section. Our objective is to showcase the significant influence of
PEFT within various research domains, and demonstrate how to optimize and tailor general-purpose PEFT
methods to achieve enhanced performance in specific models or tasks.

Typically, fine-tuning happens when adapting a pre-trained backbone model to specialized downstream tasks.
To this end, this section organizes the discussion around various model architectures, which include: LLM,
Vision Transformer (ViT), Vision-Language Alignment Model (VLA), and Diffusion model. Within each
architectural category, the discussion is further classify based on different downstream tasks.

5.1 PEFT for LLMs – Beyond the Basics

Instead of common tasks in NLP such as NLU and NLG, PEFT techniques boast a wide array of applica-
tions across diverse scenarios. PEFT has been successfully implemented in commonsense question answer-
ing (Huang et al., 2023c; Zhao et al., 2023d), multi-level implicit discourse relation recognition (Zhao et al.,
2023c), out-of-distribution detection (Ouyang et al., 2023), privacy protection (Ozdayi et al., 2023; Xiao
et al., 2023b), federated learning (Che et al., 2023), and social biases mitigation (Li et al., 2023c). In this
section, we pay more focus on three representative downstream tasks: visual instruction following, continual
learning, context window extension.

5.1.1 Visual Instruct Following

Several studies, including VL-BART (Cho et al., 2021), MiniGPT-4 (Zhu et al., 2023b), and LLaVA (Liu
et al., 2023a), have successfully extended the capabilities of LLMs, initially designed for pure text, to com-
prehend and generate responses to visual inputs. These enhanced models, namely visual instruct-following
LLMs, can process both images and text to produce textual responses, which can be benchmarked on tasks
such as image captioning (Rennie et al., 2017; You et al., 2016; Vinyals et al., 2016; Hossain et al., 2019)
and visual question answering (VQA) (Wang et al., 2017; Wu et al., 2017; Antol et al., 2015). However,
these methods fine-tune the entire LLM to learn the visual representations, which can be inefficient in both
time and memory. Therefore, its natural to apply PEFT techniques in the fine-tuning of visual instruct-
following LLMs. An earlier work VL-Adapter (Sung et al., 2022b) directly applies several PEFT methods
(Adapter (Houlsby et al., 2019), Hyperformer (Mahabadi et al., 2021) and Compacter (Karimi Mahabadi

17

Under review as submission to TMLR

et al., 2021)) on VL-BART (Cho et al., 2021) then benchmarks them on several image-text and video-text
tasks. Results show that vanilla adapters are the best among them, which can achieve performance on
par with full fine-tuning. However, considering the functionality gap between the encoders and decoders in
VL-BART, directly assign identical modular modifications will lead to suboptimal performance. Therefore,
VL-PET (Hu et al., 2023b) selectively integrates PEFT modules into different components of the encoder
and decoder. They also introduces a granularity-controlled mechanism for finer-grained control.

To adapt the recently prevalent LLaMA model, LLaMA-Adapter (Zhang et al., 2023f) prepends a set
of learnable prompts (similar to prefix tuning) to the input tokens in LLaMA’s higher transformer layers.
To avoid the unstable fine-tuning with large loss values at early training stages, instead of the randomly
initialized weights of other PEFT methods, LLaMA-Adapter adopts a zero-initialized attention mechanism,
which learns a zero-initialized gating factor to adaptively control the contribution of adaptation prompts
to the word tokens. This can maintain the fine-tuning starting point the same as the original model and
progressively inject new knowledge into the model, where similar idea can be found in MEFT (Liao et al.,
2023b) and LoftQ (Li et al., 2023d) discussed earlier. To represent visual information, LLaMA-Adapter
extract multi-scale global image features using CLIP image encoder than projects them to linguistic em-
bedding space. After that, the feature is element-wisely added onto the adaptation prompts at all inserted
transformer layers. LLaMA-Adapter only introduces 1.2M learnable parameters in LLaMA-7B, and costs
less than one hour for fine-tuning on 8 A100 GPUs. A following work LLaMA-Adapter V2 (Gao et al.,
2023b) demonstrates that the simple multimodal fusion in LLaMA-Adapter cannot generalize to more chal-
lenging open-ended multimodal reasoning tasks, where the visual cues tend to dominate the adaptation
prompts than the language instruction data. To address this, LLaMA-Adapter V2 decouples the learning of
instruction-following ability (to generate long language responses) and vision-language alignment to avoid
interference between visual and language fine-tuning. Specifically, LLaMA-Adapter V2 sets disjoint param-
eter groups which are respectively learned from image-text pairs and language instruction data. The visual
adaptation prompts are inserted in the early stage of LLM, while the language adaptation prompts keeps
at the higher transformer layers similar to LLaMA-Adapter. Additionally, LLaMA-Adapter V2 introduces
more learnable parameters and several expert systems (e.g., captioning, detection, and OCR) to enhance
multimodal performance. LayerNorm Tuning (Zhao et al., 2023a) adjust only the weights of the Layer-
Norm within each attention block. This straightforward technique can achieve comparable or even better
performance than the finetuning, while offer about 10× more parameter efficiency than LoRA.

5.1.2 Continual Learning

Continual Learning (CL) aims to learn a sequence of new tasks over time within one single model, which has
broad application in scenarios such as dialogue systems (Lee, 2017), information extraction systems (Chang
et al., 2006), and question answering systems (Yang et al., 2019). The main challenge in CL is catastrophic
forgetting (Kirkpatrick et al., 2017). A popular practice, called architecture-based methods, tackles the CL
by maintainging task-specific parameters in the model for each new task. Therefore, it’s natural to leverage
PEFT methods for CL tasks (Madotto et al., 2020; Zhu et al., 2022; Dai et al., 2022; Liang et al., 2023). For
example, AdapterCL (Madotto et al., 2020) parameterizes each new task using residual adapters. During
testing, since the task-id is not provided, AdapterCL uses an entropy-based classifier to select which adapter
to use for accomplishing specific task. CPT (Continual Prompt Tuning) (Zhu et al., 2022) trains a soft
prompt for each task. Instead of training soft prompts from scratch, CPT proposes a series techniques
(continual prompt initialization, query fusion, memory replay, and a memory-guided technique) to achieve
knowledge transfer from preceding and subsequent tasks. O-LoRA (orthogonal low-rank adaptation) (Wang
et al., 2023b) employs a strategy of learning distinct tasks within separate low-rank vector subspaces that
are kept orthogonal to each other in order to minimize interference. This approace can effectively reducing
catastrophic forgetting during the acquisition of new tasks.

5.1.3 Context Window Extension

LLMs are typically trained with a pre-defined context size. For example, LLaMA and LLaMA2 have pre-
defined context sizes of 2048 and 4096 tokens, respectively. The positional encoding RoPE has weak extrap-
olation properties (Chen et al., 2023d), which means the performance drops obviously given an input length

18

Under review as submission to TMLR

exceeds the pre-defined context length. To solve this, a naive solution is to fine-tune a pre-trained LLM
to longer context. However, this escalates computational costs quadratically with context size, straining
memory and processing resources. To address this, LongLoRA (Chen et al., 2023e) proposes to fine-tune
a pre-trained LLM using LoRA to enlarge the context size. To reduce the perplexity gap between LoRA
tuning and full fine-tuning, LongLoRA also opens embedding and normalization layers for training. In order
to further improve training efficiency in long context scenario, LongLoRA further introduces a novel shifted
sparse attention (S2-Attn) as an efficient substitute for standard self-attention during training. A subse-
quent study LongQLoRA (Yang, 2023) combines the advantages of LongLoRA with QLoRA and Position
Interpolation (Su et al., 2021a) to save GPU memory. This work successfully extends context length of
LLaMA2-13B from 4096 to 8192 on a single V100 with 32GB memory. LLoCO (Tan et al., 2024) intro-
duces a pipeline that learns contexts offline through the combination of context compression and LoRA. The
process begins by compressing documents into compact contexts, then fine-tuning LLM using LoRA on the
compacted context to improve the LLM’s ability to accurately extract and utilize information from these
compressed representations. During model serving, a standard RAG retriever selects both the compressed
document and the most relevant LoRA module, and apply them to the LLM for inference. This approach
effectively extends the context window of a 4k token LLaMA2-7B model to handle up to 128k tokens.

In addition to limited training-stage sequence length, real-world system memory constraints introduce an-
other critical bottleneck to the context window. Specifically, the capacity of the KV-cache is curtailed by
available system memory. For example, a 30B parameter LLM operating with an input length of 1024 and a
batch size of 128 might necessitate up to 180GB for the KV-cache (Zhang et al., 2024b), thereby restricting
the feasible size of the context window. In response to this, some strategies have resorted to quantizing the
KV cache (Sheng et al., 2023b; Dettmers et al., 2022), but quantization will certainly compromises perfor-
mance. To effectively counteract this issue without significant loss, GEAR (Kang et al., 2024) presents a
novel approach by employing a low-rank matrix to capture the majority of coherent bases of quantization
error, complemented by a sparse matrix that addresses errors from outlier entries, thus efficiently minimizing
approximation errors.

5.2 PEFT for ViTs

ViT (Dosovitskiy et al., 2010) has emerged as a powerful backbone model in the recent computer vision
community. In ViT model, images are treated as sequences of fixed-size patches analogous to how LLM
uses discrete tokens. These patches undergo linear embedding and then receive positional encodings. Sub-
sequently, they are processed through standard Transformer encoders. The training of ViT can be super-
vised (Dosovitskiy et al., 2010; Steiner et al., 2021) or self-supervised (Chen et al., 2021b; He et al., 2022a),
and ViT can achieve superior performance when training with more data and using larger model size (De-
hghani et al., 2023). However, such scaling up inevitably escalates training and storage costs. Therefore,
similar to LLMs, PEFT widely implemented in various downstream tasks, such as dense prediction (Chen
et al., 2022b), continual learning (Wang et al., 2022b; Gao et al., 2023c), deep metric learning (Ren et al.,
2024). Here, we focus on two typical tasks to showcase the involvement of PEFT: image classification and
video recoginition.

5.2.1 Image Classification

Image classification on targeted visual datasets is a very common demand and has extensive applications,
while pre-train then fine-tuning paradigm serves as a widespread strategy. A variety of methods leverage
PEFT techniques to achieve efficient model tuning (Jia et al., 2022; Chen et al., 2022b;a; Jie & Deng,
2022). For instance, AdaptFormer (Chen et al., 2022a) inserts adapter modules in parallel to the FFN
of the original ViT model for visual recognition tasks. VPT (Visual Prompt Tuning) (Jia et al., 2022)
prepends a small amount of task-specific parameters into the input sequence of each Transformer layer.
When applying ViT to downstream tasks, only these added parameters and the classification head are set
to trainable. Yoo et al. (2023) notices that compared with supervised ViT, VPT often underperforms
with self-supervised ViT. Further analysis demonstrates that different pre-trained methods and downstream
tasks have varying degrees of dependency on transformer blocks at different locations. To tackle this issue,

19

Under review as submission to TMLR

the research introduces adaptable gates for ViT blocks. These gates dynamically modulate the contribution
of prompt tokens to ViT blocks, allowing for a more targeted adaptation of the model to the task at hand.

