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ABSTRACT

Combining reinforcement learning with language grounding is challenging as the
agent needs to explore the environment for different language commands at the
same time. We present a method to reduce the sample complexity of RL tasks
specified with language by using compositional policy representations. We evaluate
our approach in an environment requiring reward function approximation and
demonstrate compositional generalization to novel tasks. Our method significantly
outperforms the previous best non-compositional baseline in terms of sample
complexity on 162 tasks. Our compositional model attains a success rate equal to
an oracle policy’s upper-bound performance of 92%. With the same number of
environment steps the baseline only reaches a success rate of 80%.

1 INTRODUCTION

An important goal of reinforcement learning (RL) is the creation of agents capable of generalizing to
novel tasks. Additionally, natural language provides an intuitive way to specify a variety of tasks.
Natural language has a few important properties: it is compositional in its grammar and often mirrors
the compositional structure of the tasks being solved. Previous works have attempted to use natural
language to specify tasks for RL agents (Ahn et al., 2023; Blukis et al., 2020). In this work we exploit
the compositional nature of language along with compositional policy representations to demonstrate
improvements in sample complexity and generalization in solving novel tasks.

Approaches to map language to behaviors have previously attempted to use policies learned using
imitation learning (Ahn et al., 2023; Blukis et al., 2020). We want to focus our attention to problems
where the agent might not have access to supervised demonstrations. We want to use RL to learn to
ground language to specified behaviors. The challenge in such an approach is that there is significantly
high sample complexity of RL-based methods when grounding behaviors as agents must map a
variety of potential language instructions to unknown corresponding behaviors. Pretraining and
transfer learning offers one possible solution. In natural language processing, pretraining language
models such as BERT (Devlin et al., 2019) and GPT-4 (OpenAI, 2023) have enabled substantial
reductions in sample complexity of solving novel tasks. However, in RL there is a lack of pretrained
learned policy representations that can be fine-tuned using novel examples in few-shot settings.

However, a different strategy has been exploited in policy learning where solutions to previously-
learned tasks can be composed to solve novel tasks (Todorov, 2009; Nangue Tasse et al., 2020).
For instance, Nangue Tasse et al. (2020) demonstrate zero-shot task solving using compositional
value functions and Boolean task algebra. We attempt to exploit such compositional value functions
with pretrained language models to solve a large number of tasks using RL, while not relying on
curricula, demonstrations or other external aids to solve novel tasks. Leveraging compositionality
is essential to solving large numbers of tasks with shared structure. The sample complexity of
learning large number of tasks using RL is often prohibitive unless methods leverage compositional
structure (Mendez-Mendez & Eaton, 2023).

This work builds on the Boolean compositional value function representations of Nangue Tasse et al.
(2020) to construct a system for learning compositional policies for following language instructions.
Our insight is that language commands reflect the compositional structure of the environment, but
without compositional RL representations, this structure cannot be used effectively. Likewise, it
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Figure 1: Pipeline diagram of the learning process for the LLM agent. The LLM agent takes in
a BabyAI language mission command and a set of 10 in-context examples are selected using the
BM25 search retrieval algorithm (Robertson et al., 2009). The LLM produces 10 candidate Boolean
expressions. These expressions specify the composition of the base compositional value functions.
Each compositional value function is instantiated in the environment and the policy it defines is
evaluated over 100 rollouts. If the success rate in reaching the goal is greater than 92%, the expression
is considered a valid parse of the language instruction and is added to the set of in-context examples.

is challenging to learn how to compose the RL representations without task-specific information.
Language, therefore, unlocks the utility of compositional RL allowing us to not only compose
base policies, but also negate their behaviors to solve tasks such as “Don’t start the oven.” These
language-conditioned compositional RL policies can be used as pretrained general-purpose policies
and novel behaviors can be added as needed when solving new tasks. Moreover, the composed
policies themselves are interpretable as we can inspect the base policies that are composed.

