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ABSTRACT

We propose a method for learning topology-preserving data representations (dimen-
sionality reduction). The method aims to provide topological similarity between
the data manifold and its latent representation via enforcing the similarity in topo-
logical features (clusters, loops, 2D voids, etc.) and their localization. The core of
the method is the minimization of the Representation Topology Divergence (RTD)
between original high-dimensional data and low-dimensional representation in
latent space. RTD minimization provides closeness in topological features with
strong theoretical guarantees. We develop a scheme for RTD differentiation and
apply it as a loss term for the autoencoder. The proposed method “RTD-AE” better
preserves the global structure and topology of the data manifold than state-of-the-
art competitors as measured by linear correlation, triplet distance ranking accuracy,
and Wasserstein distance between persistence barcodes.

1 INTRODUCTION

Dimensionality reduction is a useful tool for data visualization, preprocessing, and exploratory
data analysis. Clearly, immersion of high-dimensional data into 2D or 3D space is impossible
without distortions which vary for popular methods. Dimensionality reduction methods can be
broadly classified into global and local methods. Classical global methods (PCA, MDS) tend to
preserve the global structure of a manifold. However, in many practical applications, produced
visualizations are non-informative since they don’t capture complex non-linear structures. Local
methods (UMAP (McInnes et al., 2018), PaCMAP (Wang et al., 2021), t-SNE (Van der Maaten &
Hinton, 2008), Laplacian Eigenmaps (Belkin & Niyogi, 2001), ISOMAP (Tenenbaum et al., 2000))
focus on preserving neighborhood data and local structure with the cost of sacrificing the global
structure. The most popular methods like t-SNE and UMAP are a good choice for inferring cluster
structures but often fail to describe correctly the data manifold’s topology. t-SNE and UMAP have
hyperparameters influencing representations neighborhood size taken into account. Different values
of hyperparameters lead to significantly different visualizations and neither of them is the “canonical”
one that correctly represents high-dimensional data.

We take a different perspective on dimensionality reduction. We propose the approach based on
Topological Data Analysis (TDA). Topological Data Analysis (Barannikov, 1994; Zomorodian, 2001;
Chazal & Michel, 2017) is a field devoted to the numerical description of multi-scale topological
properties of data distributions by analyzing point clouds sampled from them. TDA methods naturally
capture properties of data manifolds on multiple distance scales and are arguably a good trade-off
between local and global approaches.

The state-of-the-art TDA approach of this kind is TopoAE (Moor et al., 2020). However, it has several
weaknesses: 1) the loss term is not continuous 2) the nullity of the loss term is only necessary but not
a sufficient condition for the coincidence of topology, as measured by persistence barcodes, see more
details in Appendix J.
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(a) Orig. 3D data

(b) Autoencoder (c) RTD-AE (d) t-SNE (e) UMAP (f) TopoAE

Figure 1: Dimensionality reduction (3D → 2D) on the “Mammoth” dataset. The proposed RTD-AE
method better captures both global and local structure.

In our paper, we suggest using the Representation Topology Divergence (RTD) (Barannikov et al.,
2022) to produce topology-aware dimensionality reduction. RTD measures the topological discrep-
ancy between two point clouds with one-to-one correspondence between clouds and enjoys nice
theoretical properties (Section 3.2). The major obstacle to incorporate RTD into deep learning is its
differentiation. There exist approaches to the differentiation of barcodes, generic barcodes-based
functions with respect to deformations of filtration (Carriére et al., 2021) and to TDA differentiation
in special cases (Hofer et al., 2019; Poulenard et al., 2018).

In this paper, we make the following contributions:

1. We develop an approach for RTD differentiation. Topological metrics are difficult to differentiate;
the differentiability of RTD and its implementation on GPU is a valuable step forward in the TDA
context which opens novel possibilities in topological optimizations;

2. We propose a new method for topology-aware dimensionality reduction: an autoencoder enhanced
with the differentiable RTD loss: “RTD-AE”. Minimization of RTD loss between real and latent
spaces forces closeness in topological features and their localization with strong theoretical
guarantees;

3. By doing computational experiments, we show that the proposed RTD-AE outperforms state-of-
the-art methods of dimensionality reduction and the vanilla autoencoder in terms of preserving
the global structure and topology of a data manifold; we measure it by the linear correlation, the
triplet distance ranking accuracy, Wasserstein distance between persistence barcodes, and RTD. In
some cases, the proposed RTD-AE produces more faithful and visually appealing low-dimensional
embeddings than state-of-the-art algorithms. We release the RTD-AE source code. 1

2 RELATED WORK

Various dimensionality reduction methods have been proposed to obtain 2D/3D visualization of
high-dimensional data (Tenenbaum et al., 2000; Belkin & Niyogi, 2001; Van der Maaten & Hinton,
2008; McInnes et al., 2018). Natural science researchers often use dimensionality reduction methods
for exploratory data analysis or even to focus further experiments (Becht et al., 2019; Kobak &
Berens, 2019; Karlov et al., 2019; Andronov et al., 2021; Szubert et al., 2019). The main problem
with these methods is inevitable distortions (Chari et al., 2021; Batson et al., 2021; Wang et al.,
2021) and incoherent results for different hyperparameters. These distortions can largely affect
global representation structure such as inter-cluster relationships and pairwise distances. As the
interpretation of these quantities in some domain such as physics or biology can lead to incorrect
conclusions, it is of high importance to preserve them as much as possible. UMAP and t-SNE
visualizations are frequently sporadic and cannot be considered as “canonical” representation of
high-dimensional data. An often overlooked issue is the initialization which significantly contributes
to the performance of dimensionality reduction methods (Kobak & Linderman, 2021; Wang et al.,
2021). Damrich & Hamprecht (2021) revealed that the UMAP’s true loss function is different from
the purported from its theory because of negative sampling. There is a number of works that try to
tackle the distortion problem and preserve as much inter-data relationships as possible. Authors of
PHATE (Moon et al., 2019) and ivis (Szubert et al., 2019) claim that their methods are able to capture
local as well as global features, but provide no theoretical guarantees for this. (Wagner et al., 2021)

1github.com/danchern97/RTD AE
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propose DIPOLE, an approach to dimensionality reduction combining techniques of metric geometry
and distributed persistent homology.

From a broader view, deep representation learning is also dedicated to obtaining low-dimensional
representation of data. Autoencoder (Hinton & Salakhutdinov, 2006) and Variational Autoencoder
(Kingma & Welling, 2013) are mostly used to learn representations of objects useful for solving
downstream tasks or data generation. They are not designed for data visualization and fail to preserve
simultaneously local and global structure on 2D/3D spaces. Though, their parametric nature makes
them scalable and applicable to large datasets, which is why they are used in methods such as
parametric UMAP (Sainburg et al., 2021) and ivis (Szubert et al., 2019) and ours.

Moor et al. (2020) proposed TopoAE, including an additional loss for the autoencoder to preserve
topological structures of the input space in latent representations. The topological similarity is
achieved by retaining similarity in the multi-scale connectivity information. Our approach has a
stronger theoretical foundation and outperforms TopoAE in computational experiments.

An approach for differentiation of persistent homology-based functions was proposed by Carriére
et al. (2021). Leygonie et al. (2021) systematizes different approaches to regularisation of persistence
diagrams function and defines notions of differentiability for maps to and from the space of persistence
barcodes. Luo et al. (2021) proposed a topology-preserving dimensionality reduction method based
on graph autoencoder. Kim et al. (2020) proposed a differentiable topological layer for general deep
learning models based on persistence landscapes.

3 PRELIMINARIES

3.1 TOPOLOGICAL DATA ANALYSIS, PERSISTENT HOMOLOGY

Topology is often considered to describe the “shape of data”, that is, multi-scale properties of the
datasets. Topological information was generally recognized to be important for various data analysis
problems. In the perspective of the commonly assumed manifold hypothesis (Goodfellow et al.,
2016), datasets are concentrated near low-dimensional manifolds located in high-dimensional ambient
spaces. The standard direction is to study topological features of the underlying manifold. The
common approach is to cover the manifold via simplices. Given the threshold α, we take sets of
the points from the dataset X which are pairwise closer than α. The family of such sets is called
the Vietoris-Rips simplicial complex. For further convenience, we introduce the fully-connected
weighted graph G whose vertices are the points from X and whose edges have weights given by the
distances between the points. Then, the Vietoris-Rips simplicial complex is defined as:

VRα(G) = {{i0, . . . , ik}, im ∈ Vert(G) | mi,j ≤ α} ,
where mi,j is the distance between points, Vert(G) = {1, . . . , |X|} is the vertices set of the graph G.

For each VRα(G), we define the vector space Ck, which consists of formal linear combinations
of all k-dimensional simplices from VRα(G) with modulo 2 arithmetic. The boundary operator
∂k : Ck → Ck−1 maps every simplex to the sum of its facets. One can show that ∂k ◦ ∂k−1 = 0 and
the chain complex can be created:

. . . → Ck+1
∂k+1→ Ck

∂k→ Ck−1 → . . . .

The quotient vector space Hk = ker(∂k)/im(∂k+1) is called the k-th homology group, elements of
Hk are called homology classes. The dimension βk = dim(Hk) is called the k-th Betti number and
it approximates the number of basic topological features of the manifold represented by the point
cloud X .