5.2.2 Video Recognition

Several works consider the more challenging adaptation problem that transfer ViT to downstream tasks that
has a much larger domain gap. For example, ST-Adapter (Spatio-Temporal Adapter) (Pan et al., 2022)
and AIM (Yang et al., 2023c) both insert adapters layers into pre-trained ViT blocks. Their primary goal is
to model spatial-temporal information, thereby enabling efficient adaptation of ViTs from image models to
video tasks. Notably, both methodologies have exhibited performance that surpasses traditional full-model
fine-tuning approaches.

5.3 PEFT for VLAs

Vision-Language alignment models (VLA), such as CLIP (Radford et al., 2021), ALIGN (Jia et al., 2021),
DeCLIP (Li et al., 2021), and FLAVA (Singh et al., 2022), are designed to learn a good image and text
features which can be aligned within a unified representation space. Each VLA typically consists of separate
image and text encoders that extract respective features. Contrastive learning is leveraged in these models
to effective align the image and text features. Fine-tuning is leveraged to improve the performance of VLA in
specific dataset or tasks, but fine-tuning the full model is computationally intensive. For instance, fine-tuning
CLIP RN50x64 requires a batch size of 32,768 and 18 days of training on 592 V100 GPUs (Radford et al.,
2021). Moreover, full fine-tuning on smaller datasets often leads to catastrophic forgetting (Kirkpatrick
et al., 2017). In response to these challenges, and drawing inspiration from the success of PEFT techniques
in NLP, a range of PEFT strategies have been proposed and implemented in VLA models, such as semantic
segmentation (Xu et al., 2023b; Yu et al., 2023; Xu et al., 2023d), point cloud understanding (Zhang et al.,
2022a; Zhu et al., 2023d; Wang et al., 2022c; Huang et al., 2023b), video understanding (Ju et al., 2022;
Ni et al., 2022; Lin et al., 2022), visual reasoning (Han et al., 2023b; Doveh et al., 2023), temporal action
detection (Nag et al., 2022), to name a few. This section will focus on one common task that uses VLAs:
open-vocabulary image classification.

5.3.1 Open-vocabulary Image Classification

In open-vocabulary image classification, earlier works design class-specific prompts, e.g., a photo of a
[CLASS], for each category, and ranks images based on their similarity to these textual descriptions. CoOp
(Context Optimization) (Zhou et al., 2022b) replaces the handcrafted text prompt with learnable vectors,
while keep the entire VLA fixes during training. CoCoOp (Conditional Context Optimization) (Zhou
et al., 2022a) builds on this by tackling CoOp’s limitations in generalizing to unseen classes. It introduces a
lightweight neural network that generates an input-specific context token, dynamically adapting the prompt
based on each image, thereby enhancing generalizability, but at the cost of increased computational demands
due to the instance-aware operation. ProGrad (Zhu et al., 2023a) addresses the over-fitting risk in CoOp in
few-shot setting by regularizing the soft prompt updates whose gradient is aligned to the general knowledge
only updates the prompt whose gradient is aligned (or non-conflicting) to the general knowledge offered by
the original prompt. MaPLe (Khattak et al., 2023) notes that existing methods learn prompts either in
the language or in the vision branch of CLIP, which is not efficient to leverage the multimodal nature of
VLAs. To address this, MaPLe proposes branch-aware hierarchical prompts that simultaneously adapt both
language and vision branches, and achieves superior performance. TPT (test-time prompt tuning) (Shu
et al., 2022) studies prompt tuning on the fly without additional training samples. Specifically, during infer-
ence, TPT first augments the input image into various views, which are then utilized to tune the learnable
prompts. The primary training objective is to ensure the VLA can generate consistent responses when faced
with these differing views. A following work DiffTPT (Feng et al., 2023) further enhances the data diversity
of test samples through diffusion models.

In another direction, several studies explores the usage of adapters in VLA. For example, CLIP-
Adapter (Gao et al., 2023a) integrates residual-style adapters after CLIP’s text and visual encoders.
Therefore, unlike CoOp and CoCoOp, CLIP-Adapter avoids the gradients backpropagation through CLIP’s

20

Under review as submission to TMLR

encoders, leading to reduced computational requirements in terms of both training memory and time. Tip-
Adapter (Zhang et al., 2021) adopts the same design with CLIP-Adapter. Different from CLIP-Adapter, the
weights of adapter is obtained in a training-free manner from a query-key cache model (Orhan, 2018; Grave
et al., 2017) constructed from fewshot supervisions in a non-parametric manner. As a result, Tip-Adapter
exhibits great efficiency compared to CLIP-Adapter’s SGD training process.

5.4 PEFT for Diffusion Models

Diffusion models (Ho et al., 2020; Sohl-Dickstein et al., 2015) are a class of generative models that learn to
generate data by transforming random noise into a structured output by a progressive denoising process.
During training, diffusion models learn to reverse the noise added to training data using a denoising network,
while in inference, they start from noise, using denoising network to iteratively create data that mirrors the
same distribution as the training examples. Diffusion models has various applications (Han et al., 2023a;
Yang et al., 2023b; Croitoru et al., 2023; Dhariwal & Nichol, 2021; Ruiz et al., 2023), while the most
notable is stable diffusion (Rombach et al., 2022), which bridges the gap between text and image with its
robust capability to generate coherent and contextually relevant images directly from textual descriptions.
Numerous studies leverage PEFT techniques to adapt a pre-trained diffusion model for downstream tasks,
including accelerating sampling speed (Luo et al., 2023; Chai et al., 2023a), text-to-video adaptation (Wu
et al., 2023a; Xing et al., 2023), text-to-3D adaptation (Zeng et al., 2023a), etc. This section mainly focus on
two scenarios: integrating additional input modalities beyond mere text-based conditioning, and customizing
content generation based on pre-trained diffusion model.

5.4.1 Additional Input Control

To incorporate additional input modalities (e.g., layout, keypoints) while retaining the extensive knowledge
in the pre-trained model, GLIGEN introduces a novel approach, which maintains the original model’s
weights intact and integrates new, trainable gated Transformer layers (Alayrac et al., 2022) that take in the
new grounding input. The resulting model can not only accurately represent the grounding conditions but
also produce high-quality images. Remarkably, the model can also generalize well to unseen objects during
inference. ControlNet (Zhang et al., 2023c) fine-tunes a trainable copy of the encoding layers from Stable
Diffusion while locks its pre-trained parameter weights. The fixed original model and the trainable copy are
bridged through zero convolution layers. These layers, starting with zero-initialized weights, are designed
to progressively adapt during training, ensuring that harmful noise does not affect the pre-trained features
of Stable Diffusion at the beginning of training. This refined model is capable of conditioning on a variety
of inputs such as Canny edges, Hough lines, user scribbles, human key points, segmentation maps, shape
normals, depths, etc. Concept Sliders (Gandikota et al., 2023) introduces a plug-and-play LoRA adaptors
to allow precise editing of concepts (e.g., age, smiling) within a diffusion model. T2I-Adapter (Mou et al.,
2023) introduces a lightweight adapter model designed to align external control signals with the internal
knowledge of text-to-image diffusion models. This adapter enables precise manipulation through structural
control (e.g., sketch, depth map, semantic segmentation map, and keypose), color control (e.g., hue and color
distribution), and integrating various controls by composing multiple adapters.

5.4.2 Customized Generation

The effectiveness of text-to-image diffusion models is limited by the user’s ability to articulate the desired
target through text descriptions. For instance, it is difficult to describe the precise features of an innovative
toy car which is not encountered during large-scale model training. Consequently, the objective of customized
generation is to enable the model to grasp new concepts from a minimal set of user-supplied images. Textual
Inversion (Gal et al., 2022) addresses this by finding a new pseudo-word S˚ (similar to soft prompt discussed
in Section 3.1.2) that represent new, specific concepts in the textual embedding space of pre-trained text-
to-image diffusion models. The pseudo-word S˚ is optimized via the original optimization goal in diffusion
models given a small image set (typically 3-5 images) depicting the concept, and the pre-trained model is
leaved untouched. During inference, S˚ can be treated like any other word and compose with other textual
queries (e.g., "a photo of S˚ on the beach"). Custom Diffusion (Kumari et al., 2023) tackles a more
challenging setting: compositional fine-tuning of multiple concepts. It fine-tunes only the Wk, Wv mapping

21

Under review as submission to TMLR

from text to latent features in attention layers, which yields superior performance in multi-concept learning
scenarios. Additionally, during fine-tuning, Custom Diffusion prevents model forgetting by introducing a
small set of real images with captions akin to the target, alongside employing augmentation for faster
convergence and improved results. IP-Adapter (Ye et al., 2023) identifies limitations in current approaches
(e.g., ControlNet and T2I-Adapter) which project condition signals into the cross-attention modules. When
handling image conditions aiming at controlling content, these methods unable to generate images faithful
to the prompted image. The issue stems from that merging image features and text features within cross-
attention layers loses image-specific information, leading to only coarse-grained controllable generation such
as image style rather than image content. To overcome this, IP-Adapter introduces a novel decoupled
cross-attention mechanism to distinguish between text and image features. IP-Adapter adds an additional
cross-attention layer exclusively for image features in each cross-attention layer, and only the parameters of
the new cross-attention layers are trained.

6 System Design Challenge for PEFT

6.1 System design for PEFT

In this section, we begin by providing a concise overview of cloud-based PEFT systems and analysing the
design challenges. Following this, we present the corresponding metrics employed for evaluating the system
performance. Furthermore, we delve into three prospective utilization scenarios to illustrate the challenges
in system design.

6.1.1 Centralized PEFT Query Serving

Cloud providers have recently introduced a range of LLM services aimed at providing user applications
through application programming interfaces (APIs) (OpenAI, 2023; Team et al., 2023). These APIs facilitate
the seamless integration of many machine learning functionalities into applications. When receiving one query
for one specific downstream task through API, the cloud-based server processes the query with one featured
LLM model. Under this scenario, the importance of PEFT becomes apparent. Cloud providers store only a
single copy of the LLM and multiple PEFT modules featuring different downstream tasks. This setup allows
the LLM to maintain various branches of PEFT modules, each linked to specific API queries, i.e., PEFT
queries. Centralized PEFT query serving solutions address scenarios where multiple PEFT queries arrive
in quick succession. A case study of one state-of-the-art system for this purpose is discussed in Section 6.2.
Figure 10 (b) illustrates the computation pattern for multi-query PEFT inference, wherein packed PEFT
queries are scheduled and executed according to their deadlines and current system conditions.