Our primary contributions are as follows:

1. We present a novel approach for solving tasks specified using language. The policies
for the tasks are represented as conjunctions, disjunctions, and negations of pretrained
compositional value functions.

2. We combine in-context learning with feedback from environment rollouts to improve the
semantic parsing capabilities of the LLM. As far as we are aware, our method is the first to
learn a semantic parser using in-context learning with feedback from environment rollouts.

3. We solve 162 unique tasks within an augmented MiniGrid-BabyAI domain (Chevalier-
Boisvert et al., 2023; 2019) which to the best of our knowledge is the largest set of simulta-
neously learned language-RL tasks.

4. Our method significantly outperforms the previous best non-compositional baseline in terms
of sample complexity. Our compositional model attains a success rate equal to an oracle
policy’s upper-bound performance of 92%. With the same number of environment steps,
the baseline only reaches a success rate of 80%.

2 BACKGROUND

BABYAI DOMAIN

Because we build on the compositional value function representations of Nangue Tasse et al. (2020),
our method is applicable to any environment with goal-reaching tasks, the ability to learn value
functions through RL, and language instructions. To evaluate our method, we select the BabyAI
MiniGrid domain (Chevalier-Boisvert et al., 2019) which provides a test-bed for compositional
language-RL tasks. It has image-state observations, a discrete action space, and objects with color
and type attributes. We augment BabyAI with additional Boolean compositional tasks specified using
intersection, disjunction, and negation. Figure 2 provides an example of a goal-reaching present
in the BabyAI domain, and its compositional specification using Boolean operators. Appendix
Table 4 provides a full list of task attributes available in the environment and the grammar of the
Boolean expressions. Lastly Table 1 provides examples of the types of tasks our method learns. The
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environment is initialized with one or more goal objects and distractor objects that are randomly
placed.

COMPOSITIONAL WORLD VALUE FUNCTIONS (WVFS)

Figure 2: Example of a
task in the BabyAI do-
main (Chevalier-Boisvert
et al., 2019). The agent
(red triangle) needs to
complete the mission –
“pick up the red key”.
Solving this task with
compositional value func-
tions requires using the
conjunction of the pickup
“red object” and “key”
value functions.

We consider the case of an agent required to solve a series of related
tasks. Each task is formalized as a Markov decision process (MDP)
⟨S,A, p, r⟩, where S is the state space and A is the set of actions
available to the agent. The transition dynamics p(s′|s, a) specify
the probability of the agent entering state s′ after executing action
a in state s, while r(s, a, s′) is the reward for executing a in s. We
further assume that r is bounded by [rMIN, rMAX]. We focus here
on goal-reaching tasks, where an agent is required to reach a set of
terminal goal states G ⊆ S.
Tasks are related in that they differ only in their reward func-
tions. Specifically, we first define a background MDP M0 =
⟨S0,A0, p0, r0⟩. Then, any new task τ is characterized by a task-
specific reward function rτ that is non-zero only for transitions
entering g in G. Consequently, the reward function for the resulting
MDP is given by r0 + rτ .
The agent aims to learn an optimal policy π, which specifies the prob-
ability of executing an action in a given state. The value function of
policy π is given by V π(s) = Eπ [

∑∞
t=0 r(st, at)] and represents

the expected return after executing π from s. Given this, the optimal
policy π∗ is that which obtains the greatest expected return at each
state: V π∗

(s) = V ∗(s) = maxπ V
π(s) for all s ∈ S. Closely

related is the action-value function, Qπ(s, a), which represents the
expected return obtained by executing a from s, and thereafter fol-
lowing π. Similarly, the optimal action-value function is given by
Q∗(s, a) = maxπ Q

π(s, a) for all (s, a) ∈ S ×A.