The immediate problem here is the selection of appropriate α which is not known beforehand. The
standard solution is to analyze all α > 0. Obviously, if α1 ≤ α2 ≤ . . . ≤ αm, then VRα1

(G) ⊆
VRα2

(G) ⊆ . . . ⊆ VRαm
(G); the nested sequence is called the filtration. The evolution of cycles

across the nested family of simplicial complexes Sαi
is canonically decomposed into “birth” and

“death” of basic topological features, so that a basic feature c appears in Hk(Sα) at a specific threshold
αc and disappears at a specific threshold βc, βc − αc describes the “lifespan” or persistence of the
homology class. The set of the corresponding intervals [αc, βc] for the basic homology classes from
Hk is called the persistence barcode; the whole theory is dubbed the persistent homology (Chazal &
Michel, 2017; Barannikov, 1994; Zomorodian, 2001).
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3.2 REPRESENTATION TOPOLOGY DIVERGENCE (RTD)

The classic persistent homology is dedicated to the analysis of a single point cloud X . Recently,
Representation Topology Divergence (RTD) (Barannikov et al., 2022) was proposed to measure the
dissimilarity in the multi-scale topology between two point clouds X, X̃ of equal size N with a one-to-
one correspondence between clouds. Let Gw, Gw̃ be graphs with weights on edges equal to pairwise
distances of X, X̃ . To provide the comparison, the auxiliary graph Ĝw,w̃ with doubled set of vertices
and edge weights matrix m(w, w̃), see details in Appendix B, is created. The persistence barcode of
the graph Ĝw,w̃ is called the R-Cross-Barcode and it tracks the differences in the multi-scale topology
of the two point clouds by comparing their α-neighborhood graphs for all α.

Here we give a simple example of an R-Cross-Barcode, see also (Cherniavskii et al., 2022). Suppose
we have two point clouds A and B, of seven points each, with distances between points as shown
in the top row of Figure 2. Consider the R-Cross-Barcode1(A, B), it consists of 4 intervals (the
bottom row of the figure). The 4 intervals describe the topological discrepancies between connected
components of α-neighborhood graphs of A and B.

Figure 2: A graphical representation of an R-Cross-Barcode1(A,B) for the point clouds A and
B. The pairwise distance matrices for A and B are shown in the top raw. Edges present in the
α-neighborhood graphs for B but not for A are colored in red. Edges present in the α-neighborhood
graph for A are colored in grey. The timeline for appearance-disappearance of topological features
distinguishing the two graphs is shown. The appearance-disappearance process is illustrated by the
underlying bars, connecting the corresponding thresholds.

An interval is opened, i.e. a topological discrepancy appears, at threshold α = w̃B
uv when in the union

of α-neighborhood graph of A and B, two vertex sets C1 and C2 disjoint at smaller thresholds, are
joined into one connected component by the edge (uv) from B. This interval is closed at threshold
α = wA

u′v′ when the two vertex sets C1 and C2 are joined into one connected component in the
α-neighborhood graph of A.

For example, a discrepancy appears at the threshold α = 0.53 when the vertex sets {4} and {3, 6, 7}
are joined into one connected component in the union of neighborhood graphs of A and B by the
edge (4, 7). We identify the “death” of this R-Cross-Barcode feature at α = 0.57, when these two
sets are joined into one connected component in the neighborhood graph of cloud A (via the edge
(4, 7) in Figure 2 becoming grey).

By definition, RTDk(X, X̃) is the sum of intervals’ lengths in the R-Cross-Barcodek(X, X̃) and
measures its closeness to an empty set.

Proposition 1 (Barannikov et al. (2022)). If RTDk(X, X̃) = RTDk(X̃,X) = 0 for all k ≥ 1, then
the barcodes of the weighted graphs Gw and Gw̃ are the same in any degree. Moreover, in this case
the topological features are located in the same places: the inclusions VRα(Gw) ⊆ VRα(Gmin(w,w̃)),
VRα(Gw̃) ⊆ VRα(Gmin(w,w̃)) induce homology isomorphisms for any threshold α.

The Proposition 1 is a strong basis for topology comparison and optimization. Given a fixed data
representation X , how to find X̃ lying in a different space, and having a topology similar to X ,
in particular, similar persistence barcodes? Proposition 1 states that it is sufficient to minimize

4



Published as a conference paper at ICLR 2023

∑
i≥1

(
RTDi(X, X̃) + RTDi(X̃,X)

)
. In most of our experiments we minimized RTD1(X, X̃) +

RTD1(X̃,X). RTD1 can be calculated faster than RTD2+, also RTD2+ are often close to zero. To
simplify notation, we denote RTD(X, X̃) := 1/2(RTD1(X, X̃) + RTD1(X̃,X)).

Comparison with TopoAE loss. TopoAE (Moor et al., 2020) is the state-of-the-art algorithm for
topology-preserving dimensionality reduction. The TopoAE topological loss is based on comparison
of minimum spanning trees in X and X̃ spaces. However, it has several weak spots. First, when the
TopoAE loss is zero there is no guarantee that persistence barcodes of X and X̃ coincide. Second, the
TopoAE loss can be discontinuous in rather standard situations, see Appendix J. At the same time,
RTD loss is continuous, and its nullity guarantees the coincidence of persistence barcodes of X and X̃ .
The continuity of the RTD loss follows from the stability of the R-Cross-Barcodek (Proposition 2).
Proposition 2. (a) For any quadruple of edge weights sets wij , w̃ij , vij , ṽij on G:

dB(R-Cross-Barcodek(w, w̃),R-Cross-Barcodek(v, ṽ)) ≤ max(max
ij

|vij − wij |,max
ij

|ṽij − w̃ij |).
(b) For any pair of edge weights sets wij , w̃ij on G:

∥R-Cross-Barcodek(w, w̃)∥B ≤ max
ij

|wij − w̃ij |.

(c) The expectation for the bottleneck distance between R-Cross-Barcodek(w, w̃) and
R-Cross-Barcodek(w′, w̃), where wij = w(xi, xj), w′

ij = w′(xi, xj), w̃ij = w̃(xi, xj), w,w′, w̃ is
a triple of metrics on a measure space (X , µ), and X = {x1, . . . , xn}, xi ∈ X is a sample from
(X , µ), is upper bounded by Gromov-Wasserstein distance between w and w′:∫

X×...×X
dB(R-Cross-Barcodek(w, w̃),R-Cross-Barcodek(w′, w̃))dµ⊗n ≤ nGW (w,w′).

(d) The expectation for the bottleneck norm of R-Cross-Barcodek(w, w̃) for two weighted graphs
with edge weights wij = w(xi, xj), w̃ij = w̃(xi, xj), where w, w̃ is a pair of metrics on a measure
space (X , µ), and X = {x1, . . . , xn}, xi ∈ X is a sample from (X , µ), is upper bounded by
Gromov-Wasserstein distance between w and w̃:∫

X×...×X
∥R-Cross-Barcodek(w, w̃)∥Bdµ⊗n ≤ nGW (w, w̃).

The proofs are given in Appendix K.

4 METHOD

4.1 DIFFERENTIATION OF RTD

Figure 3: RTD Autoencoder

We propose to use RTD as a loss in neural networks. Here
we describe our approach to RTD differentiation. Denote by
Σk the set of all k−simplices in the Vietoris-Rips complex
of the graph Ĝw,w̃, and by Tk the set of all intervals in the
R-Cross-Barcodek(X, X̃). Fix (an arbitrary) strict order on Tk.

There exists a function fk : ∪(bi,di)∈Tk
{bi, di} → Σk that

maps bi (or di) to a simplex σ whose appearance leads to “birth”
(or “death”) of the corresponding homological class. Let

mσ = max
i,j∈σ

mi,j

denote the function of mij equal to the filtration value at which the simplex σ joins the filtration.

Since ∂ RTDk(X,X̃)
∂di

= −∂ RTDk(X,X̃)
∂bi

= 1, we obtain the following equation for the subgradient

∂ RTDk(X, X̃)

∂mσ
=

∑
i∈Tk

I{fk(di) = σ} −
∑
i∈Tk

I{fk(bi) = σ}.

Here, for any σ no more than one term has non-zero indicator. Then

∂ RTDk(X, X̃)

∂mi,j
=

∑
σ∈Σk

∂ RTDk(X, X̃)

∂mσ

∂mσ

∂mi,j
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The only thing that is left is to obtain subgradients of RTD(X, X̃) by points from X and X̃ . Consider
(an arbitrary) element mi,j of matrix m. There are 4 possible scenarios:

1. i, j ≤ N , in other words mi,j is from the upper-left quadrant of m. Its length is constant
and thus ∀l : ∂mi,j

∂Xl
=

∂mi,j

∂X̃l
= 0.

2. i ≤ N < j, in other words mi,j is from the upper-right quadrant of m. Its length is
computed as Euclidean distance and thus ∂mi,j

∂Xi
=

Xi−Xj−N

||Xi−Xj−N ||2 (similar for XN−j).

3. j ≤ N < i, similar to the previous case.

4. N < i, j, in other words mi,j is from the bottom-right quadrant of m. Here we have
subgradients like

∂mi,j

∂Xi−N
=

Xi −Xj−N

||Xi −Xj−N ||2
I{wi−N,j−N < w̃i−N,j−N}

Similar for Xj−N , X̃i−N and X̃j−N .

Subgradients ∂ RTD(X,X̃)
∂Xi

and ∂ RTD(X,X̃)

∂X̃i
can be derived from the beforementioned using the chain

rule and the formula of full (sub)gradient. Now we are able to minimize RTD(X, X̃) by methods of
(sub)gradient optimization. We discuss some possible tricks for improving RTD differentiation in
Appendix I.

4.2 RTD AUTOENCODER

Given the data X = {xi}ni=1, xi ∈ Rd, in high-dimensional space, our goal is to find the repre-
sentation in low-dimensional space Z = {zi}, zi ∈ Rp. For the visualization purposes, p = 2, 3.
Our idea is to find a representation Z which preserves persistence barcodes, that is, multi-scale
topological properties of the point clouds, as much as possible. The straightforward approach is to
solve minZ RTD(X,Z), where the optimization is performed over n vectors zi ∈ Rp, in the flavor
similar to UMAP and t-SNE. This approach is workable albeit very time-consuming and could be
applied only to small datasets, see Appendix F. A practical solution is to learn representations via the
encoder network E(w, x) : X → Z, see Figure 3.

Algorithm. Initially, we train the autoencoder for E1 epochs with the reconstruction loss
1
2 ||X −Xrec||2 only. Then, we train for E2 epochs with the loss 1

2 ||X−Xrec||2+RTD(X,Z). Both
losses are calculated on mini-batches. The two-step procedure speedups training since calculating
RTD(X,Z) for the untrained network takes much time.