6.1.2 Distributed PEFT Training

In most cases, personalized tasks are not fully supported with pre-trained models, consequently, extra fine-
tuning is required to be executed with the methodologies mentioned in the previous sections. However,
significant concerns arise when considering the transfer of datasets to cloud providers, given the issues
related to data privacy, copyright, proprietary information, and the complexities and inefficiencies involved
in data transmission. Section 6.3 gives two approaches that address this concern.

6.1.3 Multi-PEFT Training

Different from multiple-PEFT serving, tuning with multiple customized PEFTs always involves different
backbone LLMs. Therefore, simultaneously tuning multiple PEFTs can pose considerable challenges. Chal-
lenges like how to manage memory gradient and model weights storage, and how to design an efficient kernel
for batching PEFT training remain unsolved. PEFTs will be categorized based on their PEFT algorithms
and backbone LLM models. The design challenge involves how to consolidate multiple PEFTs with the same
LLM backbone and multiple different LLM backbones simultaneously. We present case studies related to
this topic in Section 6.4.

22

Under review as submission to TMLR

LLMs

Edge
Device

Personal data

Cloud

Trainable
Modules

🔥

Frozen Large Models

Scheduler

Request Pool

Query

Response

Ex
ec

ut
io

n
En

gi
ne

Serving System
I like

I enjoy

LLM

programming

(a) (b)

Figure 10: (a) Distributed-based system computation pattern; (b) centralized PEFT Query inference.

6.1.4 Evaluation Metrics

For the proposed evaluation metrics, without loss of generality, we adopt large language models as the basis
for our metric definitions.

To evaluate the system performance of PEFT serving systems, we propose a set of evaluation metrics:

• System throughput: Considering PEFT queries as inter and intra tasks, we use tokens per second
to measure the system throughput.

• Memory footprint: Run-time memory consumption during query serving, the memory utilization
comes from both model parameters and KV-cache as mentioned in Section 4.1.

• Accuracy performance: Real-world queries normally have different context lengths, and perfor-
mance with variation length serves as a performance benchmark.

• Quality of services: Queries are associated with latency requirements and deadline missing rates
are considered as another benchmark.

To assess the efficacy of PEFT training systems, we also establish a set of evaluative metrics:

• Accuracy performance: Performance of the fine-tuned model over the downstream tasks.

• Compute cost: The compute cost during forward and backward propagation operations on cloud
servers and edge devices.

• Communication cost: Refers to the volume of data involved during the transfer of intermediate
data between the edge device and the cloud.

6.2 Centralized PEFT Serving Frameworks

The PEFT algorithm is notable for its ability to distinguish between modifiable and immutable weights
within a model. This characteristic inspires developers to amalgamate diverse LLMs with distinct PEFT
techniques into collective units. PetS, as introduced in Zhou et al. (2022c), advocates for a comprehensive
approach to managing multiple PEFT tasks by suggesting a unified serving framework. The framework’s core
advancement lies in the translation of varying PEFT tasks into integrated computation kernels to enhance
efficiency. Moreover, PetS pioneers an orchestrated batching approach and a scheduling methodology, aiming
to augment system throughput and leverage task parallelism respectively.

As depicted in Figure 11, the PetS framework begins with users registering PEFT tasks through a standard-
ized Application Programming Interface (API). Upon registration, developers are expected to provide the
Pre-Trained Model Tag (e.g., LLaMA), PEFT parameters in a compressed format, and the specific PEFT
algorithms (e.g., LoRA, Adapter, Bitfit, etc.). These tasks are then endowed with unique identifiers, and the

23

Under review as submission to TMLR

PetS Overview
PET Serving

PET Inference Pipeline

Pre-train Model
ID

Shadow
Parameters

PET Type

Pre-train Model
ID

Shadow
Parameters

PET Type

Pre-trained
Model Tag

PET Parameters

PET Type

PET Parameters

Shared Model
Parameters

Register Tasksu

Task Register

PET Manager

Task Manager

Parameter Repository

v
w

<Task_id>
<Input Data>
…

Query 0:

Query 1:

Input Queriesx

Performance
Model

Batch Scheduler

Scheduling
Policy

Engine

PET Task
Scheduler

PET Operator
Library

y

Input
Analyzing

Input
Reformatting

User Inputs

<Task_id>
<Input Data>

Figure 11: PetS system overview: (1) Tasks register;
(2) Task manager (3) Task schedule; (4) Task serving.
(Image is taken from PetS (Zhou et al., 2022c))

Task 0 Task 4

Step 1: Intra-Task Batching
Task 1 Task 2 Task 3

M
in

i

B
at

ch

𝛽 − Model

𝛼 − Model

PET-OPs Profiling

Batch 1Batch 0

B=2, S=34

Step 2: Inter-Task Batching

Batch 2

M
ac

ro

B
at

chShared-OPs

Profiling

B=4, S=34

Task 0 Task 1 Task 3Task 2 Task 4

Figure 12: Coordinated Batching (CB) Strategy

inference engine takes charge of query processing. PetS bifurcates the primary computational workload (e.g.,
linear layer computations) into three distinct computational operations: (1) Dense Matrix-Vector Multipli-
cation (MVM) leveraging universally accessible, pre-trained weights. (2) Bias vector addition (Vadd), using
either common or task-exclusive biases. (3) A combination of Sparse/dense MVM operations employing
task-specific PET parameters. A unified pre-trained weight matrix W is employed across PetS, facilitating
the batching of initial operations, Xt ˆ W . However, subsequent task-specific computations involving PET
parameters, despite being relatively minimal in complexity, are processed individually.

Considering the Adapter and Bitfit tasks as an illustration, both aim at the MLP component of LLMs.
The Adapter task integrates additional weight segments, whereas Bitfit adjusts bias elements. The Adapter
operation is modeled as Y “ Xin1 ˆ pW ` Wadq ` b0, where Xin1 represents the input for the Adapter task,
W and Wad are the original and adapter-specific PEFT weights respectively, and b0 is the initial bias. The
Bitfit operation, on the other hand, is defined as Y “ Xin2 ˆW `b1, with b1 symbolizing the Bitfit-adjustable
bias. These operations are further synthesized as tY1, Y2u “ tXin1, Xin2u ˆ W ` tXin1 ˆ Wad, 0u ` tb0, b1u,
delineating that the tXin1, Xin2uˆW part is amenable to batching through MVM, while the tb0, b1u segment
pertains to the Vadd operation.

For tasks like Diff-Pruning 3.2, is a little bit different than Bitfit and Adapter. For Diff-Pruning, the
computation concerning the shared weight and ‘difference’ are conducted separately. Then the results are
added up, namely

Xt ˆ pW ` δtq “ Xt ˆ W ` Xt ˆ δt

, here, the W denotes the backbone model weights while δt denotes the pruned weights which can be
represented as Sparse MVM.

The other challenge PetS proposed is how to schedule different PEFT requests to achieve high performance.
PetS scheduler achieves high parallelism through a two-level scheduling policy: Coordinated Batching (CB)
and Macro-batch Streaming (MS) as Figure 12 depicts. Through CB, the input queries will first be clustered
based on their input length and then grouped based on their shared operator. This is to make sure the same
sequence length of queries will be executed without wasting padding. MS strategy will take the grouped
queries after coordinated batching and the theoretical latency for different operators as well as the system
modeling parameters to generate the best execution order.

6.3 Distributed PEFT Training Frameworks

We already know that fine-tuning LLM for downstream tasks is challenging for two reasons: dual privacy
concerns between cloud server and data owner, and issues with computational resources and efficiency.
Firstly, the privacy of both parties is at risk: the weights of large models are often proprietary and not made
public. Sharing data with model owners for fine-tuning can lead to data privacy concerns while providing
model weights to data proprietors could compromise the ownership of proprietary models. Secondly, even

24

Under review as submission to TMLR

if downstream users have access to pre-trained weights, the stringent hardware requirements make transfer
learning impractical for most end users.

To resolve these two issues, DLoRA (Gao & Zhang, 2024) presents a distributed PEFT framework. During
the PEFT process, the backbone LLM is executed in the cloud servers while the PEFT modules are trained
entirely within the user devices. DLoRA scheme is depicted in Figure 10(a).

Similarly, Offsite-Tuning (Xiao et al., 2023a) presents a privacy-preserving and efficient transfer learning
framework that enables foundational models to adapt to downstream tasks without the need to access the
complete model weights. The key insight of Offsite-Tuning is the cloud provider sends an adapter and
an emulator to the data proprietor. Then, with the assistance of the emulator, the data proprietor fine-
tunes the adapter. The fine-tuned adapter is then sent back to the cloud side, which integrates it into the
complete model, creating a fine-tuned foundational model for downstream users. Offsite-Tuning safeguards
the privacy of data proprietors since they do not need to share their training data directly. It also protects
the foundational model owners, as the complete model weights are not shared, and the emulator provided
is lossy, with significantly degraded performance. Compared to existing fine-tuning methods that require
access to the full model weights, Offsite-Tuning is more resource-efficient because it allows for fine-tuning
through a compressed emulator without needing the complete model.

6.4 Parallel PEFT Training Frameworks

Unlike the PEFT query serving system, which aims to accommodate flexible multi-PEFT algorithms, S-
LoRA (Sheng et al., 2023a) and Punica (Chen et al., 2023b) focus solely on facilitating multiple-LoRA
blocks for various tasks. Designing multiple PEFT training systems presents key challenges in two main
aspects:

• Efficient concurrent execution of multiple PEFT models with the same LLM backbone.

• Designing an efficient system for multi-tenant serving with different LLM backbones.

Efficient kernel design Punica addresses the first challenge by using existing matrix multiplication for
the backbone computation and introducing a new CUDA kernel, Segmented Gather Matrix-Vector Multi-
plication (SGMV), for adding the PEFT add-ons to the backbone computation in a batched manner. This
kernel parallelizes the feature-weight multiplication for different requests in the batch and groups requests
corresponding to the same PEFT model to increase operational intensity and use GPU Tensor Cores for
acceleration.

The second challenge is beyond the computational cost, designing an efficient system architecture that can
effectively serve multi-tenant PEFT model workloads on the smallest set of GPUs possible while occupying
the least amount of GPU resources is another significant challenge. Punica addresses this by scheduling user
requests to active GPUs that already serve or train PEFT models, thereby improving GPU utilization. For
older requests, Punica periodically migrates them to consolidate workloads, thus freeing up GPU resources
for new requests.