LOGICAL COMPOSITION OF TASKS USING WORLD VALUE FUNCTIONS

Recent work (Nangue Tasse et al., 2020; 2022) has demonstrated how logical operators such as con-
junction (∧), disjunction (∨) and negation (¬) can be applied to value functions to solve semantically
meaningful tasks compositionally with no further learning. To achieve this, the reward function is
extended to penalise the agent for attaining goals it did not intend to:

r̄(s, g, a) =

{
r̄MIN if g ̸= s ∈ G
r(s, a) otherwise,

(1)

where r̄MIN is a large negative penalty. Given r̄, the related value function, termed world value
function (WVF), can be written as: Q̄(s, g, a) = r̄(s, g, a) +

∫
S V̄ π̄(s′, g)p(s′|s, a)ds′, where

V̄ π̄(s, g) = Eπ̄ [
∑∞

t=0 r̄(st, g, at)].

These value functions are intrinsically compositional since if a task can be written as the logical
expression of previous tasks, then the optimal value function can be similarly derived by composing
the learned WVF’s. For example, consider the PickUpObject environment shown in Figure 2.
Assume the agent has separately learned the task of collecting red objects (task R) and keys (task
K). Using these value functions, the agent can immediately solve the tasks defined by their union
(R∨K), intersection (R∧K), and negation (¬R) as follows: Q̄∗

R∨K = Q̄∗
R∨Q̄∗

K := max{Q̄∗
R, Q̄

∗
K},

Q̄∗
R∧K = Q̄∗

R ∧ Q̄∗
K := min{Q̄∗

R, Q̄
∗
K}, and Q̄∗

¬R = ¬Q̄∗
R :=

(
Q̄∗

MAX + Q̄∗
MIN

)
− Q̄∗

R.

Q̄∗
MAX and Q̄∗

MIN are the world value functions for the maximum and minimum tasks respectively.1

1The maximum task is defined by the reward function r = rMAX for all G. Similarly, the minimum task has
reward function r = rMIN for all G.
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3 METHODS

We propose a two-step process for training an RL agent to solve the Boolean compositional tasks
with language. During an initial pretraining phase, a set of WVFs are learned which can later be
composed to solve new tasks in the environment. This set forms a task basis that can express any task
which can be written as a Boolean algebraic expression using the WVFs.

In a second phase, an LLM learns to semantically parse language instructions into the Boolean
compositions of WVFs using RL. Notably, our method does not require the semantic parser to have
access to any knowledge of the underlying basis tasks that the WVFs represent, and instead regards
the WVFs as abstract symbols which can be composed to solve tasks. Since the semantic parser
does not have access to any information about what task a WVF represents, our method can be to be
applied to any basis of tasks. The parser must therefore learn this mapping from abstract symbols to
WVFs using RL by observing language instructions and interacting with the environment.

Tasks like “pickup the red key” can be represented by taking the intersection of the WVFs for
picking up “red” objects and “key” objects: red ∧ key. Our method also supports negation and
disjunction, we can specify tasks like “pick up a red object that is not a ball”: red ∧ ¬ball. We
augment this domain with additional tasks. For further examples of tasks, see Table 1, which lists
the complete set of tasks created using the attributes yellow and key. We implement the model
from Chevalier-Boisvert et al. (2019) as a non-compositional baseline. This model does not have a
pretraining phase for its RL representations, and in our experiments we account for this discrepancy
in training steps by penalizing our agent by the number of training steps needed to learn the WVFs.

3.1 PRETRAINING WORLD VALUE FUNCTIONS

During pretraining, a set of WVFs is learned which can later be composed to solve any task in
the BabyAI environment. Each WVF takes as input a 56 × 56 × 3 RGB image observation of
the environment and outputs |G| × |A| = 18 × 7 values for accomplishing one of the basis tasks
(by maximising over the goal-action values). As there are nine object attributes (three object type
attributes and six color attributes as listed in Appendix Table 4), we train nine WVFs. Each WVF is a
value function for the policy of picking up objects that match one of the nine attributes. However,
our method does not require knowledge of the underlying semantics of the value functions (i.e. the
names of the underlying task attributes). We therefore assign each WVF a random identifier, denoted
as Symbol_0 through Symbol_8. While we refer to the WVFs by their color and object type in the
paper, our model does not have access to this information and only represents the WVFs by their
unique identifiers.