Figure 4: Results on dimensionality reduction to 3D-space
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5 EXPERIMENTS

In computational experiments, we perform dimensionality reduction to high-dimensional and 2D/3D
space for ease of visualization. We compare original data with latent representations by (1) linear
correlation of pairwise distances, (2) Wasserstein distance (W.D.) between H0 persistence barcodes
(Chazal & Michel, 2017), (3) triplet distance ranking accuracy (Wang et al., 2021) (4) RTD. All of
the quality measures are tailored to evaluate how the manifold’s global structure and topology are
preserved. We note that RTD, as a quality measure, provides a more precise comparison of topology
than the W.D. between H0 persistence barcodes. First, RTD takes into account the localization of
topological features, while W.D. does not. Second, W.D. is invariant to permutations of points, but we
are interested in comparison between original data and latent representation where natural one-to-one
correspondence holds.

We compare the proposed RTD-AE with t-SNE (Van der Maaten & Hinton, 2008), UMAP (McInnes
et al., 2018), TopoAE (Moor et al., 2020), vanilla autoencoder (AE), PHATE (Moon et al., 2019),
Ivis (Szubert & Drozdov, 2019), PacMAP (Wang et al., 2021). The complete description of all the
used datasets can be found in Appendix L. See hyperparameters in Appendix H.

5.1 SYNTHETIC DATASETS

We start with the synthetic dataset “Spheres”: eleven 100D spheres in the 101D space, any two of
those do not intersect and one of the spheres contains all other inside. For the visualization, we
perform dimensionality reduction to 3D space. Figure 4 shows the results: RTD-AE is the best one
preserving the nestedness for the “Spheres” dataset. Also, RTD-AE outperforms other methods by
quality measures, see Table 1. We were unable to run MDS on “Spheres” dataset because it was too
large for that method. See more results in Appendix M.

5.2 REAL WORLD DATASETS

We performed experiments with a number of real-world datasets: MNIST (LeCun et al., 1998),
F-MNIST (Xiao et al., 2017), COIL-20 (Nene et al., 1996), scRNA mice (Yuan et al., 2017), scRNA
melanoma (Tirosh et al., 2016) with latent dimension of 16 and 2, see Tables 2, 5. The choice of
scRNA datasets was motivated by the increased importance of dimensionality reduction methods
in natural sciences, as was previously mentioned. RTD-AE is consistently better than competitors;
moreover, the gap in metrics for the latent dimension 16 is larger than such for the latent dimension
2 (see Appendix D). 2 For the latent dimension 2, RTD-AE is the first or the second one among
the methods by the quality measures (see Table 5, Figure 7 in Appendix D). We conclude that the
proposed RTD-AE does a good job in preserving global structure of data manifolds.

2PHATE execution take too much time and its results are no presented for many datasets.

Table 1: Quality of data manifold global structure preservation at projection from 101D into 3D
space.

Quality measure

Dataset Method L. C. W. D. H0 T. A. RTD

Spheres 3D t-SNE 0.087 47.89 ± 2.59 0.206 ± 0.01 37.32 ± 1.44
UMAP 0.049 48.31 ± 1.83 0.313 ± 0.03 44.70 ± 1.47
PaCMAP 0.394 46.48 ± 1.61 0.156 ± 0.02 45.88 ± 1.51
PHATE 0.302 48.78 ± 1.65 0.207 ± 0.02 44.05 ± 1.42
PCA 0.155 47.15 ± 1.89 0.174 ± 0.02 38.96 ± 1.25
MDS N.A. N.A. N.A. N.A.
Ivis 0.257 46.32 ± 2.04 0.130 ± 0.01 41.15 ± 1.28
AE 0.441 45.07 ± 2.27 0.333 ± 0.02 39.64 ± 1.45
TopoAE 0.424 45.89 ± 2.35 0.274 ± 0.02 38.49 ± 1.59
RTD-AE 0.633 45.02 ± 2.69 0.346 ± 0.02 35.80 ± 1.63
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Table 2: Quality of data manifold global structure preservation at projection into 16D space.

Quality measure

Dataset Method L. C. W. D. H0 T. A. RTD

F-MNIST UMAP 0.602 592.0 ± 3.9 0.741 ± 0.018 12.31 ± 0.44
PaCMAP 0.600 585.9 ± 3.2 0.741 ± 0.013 12.72 ± 0.48
Ivis 0.582 552.6 ± 3.5 0.718 ± 0.014 10.76 ± 0.30
PHATE 0.603 576.4 ± 4.4 0.756 ± 0.016 10.72 ± 0.15
AE 0.879 320.5 ± 1.9 0.850 ± 0.004 5.52 ± 0.17
TopoAE 0.905 190.7 ± 1.2 0.867 ± 0.006 3.69 ± 0.24
RTD-AE 0.960 181.2 ± 0.8 0.907 ± 0.004 3.01 ± 0.13

MNIST UMAP 0.427 879.1 ± 5.6 0.625 ± 0.016 17.62 ± 0.73
PaCMAP 0.410 887.5 ± 6.1 0.644 ± 0.012 20.07 ± 0.70
Ivis 0.423 712.6 ± 5.0 0.668 ± 0.013 12.40 ± 0.32
PHATE 0.358 819.5 ± 4.0 0.626 ± 0.018 15.01 ± 0.25
AE 0.773 391.0 ± 2.9 0.771 ± 0.010 7.22 ± 0.14
TopoAE 0.801 367.5 ± 1.9 0.796 ± 0.014 5.84 ± 0.19
RTD-AE 0.879 329.6 ± 2.6 0.833 ± 0.006 4.15 ± 0.18

COIL-20 UMAP 0.301 274.7 ± 0.0 0.574 ± 0.011 15.99 ± 0.52
PaCMAP 0.230 273.5 ± 0.0 0.548 ± 0.012 15.18 ± 0.35
Ivis N.A. N.A. N.A. N.A.
PHATE 0.396 250.7 ± 0.000 0.575 ± 0.014 13.76 ± 0.78
AE 0.834 183.6 ± 0.0 0.809 ± 0.008 8.35 ± 0.15
TopoAE 0.910 148.0 ± 0.0 0.822 ± 0.020 6.90 ± 0.19
RTD-AE 0.944 88.9 ± 0.0 0.892 ± 0.007 5.78 ± 0.10

scRNA mice UMAP 0.560 1141.0 ± 0.0 0.712 ± 0.010 21.30 ± 0.17
PaCMAP 0.496 1161.3 ± 0.0 0.674 ± 0.016 21.89 ± 0.13
Ivis 0.401 1082.6 ± 0.0 0.636 ± 0.007 22.56 ± 1.13
PHATE 0.489 1134.6 ± 0.0 0.722 ± 0.013 21.34 ± 0.32
AE 0.710 1109.2 ± 0.0 0.788 ± 0.013 20.80 ± 0.16
TopoAE 0.634 826.0 ± 0.0 0.748 ± 0.010 15.37 ± 0.22
RTD-AE 0.777 932.9 ± 0.0 0.802 ± 0.006 17.03 ± 0.15

scRNA melanoma UMAP 0.474 1416.9 ± 9.2 0.682 ± 0.013 20.02 ± 0.35
PaCMAP 0.357 1441.8 ± 9.1 0.681 ± 0.014 20.53 ± 0.36
Ivis 0.465 1168.0 ± 11.4 0.653 ± 0.016 16.31 ± 0.28
PHATE 0.427 1427.5 ± 9.1 0.687 ± 0.018 20.18 ± 0.41
AE 0.458 1345.9 ± 11.3 0.708 ± 0.016 19.50 ± 0.37
TopoAE 0.544 973.7 ± 11.1 0.709 ± 0.011 13.41 ± 0.35
RTD-AE 0.684 769.5 ± 11.5 0.728 ± 0.017 10.35 ± 0.33

For the “Mammoth” (Coenen & Pearce, 2019b) dataset (Figure 1) we did dimensionality reduction
3D → 2D. Besides good quality measures, RTD-AE produced an appealing 2D visualization: both
large-scale (shape) and low-scale (chest bones, toes, tusks) features are preserved.

5.3 ANALYSIS OF DISTORTIONS

Next, to study distortions produced by various dimensionality reduction methods we learn transfor-
mation from 2D to 2D space, see Figure 5. Here, we observe that RTD-AE in general recovers the
global structure for all of the datasets. RTD-AE typically does not suffer from the squeezing (or
bottleneck) issue, unlike AE, which is noticeable in “Random”, “3 Clusters” and “Circle”. Whereas
t-SNE and UMAP struggle to preserve cluster densities and intercluster distances, RTD-AE manages
to do that in every case. It does not cluster random points together, like t-SNE. Finally, the overall
shape of representations produced by RTD-AE is consistent, it does not tear apart close points, which
is something UMAP does in some cases, as shown in the “Circle” dataset. The metrics, presented in
the Table 6 in Appendix E, also confirm the statements above. RTD-AE has typically higher pairwise
distances linear correlation and triplet accuracy, which accounts for good multi-scale properties,
while having a lower Wasserstein distance between persistence barcodes.
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Figure 5: Results on synthetic 2D data. First column: original data. Other columns: results of
dimensionality reduction methods.

5.4 LIMITATIONS AND COMPUTATIONAL COMPLEXITY

The main source of complexity is RTD computation. For the batch size b, object dimensionality d and
latent dimensionality k, the complexity is O(b2(d+ k)) operations since all the pairwise distances
should be calculated. The R-Cross-Barcode computation is at worst cubic in the number of simplices
involved. However, the computation is often quite fast for batch sizes ≤ 256 since the boundary
matrix is typically sparse for real datasets. The selection of simplices whose addition leads to “birth”
or “death” of the corresponding homological class doesn’t take extra time. For RTD calculation and
differentiation, we used GPU-optimized software. As calculation relies heavily on the batch size, the
training time of RTD-AE ranges from 1.5x the time of the basic autoencoder at batch size 8 to 4-6x
the time in case of batch 512. For COIL-20, the it took ∼10 minutes to train a basic AE and ∼20
minutes for RTD-AE. Overall, the computation of a R-Cross-Barcode takes a similar time as in the
previous step even on datasets of big dimensionality.