Multi-Tenant PEFT design Designing an efficient system for the multi-tenant PEFT model serving in
the Punica framework focuses on addressing several key challenges to maximize hardware utilization and
minimize resource consumption. The system aims to consolidate multi-tenant LoRA serving workloads onto
the smallest set of GPUs possible. This consolidation is achieved through strategic scheduling of user requests
to active GPUs that are already serving or training LoRA models, thereby improving GPU utilization. For
older requests, Punica periodically migrates them to consolidate workloads further, thus freeing up GPU
resources for new requests. It incorporates on-demand loading of LoRA model weights, which introduces
only millisecond-level latency. This feature provides Punica with the flexibility to dynamically consolidate
user requests to a small set of GPUs, without being constrained by the specific LoRA models already running
on those GPUs. Besides that, Punica identifies that the decode stage is a predominant factor in the cost of
model serving, Punica’s design primarily focuses on optimizing decode stage performance. Other aspects of

25

Under review as submission to TMLR

model serving leverage straightforward techniques, such as on-demand loading of LoRA model weights, to
efficiently manage resource utilization.

7 Conclusion and Future Directions

In the current era dominated by large models and large datasets, PEFT stands out as a highly attractive
method for efficiently adapting models to downstream tasks. This technique gains its appeal by addressing
the significant challenges posed by traditional full-model fine-tuning, which often places substantial computa-
tional and data demands. This survey offers a comprehensive examination of the most recent advancements in
PEFT, including algorithmic design, computational efficiency, application scenarios, and system implemen-
tation for PEFT. It offers a comprehensive taxonomy and explanation that serves as an excellent guidance
and knowledge base, which enables readers of various levels and disciplines to swiftly grasp the core concepts
of PEFT.

For further research on PEFT, we propose a series of possible directions from both algorithm and system
perspectives, hoping to inspire more researchers to engage in further studies in these areas.

7.1 Simplify hyperparameter tuning

The effectiveness of PEFT is often sensitive to its hyperparameters, such as the bottleneck dimension of the
adapter, the rank of LoRA, and the arrangement of various additive PEFT layers. Manually tuning these
hyperparameters will cost lots of efforts. Therefore, future efforts could focus on developing methods that
are less dependent on manual tuning of these parameters, or automatically find the optimal configuration
settings. Several studies (Valipour et al., 2022; Zhang et al., 2023e; Ding et al., 2023; Chen et al., 2023a;
Zhang et al., 2022b; Zhou et al., 2023) have started to address this issue, but there’s a need for more simple
and efficient solutions optimizing these hyperparameters.

7.2 Establish a unified benchmark

Despite the existence of libraries like HuggingFace’s PEFT (Mangrulkar et al., 2022) and AdapterHub (Poth
et al., 2023), a comprehensive benchmark for PEFT is still lacking. This gap hinders the ability to fairly
compare the performance and efficiency of different PEFT approaches. A well-accepted, up-to-date bench-
mark akin to MMDetection (Chen et al., 2019) for object detection would enable researchers to validate
their methods against a standard set of tasks and metrics, fostering innovation and collaboration within the
community.

7.3 Enhance training efficiency

The presumed parameter efficiency of PEFT does not always consistent with computational and memory
savings during training. Given that trainable parameters are intertwined within the pre-trained model’s
architecture, computing and storing activations and gradients for the full model often become necessary
during fine-tuning. This oversight calls for a rethinking of what constitutes efficiency. As outlined in
Section 4, potential solutions lie in the integration of model compression techniques such as pruning and
quantization, alongside innovations specifically designed to optimize memory during PEFT tuning (Zhang
et al., 2023g). Further research into enhancing the computational efficiency of PEFT methodologies is
imperative.

7.4 Explore scaling laws

The design and effectiveness of PEFT methods originally developed for smaller Transformer models do not
necessarily scale with larger models. As the size of foundation models increases, identifying and adapting
PEFT strategies that remain effective is crucial. This investigation will aid in customizing PEFT method-
ologies to suit the evolving landscape of large model architectures.

26

Under review as submission to TMLR

7.5 Serve more models and tasks

The rise of large foundation models across various domains presents new opportunities for PEFT. Design-
ing PEFT methods tailored to the unique characteristics of models, such as Sora (Brooks et al., 2024),
Mamba (Gu & Dao, 2023), and LVM (Bai et al., 2023), can unlock new application scenarios and opportu-
nities.

7.6 Enhancing data privacy

Trusting centralized systems to serve or fine-tune personalized PEFT modules is yet another issue for system
developers. Multiple types of inversion attacks (Dosovitskiy & Brox, 2016; He et al., 2019) have been proposed
to reconstruct user’s data by hijacking the intermediate results. One perspective of future trust-worthy LLM
system design involves developing an encryption protocol for both personal data and intermediate training
and inference results.

7.7 PEFT with model compression

Model compression is one of the most effective ways to make LLM executable on resource-limited devices. Yet,
the impact of model compression techniques on the performance of PEFT algorithms running on hardware
remains another systemic challenge. Common compression techniques such as quantization and pruning
necessitate dedicated hardware platforms to expedite the process, and building such hardware platform for
compressed models is yet another direction for future research.

References
Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains the effectiveness

of language model fine-tuning. arXiv preprint arXiv:2012.13255, 2020.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc,
Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language model for
few-shot learning. Advances in Neural Information Processing Systems, 35:23716–23736, 2022.

Alan Ansell, Edoardo Maria Ponti, Anna Korhonen, and Ivan Vulić. Composable sparse fine-tuning for
cross-lingual transfer. arXiv preprint arXiv:2110.07560, 2021.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zitnick, and
Devi Parikh. Vqa: Visual question answering. In Proceedings of the IEEE international conference on
computer vision, pp. 2425–2433, 2015.

Javier Antorán, David Janz, James U Allingham, Erik Daxberger, Riccardo Rb Barbano, Eric Nalisnick, and
José Miguel Hernández-Lobato. Adapting the linearised laplace model evidence for modern deep learning.
In International Conference on Machine Learning, pp. 796–821. PMLR, 2022.

Yutong Bai, Xinyang Geng, Karttikeya Mangalam, Amir Bar, Alan Yuille, Trevor Darrell, Jitendra Malik,
and Alexei A Efros. Sequential modeling enables scalable learning for large vision models. arXiv preprint
arXiv:2312.00785, 2023.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM journal on imaging sciences, 2(1):183–202, 2009.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about physical
commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial Intelligence, 2020.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr,
Joe Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh.
Video generation models as world simulators. 2024. URL https://openai.com/research/
video-generation-models-as-world-simulators.

27

https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators

Under review as submission to TMLR

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

Weilong Chai, DanDan Zheng, Jiajiong Cao, Zhiquan Chen, Changbao Wang, and Chenguang Ma. Speedup-
net: A plug-and-play hyper-network for accelerating text-to-image diffusion models. arXiv preprint
arXiv:2312.08887, 2023a.

Yuji Chai, John Gkountouras, Glenn G Ko, David Brooks, and Gu-Yeon Wei. Int2. 1: Towards fine-
tunable quantized large language models with error correction through low-rank adaptation. arXiv preprint
arXiv:2306.08162, 2023b.

Antonin Chambolle, Ronald A De Vore, Nam-Yong Lee, and Bradley J Lucier. Nonlinear wavelet im-
age processing: variational problems, compression, and noise removal through wavelet shrinkage. IEEE
Transactions on image processing, 7(3):319–335, 1998.

Chia-Hui Chang, Mohammed Kayed, Moheb R Girgis, and Khaled F Shaalan. A survey of web information
extraction systems. IEEE transactions on knowledge and data engineering, 18(10):1411–1428, 2006.

Tianshi Che, Ji Liu, Yang Zhou, Jiaxiang Ren, Jiwen Zhou, Victor S Sheng, Huaiyu Dai, and Dejing
Dou. Federated learning of large language models with parameter-efficient prompt tuning and adaptive
optimization. arXiv preprint arXiv:2310.15080, 2023.

Jiaao Chen, Aston Zhang, Xingjian Shi, Mu Li, Alex Smola, and Diyi Yang. Parameter-efficient fine-tuning
design spaces. arXiv preprint arXiv:2301.01821, 2023a.

Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng,
Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tianheng Cheng, Qijie Zhao, Buyu
Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang, Chen Change
Loy, and Dahua Lin. MMDetection: Open mmlab detection toolbox and benchmark. arXiv preprint
arXiv:1906.07155, 2019.

Lequn Chen, Zihao Ye, Yongji Wu, Danyang Zhuo, Luis Ceze, and Arvind Krishnamurthy. Punica: Multi-
tenant lora serving. arXiv preprint arXiv:2310.18547, 2023b.

Lichang Chen, Heng Huang, and Minhao Cheng. Ptp: Boosting stability and performance of prompt tuning
with perturbation-based regularizer. arXiv preprint arXiv:2305.02423, 2023c.

Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin Ling. Autoformer: Searching transformers for visual
recognition. In Proceedings of the IEEE/CVF international conference on computer vision, pp. 12270–
12280, 2021a.

Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping Luo. Adapt-
former: Adapting vision transformers for scalable visual recognition. Advances in Neural Information
Processing Systems, 35:16664–16678, 2022a.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window of large
language models via positional interpolation. arXiv preprint arXiv:2306.15595, 2023d.

Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision transformers.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 9640–9649, 2021b.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
Efficient fine-tuning of long-context large language models. arXiv preprint arXiv:2309.12307, 2023e.

Zhe Chen, Yuchen Duan, Wenhai Wang, Junjun He, Tong Lu, Jifeng Dai, and Yu Qiao. Vision transformer
adapter for dense predictions. arXiv preprint arXiv:2205.08534, 2022b.

Jaemin Cho, Jie Lei, Hao Tan, and Mohit Bansal. Unifying vision-and-language tasks via text generation.
In International Conference on Machine Learning, pp. 1931–1942. PMLR, 2021.

28

Under review as submission to TMLR

Joon-Young Choi, Junho Kim, Jun-Hyung Park, Wing-Lam Mok, and SangKeun Lee. Smop: Towards
efficient and effective prompt tuning with sparse mixture-of-prompts. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 14306–14316, 2023.

YunSeok Choi and Jee-Hyong Lee. Codeprompt: Task-agnostic prefix tuning for program and language
generation. In Findings of the Association for Computational Linguistics: ACL 2023, pp. 5282–5297,
2023.

Alexandra Chronopoulou, Matthew E Peters, Alexander Fraser, and Jesse Dodge. Adaptersoup: Weight
averaging to improve generalization of pretrained language models. arXiv preprint arXiv:2302.07027,
2023.

Christopher et al. Clark. Boolq: Exploring the surprising difficulty of natural yes/no questions. In NAACL,
2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah. Diffusion models in vision:
A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

Yi Dai, Hao Lang, Yinhe Zheng, Fei Huang, Luo Si, and Yongbin Li. Lifelong learning for question answering
with hierarchical prompts. arXiv preprint arXiv:2208.14602, 2022.