Each WVF is implemented using |G| = 18 CNN-DQN (Mnih et al., 2015) architectures. The
WVF pretraining takes nineteen million steps. This is done by first training Q̄∗

MIN (s, g, a) for one
million steps and Q̄∗

MAX(s, g, a) for eighteen million steps (one million steps per goal in the envi-
ronment). Each basis WVF Q̄∗

B(s, g, a) is then generated from Q̄∗
MIN (s, g, a) and Q̄∗

MAX(s, g, a)
by computing Q̄∗

B(s, g, a) = Q̄∗
MAX(s, g, a) if rB(g, a) = rMAX else Q̄∗

MIN (s, g, a). This yielded
a 98% success rate for each basis WVF. For more details on WVF pretraining see Section 2 and
Nangue Tasse et al. (2022), and see Appendix Table 6 for a full list of hyperparameters used in
training the WVFs.

3.2 COMPOSITIONAL LLM AGENT

We assume the downstream task set is distinct from the basis task set. During downstream task
learning, the pretrained WVFs are composed to solve novel tasks specified in language. To solve
the BabyAI language instruction tasks, the agent must interpret the input language command and
pick up an object of an allowed type. To accomplish this, the semantic parser maps from language
to a Boolean expression specifying the composition of WVFs. These Boolean expressions are then
composed using a fixed pipeline that takes as input the set of WVFs and the Boolean expression.
This pipeline parses the Boolean expression and returns a composed WVF. The agent then acts in
the environment under the policy of the WVF by taking the action with the greatest value at each
step. If the Boolean expression is not syntactically correct, it cannot be instantiated as a WVF and the
episode terminates unsuccessfully.
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Table 1: Example language instructions and corresponding Boolean expressions for the yellow and
box attributes

Language Instruction Ground Truth Boolean Expression
pick up a yellow box yellow & box

pick up a box that is not yellow ∼ yellow & box
pick up a yellow object that is not a box yellow & ∼ box

pick up an object that is not yellow and not a box ∼ yellow & ∼ box
pick up a box or a yellow object yellow | box

pick up a box or an object that is not yellow ∼ yellow | box
pick up a yellow object or not a box yellow | ∼ box

pick up an object that is not yellow or not a box ∼ yellow | ∼ box
pick up a box box

pick up an object that is not a box ∼ box
pick up a yellow object yellow

pick up an object that is not yellow ∼ yellow

3.2.1 IN-CONTEXT SEMANTIC PARSING WITH REINFORCEMENT LEARNING

To implement the semantic parser, we utilize state-of-the-art large language models: GPT 4 (OpenAI,
2023) and GPT 3.5.2 Our method builds on the work of Shin et al. (2021) which builds a semantic
parser using LLMs and few-shot learning, and Toolformer (Schick et al., 2023) which learns an LLM
semantic parser from weak supervision. Our semantic parser is distinct from these approaches in
that it utilizes in-context examples combined with an environment rollout RL signal. At the start
of learning, the agent has no in-context examples of valid mappings from language to Boolean
expressions (see Figure 1). At each episode, the LLM is prompted with general instructions defining
the semantic parsing task, the input language command, and up to 10 previously-acquired in-context
examples selected using the BM25 retrieval algorithm (Robertson et al., 2009).