5.5 DISCUSSION

Experimental results show that RTD-AE better preserves the data manifold global structure than
its competitors. The most interesting comparison is with TopoAE, the state-of-the-art, which uses
an alternative topology-preserving loss. The measures of interest for topology comparison are the
Wasserstein distances between persistence barcodes. Tables 2, 6, 5 show that RTD-AE is better than
TopoAE. RTD minimization has a stronger theoretical foundation than the loss from TopoAE (see
Section 3.2).

6 CONCLUSIONS
In this paper, we have proposed an approach for topology-preserving representation learning (dimen-
sionality reduction). The topological similarity between data points in original and latent spaces is
achieved by minimizing the Representation Topology Divergence (RTD) between original data and
latent representations. Our approach is theoretically sound: RTD=0 means that persistence barcodes
of any degree coincide and the topological features are located in the same places. We proposed how
to make RTD differentiable and implemented it as an additional loss to the autoencoder, constructing
RTD-autoencoder (RTD-AE). Computational experiments show that the proposed RTD-AE better
preserves the global structure of the data manifold (as measured by linear correlation, triplet distance
ranking accuracy, Wasserstein distance between persistence barcodes) than popular methods t-SNE
and UMAP. Also, we achieve higher topological similarity than the alternative TopoAE method.
Of course, the application of RTD loss is not limited to autoencoders and we expect more deep
learning applications involving one-to-one correspondence between points. The main limitation is
that calculation of persistence barcodes and RTD, in particular, is computationally demanding. We
see here another opportunity for further research.
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A SIMPLICIAL COMPLEXES AND FILTRATIONS

Here we briefly recall basic topological objects mentioned in our paper. Suppose we have a full graph
X = {x0, x1, . . . xn} a set of points in some metric space (R, d).

Definition A.1 Any set σ ⊆ X is (combinatorial) simplex. Its vertices are all points that belong to K.
Its dimensionality is number equal to |σ| − 1. Its faces are all proper subsets of σ.

Definition A.2 Simplicial complex C is a set of simplices such that for every simplex σ ∈ C it contains
all faces of σ and for every two simplices σ1, σ2 ∈ C their intersection is face of both of them.

Simplicial complexes can be seen as higher-dimensional generalization of graphs. There are many
ways to build a simplical complex from a set of points, but only two important for this work:
Vietoris-Rips and Chech complexes.

Definition A.3 Given a threshold α the Vietoris-Rips (simplicial) complex at threshold α (denotes as
VRα(X)) is defined as set set of all simplices σ such that ∀xi, xj ∈ σ holds d(xi, xj) ≤ α.

Definition A.4 Given a threshold α the Čech (simplicial) complex at threshold α (denotes as
Cechα(X)) is defined as set set of all simplices σ such that all closed balls of radius α and with
centers in vertices of σ have a non-empty intersection.

Alhough Čech complexes are rarely used in applications of Topological Data Analysis, they are
important due to the fact that their fundamental topological properties are equal to those of the
manifold ‘behind’ X (so-called Nerve theorem, see (Chazal & Michel, 2017) for proper explanation).

The Vietoris-Rips complexes ‘approximate’ Čech complexes :

VRα(X) ⊆ Cechα(X) ⊆ VR2α(X)

Note that the definition of the Vietoris-Rips complex doesn’t require (even indirectly) function d(.)
to be metric - it should only be symmetric and non-negative. And so we can define the Vietoris-Rips
complex of a weighted graph G = (V,E). To do so we modify Definition A.3 by replacing X with
V and taking d(vi, vj) as the weight of the edge between vi and vj for i ̸= j and d(vi, vi) = 0,∀i.
In the scope of this work we consider only Vietoris-Rips complexes of graphs.

Definition A.5 A filtration of a simplicial complex C is a nested family of subcomplexes (Ct)t∈T ,
where T ⊆ R, such that for any t1, t2 ∈ T , if t1 ≤ t2 then Ct1 ⊆ Ct2 , and C =

⋃
t∈T Ct. The set T

may be either finite or infinite.

Vietoris-Rips filtration can ‘reflect’ topology of data set at every scale. Usually data sets are finite
so there is finite number of thresholds that give different Vietoris-Rips complexes and thus finite
filtration is enough for it.

B FORMAL DEFINITION OF RTD

Figure 6: The graph Ĝw,w̃ to
compare Gw = {A1, A2, A3}
and Gw̃ = {Ã1, Ã2, Ã3}.
Dashed edges correspond to
zero weights, green edges to
w, blue edges to min(w, w̃);
edges with weight +∞ are not
shown.

The classic persistent homology is dedicated to the analysis of a
single point cloud X . Recently, Representation Topology Diver-
gence (RTD) (Barannikov et al., 2022) was proposed to measure the
dissimilarity in the multi-scale topology between two point clouds
X, X̃ of equal size N with a one-to-one correspondence between
clouds.

Let VRα(Gw), VRα(Gw̃) be two Vietoris-Rips simplicial com-
plexes, where w, w̃ - are the distance matrices of X, X̃ . The
idea behind RTD is to compare VRα(Gw) with VRα(Gmin(w,w̃)),
where Gmin(w,w̃) is the graph having weights min(w, w̃) on its
edges. By definition, VRα(Gw) ⊆ VRα(Gmin(w,w̃)), VRα(Gw̃) ⊆
VRα(Gmin(w,w̃)).

To compare VRα(Gw) with VRα(Gmin(w,w̃)), the auxiliary graph is
constructed with doubled set of vertices Ĝw,w̃ (Figure 6) and weights
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on edges given in the simplest case by:

m =

(
0 (w+)

⊺

w+ min(w, w̃)

)
,

where w+ is the w matrix with lower-triangular part replaced by +∞, see ((Barannikov et al., 2022),
section 2.2) for the general form of the matrix m. The persistence barcode of the weighted graph
VR(Ĝw,w̃) is called the R-Cross-Barcode (for Representations’ Cross-Barcode). Note that for every
two nodes in the graph Ĝw,w̃ there exists a path with edges having zero weights. Thus, the H0 barcode
in the R-Cross-Barcode is always empty.

Intuitively, the k−th barcode of VRα(Ĝw,w̃) records the k-dimensional topological features that
are born in VRα(Gmin(w,w̃)) but are not yet born near the same place in VRα(Gw), and the
(k − 1)−dimensional topological features that are dead in VRα(Gmin(w,w̃)) but are not yet dead in
VRα(Gw). The R-Cross-Barcodek(X, X̃) records the differences in the multi-scale topology of the
two point clouds. The topological features with longer lifespans indicate in general the essential
features.

Basic properties of R-Cross-Barcodek(X, X̃) (Barannikov et al. (2022)) are:

• if X = X̃ , then for all k R-Cross-Barcodek(X, X̃) = ∅;

• if all distances within X̃ are zero i.e. all objects are represented by the same point in X̃ ,
then for all k ≥ 0: R-Cross-Barcodek+1(X, X̃) = Barcodek(X) the standard barcode of
the point cloud X;

• for any value of threshold α, the following sequence of natural linear maps of homology
groups

r3i+3−−−→ Hi(V Rα(Gw))
r3i+2−−−→ Hi(V Rα(Gmin(w,w̃)))

r3i+1−−−→
r3i+1−−−→ Hi(V Rα(Ĝw,w̃))

r3i−−→ Hi−1(V Rα(Gw))
r3i−1−−−→

r3i−1−−−→ . . .
r1−→ H0(V Rα(Gmin(w,w̃)))

r0−→ 0 (1)

is exact, i.e. for any j the kernel of the map rj is the image of the map rj+1.
Proposition 3. Given an exact sequence as in (1) with finite-dimensional filtered complexes Aα, Bα,
Cα, the alternating sums over k of their topological features lifespans satisfy∑

k

(−1)klk(A)−
∑
k

(−1)klk(B) +
∑
k

(−1)klk(C) = 0 (2)

where lk(Z) denotes the sum of bars lengths in Barcodek(Z), here for simplicity all lifespans are
assumed to be finite.

Proof. The exact sequence implies that the alternating sums of dimensions of the homology groups
satisfy, for any α,∑

k

(−1)k dimHk(Aα)−
∑
k

(−1)k dimHk(Bα) +
∑
k

(−1)k dimHk(Cα) = 0

Notice that for any α1 < α2

dimHk(Zα2)− dimHk(Zα1) = #b(Z, (α1, α2], k)−#d(Z, (α1, α2], k)

where #b(Z, (α1, α2], k), respectfully #d(Z, (α1, α2], k), is the number of births, respectfully
deaths, of dimension k topological features in Z at thresholds α, α1 < α ≤ α2. Hence∑

k

(−1)k(#b−#d)(A, (α1, α2], k)−
∑
k

(−1)k(#b−#d)(B, (α1, α2], k)+

+
∑
k

(−1)k(#b−#d)(C, (α1, α2], k) = 0 (3)
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Table 3: Quality of data manifold global structure preservation at projection into 16D space.

Quality measure

Dataset Method L. C. W. D. H0 T. A.

F-MNIST PCA 0.977 351.3 ± 1.7 0.951 ± 0.005
RTD-AE 0.960 181.2 ± 0.8 0.907 ± 0.004

MNIST PCA 0.911 397.4 ± 1.3 0.863 ± 0.010
RTD-AE 0.879 329.6 ± 2.6 0.833 ± 0.006

COIL-20 PCA 0.966 196.4 ± 0.0 0.933 ± 0.004
RTD-AE 0.944 88.9 ± 0.0 0.892 ± 0.007

Setting α1 = α− ϵ, α2 = α+ ϵ, we get, for any α∑
k

(−1)k(#b−#d)(A,α, k)−
∑
k

(−1)k(#b−#d)(B,α, k)+
∑
k

(−1)k(#b−#d)(C,α, k) = 0

where #b(Z,α, k), respectfully #d(Z,α, k), is the number of births, respectfully deaths, of dimen-
sion k topological features in Z at the threshold α. Summing this over all nontrivial filtration steps α
gives the identity (2).