Sarkar Snigdha Sarathi Das, Ranran Haoran Zhang, Peng Shi, Wenpeng Yin, and Rui Zhang. Unified low-
resource sequence labeling by sample-aware dynamic sparse finetuning. arXiv preprint arXiv:2311.03748,
2023.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer, An-
dreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling vision
transformers to 22 billion parameters. In International Conference on Machine Learning, pp. 7480–7512.
PMLR, 2023.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix multiplication
for transformers at scale. Advances in Neural Information Processing Systems, 35:30318–30332, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning of
quantized llms. arXiv preprint arXiv:2305.14314, 2023.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances in neural
information processing systems, 34:8780–8794, 2021.

Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen, Bowen Zhou, Zhiyuan Liu, and Maosong Sun. Sparse
low-rank adaptation of pre-trained language models. arXiv preprint arXiv:2311.11696, 2023.

Alexey Dosovitskiy and Thomas Brox. Inverting visual representations with convolutional networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4829–4837, 2016.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. arxiv 2020. arXiv preprint arXiv:2010.11929,
2010.

Sivan Doveh, Assaf Arbelle, Sivan Harary, Eli Schwartz, Roei Herzig, Raja Giryes, Rogerio Feris, Rameswar
Panda, Shimon Ullman, and Leonid Karlinsky. Teaching structured vision & language concepts to vi-
sion & language models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2657–2668, 2023.

29

Under review as submission to TMLR

Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Partovi Nia, James J Clark, and Mehdi Rezagholizadeh.
Krona: Parameter efficient tuning with kronecker adapter. arXiv preprint arXiv:2212.10650, 2022.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman. The pascal
visual object classes (voc) challenge. International journal of computer vision, 88:303–338, 2010.

Chun-Mei Feng, Kai Yu, Yong Liu, Salman Khan, and Wangmeng Zuo. Diverse data augmentation with
diffusions for effective test-time prompt tuning. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 2704–2714, 2023.

Wenfeng Feng, Chuzhan Hao, Yuewei Zhang, Yu Han, and Hao Wang. Mixture-of-loras: An efficient multi-
task tuning for large language models. arXiv preprint arXiv:2403.03432, 2024.

Vlad Fomenko, Han Yu, Jongho Lee, Stanley Hsieh, and Weizhu Chen. A note on lora. arXiv preprint
arXiv:2404.05086, 2024.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Peter I Frazier. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

Zihao Fu, Haoran Yang, Anthony Man-Cho So, Wai Lam, Lidong Bing, and Nigel Collier. On the effective-
ness of parameter-efficient fine-tuning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 12799–12807, 2023.

Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and Daniel Cohen-
Or. An image is worth one word: Personalizing text-to-image generation using textual inversion. arXiv
preprint arXiv:2208.01618, 2022.

Rohit Gandikota, Joanna Materzynska, Tingrui Zhou, Antonio Torralba, and David Bau. Concept sliders:
Lora adaptors for precise control in diffusion models. arXiv preprint arXiv:2311.12092, 2023.

Chao Gao and Sai Qian Zhang. Dlora: Distributed parameter-efficient fine-tuning solution for large language
model. arXiv preprint arXiv:2404.05182, 2024.

Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng Zhang, Hongsheng Li, and Yu Qiao.
Clip-adapter: Better vision-language models with feature adapters. International Journal of Computer
Vision, pp. 1–15, 2023a.

Peng Gao, Jiaming Han, Renrui Zhang, Ziyi Lin, Shijie Geng, Aojun Zhou, Wei Zhang, Pan Lu, Conghui
He, Xiangyu Yue, et al. Llama-adapter v2: Parameter-efficient visual instruction model. arXiv preprint
arXiv:2304.15010, 2023b.

Qiankun Gao, Chen Zhao, Yifan Sun, Teng Xi, Gang Zhang, Bernard Ghanem, and Jian Zhang. A unified
continual learning framework with general parameter-efficient tuning. arXiv preprint arXiv:2303.10070,
2023c.

Mozhdeh Gheini, Xiang Ren, and Jonathan May. Cross-attention is all you need: Adapting pretrained
transformers for machine translation. arXiv preprint arXiv:2104.08771, 2021.

Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B Grosse. The reversible residual network:
Backpropagation without storing activations. Advances in neural information processing systems, 30,
2017.

Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne Westphal, He-
una Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag, et al. The" something
something" video database for learning and evaluating visual common sense. In Proceedings of the IEEE
international conference on computer vision, pp. 5842–5850, 2017.

30

Under review as submission to TMLR

Edouard Grave, Moustapha M Cisse, and Armand Joulin. Unbounded cache model for online language
modeling with open vocabulary. Advances in neural information processing systems, 30, 2017.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

Demi Guo, Alexander M Rush, and Yoon Kim. Parameter-efficient transfer learning with diff pruning. arXiv
preprint arXiv:2012.07463, 2020.

Han Guo, Philip Greengard, Eric P Xing, and Yoon Kim. Lq-lora: Low-rank plus quantized matrix decom-
position for efficient language model finetuning. arXiv preprint arXiv:2311.12023, 2023.

Muhammad Usman Hadi, R Qureshi, A Shah, M Irfan, A Zafar, MB Shaikh, N Akhtar, J Wu, and S Mirjalili.
A survey on large language models: Applications, challenges, limitations, and practical usage. TechRxiv,
2023.

Zeyu Han, Yuhan Wang, Luping Zhou, Peng Wang, Binyu Yan, Jiliu Zhou, Yan Wang, and Dinggang Shen.
Contrastive diffusion model with auxiliary guidance for coarse-to-fine pet reconstruction. In International
Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 239–249. Springer,
2023a.

Zeyu Han, Fangrui Zhu, Qianru Lao, and Huaizu Jiang. Zero-shot referring expression comprehension via
structural similarity between images and captions. arXiv preprint arXiv:2311.17048, 2023b.

SONG Haobo, Hao Zhao, Soumajit Majumder, and Tao Lin. Increasing model capacity for free: A sim-
ple strategy for parameter efficient fine-tuning. In The Twelfth International Conference on Learning
Representations, 2023.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models. arXiv
preprint arXiv:2402.12354, 2024.

Haoyu He, Jianfei Cai, Jing Zhang, Dacheng Tao, and Bohan Zhuang. Sensitivity-aware visual parameter-
efficient fine-tuning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
11825–11835, 2023a.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a unified
view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366, 2021.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders
are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 16000–16009, 2022a.

Shwai He, Liang Ding, Daize Dong, Jeremy Zhang, and Dacheng Tao. SparseAdapter: An easy ap-
proach for improving the parameter-efficiency of adapters. In Findings of the Association for Com-
putational Linguistics: EMNLP 2022, pp. 2184–2190, Abu Dhabi, United Arab Emirates, December
2022b. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-emnlp.160. URL
https://aclanthology.org/2022.findings-emnlp.160.

Shwai He, Run-Ze Fan, Liang Ding, Li Shen, Tianyi Zhou, and Dacheng Tao. Mera: Merging pretrained
adapters for few-shot learning. arXiv preprint arXiv:2308.15982, 2023b.

Xuehai He, Chunyuan Li, Pengchuan Zhang, Jianwei Yang, and Xin Eric Wang. Parameter-efficient model
adaptation for vision transformers. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 817–825, 2023c.

Zecheng He, Tianwei Zhang, and Ruby B Lee. Model inversion attacks against collaborative inference. In
Proceedings of the 35th Annual Computer Security Applications Conference, pp. 148–162, 2019.

Lukas Hedegaard, Aman Alok, Juby Jose, and Alexandros Iosifidis. Structured pruning adapters. arXiv
preprint arXiv:2211.10155, 2022.

31

https://aclanthology.org/2022.findings-emnlp.160

Under review as submission to TMLR

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

MD Zakir Hossain, Ferdous Sohel, Mohd Fairuz Shiratuddin, and Hamid Laga. A comprehensive survey of
deep learning for image captioning. ACM Computing Surveys (CsUR), 51(6):1–36, 2019.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp. In International
Conference on Machine Learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685,
2021.

Shengding Hu, Zhen Zhang, Ning Ding, Yadao Wang, Yasheng Wang, Zhiyuan Liu, and Maosong Sun.
Sparse structure search for parameter-efficient tuning. arXiv preprint arXiv:2206.07382, 2022.

Zhiqiang Hu, Yihuai Lan, Lei Wang, Wanyu Xu, Ee-Peng Lim, Roy Ka-Wei Lee, Lidong Bing, and Soujanya
Poria. Llm-adapters: An adapter family for parameter-efficient fine-tuning of large language models. arXiv
preprint arXiv:2304.01933, 2023a.

Zi-Yuan Hu, Yanyang Li, Michael R Lyu, and Liwei Wang. Vl-pet: Vision-and-language parameter-efficient
tuning via granularity control. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 3010–3020, 2023b.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. Lorahub: Efficient
cross-task generalization via dynamic lora composition. arXiv preprint arXiv:2307.13269, 2023a.

Tianyu Huang, Bowen Dong, Yunhan Yang, Xiaoshui Huang, Rynson WH Lau, Wanli Ouyang, and Wang-
meng Zuo. Clip2point: Transfer clip to point cloud classification with image-depth pre-training. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 22157–22167, 2023b.

Yongfeng Huang, Yanyang Li, Yichong Xu, Lin Zhang, Ruyi Gan, Jiaxing Zhang, and Liwei Wang. Mvp-
tuning: Multi-view knowledge retrieval with prompt tuning for commonsense reasoning. In Proceedings of
the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
13417–13432, 2023c.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung,
Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with noisy text
supervision. In International conference on machine learning, pp. 4904–4916. PMLR, 2021.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and Ser-Nam
Lim. Visual prompt tuning. In European Conference on Computer Vision, pp. 709–727. Springer, 2022.

Zeyinzi Jiang, Chaojie Mao, Ziyuan Huang, Ao Ma, Yiliang Lv, Yujun Shen, Deli Zhao, and Jingren Zhou.
Res-tuning: A flexible and efficient tuning paradigm via unbinding tuner from backbone. arXiv preprint
arXiv:2310.19859, 2023.

Shibo Jie and Zhi-Hong Deng. Convolutional bypasses are better vision transformer adapters. arXiv preprint
arXiv:2207.07039, 2022.

Shibo Jie, Haoqing Wang, and Zhi-Hong Deng. Revisiting the parameter efficiency of adapters from the per-
spective of precision redundancy. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 17217–17226, 2023.

Feihu Jin, Jiajun Zhang, and Chengqing Zong. Parameter-efficient tuning for large language model without
calculating its gradients. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 321–330, 2023.

32

Under review as submission to TMLR

Chen Ju, Tengda Han, Kunhao Zheng, Ya Zhang, and Weidi Xie. Prompting visual-language models for
efficient video understanding. In European Conference on Computer Vision, pp. 105–124. Springer, 2022.