During training, the LLM is sampled with a temperature of 1.0 and produces a beam of 10 semantic
parses (Boolean expressions) of the input language command. Together the temperature and beam
width control the exploitation-exploration trade-off of the semantic parsing model. Each candidate
Boolean expression is parsed using a fixed pipeline and instantiated as a WVF. The policy defined by
the WVF is evaluated in the environment over 100 episode rollouts. If the success rate across these
episodes in reaching the specified goals is greater than or equal to 92%, the language instruction and
Boolean expression are added to the list of in-context examples. Multiple Boolean expressions may
attain high reward for any given task. To counter this we add a form of length-based regularization.
If the agent already has an in-context example with the same language instruction, the length of
the Boolean expressions is compared and only the shorter of the two expressions is retained as an
in-context example. We thereby favor shorter Boolean expressions that attain high reward in the
environment. For more details of the prompting strategy, see Table 2. Hyperparameters are available
in Appendix Table 5.

3.3 BASELINES

The baseline is a joint language and vision model which learns a single action-value function for all
tasks based on the architecture used in the original BabyAI paper Chevalier-Boisvert et al. (2019).
We explore two baseline models: an LM-Baseline that utilizes pretrained language representations
for embedding mission commands from a frozen “all-mpnet-base-v2” model from the SentenceTrans-
formers library Reimers & Gurevych (2019) based on the MPNet model Song et al. (2020) and an
ablated Baseline which does not use pretrained language representations. This pretrained sentence
embedding model is trained on diverse corpora of sentence embedding tasks.

2https://platform.openai.com/docs/models/gpt-3-5
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Table 2: The prompting strategy for the LLM semantic parsing module.

Role Content

System “We are going to map sentences to Boolean expressions. The Boolean expression
variable Symbols are numbered 0 to 8, e.g. Symbol_0, Symbol_1... The operators are
and : &, or : |, not : ~. I will now give a new sentence and you will come up with an
expression. Now wait for a new sentence command. Respond with a list of 10 candidate
Boolean expressions. Respond only with the list of Boolean expressions. Never say
anything else.”

User (Example) “pick up a red ball”
Assistant “Symbol_0 &Symbol_7”

[Additional in-context examples]

User (Command) “pick up a red object that is not a ball”
Assistant “Symbol_0 & Symbol_1 & ∼ Symbol_2”

“Symbol_3 & ∼ Symbol_4”
“Symbol_5 & Symbol_6 & ∼ Symbol_7”
[Additional candidate expressions]

4 RESULTS

We conduct experiments across four agent types and two settings. The first experiment evaluates
sample complexity (Figure 3). We learn all 162 tasks simultaneously and plot the mean success rate
against the number of environment steps. The second experiment divides the task set in half, and
measures the ability of the agents to generalize to held-out novel tasks while learning from a fixed set
of tasks (Figure 4).

We evaluate our LLM Agent implemented with GPT-4 and GPT-3.5. We compare our method to
the baseline agents, but penalize our method by the number of environment steps required to learn
the pretrained WVFs. As an upper limit on the performance of the LLM Agent, we also compare
to an Oracle Agent which has a perfect semantic parsing module. It has access to the ground-truth
mappings from language to Boolean expressions and its performance is limited only by the accuracy
of the pretrained policies and randomness in the environment.

4.1 SIMULTANEOUS LEARNING OF 162 TASKS

In this experiment, at each episode a random task is sampled from the set of 162 language tasks. The
baseline agents learn for 21 million steps, and the LLM Agents learn for 2 million steps. Because our
agent pretrains the WVFs, we penalize our agent by starting it at 19 million steps (Figure 3). Note
that this disproportionately disadvantages the LLM Agent, as the WVF pretraining phase does not
include language information and its only exposure to language-task data is over the following two
million steps. The LLM Agent therefore has access to less information about the tasks structure than
the baseline agents during the first 19 million steps. For the LLM Agents, due to the latency and
cost of invoking the LLM, we only evaluate on one randomly selected task every 5, 000 environment
steps, computing the average performance over 100 episodes. For the baseline agents we evaluate all
162 tasks every 50, 000 timesteps. This results in higher variance for the LLM Agent methods in the
plots.