Proposition 4.∑
k

(−1)kRTDk(w, w̃)−
∑
k

(−1)klk(V R(Gw)) +
∑
k

(−1)klk(V R(Gmin(w,w̃)))) = 0 (4)

C LEARNING REPRESENTATIONS IN HIGHER DIMENSIONS

The following table shows results of the experiment with latent dimensions 16, 32, 64 and 128 for the
F-MNIST dataset. RTD-AE are consistently better than the competitors.

D REAL WORLD DATASETS, 2D LATENT SPACE

Table 5 and Figure 7 present the results.

E SYNTHETIC DATASETS, 2D LATENT SPACE

Table 6 shows the results.

F RTD MINIMIZATION WITHOUT THE AUTOENCODER

Given the set X = {xi}ni=1 of n objects in high-dimensional space xi ∈ Rd, our goal is to find their
representations in low-dimensional space Z = {zi}, zi ∈ Rk. It is possible to solve

min
Z

RTD(X,Z)

directly w.r.t n vectors zi ∈ Rk, in the flavor similar to UMAP and t-SNE. Figures 8, 9 show the
results of two experiments with 3D→2D dimensionality reduction. We conclude that dimensionality
reduction via RTD optimization better preserves data topology: meridians are kept connected (Figure
8) and the nestedness is retained (Figure 9). The optimization took ∼1 hour. For the experiment with
nested spheres, the RTD optimization was warmstarted with the MDS solution.
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Table 4: Quality of data manifold global structure preservation at projection into high-dimensional
space.

Quality measure

Dataset Method L. C. W. D. H0 W. D. H1 T. A. RTD

F-MNIST-128D UMAP 0.605 594.2 ± 3.0 20.73 ± 0.56 0.739 ± 0.010 12.33 ± 0.22
PCA 0.996 107.4 ± 2.0 11.46 ± 0.39 0.981 ± 0.002 1.93 ± 0.08
PaCMAP 0.589 587.9 ± 5.4 20.90 ± 0.27 0.736 ± 0.012 12.94 ± 0.51
Ivis 0.521 551.7 ± 5.6 23.99 ± 0.69 0.693 ± 0.011 10.46 ± 0.23
PHATE 0.604 577.7 ± 3.8 21.57 ± 0.52 0.753 ± 0.010 10.61 ± 0.24
AE 0.892 240.5 ± 3.2 22.88 ± 1.14 0.860 ± 0.006 4.34 ± 0.15
TopoAE 0.954 66.2 ± 2.1 12.02 ± 0.65 0.902 ± 0.005 2.16 ± 0.14
RTD-AE 0.943 16.9 ± 1.8 9.43 ± 0.73 0.884 ± 0.010 1.41 ± 0.09

F-MNIST-64D UMAP 0.596 590.7 ± 4.3 20.27 ± 0.71 0.735 ± 0.021 12.38 ± 0.35
PCA 0.992 179.1 ± 1.9 18.61 ± 0.44 0.970 ± 0.003 3.10 ± 0.09
PaCMAP 0.510 590.5 ± 3.4 21.37 ± 0.47 0.731 ± 0.014 13.10 ± 0.37
Ivis 0.521 537.6 ± 3.3 26.86 ± 0.51 0.691 ± 0.011 10.34 ± 0.31
PHATE 0.586 586.1 ± 3.2 20.78 ± 0.52 0.751 ± 0.012 10.67 ± 0.36
AE 0.888 281.0 ± 2.2 24.78 ± 0.86 0.861 ± 0.007 4.85 ± 0.18
TopoAE 0.938 89.3 ± 1.8 15.27 ± 0.68 0.889 ± 0.005 2.56 ± 0.13
RTD-AE 0.954 57.0 ± 0.6 11.76 ± 0.28 0.895 ± 0.008 1.48 ± 0.09

F-MNIST-32D UMAP 0.593 597.1 ± 5.3 20.39 ± 0.24 0.741 ± 0.013 12.11 ± 0.30
PCA 0.986 263.0 ± 2.3 24.76 ± 0.97 0.960 ± 0.006 4.47 ± 0.12
PaCMAP 0.585 589.1 ± 4.9 21.15 ± 0.55 0.738 ± 0.010 12.61 ± 0.36
Ivis 0.696 559.8 ± 4.0 23.80 ± 0.57 0.770 ± 0.014 10.14 ± 0.29
PHATE 0.599 576.7 ± 3.5 21.79 ± 0.69 0.753 ± 0.011 10.48 ± 0.24
AE 0.904 302.2 ± 2.6 26.37 ± 0.74 0.870 ± 0.008 5.28 ± 0.17
TopoAE 0.942 120.9 ± 2.5 15.84 ± 0.57 0.892 ± 0.006 2.49 ± 0.10
RTD-AE 0.963 108.7 ± 1.8 14.03 ± 0.90 0.907 ± 0.006 1.85 ± 0.06

F-MNIST-16D UMAP 0.588 592.2 ± 4.0 20.37 ± 0.37 0.739 ± 0.013 12.31 ± 0.44
PCA 0.977 351.3 ± 1.7 29.15 ± 1.08 0.951 ± 0.005 5.91 ± 0.19
PaCMAP 0.600 585.9 ± 3.2 21.94 ± 0.59 0.741 ± 0.013 12.72 ± 0.48
Ivis 0.582 552.6 ± 3.5 24.83 ± 0.53 0.718 ± 0.014 10.76 ± 0.30
PHATE 0.603 576.4 ± 4.4 21.61 ± 0.52 0.756 ± 0.016 10.72 ± 0.15
AE 0.879 320.5 ± 1.9 27.01 ± 0.89 0.850 ± 0.004 5.52 ± 0.17
TopoAE 0.905 190.7 ± 1.2 25.65 ± 1.06 0.867 ± 0.006 3.69 ± 0.24
RTD-AE 0.960 181.2 ± 0.8 20.94 ± 0.80 0.907 ± 0.004 3.01 ± 0.13

G ALTERNATIVE RTD VARIANT

RTD relies on the auxiliary graph with doubled set of vertices Ĝw,w̃ and weights on edges:

m =

(
0 (w+)

⊺

w+ min(w, w̃)

)
.

An alternative variant of RTD is possible with the following matrix of weights:

m =

(
0 max(w, w̃)⊺+

max(w, w̃)+ w

)
in the simplest case. Both of them share similar properties and guarantee that RTD(X,Z) = 0
when all the pairwise distances in point clouds X and Z are the same. Also in both cases if
RTDk(X,Z) = RTDk(Z,X) = 0 for k ≥ 1 then the persistence diagrams of X and Z coincide.
The minimization of the sum of both variants of RTD leads to richer gradient information. We used
this loss in the experiment with the “Mammoth” dataset.
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Table 5: Quality of data manifold global structure preservation for real-world data dimension reduction
to 2D.

Quality measure

Dataset Method L. C. W. D. H0 T. A. RTD

Mammoth t-SNE 0.787 21.31 ± 0.25 0.830 ± 0.011 5.52 ± 0.12
UMAP 0.776 28.64 ± 0.25 0.801 ± 0.016 6.81 ± 0.25
AE 0.966 21.94 ± 0.25 0.935 ± 0.005 6.38 ± 0.22
PaCMAP 0.868 21.13 ± 0.21 0.866 ± 0.008 5.91 ± 0.29
Ivis 0.737 13.48 ± 0.30 0.764 ± 0.007 6.14 ± 0.20
TopoAE 0.915 21.51 ± 0.22 0.886 ± 0.007 5.16 ± 0.08
RTD-AE 0.972 17.45 ± 0.23 0.928 ± 0.006 3.87 ± 0.07

F-MNIST t-SNE 0.547 602.9 ± 2.8 0.695 ± 0.011 11.11 ± 0.28
UMAP 0.595 616.5 ± 2.8 0.722 ± 0.011 11.72 ± 0.24
AE 0.762 614.7 ± 3.1 0.736 ± 0.012 11.51 ± 0.42
PaCMAP 0.630 612.8 ± 6.0 0.732 ± 0.010 11.48 ± 0.27
Ivis 0.496 609.2 ± 5.8 0.694 ± 0.011 11.70 ± 0.29
PHATE 0.613 608.2 ± 2.7 0.739 ± 0.012 11.60 ± 0.22
TopoAE 0.795 599.0 ± 2.9 0.827 ± 0.011 11.84 ± 0.43
RTD-AE 0.789 600.0 ± 3.1 0.807 ± 0.011 10.67 ± 0.26

MNIST t-SNE 0.355 890.1 ± 6.8 0.611 ± 0.016 15.89 ± 0.28
UMAP 0.347 905.5 ± 6.7 0.612 ± 0.020 16.49 ± 0.21
AE 0.415 892.7 ± 5.9 0.635 ± 0.011 16.41 ± 0.27
PaCMAP 0.310 902.8 ± 7.0 0.596 ± 0.015 16.41 ± 0.27
Ivis 0.377 887.5 ± 6.8 0.630 ± 0.014 16.03 ± 0.24
PHATE 0.389 899.7 ± 3.4 0.623 ± 0.013 16.21 ± 0.29
TopoAE 0.349 891.5 ± 4.6 0.612 ± 0.014 15.71 ± 0.09
RTD-AE 0.501 885.1 ± 4.9 0.664 ± 0.009 15.79 ± 0.38