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna, and Tuo Zhao.
Gear: An efficient kv cache compression recipefor near-lossless generative inference of llm. arXiv preprint
arXiv:2403.05527, 2024.

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank hyper-
complex adapter layers. Advances in Neural Information Processing Systems, 34:1022–1035, 2021.

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio
Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action video dataset. arXiv
preprint arXiv:1705.06950, 2017.

Muhammad Uzair Khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan, and Fahad Shahbaz Khan.
Maple: Multi-modal prompt learning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 19113–19122, 2023.

Jeonghoon Kim, Jung Hyun Lee, Sungdong Kim, Joonsuk Park, Kang Min Yoo, Se Jung Kwon, and Dongsoo
Lee. Memory-efficient fine-tuning of compressed large language models via sub-4-bit integer quantization.
arXiv preprint arXiv:2305.14152, 2023.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki Markus Asano. Vera: Vector-based random matrix
adaptation. arXiv preprint arXiv:2310.11454, 2023.

Hildegard Kuehne, Hueihan Jhuang, Estíbaliz Garrote, Tomaso Poggio, and Thomas Serre. Hmdb: a large
video database for human motion recognition. In 2011 International conference on computer vision, pp.
2556–2563. IEEE, 2011.

Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. Multi-concept cus-
tomization of text-to-image diffusion. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 1931–1941, 2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonza-
lez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with
pagedattention. In Proceedings of the 29th Symposium on Operating Systems Principles, pp. 611–626,
2023.

Neal Lawton, Anoop Kumar, Govind Thattai, Aram Galstyan, and Greg Ver Steeg. Neural architec-
ture search for parameter-efficient fine-tuning of large pre-trained language models. arXiv preprint
arXiv:2305.16597, 2023.

Sungjin Lee. Toward continual learning for conversational agents. arXiv preprint arXiv:1712.09943, 2017.

Tao Lei, Junwen Bai, Siddhartha Brahma, Joshua Ainslie, Kenton Lee, Yanqi Zhou, Nan Du, Vincent Y
Zhao, Yuexin Wu, Bo Li, et al. Conditional adapters: Parameter-efficient transfer learning with fast
inference. arXiv preprint arXiv:2304.04947, 2023.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning.
arXiv preprint arXiv:2104.08691, 2021.

Dengchun Li, Yingzi Ma, Naizheng Wang, Zhiyuan Cheng, Lei Duan, Jie Zuo, Cal Yang, and Mingjie Tang.
Mixlora: Enhancing large language models fine-tuning with lora based mixture of experts. arXiv preprint
arXiv:2404.15159, 2024.

33

Under review as submission to TMLR

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel:
Communicative agents for "mind" exploration of large language model society. In Thirty-seventh Confer-
ence on Neural Information Processing Systems, 2023a.

Jonathan Li, Will Aitken, Rohan Bhambhoria, and Xiaodan Zhu. Prefix propagation: Parameter-efficient
tuning for long sequences. arXiv preprint arXiv:2305.12086, 2023b.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv preprint
arXiv:2101.00190, 2021.

Yangguang Li, Feng Liang, Lichen Zhao, Yufeng Cui, Wanli Ouyang, Jing Shao, Fengwei Yu, and Junjie
Yan. Supervision exists everywhere: A data efficient contrastive language-image pre-training paradigm.
arXiv preprint arXiv:2110.05208, 2021.

Yingji Li, Mengnan Du, Xin Wang, and Ying Wang. Prompt tuning pushes farther, contrastive learning
pulls closer: A two-stage approach to mitigate social biases. arXiv preprint arXiv:2307.01595, 2023c.

Yixiao Li, Yifan Yu, Chen Liang, Pengcheng He, Nikos Karampatziakis, Weizhu Chen, and Tuo Zhao. Loftq:
Lora-fine-tuning-aware quantization for large language models. arXiv preprint arXiv:2310.08659, 2023d.

Dongze Lian, Daquan Zhou, Jiashi Feng, and Xinchao Wang. Scaling & shifting your features: A new
baseline for efficient model tuning. Advances in Neural Information Processing Systems, 35:109–123, 2022.

Zujie Liang, Feng Wei, Yin Jie, Yuxi Qian, Zhenghong Hao, and Bing Han. Prompts can play lottery tickets
well: Achieving lifelong information extraction via lottery prompt tuning. In Proceedings of the 61st
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 277–292,
2023.

Baohao Liao, Yan Meng, and Christof Monz. Parameter-efficient fine-tuning without introducing new latency.
arXiv preprint arXiv:2305.16742, 2023a.

Baohao Liao, Shaomu Tan, and Christof Monz. Make your pre-trained model reversible: From parameter
to memory efficient fine-tuning. arXiv preprint arXiv:2306.00477, 2023b.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014: 13th
European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, pp. 740–755.
Springer, 2014.

Yang Lin, Xinyu Ma, Xu Chu, Yujie Jin, Zhibang Yang, Yasha Wang, and Hong Mei. Lora dropout as a
sparsity regularizer for overfitting control. arXiv preprint arXiv:2404.09610, 2024.

Ziyi Lin, Shijie Geng, Renrui Zhang, Peng Gao, Gerard de Melo, Xiaogang Wang, Jifeng Dai, Yu Qiao,
and Hongsheng Li. Frozen clip models are efficient video learners. In European Conference on Computer
Vision, pp. 388–404. Springer, 2022.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and Colin A
Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learning. Advances
in Neural Information Processing Systems, 35:1950–1965, 2022a.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. arXiv preprint
arXiv:2304.08485, 2023a.

James Liu, Guangxuan Xiao, Kai Li, Jason D Lee, Song Han, Tri Dao, and Tianle Cai. Bitdelta: Your
fine-tune may only be worth one bit. arXiv preprint arXiv:2402.10193, 2024a.

Jialin Liu, Antoine Moreau, Mike Preuss, Jeremy Rapin, Baptiste Roziere, Fabien Teytaud, and Olivier Tey-
taud. Versatile black-box optimization. In Proceedings of the 2020 Genetic and Evolutionary Computation
Conference, pp. 620–628, 2020.

34

Under review as submission to TMLR

Qidong Liu, Xian Wu, Xiangyu Zhao, Yuanshao Zhu, Derong Xu, Feng Tian, and Yefeng Zheng. Moelora:
An moe-based parameter efficient fine-tuning method for multi-task medical applications. arXiv preprint
arXiv:2310.18339, 2023b.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-Ting Cheng,
and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. arXiv preprint arXiv:2402.09353,
2024b.

Xiangyang Liu, Tianxiang Sun, Xuanjing Huang, and Xipeng Qiu. Late prompt tuning: A late prompt could
be better than many prompts. arXiv preprint arXiv:2210.11292, 2022b.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning
v2: Prompt tuning can be comparable to fine-tuning universally across scales and tasks. arXiv preprint
arXiv:2110.07602, 2021a.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt understands,
too. arXiv preprint arXiv:2103.10385, 2021b.

Ximing Lu, Faeze Brahman, Peter West, Jaehun Jang, Khyathi Chandu, Abhilasha Ravichander, Lianhui
Qin, Prithviraj Ammanabrolu, Liwei Jiang, Sahana Ramnath, et al. Inference-time policy adapters (ipa):
Tailoring extreme-scale lms without fine-tuning. arXiv preprint arXiv:2305.15065, 2023.

Simian Luo, Yiqin Tan, Suraj Patil, Daniel Gu, Patrick von Platen, Apolinário Passos, Longbo Huang,
Jian Li, and Hang Zhao. Lcm-lora: A universal stable-diffusion acceleration module. arXiv preprint
arXiv:2311.05556, 2023.

Fang Ma, Chen Zhang, Lei Ren, Jingang Wang, Qifan Wang, Wei Wu, Xiaojun Quan, and Dawei Song.
Xprompt: Exploring the extreme of prompt tuning. arXiv preprint arXiv:2210.04457, 2022.

David JC MacKay. A practical bayesian framework for backpropagation networks. Neural computation, 4
(3):448–472, 1992.

Andrea Madotto, Zhaojiang Lin, Zhenpeng Zhou, Seungwhan Moon, Paul Crook, Bing Liu, Zhou Yu, Eu-
njoon Cho, and Zhiguang Wang. Continual learning in task-oriented dialogue systems. arXiv preprint
arXiv:2012.15504, 2020.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Henderson. Parameter-efficient
multi-task fine-tuning for transformers via shared hypernetworks. arXiv preprint arXiv:2106.04489, 2021.

Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz, and Ohad Shamir. Proving the lottery ticket hypothesis:
Pruning is all you need. In International Conference on Machine Learning, pp. 6682–6691. PMLR, 2020.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev Arora.
Fine-tuning language models with just forward passes. arXiv preprint arXiv:2305.17333, 2023.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin Bossan.
Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github.com/huggingface/peft,
2022.

Yuning Mao, Lambert Mathias, Rui Hou, Amjad Almahairi, Hao Ma, Jiawei Han, Wen-tau Yih, and Madian
Khabsa. Unipelt: A unified framework for parameter-efficient language model tuning. arXiv preprint
arXiv:2110.07577, 2021.

Xiangdi Meng, Damai Dai, Weiyao Luo, Zhe Yang, Shaoxiang Wu, Xiaochen Wang, Peiyi Wang, Qingxiu
Dong, Liang Chen, and Zhifang Sui. Periodiclora: Breaking the low-rank bottleneck in lora optimization.
arXiv preprint arXiv:2402.16141, 2024.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity?
a new dataset for open book question answering. In EMNLP, 2018.

35

https://github.com/huggingface/peft

Under review as submission to TMLR

Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, Ying Shan, and Xiaohu Qie.
T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion models.
arXiv preprint arXiv:2302.08453, 2023.

Sauradip Nag, Xiatian Zhu, Yi-Zhe Song, and Tao Xiang. Zero-shot temporal action detection via vision-
language prompting. In European Conference on Computer Vision, pp. 681–697. Springer, 2022.

Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, and
Haibin Ling. Expanding language-image pretrained models for general video recognition. In European
Conference on Computer Vision, pp. 1–18. Springer, 2022.

OpenAI. Gpt-4. In https://openai.com/gpt-4, 2023.

Emin Orhan. A simple cache model for image recognition. Advances in Neural Information Processing
Systems, 31, 2018.

Yawen Ouyang, Yongchang Cao, Yuan Gao, Zhen Wu, Jianbing Zhang, and Xinyu Dai. On prefix-tuning
for lightweight out-of-distribution detection. In Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 1533–1545, 2023.

Mustafa Safa Ozdayi, Charith Peris, Jack Fitzgerald, Christophe Dupuy, Jimit Majmudar, Haidar Khan,
Rahil Parikh, and Rahul Gupta. Controlling the extraction of memorized data from large language models
via prompt-tuning. arXiv preprint arXiv:2305.11759, 2023.