We also plot the number of in-context training examples added to the LLM Agent’s set in Figure 5.
This is equivalent to the number of training tasks successfully solved at that step. The Oracle Agent
solves the overwhelming majority of tasks during their first occurrence and is limited only by the
small amount of noise in the policies and environment.

4.2 HELD-OUT TASK GENERALIZATION

This experiment (Figure 4) measures the generalization performance of each method on held-out
tasks. We compare the performance of the GPT-4 agent to the baseline agents. In this setting, the
set of tasks is randomly split into two halves at the start of training. At each episode, a random task
from the first set is selected. During evaluation of the LLM Agent one random task from each set is
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selected and the agent is evaluated over 100 episodes. The baseline agents are evaluated over all 81
tasks in each set.
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Figure 3: Results for learning all 162 tasks simultaneously. The mean episode success rate is plotted
against the number of environment steps. Learning curves are presented for the LLM agent using
GPT-4 and GPT 3.5 and the non-compositional baseline agents. The Oracle agent is given the
ground-truth Boolean expressions and upper bounds the attainable success rate in the environment,
denoted by the dashed line at 92%. The LLM agents are initialized at 19 million steps to reflect the
number of training steps used in pretraining the compositional value functions. Note the change in
steps scale at 19 million steps. Means and 95% confidence intervals are reported over 10 trials, 5
trials for the LM-Baseline.
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Figure 4: Results for learning on 81 randomly selected tasks and evaluating on the held-out 81 tasks.
Learning curves are presented for the LLM agent using GPT-4 and the baseline agents. The x-axis
represents the fraction of the total training steps completed: 1 million for the GPT-4 Agent and 21
million for the LM-Baseline agent. The dashed line denotes the success rate for considering the
environment solved at 92%. Means and 95% confidence intervals are reported over 15 trials, 5 trials
for the LM-Baseline.

5 DISCUSSION

In both experiments the GPT-4 agent attains a significantly higher success rate in fewer total samples
than the baselines. Figure 3 shows the GPT-4 LLM Agent attains a 92% success rate (matching the
performance upper bound of the Oracle Agent) after only 600k environment steps, a small fraction
of the steps of the baseline. The baseline agents are not able to generalize to all 162 tasks and only
reaches a success rate of ≈ 80% after 21 million steps. Note that while the WVF pretraining for our
method requires 19 million steps, the pretraining objective does not include any language instructions
and is distinct from the downstream task objective. The baseline learns the downstream tasks and
language for its first 19 million training steps and still does not solve the 162 tasks.These results show
the necessity of compositional representations for being able to learn large numbers of compositional
tasks in a sample efficient manner.

Figure 4 demonstrates that the GPT-4 agent is able to generalize well to held-out tasks. The
performance of the agent on training tasks and held-out task is very similar. This is expected given the
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Figure 5: The mean number of tasks solved is plotted against the number of environment steps. This
quantity is equal to the total number of in-context examples present in the LLM agents in-context
example set at that step. Because the Oracle Agent has access to the ground truth Boolean expressions
for each task, it solves tasks immediately. The population of tasks remains constant, so the number of
unsolved tasks decreases over time, leading to a logistic learning curve for the LLM agents and an
exponential decay in the rate at which new tasks are solved for the Oracle Agent. Means and 95%
confidence intervals are reported over 10 trials.

ability to generalize compositionally in both the policy and language spaces. The LM-Baseline agent
cannot generalize well between the training and held-out tasks as it lacks the necessary compositional
representations. Note that this experiment trains the LLM and LM-Baseline agent for fewer steps
than the 162 task experiment: one million and 21 million steps respectively.