COIL-20 t-SNE 0.462 273.9 ± 0.0 0.648 ± 0.025 12.23 ± 0.27
UMAP 0.247 279.5 ± 0.0 0.587 ± 0.013 13.72 ± 0.35
AE 0.667 271.8 ± 0.0 0.750 ± 0.016 11.82 ± 0.28
PaCMAP 0.506 276.6 ± 0.0 0.670 ± 0.012 12.60 ± 0.42
Ivis N.A. N.A. N.A. N.A.
PHATE 0.305 272.4 ± 0.000 0.592 ± 0.018 13.11 ± 0.39
TopoAE 0.465 261.4 ± 0.0 0.662 ± 0.013 12.18 ± 0.23
RTD-AE 0.769 262.9 ± 0.0 0.796 ± 0.009 11.51 ± 0.19

scRNA mice t-SNE 0.634 1151.3 ± 0.0 0.749 ± 0.010 21.93 ± 0.10
UMAP 0.513 1161.3 ± 0.0 0.709 ± 0.015 22.26 ± 0.09
PCA 0.733 1147.3 ± 0.0 0.790 ± 0.015 22.05 ± 0.06
AE 0.677 1142.2 ± 0.0 0.778 ± 0.008 21.34 ± 0.17
PaCMAP 0.483 1167.1 ± 0.0 0.693 ± 0.015 22.44 ± 0.08
Ivis 0.254 1146.8 ± 0.0 0.602 ± 0.009 22.49 ± 0.25
PHATE 0.522 1159.0 ± 0.0 0.711 ± 0.021 22.09 ± 0.07
TopoAE 0.628 1144.2 ± 0.0 0.753 ± 0.019 21.15 ± 0.10
RTD-AE 0.780 1142.3 ± 0.0 0.797 ± 0.010 21.03 ± 0.13

scRNA melanoma t-SNE 0.505 1445.6 ± 3.2 0.699 ± 0.019 20.45 ± 0.38
UMAP 0.471 1459.5 ± 3.0 0.684 ± 0.014 20.87 ± 0.43
PCA 0.536 1446.7 ± 3.1 0.722 ± 0.014 20.64 ± 0.39
AE 0.407 1442.0 ± 3.5 0.684 ± 0.014 20.90 ± 0.41
PaCMAP 0.401 1460.9 ± 3.1 0.674 ± 0.017 20.91 ± 0.38
Ivis 0.504 1442.5 ± 3.1 0.699 ± 0.016 20.50 ± 0.35
PHATE 0.427 1458.8 ± 3.1 0.689 ± 0.023 20.94 ± 0.41
TopoAE 0.521 1442.9 ± 3.2 0.709 ± 0.009 20.23 ± 0.38
RTD-AE 0.639 1438.2 ± 3.0 0.747 ± 0.009 19.81 ± 0.37

17



Published as a conference paper at ICLR 2023

Figure 7: Results on real-world data reduction to 2D.

(a) Original 3D data
(b) RTD

(c) t-SNE (d) UMAP

Figure 8: “Meridians on the sphere” dataset. Notice the disconnectedness of meridians in (c) and (d).

H HYPERPARAMETERS

In the experiments with projecting to 3D-space we trained model for 100 epochs using Adam
optimizer. We initially trained autoencoder for 10 epochs with only the reconstruction loss and
learning rate 1e-4, then continued with RTD. Epochs 11-30 were trained with learning rate 1e-2,
epochs 31-50 with learning rate 1e-3 and for epochs all after learning rate 1e-4 was used. Batch size
was 80.

(a) Original 3D data

(b) RTD (c) t-SNE (d) UMAP

Figure 9: “Nested spheres” dataset.
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Table 6: Quality of data manifold global structure preservation on synthetic data.

Quality measure

Dataset Method L. C. W. D. H0 W.D. H1 T. A. RTD

Circle t-SNE 0.986 1.073 0.079 0.95 0.59
UMAP 0.808 1.823 0.712 0.81 1.46
AE 0.630 1.179 0.744 0.81 1.02
PaCMAP 0.747 2.263 N.A. 0.81 1.61
Ivis 0.990 0.182 N.A. 0.96 0.18
PHATE 0.891 0.871 N.A. 0.88 1.04
TopoAE 0.978 0.220 0.080 0.95 0.19
RTD-AE 0.984 0.105 0.070 0.96 0.07

2 Clusters t-SNE 0.633 9.122 1.171 0.72 5.18
UMAP 0.542 9.003 0.914 0.84 6.27
AE 0.925 1.654 0.807 0.94 2.03
PaCMAP 0.269 10.41 N.A. 0.64 5.71
Ivis 0.423 7.400 N.A. 0.76 5.58
PHATE 0.281 7.356 N.A. 0.66 4.90
TopoAE 0.719 7.692 0.883 0.87 3.59
RTD-AE 0.999 0.313 0.313 0.96 0.32

3 Clusters t-SNE 0.751 4.111 0.370 0.81 0.91
UMAP 0.615 2.671 0.280 0.78 0.83
AE 0.907 1.013 0.054 0.93 0.59
PaCMAP 0.778 2.620 N.A. 0.89 0.92
Ivis 0.918 2.511 N.A. 0.82 1.30
PHATE 0.651 1.538 N.A. 0.72 0.99
TopoAE 0.997 0.586 0.054 0.81 0.13
RTD-AE 0.999 0.307 0.028 0.99 0.11

Random t-SNE 0.981 4.182 1.938 0.95 1.54
UMAP 0.950 0.979 0.622 0.91 0.55
AE 0.700 9.976 2.343 0.75 1.32
PaCMAP 0.982 5.398 N.A. 0.95 2.08
Ivis 0.648 11.49 N.A. 0.75 2.17
PHATE 0.945 6.703 N.A. 0.92 2.12
TopoAE 0.854 3.288 1.367 0.84 0.91
RTD-AE 0.996 0.148 0.389 0.98 0.17

For 2D and high-dimensional projections, we used fully-connected autoencoders with hyperparame-
ters specified in the Table 7. The autoencoder was initially trained only with reconstruction loss for
some number of epochs, and then the RTD loss kicked in. The learning rate stayed the same for an
entire duration of training.

For experiments we used NVIDIA TITAN RTX.

I RTD OPTIMIZATION SPEED-UPS

For all computations of RTD-barcodes in this work we used modified version of Ripser++ software
(Zhang et al., 2020). Modification that we made was intended at decreasing computational time via
exploration of the structure of graph Ĝw,w̃ (see Section 3.2). The idea behind it is to reduce the size
of filtered complex by excluding from it the simplices that do not affect the persistence homology.

Here we consider only simplices of dimension at least 1.

We exclude all simplices spanned by vertices from the first half of the vertex set of the graph Ĝw,w̃.
Those are the vertices corresponding to the upper-left quadrant of the graph‘s edge weights matrix
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Table 7: Hyperparameters description.

Dataset name Batch size LR Hidden dim # layers Epochs RTD epoch
Circle 80 10−3 16 3 100 20

Random 80 10−3 16 3 100 20

2 Clusters 80 10−3 16 3 100 20

3 Clusters 80 10−3 16 3 100 20

Mammoth 256 10−3 32 3 100 5

MNIST 256 10−4 512 3 250 60

F-MNIST 256 10−4 512 3 250 60

COIL-20 256 10−4 512 3 250 60

scRNA mice 256 10−3 768 3 250 60

scRNA melanoma 256 10−3 768 3 250 60

m from section B. All of them have diameters equal to zero. And if any such simplex spawn a
topological feature, it is immediately killed by another such simplex.

As before, let N be the number of vertices in point clouds. Then Ĝw,w̃ has 2N vertices and our
modification eliminates

(
N
d

)
out of

(
2N
d

)
simplices of dimension d− 1.

In particular, this eliminates around 1/8 of rows and 1/4 of columns (around 1/3 cells in total)
from the boundary matrix used for the computation of persistence pairs of dimension 1. On average,
comparing to the standard Ripser++ computation, this gives ≈ 45% less time for the computation of
persistence intervals of dimension 1.

Next, we describe some techniques that can improve convergence when RTD is to be minimized
without an autoencoder (F).

Usually we perform (sub)gradient descent to minimize RTD(X, X̃) between “movable” cloud X and
given constant X̃ .

Gradient smoothing. Subgradients computed at each step of this procedure associate each homo-
logical class with at most 4 points from X , while topological structures often include much more.
Moreover, adjustments w.r.t. them may be inconsistent for nearby points.

To overcome this, we “smooth” gradients by passing to each point averaged gradients of all its
neighbours. Let ∇(k)

i be the gradient value for Xi at step k and U(X
(k)
i ) be some neighbourhood of

X
(k)
i . Then the formula for each step of the gradient descent is

X
(k)
i = X

(k−1)
i − λk

β∇(k)
i + (1− β)

1

#{X(k)
j ∈ U(X

(k)
i )}

∑
X

(k)
j ∈U(X

(k)
i )

∇(k)
j


Here β ∈ [0; 1] is some parameter.

Minimum bypassing. Suppose we want to shorten an edge mi+N,j+N from bottom-right quadrant

of matrix m (i.e. ∂ RTD(X,X̃)
∂mi+N,j+N

< 0). It may occur that wi,j > w̃i,j , so

∂mi+N,j+N

∂Xi
=

Xi −Xj

||Xi −Xj ||2
I{wi,j < w̃i,j} = 0

and gradient descent will stuck here (since X̃ is constant). Thus there may appear a certain threshold
below which RTD(X, X̃) can’t be minimized in this case. But it can be further minimized if we
move points Xi and Xj close enough to each other so wi,j < w̃i,j .
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Table 8: RTD optimization speed-ups

Optimization trics RTD Relative value (%)

None 3.09059 100.00%
Gradient Smoothing 2.68406 86.73%
Minimum Bypassing 1.64366 53.07%
Both 1.20738 38.84%

To do it, if ∂ RTD(X,X̃)
∂mi+N,j+N

< 0 , we compute ∂mi,j

∂Xi
without indicator, i.e. as Xi−Xj

||Xi−Xj ||2 . This will assure
wi,j is decreasing and at certain point will became lower than w̃i,j .

If ∂ RTD(X,X̃)
∂mi+N,j+N

≥ 0 we don’t change anything, because the discussing effect appears only if we
minimize a minimum of a function and a constant.

We performed an experiment to transform a cloud in the shape of the infinity sign by minimizing the
RTD between this cloud and a ring-shaped cloud. Both clouds had 100 points and we did not use
batch optimisation. We performed 100 iterations of gradient descend to minimize RTD in each of the
following four setups: using none, each or both of Gradient Smoothing and Minimum Bypassing
tricks. For each setup we also searched for the best learning rate. The Table 8 shows the results after
100 iterations.