Junting Pan, Ziyi Lin, Xiatian Zhu, Jing Shao, and Hongsheng Li. St-adapter: Parameter-efficient image-
to-video transfer learning. Advances in Neural Information Processing Systems, 35:26462–26477, 2022.

Aleksandar Petrov, Philip HS Torr, and Adel Bibi. When do prompting and prefix-tuning work? a theory
of capabilities and limitations. arXiv preprint arXiv:2310.19698, 2023.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapterfusion:
Non-destructive task composition for transfer learning. arXiv preprint arXiv:2005.00247, 2020.

Jason Phang, Yi Mao, Pengcheng He, and Weizhu Chen. Hypertuning: Toward adapting large language
models without back-propagation. In International Conference on Machine Learning, pp. 27854–27875.
PMLR, 2023.

Clifton Poth, Hannah Sterz, Indraneil Paul, Sukannya Purkayastha, Leon Engländer, Timo Imhof, Ivan Vulić,
Sebastian Ruder, Iryna Gurevych, and Jonas Pfeiffer. Adapters: A unified library for parameter-efficient
and modular transfer learning, 2023.

Yujia Qin, Xiaozhi Wang, Yusheng Su, Yankai Lin, Ning Ding, Jing Yi, Weize Chen, Zhiyuan Liu, Juanzi
Li, Lei Hou, et al. Exploring universal intrinsic task subspace via prompt tuning. arXiv preprint
arXiv:2110.07867, 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International conference on machine learning, pp. 8748–8763. PMLR,
2021.

Hossein Rajabzadeh, Mojtaba Valipour, Tianshu Zhu, Marzieh Tahaei, Hyock Ju Kwon, Ali Ghodsi, Boxing
Chen, and Mehdi Rezagholizadeh. Qdylora: Quantized dynamic low-rank adaptation for efficient large
language model tuning. arXiv preprint arXiv:2402.10462, 2024.

Li Ren, Chen Chen, Liqiang Wang, and Kien Hua. Learning semantic proxies from visual prompts for
parameter-efficient fine-tuning in deep metric learning. arXiv preprint arXiv:2402.02340, 2024.

Steven J Rennie, Etienne Marcheret, Youssef Mroueh, Jerret Ross, and Vaibhava Goel. Self-critical sequence
training for image captioning. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 7008–7024, 2017.

36

Under review as submission to TMLR

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10684–10695, 2022.

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman Beck, Jonas Pfeiffer, Nils Reimers, and Iryna
Gurevych. Adapterdrop: On the efficiency of adapters in transformers. arXiv preprint arXiv:2010.11918,
2020.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman. Dream-
booth: Fine tuning text-to-image diffusion models for subject-driven generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22500–22510, 2023.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial
winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Commonsense
reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

Ying Sheng, Shiyi Cao, Dacheng Li, Coleman Hooper, Nicholas Lee, Shuo Yang, Christopher Chou, Banghua
Zhu, Lianmin Zheng, Kurt Keutzer, et al. S-lora: Serving thousands of concurrent lora adapters. arXiv
preprint arXiv:2311.03285, 2023a.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang, Christo-
pher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative inference of large language
models with a single gpu. In International Conference on Machine Learning, pp. 31094–31116. PMLR,
2023b.

Zhengxiang Shi and Aldo Lipani. Dept: Decomposed prompt tuning for parameter-efficient fine-tuning.
arXiv preprint arXiv:2309.05173, 2023.

Manli Shu, Weili Nie, De-An Huang, Zhiding Yu, Tom Goldstein, Anima Anandkumar, and Chaowei Xiao.
Test-time prompt tuning for zero-shot generalization in vision-language models. Advances in Neural
Information Processing Systems, 35:14274–14289, 2022.

Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus
Rohrbach, and Douwe Kiela. Flava: A foundational language and vision alignment model. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15638–15650, 2022.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. In International conference on machine learning, pp. 2256–2265.
PMLR, 2015.

Andreas Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit, and Lucas Beyer.
How to train your vit? data, augmentation, and regularization in vision transformers. arXiv preprint
arXiv:2106.10270, 2021.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. arXiv preprint arXiv:2104.09864, 2021a.

Yusheng Su, Xiaozhi Wang, Yujia Qin, Chi-Min Chan, Yankai Lin, Huadong Wang, Kaiyue Wen, Zhiyuan
Liu, Peng Li, Juanzi Li, et al. On transferability of prompt tuning for natural language processing. arXiv
preprint arXiv:2111.06719, 2021b.

Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks. Advances
in Neural Information Processing Systems, 34:24193–24205, 2021.

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Lst: Ladder side-tuning for parameter and memory efficient
transfer learning. Advances in Neural Information Processing Systems, 35:12991–13005, 2022a.

37

Under review as submission to TMLR

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Vl-adapter: Parameter-efficient transfer learning for vision-and-
language tasks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 5227–5237, 2022b.

Sijun Tan, Xiuyu Li, Shishir Patil, Ziyang Wu, Tianjun Zhang, Kurt Keutzer, Joseph E Gonzalez, and
Raluca Ada Popa. Lloco: Learning long contexts offline. arXiv preprint arXiv:2404.07979, 2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Sori-
cut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter efficient tuning
of pre-trained models using dynamic search-free low-rank adaptation. arXiv preprint arXiv:2210.07558,
2022.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: Lessons learned from the
2015 mscoco image captioning challenge. IEEE transactions on pattern analysis and machine intelligence,
39(4):652–663, 2016.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou, and Daniel Cer. Spot: Better frozen model adaptation
through soft prompt transfer. arXiv preprint arXiv:2110.07904, 2021.

Danilo Vucetic, Mohammadreza Tayaranian, Maryam Ziaeefard, James J Clark, Brett H Meyer, and War-
ren J Gross. Efficient fine-tuning of bert models on the edge. In 2022 IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 1838–1842. IEEE, 2022.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

Peng Wang, Qi Wu, Chunhua Shen, Anthony Dick, and Anton Van Den Hengel. Fvqa: Fact-based visual
question answering. IEEE transactions on pattern analysis and machine intelligence, 40(10):2413–2427,
2017.

Qifan Wang, Yuning Mao, Jingang Wang, Hanchao Yu, Shaoliang Nie, Sinong Wang, Fuli Feng, Lifu Huang,
Xiaojun Quan, Zenglin Xu, et al. Aprompt: Attention prompt tuning for efficient adaptation of pre-
trained language models. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 9147–9160, 2023a.

Xiao Wang, Tianze Chen, Qiming Ge, Han Xia, Rong Bao, Rui Zheng, Qi Zhang, Tao Gui, and Xu-
anjing Huang. Orthogonal subspace learning for language model continual learning. arXiv preprint
arXiv:2310.14152, 2023b.

Yaqing Wang, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan Awadallah, and Jianfeng
Gao. Adamix: Mixture-of-adapter for parameter-efficient tuning of large language models. arXiv preprint
arXiv:2205.12410, 1(2):4, 2022a.

Yihan Wang, Jatin Chauhan, Wei Wang, and Cho-Jui Hsieh. Universality and limitations of prompt tuning.
arXiv preprint arXiv:2305.18787, 2023c.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 139–149, 2022b.

Ziyi Wang, Xumin Yu, Yongming Rao, Jie Zhou, and Jiwen Lu. P2p: Tuning pre-trained image models for
point cloud analysis with point-to-pixel prompting. Advances in neural information processing systems,
35:14388–14402, 2022c.

38

Under review as submission to TMLR

John Wright, Arvind Ganesh, Shankar Rao, Yigang Peng, and Yi Ma. Robust principal component analysis:
Exact recovery of corrupted low-rank matrices via convex optimization. Advances in neural information
processing systems, 22, 2009.

Hui Wu and Xiaodong Shi. Adversarial soft prompt tuning for cross-domain sentiment analysis. In Pro-
ceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 2438–2447, 2022.

Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Stan Weixian Lei, Yuchao Gu, Yufei Shi, Wynne Hsu, Ying
Shan, Xiaohu Qie, and Mike Zheng Shou. Tune-a-video: One-shot tuning of image diffusion models for
text-to-video generation. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 7623–7633, 2023a.

Junda Wu, Tong Yu, Rui Wang, Zhao Song, Ruiyi Zhang, Handong Zhao, Chaochao Lu, Shuai Li, and
Ricardo Henao. Infoprompt: Information-theoretic soft prompt tuning for natural language understanding.
arXiv preprint arXiv:2306.04933, 2023b.

Qi Wu, Damien Teney, Peng Wang, Chunhua Shen, Anthony Dick, and Anton Van Den Hengel. Visual
question answering: A survey of methods and datasets. Computer Vision and Image Understanding, 163:
21–40, 2017.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,
Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via multi-agent conversation
framework. arXiv preprint arXiv:2308.08155, 2023c.

Taiqiang Wu, Jiahao Wang, Zhe Zhao, and Ngai Wong. Mixture-of-subspaces in low-rank adaptation. arXiv
preprint arXiv:2406.11909, 2024a.

Xun Wu, Shaohan Huang, and Furu Wei. Mixture of lora experts. arXiv preprint arXiv:2404.13628, 2024b.

Zhuofeng Wu, Sinong Wang, Jiatao Gu, Rui Hou, Yuxiao Dong, VG Vydiswaran, and Hao Ma. Idpg: An
instance-dependent prompt generation method. arXiv preprint arXiv:2204.04497, 2022.

Guangxuan Xiao, Ji Lin, and Song Han. Offsite-tuning: Transfer learning without full model. arXiv preprint
arXiv:2302.04870, 2023a.

Guangxuan Xiao, Ji Lin, and Song Han. Offsite-tuning: Transfer learning without full model. arXiv preprint
arXiv:2302.04870, 2023b.

Zhen Xing, Qi Dai, Han Hu, Zuxuan Wu, and Yu-Gang Jiang. Simda: Simple diffusion adapter for efficient
video generation. arXiv preprint arXiv:2308.09710, 2023.

Binfeng Xu, Xukun Liu, Hua Shen, Zeyu Han, Yuhan Li, Murong Yue, Zhiyuan Peng, Yuchen Liu, Ziyu
Yao, and Dongkuan Xu. Gentopia: A collaborative platform for tool-augmented llms. arXiv preprint
arXiv:2308.04030, 2023a.

Mengde Xu, Zheng Zhang, Fangyun Wei, Han Hu, and Xiang Bai. Side adapter network for open-vocabulary
semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2945–2954, 2023b.

Runxin Xu, Fuli Luo, Zhiyuan Zhang, Chuanqi Tan, Baobao Chang, Songfang Huang, and Fei Huang.
Raise a child in large language model: Towards effective and generalizable fine-tuning. arXiv preprint
arXiv:2109.05687, 2021.