In the 162 task learning experiment, the GPT-3.5 agent does not exceed the performance of the
baselines even after two million steps indicating poor generalization. Confirming this, Figure 5 shows
the mean number of tasks solved, which is the same as the number of total number of potential in-
context examples that can be selected from during inference. Despite the GPT-3.5 agent solving most
of the tasks, this does not transfer to a high evaluation success rate in Figure 3. The variance of the
GPT 3.5 agent is also higher than the GPT-4 agent. This is caused by relatively worse generalization
from available in-context examples than GPT-4. Highlighting the interpretability of our language-RL
learning framework, we provide a qualitative analysis of the cause of the GPT-3.5 agent’s lower
performance in Appendix Table 3.

6 RELATED WORK

Our work is situated within the paradigm of RL, where novel tasks are specified using language and
the agent is required to solve the task in the fewest possible steps. BabyAI (Chevalier-Boisvert et al.,
2019) explores a large number of language-RL tasks, however it learns far fewer tasks simultaneously
and their tasks do not involve negation. Another compositional RL benchmark CompoSuite (men,
2022) does not include language, and has fewer tasks than our 162 task benchmark when accounting
for the number of unique goal conditions that could be specified in language.

Previous approaches have solved this problem using end-to-end architectures that are learned or
improved using RL and a set of demonstrations (Anderson et al., 2018; Blukis et al., 2020; Chaplot
et al., 2018). A problem with such approaches is a lack of compositionality in the learned representa-
tions. For example, learning to navigate to a red ball provides no information to the agent for the
task of navigating to a blue ball. Moreover, demonstrations are hard to collect especially when users
cannot perform the desired behavior. Some approaches demonstrate compositionality by mapping to
a symbolic representation and then planning over the symbols (Dzifcak et al., 2009; Williams et al.,
2018; Gopalan et al., 2018). However, these works do not learn these symbols or the policies to solve
the tasks.

Compositional representation learning has been demonstrated in the computer vision and language
processing tasks using Neural Module Networks (NMN) (Andreas et al., 2016; Hu et al., 2018),
but we explicitly desire compositional representations both for the RL policies and the language
command. Kuo et al. (2021) demonstrate compositional representations for policies, but they depend
on a pre-trained parser and demonstrations to learn this representation. On the other hand, we use
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large language models (Raffel et al., 2020) and compositional policy representations to demonstrate
compositionality in our representations and the ability to solve novel unseen instruction combinations.

Compositional policy representations have been developed using value function compositions, as
first demonstrated by Todorov (2007) using the linearly solvable MDP framework. Moreover, zero-
shot disjunction (Van Niekerk et al., 2019) and approximate conjunction (Haarnoja et al., 2018;
Van Niekerk et al., 2019; Hunt et al., 2019) have been shown using compositional value functions.
Nangue Tasse et al. (2020) demonstrate zero-shot optimal composition for all three logical operators—
disjunction, conjunction, and negation—in the stochastic shortest path problems. These composed
value functions are interpretable because we can inspect intermediate Boolean expressions that
specify their composition. Our approach extends ideas from Nangue Tasse et al. (2020) to solve novel
commands specified using language.

Recent works like SayCan use language models and pretrained language-conditioned value functions
to solve language specified tasks using few-shot and zero-shot learning (Ahn et al., 2023). Shridhar
et al. (2021) use pretrained image-text representations to perform robotic pick-and-place tasks. Other
work incorporates learning from demonstration and language with large-scale pretraining to solve
robotics tasks (Driess et al., 2023; Brohan et al., 2022). However, these works use learning from
demonstration as opposed to RL. Furthermore, these approaches do not support negations of pre-
trained value functions that our method allows. More importantly, their methodology is unsuitable for
continual learning settings where both the RL value functions and language embeddings are improved
over time as novel tasks are introduced.

Shin et al. (2021) utilize LLMs to learn semantic parsers using few-shot learning with in-context
examples and Schick et al. (2023) uses an LLM to learn a semantic parser in a weakly supervised
setting. Our method is distinct as we use policy rollouts in an environment as the supervision with
in-context learning.