J COMPARISON WITH TOPOAE LOSS

Figure 10: Discontinuity of the TopoAE loss. The point cloud X̃ consists of two clusters {1, 2, 3}
and {4} (top). The point cloud X (bottom left) consists of two clusters {1, 2} and {3, 4}. (bottom
left). The distances within each cluster are of order 10−1 and the distances between the clusters equal
to 103 ± 10−1. The TopoAE loss is discontinuous because under a small perturbation of points, the
minimal spanning tree Γ may change. When the point 3 moves slightly as indicated, then the minimal
spanning tree Γ, coloured by yellow, changes and the term (w14 − w̃14)

2 ∼ 10−2 in TopoAE loss is
replaced by (w23 − w̃23)

2 ∼ 106.

The following simple example on Figure 10 shows that the TopoAE loss can be discontinuous in a
rather standard situation. The TopoAE loss (Moor et al., 2020) is constructed by calculating first the
two minimal spanning trees Γ, Γ̃ for each of the graphs Gw, Gw̃, whose weights are the distances
within two point clouds X and X̃ . Then the TopoAE loss is the sum of two terms LTopoAE = l + l̃.
One term is the sum over the set of edges of Γ: l = 1

2

∑
ij∈Edges(Γ)(wij − w̃ij)

2, and the other is the

analogous sum over the edges of Γ̃: l̃ = 1
2

∑
ij∈Edges(Γ̃)(wij − w̃ij)

2. Under a small perturbation
of points, the minimal spanning tree Γ may change, e.g. with a change of pair of the closest points
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from two clusters. But then the corresponding weights w̃ change in general discontinuosly. The
point cloud X̃ on Figure 10 consists of two clusters {1, 2, 3} and {4}. The point cloud X consists of
two clusters {1, 2} and {3, 4}. We set the distances within each cluster to be of order 10−1 and the
distance between the clusters equal to 103±10−1. When the point 3 moves in X slightly as indicated,
then the minimal spanning tree Γ, coloured by yellow, changes and the term (w14 − w̃14)

2 ∼ 10−2

in l is replaced by (w23 − w̃23)
2 ∼ 106.

Proposition 5. The RTD loss is continuous. The RTDk(X, X̃) depends continuously on (X, X̃).

The proof follows from the stability of the barcode of the filtered complex VRα(Ĝw,w̃) with respect
to the bottleneck distance under perturbation of the edge weights, see Appendix K.

K STABILITY OF R-Cross-Barcode AND RTD

Proposition 6. For any perturbations X ′ of a point cloud X and X̃ ′ of a point cloud X̃ ,

dB(R-Cross-Barcodek(X, X̃),R-Cross-Barcodek(X ′, X̃ ′))

≤ 2max(max
i

∥X ′
i −Xi∥,max

j
∥X̃ ′

j − X̃j∥) (5)

where dB denotes the bottleneck distance.

Proof. By construction, the R-Cross-Barcodek(X, X̃) is the k−th persistence barcode of the
weighted graph Ĝw,w̃ with the weights wij = ∥Xi−Xj∥ and min(wij , w̃ij), where w̃ij = ∥X̃i−X̃j∥.
If maxi∥X ′

i −Xi∥ = ε, then |w′
ij − wij | ≤ 2ε for w′

ij = ∥X ′
i −X ′

j∥. Similarly, |w̃′
ij − w̃ij | ≤ 2ε̃,

where ε̃ = maxj∥X̃ ′
j − X̃j∥. It follows that |min(w′

ij , w̃
′
ij)−min(wij , w̃ij)| ≤ 2max(ε, ε̃). Hence

the filtration of each simplex in V Rα(Ĝw,w̃) changes at most by 2max(ε, ε̃) under the perturbations.
Next, it follows from e.g. the description of metamorphoses of canonical forms in (Barannikov,
1994) that the birth or the death of each segment in the k−th barcode of Ĝw,w̃ changes under such
perturbations at most by 2max(ε, ε̃).

The above arguments give also the proof for the following stability result.

Proposition 7. For any quadruple of edge weights sets wij , w̃ij , w′
ij , w̃′

ij on G:

dB(R-Cross-Barcodek(w, w̃),R-Cross-Barcodek(w′, w̃′))

≤ max(max
ij

|w′
ij − wij |,max

ij
|w̃′

ij − w̃ij |) (6)

where dB denotes the bottleneck distance and R-Cross-Barcodek(w, w̃) denotes the persistence
barcode for the weighted graph Ĝw,w̃.

Proposition 8. For any pair of edge weights sets wij , w̃ij:

∥R-Cross-Barcodek(w, w̃)∥B ≤ max
ij

|wij − w̃ij | (7)

where ∥∥B denotes the bottleneck norm.

Proof. Substitute w′ = w̃′ = w̃ into (6).

Notice that (7) is analogous to (Barannikov et al., 2021, Proposition 1).

Given a pair of metrics u, u′ on a measure space (X , µ), an analogue of Gromov-Wasserstein distance
between u and u′ is

GW (u, u′) = inf
e,e′:X ↪→Z

∫
X
ρZ(e(x), e

′(x)) dµ (8)

where e : X ↪→ Z, e′ : X ↪→ Z are embeddings to various metric spaces (Z, ρZ) that are isometric
with respect to u, u′.
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Proposition 9. Given a triple of metrics u, u′, ũ on a measure space (X , µ), the expectation for
the bottleneck distance between the R-Cross-Barcodek(w, w̃) and the R-Cross-Barcodek(w′, w̃),
comparing the pairs of weighted graphs associated with a sample X = {x1, . . . , xn}, xi ∈ X ,
with the edge weights wij = u(xi, xj), w′

ij = u′(xi, xj), w̃ij = ũ(xi, xj), is upper bounded by the
Gromov-Wasserstein distance between u and u′:∫

X×...×X
dB(R-Cross-Barcodek(w, w̃),R-Cross-Barcodek(w′, w̃)) dµ⊗n ≤ nGW (u, u′) (9)

Proof. It follows from the R-Cross-Barcode stability (6) that∫
X×...×X

dB(R-Cross-Barcodek(w, w̃),R-Cross-Barcodek(w′, w̃)) dµ⊗n ≤

≤
∫
X×...×X

max
ij

|wij − w′
ij | dµ⊗n.

For any pair of isometric embeddings e : X ↪→ Z, e′ : X ↪→ Z:

|wij − w′
ij | = |ρZ(e(xi), e(xj))− ρZ(e

′(xi), e
′(xj))| ≤

≤ ρZ(e(xi), e
′(xi)) + ρZ(e(xj), e

′(xj)) ≤
n∑

i=1

ρZ(e(xi), e
′(xi))

by the triangle inequality for ρZ . Therefore∫
X×...×X

dB(R-Cross-Barcodek(w, w̃),R-Cross-Barcodek(w′, w̃)) dµ⊗n ≤

≤
∫
X×...×X

n∑
i=1

ρZ(e(xi), e
′(xi)) dµ

⊗n = n

∫
X
ρZ(e(x), e

′(x)) dµ

Proposition 10. The expectation for the bottleneck norm of R-Cross-Barcodek(w, w̃) for two
weighted graphs with edge weights wij = u(xi, xj), w̃ij = ũ(xi, xj), where u, ũ is a pair of
metrics on a measure space (X , µ), and X = {x1, . . . , xn}, xi ∈ X is a sample from (X , µ), is
upper bounded by Gromov-Wasserstein distance between u and ũ:∫

X×...×X
∥R-Cross-Barcodek(w, w̃)∥B dµ⊗n ≤ nGW (u, ũ) (10)

Proof. Substitute u′ = ũ, w′ = w̃ into (9)

L DATASETS

The exact size, nature and dimension of the datasets are presented in Table 9. The errors for the
synthetic data are not reported as they are zero due to the small sizes of the datasets.

L.1 SYNTHETIC DATA

The “Random” dataset consists of 500 points randomly distributed on a 2-dimensional unit square.
The choice for this dataset was inspired by Coenen & Pearce (2019a) and the ability of UMAP to
find clusters in noise.

The “Circle” dataset is represented by 100 points randomly distributed on a 2D circle. This dataset
has a simple non-trivial topology.

The “2 Clusters” dataset consists of 200 points, half of which goes to a dense Gaussian cluster, and
the other half goes to sparse Gaussian cluster with the same mean. It is used to test the methods
abilities to preserve cluster density.

The “3 Clusters” dataset consists of 3 Gaussian clusters each having 100 points. Two clusters are
located much closer to each other than the remaining one. We propose it to test the preservation of
the global structure, i.e. the distances between clusters.
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Table 9: Datasets description.

Dataset name Total size Nature Dimension
Circle 1× 102 Synthetic 2

Random 5× 102 Synthetic 2

2 Clusters 2× 102 Synthetic 2

3 Clusters 3× 102 Synthetic 2

Mammoth 50× 103 Real 3

F-MNIST 70× 103 Real 784

COIL-20 1440 Real 16384

scRNA mice 1402 Real 25392

scRNA melanoma 4645 Real 23686

L.2 REAL-WORLD DATASETS

Both MNIST and F-MNIST are typical datasets, consisting of 60000 28×28 pixel pictures of 10
different numbers and 10 types of clothes accordingly. COIL-20 is a dataset of pictures of 20
objects taken from 72 different angles spanning 360 degrees. scRNA mice dataset has 1402 single
nuclei extracted from hippocampal anatomical sub-regions (DG, CA1, CA2, and CA3), and scRNA
melanoma dataset monitors expression of 4645 cells isolated from 19 metastatic melanoma patients
(Szubert et al., 2019).

Datasets licences:

• Mammoth (Coenen & Pearce, 2019b), CC Zero License. Mammuthus primigenius
(blumbach), The Smithsonian Institute, https://3d.si.edu/object/3d/mammuthus-primigenius-
blumbach:341c96cd-f967-4540-8ed1-d3fc56d31f12

• MNIST (LeCun et al., 1998), MIT License.

• Fashion-MNIST (Xiao et al., 2017), MIT License.

• COIL-20 (Nene et al., 1996).

• scRNA mice (Yuan et al., 2017).

• scRNA melanoma (Tirosh et al., 2016).

M MORE DETAILS ON EXPERIMENTS WITH “SPHERES” AND “TORUS”

We performed experiments on dimensionality reduction to 3D space to evaluate preservation of
3-dimensional structures in data by our method. Experimental setup was outlined in Section 5.