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng Chang, Hengheng Zhang, Zhensu Chen, Xiaopeng
Zhang, and Qi Tian. Qa-lora: Quantization-aware low-rank adaptation of large language models. arXiv
preprint arXiv:2309.14717, 2023c.

39

Under review as submission to TMLR

Zunnan Xu, Zhihong Chen, Yong Zhang, Yibing Song, Xiang Wan, and Guanbin Li. Bridging vision and
language encoders: Parameter-efficient tuning for referring image segmentation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 17503–17512, 2023d.

Adam X Yang, Maxime Robeyns, Xi Wang, and Laurence Aitchison. Bayesian low-rank adaptation for large
language models. arXiv preprint arXiv:2308.13111, 2023a.

Jianxin Yang. Longqlora: Efficient and effective method to extend context length of large language models.
arXiv preprint arXiv:2311.04879, 2023.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang, Bin Cui,
and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and applications. ACM
Computing Surveys, 56(4):1–39, 2023b.

Taojiannan Yang, Yi Zhu, Yusheng Xie, Aston Zhang, Chen Chen, and Mu Li. Aim: Adapting image models
for efficient video action recognition. arXiv preprint arXiv:2302.03024, 2023c.

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen Tan, Kun Xiong, Ming Li, and Jimmy Lin. End-to-end
open-domain question answering with bertserini. arXiv preprint arXiv:1902.01718, 2019.

Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt adapter
for text-to-image diffusion models. arXiv preprint arXiv:2308.06721, 2023.

Seungryong Yoo, Eunji Kim, Dahuin Jung, Jungbeom Lee, and Sungroh Yoon. Improving visual prompt
tuning for self-supervised vision transformers. arXiv preprint arXiv:2306.05067, 2023.

Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang, and Jiebo Luo. Image captioning with semantic
attention. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4651–
4659, 2016.

Qihang Yu, Ju He, Xueqing Deng, Xiaohui Shen, and Liang-Chieh Chen. Convolutions die hard: Open-
vocabulary segmentation with single frozen convolutional clip. arXiv preprint arXiv:2308.02487, 2023.

Ted Zadouri, Ahmet Üstün, Arash Ahmadian, Beyza Ermiş, Acyr Locatelli, and Sara Hooker. Pushing
mixture of experts to the limit: Extremely parameter efficient moe for instruction tuning. arXiv preprint
arXiv:2309.05444, 2023.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning for
transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine really
finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, 2019.

Bohan Zeng, Shanglin Li, Yutang Feng, Hong Li, Sicheng Gao, Jiaming Liu, Huaxia Li, Xu Tang, Jianzhuang
Liu, and Baochang Zhang. Ipdreamer: Appearance-controllable 3d object generation with image prompts.
arXiv preprint arXiv:2310.05375, 2023a.

Guangtao Zeng, Peiyuan Zhang, and Wei Lu. One network, many masks: Towards more parameter-efficient
transfer learning. arXiv preprint arXiv:2305.17682, 2023b.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural Information
Processing Systems, 32, 2019.

Haopeng Zhang, Xiao Liu, and Jiawei Zhang. Summit: Iterative text summarization via chatgpt. arXiv
preprint arXiv:2305.14835, 2023a.

Jeffrey O Zhang, Alexander Sax, Amir Zamir, Leonidas Guibas, and Jitendra Malik. Side-tuning: a baseline
for network adaptation via additive side networks. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16, pp. 698–714. Springer, 2020.

40

Under review as submission to TMLR

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient low-rank
adaptation for large language models fine-tuning. arXiv preprint arXiv:2308.03303, 2023b.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffusion
models. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3836–3847,
2023c.

Mingyang Zhang, Chunhua Shen, Zhen Yang, Linlin Ou, Xinyi Yu, Bohan Zhuang, et al. Pruning meets
low-rank parameter-efficient fine-tuning. arXiv preprint arXiv:2305.18403, 2023d.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo Zhao.
Adaptive budget allocation for parameter-efficient fine-tuning. arXiv preprint arXiv:2303.10512, 2023e.

Renrui Zhang, Rongyao Fang, Wei Zhang, Peng Gao, Kunchang Li, Jifeng Dai, Yu Qiao, and Hong-
sheng Li. Tip-adapter: Training-free clip-adapter for better vision-language modeling. arXiv preprint
arXiv:2111.03930, 2021.

Renrui Zhang, Ziyu Guo, Wei Zhang, Kunchang Li, Xupeng Miao, Bin Cui, Yu Qiao, Peng Gao, and
Hongsheng Li. Pointclip: Point cloud understanding by clip. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 8552–8562, 2022a.

Renrui Zhang, Jiaming Han, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu, Hongsheng Li, Peng Gao, and
Yu Qiao. Llama-adapter: Efficient fine-tuning of language models with zero-init attention. arXiv preprint
arXiv:2303.16199, 2023f.

Ruiyi Zhang, Rushi Qiang, Sai Ashish Somayajula, and Pengtao Xie. Autolora: Automatically tuning matrix
ranks in low-rank adaptation based on meta learning. arXiv preprint arXiv:2403.09113, 2024a.

Sai Qian Zhang, Thierry Tambe, Nestor Cuevas, Gu-Yeon Wei, and David Brooks. Camel: Co-designing ai
models and embedded drams for efficient on-device learning. arXiv preprint arXiv:2305.03148, 2023g.

Yuanhan Zhang, Kaiyang Zhou, and Ziwei Liu. Neural prompt search, 2022b.

Zhen-Ru Zhang, Chuanqi Tan, Haiyang Xu, Chengyu Wang, Jun Huang, and Songfang Huang. To-
wards adaptive prefix tuning for parameter-efficient language model fine-tuning. arXiv preprint
arXiv:2305.15212, 2023h.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong
Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient generative inference of
large language models. Advances in Neural Information Processing Systems, 36, 2024b.

Bingchen Zhao, Haoqin Tu, Chen Wei, Jieru Mei, and Cihang Xie. Tuning layernorm in attention: Towards
efficient multi-modal llm finetuning. arXiv preprint arXiv:2312.11420, 2023a.

Hao Zhao, Jie Fu, and Zhaofeng He. Prototype-based hyperadapter for sample-efficient multi-task tuning.
arXiv preprint arXiv:2310.11670, 2023b.

Haodong Zhao, Ruifang He, Mengnan Xiao, and Jing Xu. Infusing hierarchical guidance into prompt tuning:
A parameter-efficient framework for multi-level implicit discourse relation recognition. In Proceedings of
the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
6477–6492, 2023c.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong Tian.
Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint arXiv:2403.03507,
2024.

Ziwang Zhao, Linmei Hu, Hanyu Zhao, Yingxia Shao, and Yequan Wang. Knowledgeable parameter efficient
tuning network for commonsense question answering. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 9051–9063, 2023d.

41

Under review as submission to TMLR

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene parsing
through ade20k dataset. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 633–641, 2017.

Han Zhou, Xingchen Wan, Ivan Vulić, and Anna Korhonen. Autopeft: Automatic configuration search for
parameter-efficient fine-tuning. arXiv preprint arXiv:2301.12132, 2023.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for vision-
language models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 16816–16825, 2022a.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-language
models. International Journal of Computer Vision, 130(9):2337–2348, 2022b.

Tianyi Zhou and Dacheng Tao. Godec: Randomized low-rank & sparse matrix decomposition in noisy case.
In Proceedings of the 28th International Conference on Machine Learning, ICML 2011, 2011.

Zhe Zhou, Xuechao Wei, Jiejing Zhang, and Guangyu Sun. tPetSu: A unified framework for tParameter-
Efficientu transformers serving. In 2022 USENIX Annual Technical Conference (USENIX ATC 22), pp.
489–504, 2022c.

Beier Zhu, Yulei Niu, Yucheng Han, Yue Wu, and Hanwang Zhang. Prompt-aligned gradient for prompt
tuning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15659–15669,
2023a.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing vision-
language understanding with advanced large language models. arXiv preprint arXiv:2304.10592, 2023b.

Qi Zhu, Bing Li, Fei Mi, Xiaoyan Zhu, and Minlie Huang. Continual prompt tuning for dialog state tracking.
arXiv preprint arXiv:2203.06654, 2022.

Wei Zhu and Ming Tan. Spt: Learning to selectively insert prompts for better prompt tuning. In Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 11862–11878, 2023.

Wenhao Zhu, Hongyi Liu, Qingxiu Dong, Jingjing Xu, Lingpeng Kong, Jiajun Chen, Lei Li, and Shujian
Huang. Multilingual machine translation with large language models: Empirical results and analysis.
arXiv preprint arXiv:2304.04675, 2023c.

Xiangyang Zhu, Renrui Zhang, Bowei He, Ziyu Guo, Ziyao Zeng, Zipeng Qin, Shanghang Zhang, and Peng
Gao. Pointclip v2: Prompting clip and gpt for powerful 3d open-world learning. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 2639–2650, 2023d.

Yaoming Zhu, Jiangtao Feng, Chengqi Zhao, Mingxuan Wang, and Lei Li. Counter-interference adapter for
multilingual machine translation. arXiv preprint arXiv:2104.08154, 2021.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and Chao Zhang. Toolqa: A dataset for llm question
answering with external tools. arXiv preprint arXiv:2306.13304, 2023.

42

	Introduction
	Background
	Computation flow for LLaMA
	Overview on Parameter Efficient Fine Tuning
	Downstream Tasks for LLM Evaluation

	PEFT Taxonomy
	Additive PEFT
	Adapters
	Soft Prompt
	Other Additive Methods

	Selective PEFT
	Reparameterized PEFT
	Hybrid PEFT

	Efficient PEFT design
	KV-cache Management for PEFT Efficiency
	Pruning Strategies for PEFT
	Quantization Strategies for PEFT
	Memory-efficient PEFT Methods

	PEFT for DNNs of Other Applications
	PEFT for LLMs – Beyond the Basics
	Visual Instruct Following
	Continual Learning
	Context Window Extension

	PEFT for ViTs
	Image Classification
	Video Recognition

	PEFT for VLAs
	Open-vocabulary Image Classification

	PEFT for Diffusion Models
	Additional Input Control
	Customized Generation

	System Design Challenge for PEFT
	System design for PEFT
	Centralized PEFT Query Serving
	Distributed PEFT Training
	Multi-PEFT Training
	Evaluation Metrics

	Centralized PEFT Serving Frameworks
	Distributed PEFT Training Frameworks
	Parallel PEFT Training Frameworks

	Conclusion and Future Directions
	Simplify hyperparameter tuning
	Establish a unified benchmark
	Enhance training efficiency
	Explore scaling laws
	Serve more models and tasks
	Enhancing data privacy
	PEFT with model compression