7 LIMITATIONS AND FUTURE WORK

One limitation of our method is the need for a pretraining phase where a curriculum is required to
learn the basis set of WVFs. In future work, we plan on addressing this through experiments that
simultaneously learn both the underlying WVFs and the language-instruction semantic parser using
only RL on randomly selected tasks. This is a challenging optimization problem as the WVF models
and the semantic parser must be optimized simultaneously to ensure that the WVFs form a good basis
for the space of language tasks.

Our future work will also investigate our method’s performance in simulated and real-world com-
positional RL tasks including vision and language navigation (VLN) and robotic pick-and-place
tasks. The current environment has a discretized action space (although it utilizes images for state
information); while this might limit the method’s applicability to some real-world RL tasks, both
VLN and pick-and-place tasks have been pursued in discretized forms (Anderson et al., 2018; Zeng
et al., 2020). Both of these tasks could benefit from our method, as they require solving goal-reaching
tasks which often have compositional language and task attributes. As one example, pick-and-place
tasks are often compositional in terms of object type and locations for placing objects.

8 CONCLUSION

We introduced a method that integrates pretraining of compositional value functions with large
language models to solve language tasks using RL. Our method rapidly solves a large space of RL
tasks specified in language completely. Demonstrating efficacy across 162 tasks with reduced sample
requirements, our findings also further differentiate the capabilities of GPT-4 from its predecessor,
GPT-3.5, in semantic parsing using a RL signal. The amalgamation of compositional RL with
language models provides a robust framework for reducing the sample complexity of learning RL
tasks specified in language.
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A APPENDIX

Table 3 shows the in-context examples that the GPT-3.5 agent has accumulated at the end of 2 million
steps of learning the 162 tasks. As shown many of these expressions are not consistent or needlessly
complicated. This helps to explain the relatively poorer performance of the GPT-3.5 agent which
produces much noisier semantic parses and thus has much higher variance and lower performance
than the GPT-4 agent. Reducing the sampling temperature during learning leads to better expressions,
but at the cost of slower exploration and learning.

Table 3: In-context examples for the GPT-3.5 agent at the end of 2 million attributes.

Language Instruction Boolean Expression
pick up a ball or Symbol_0 | Symbol_4

a grey object
pick up a box that ∼ Symbol_4 & Symbol_2

is not grey
pick up a grey ball Symbol_0 & Symbol_4
pick up a ball or an (Symbol_0 | Symbol_1) |

object that is not grey ∼ Symbol_4
pick up a ball that Symbol_0 & ∼ Symbol_4

is not grey
pick up a grey object or (Symbol_0 & Symbol_4) | ∼ Symbol_0

not a ball
pick up a grey object ∼ Symbol_0 & Symbol_4

that is not a ball
pick up a grey object or (Symbol_0 & Symbol_1) |

not a key (∼ Symbol_2 & Symbol_4) | ∼ Symbol_5
pick up an object that (Symbol_0 & Symbol_1) | ∼ Symbol_4

is not grey
pick up an object that ∼ Symbol_4 & ∼ Symbol_0

is not grey and not a ball

Table 4: Task attributes and Boolean grammar. The symbols uniquely identify each learned WVF.

Task Attributes Boolean Grammar
Colors Objects Symbols Operators

red, purple, grey key, ball, box Symbol_0, Symbol_1,. . . ,Symbol_8 AND: &
green, yellow, blue OR: |, NOT: ∼
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Table 5: Hyperparameters for the LLM Agent.

LLM Agent Hyperparameters

LLM GPT-4 and GPT 3.5
Beam Width 10
Rollouts 100 episodes
In-Context Examples 10
Training Temperature 1.0
Evaluation Temperature 0.0

Table 6: Hyperparameters for world value function pretraining. The Adam optimizer was introduced
by Kingma & Ba (2015).

WVF Learning Hyperparameters

Optimizer Adam
Learning rate 1e-4
Batch Size 32
Replay Buffer Size 1e3
ϵ init 0.5
ϵ final 0.1
ϵ decay steps 1e6
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