For this task we have used two synthetic datasets.

The “Spheres” dataset consists of 17,250 points randomly distributed on surface of eleven 100-spheres
in 101-dimensional space. Any two of those do not intersect and one of the spheres contains all other
inside. Similar to “Circle” dataset (Section 5.3) UMAP splits bigger sphere (light grey) into 10 parts
and wraps each small sphere into one of them. PacMAP performs similar but it also splits a part of
bigger sphere into separate sphere. PCA and Ivis preserve the shape of inner spheres only and turn
all structure ‘inside out’. Both t-SNE and regular AE projects all points onto one sphere without clear
separation between clouds. The addition of a topological loss, both in TopoAE and in our RTD-AE,
preserves the global structure of inlaid clusters. However, TopoAE flattens inner clusters into disks,
while RTD-AE makes them into (hollow) spheres.

The “Torus” dataset consists of 5,000 points randomly distributed on surface of a 2-torus (T 2)
immersed into 100-dimensional space. Due to such nature of this dataset, PCA and MDS methods
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Table 10: Quality of data manifold global structure preservation at projection Torus dataset from
100D into 3D space and Spheres dataset from 101D to 2D.

Quality measure

Dataset Method L. C. W. D. H0 W. D. H1 T. A. RTD

Torus 2D t-SNE 0.989 1.021 ± 0.07 0.594 ± 0.05 0.896 ± 0.01 1.533 ± 0.09
UMAP 0.955 2.052 ± 0.15 0.931 ± 0.07 0.931 ± 0.07 3.250 ± 0.17
PaCMAP 0.987 1.410 ± 0.12 0.833 ± 0.08 0.883 ± 0.01 2.114 ± 0.08
PHATE 0.873 2.967 ± 0.33 1.143 ± 0.09 0.646 ± 0.02 4.061 ± 0.20
PCA 1.0 0.871 ± 0.24 0.014 ± 0.00 0.999 ± 0.00 0.000 ± 0.00
MDS 1.0 0.880 ± 0.24 0.022 ± 0.00 0.999 ± 0.00 0.000 ± 0.00
Ivis 0.844 2.606 ± 0.27 1.086 ± 0.11 0.580 ± 0.02 4.073 ± 0.17
AE 0.880 2.023 ± 0.30 1.073 ± 0.08 0.662 ± 0.02 3.433 ± 0.12
TopoAE 0.920 2.616 ± 0.34 1.017 ± 0.09 0.696 ± 0.02 2.975 ± 0.14
RTD-AE 0.992 0.907 ± 0.08 0.109 ± 0.01 0.902 ± 0.01 0.148 ± 0.01

Spheres 2D t-SNE 0.018 49.77 ± 1.40 0.349 ± 0.05 0.166 ± 0.01 44.00 ± 1.44
UMAP 0.020 47.55 ± 1.33 0.233 ± 0.03 0.191 ± 0.01 45.41 ± 1.47
PaCMAP 0.342 46.57 ± 1.68 0.208 ± 0.02 0.155 ± 0.01 45.56 ± 1.46
PHATE 0.040 48.68 ± 1.70 0.188 ± 0.03 0.201 ± 0.01 45.08 ± 1.93
PCA 0.117 49.58 ± 1.60 0.447 ± 0.05 0.180 ± 0.02 43.01 ± 1.36
MDS N.A. N.A. N.A. N.A. N.A.
Ivis 0.280 48.84 ± 1.73 0.342 ± 0.05 0.125 ± 0.01 44.21 ± 1.36
AE 0.334 48.31 ± 1.74 0.320 ± 0.04 0.124 ± 0.01 43.74 ± 1.60
TopoAE 0.264 49.94 ± 1.52 0.634 ± 0.06 0.245 ± 0.02 42.70 ± 1.74
RTD-AE 0.611 48.20 ± 1.72 0.538 ± 0.05 0.343 ± 0.01 41.22 ± 1.70

Table 11: Quality of data manifold global structure preservation for projection of COIL-20 into
3D-space.

Quality measure

Dataset Method L. C. W. D. H0 T. A.

COIL-20 t-SNE 0.608 255 ± 0.0 0.706 ± 0.01
UMAP 0.250 278 ± 0.0 0.574 ± 0.012
AE 0.792 253 ± 0.0 0.803 ± 0.009
TopoAE 0.677 236 ± 0.0 0.740 ± 0.016
RTD-AE 0.811 233 ± 0.0 0.814 ± 0.014

perform on it very well. RTD-AE takes the third place with very similar quality, see Figure 11 and
Table 10.

For “Spheres” dataset we have also performed experiments on dimensionality reduction to 2D space.
Overall results are quite similar to those obtained for 3D case. The behavior of baselines remains
essentially the same. The only interesting change is that RTD-AE now projects bigger sphere to a
ring and puts the projections of smaller spheres into the ring’s hollow center. RTD-AE outperforms
other methods in terms of linear correlation and triplet accuracy.

All of the representations were generated with default parameters of baseline methods. Results are
presented at Figures 4 (“Spheres” to 3D space) and 11 (“Spheres” to 2D space and “Torus” to 3D).

N ABLATION STUDY

In this section we investigate the effect of adding RTD loss on the performance of the model. We add
a hyperparameter λ responsible for the scale of the RTD loss variable: Lrec(X, X̃) + λRTD(X,Z).
We run our experiments on two datasets: COIL-20 and Circle. The hyperparameter value ranged
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Figure 11: Results on dimensionality reduction of Spheres to 2D-space and Torus to 3D-space
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Figure 12: Results of ablation study. The plot depicts the value of the metrics relative to its value at
λ = 1.0, which was used in all previous experiments. We clearly see that the addition of our RTD
loss indeed increases linear correlation and triplet accuracy and at the same time decreases W.D.H0.
At the same time choosing λ = 1.0 seems reasonable to us as increasing its value further does not
affect on the quality.

(a) PaCMAP (b) Ivis

Figure 13: Additional dimensionality reduction methods applied to the “Mammoth” dataset

from 10−6 to 103. For each value of λ we run the procedure 8 times to get the confidence levels of
our metrics. The results are depicted at Figure 12.

O MORE DIMENSIONALITY REDUCTION METHODS ON “MAMMOTH” DATASET

See Figure 13.

P R-CROSS-BARCODES

See Figure 14.

Q RECONSTRUCTION LOSS

See Table 12 for results.

R HYPERPARAMETERS SEARCH FOR SPHERES DATASET (INTO 2D)

For TopoAE we performed hyperparametrs search in accordance with the original paper
Moor et al. (2020) and selected best combination according to KL0.1-divergence.

For RTD-AE we searched for batch size in [20; 250] and λ in [0.1; 10]. Best combination was once
again selected w.r.t. KL0.1-divergence.

Results are presented in Table 13. For Wasserstein Distance and Triplet Accuracy difference between
means is lesser than standard derivations, and due to this, we performed one-tailed Student’s t-test to
verify their relation. According to its results, we can reject the null hypothesis that the mean W.D.
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Figure 14: R-Cross-Barcodes between latent representations and original data points. Top: R-
Cross-Barcode(Z0, X), R-Cross-Barcode(X,Z0). Bottom: R-Cross-Barcode(Z,X), R-Cross-
Barcode(X,Z). X - “Mammoth“ dataset, Z - latent representations from RTD-AE, Z0 - latent
representation from the untrained autoencoder. Intervals in R-Cross-Barcodes are smaller after
training.

Figure 15: Dimensionality reduction of Spheres dataset to 2D-space after hyperparameter search.

H0 for TopoAE is lower than the mean W.D. H0 for RTD-AE at a significance level of 0.05. Same
result confirming the better performance of RTD-AE was obtained for the triplet accuracy.

S ON IDENTITY OF INDISCERNIBLES FOR THE TOPOAE LOSS

We compare two point clouds X, X̃ from Figure 16. For these point clouds, RTD(X, X̃) = 0.207,
while the topological part of the TopoAE loss equals 0. The distinguishing topological feature
between X and X̃ is the cycle in X̃ which is born at α = 1 and dies at α =

√
2. R-Cross-Barcode(X̃ ,

X) depicts this difference.
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(a) The point cloud X . (b) The point cloud X̃ .

(c) The barcode of X . (d) The barcode of X̃ .

(e) The R-Cross-Barcode1(X, X̃)

Figure 16: Two point clouds X, X̃ for which the identity of indiscernibles property doesn’t hold for
the topological term in the TopoAE loss. The one-to-one correspondence between clouds is depicted
by numbers. The minimal spanning trees 1− 2− 3− 4 have edges of identical length for both point
clouds. For these point clouds, RTD(X, X̃) = 0.207, while the topological term of the TopoAE loss
equals 0. The topology of these point clouds is different, in particular they have different barcodes.
The distinguishing topological feature between X and X̃ is the cycle in X̃ which is born at α = 1
and dies at α =

√
2. The R-Cross-Barcode1(X̃,X) depicts this difference.
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Table 12: Reconstruction loss for when projecting into 16 dimension latent space

.

Dataset Method Reconstruction loss

COIL-20 AE 1.89× 10−4

TopoAE 3.30× 10−4

RTD-AE 4.54× 10−4

F-MNIST AE 2.73× 10−3

TopoAE 2.84× 10−3

RTD-AE 3.17× 10−3

MNIST AE 3.78× 10−3

TopoAE 3.70× 10−3

RTD-AE 4.88× 10−3

scRNA mice AE 1.31× 10−3

TopoAE 1.23× 10−3

RTD-AE 1.32× 10−3

scRNA melanoma AE 1.16× 10−3

TopoAE 1.11× 10−3

RTD-AE 1.15× 10−3

Table 13: Hyperparameter search for Spheres (into 2D) dataset
.

Dataset Method L.C. W.D. H0 T.A. RTD

Spheres 2D TopoAE 0.691 43.291± 1.583 0.3688± 0.0165 39.837± 1.318
RTD-AE 0.706 42.133± 1.683 0.3765± 0.0124 37.286± 1.393
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