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Abstract

Retrieval-augmented large language models
have shown remarkable potential in knowledge-
intensive tasks. However, their performance
can be compromised by lengthy, noisy, or ir-
relevant retrieved information. Recent work
focus on knowledge compression, but ignore
the feedback from LLM or just incorporate
with individual feedback. In this paper, we
introduce KO-RAG, a knowledge organiza-
tion method with an external knowledge or-
ganization model for retrieval augmented large
language models, trained with individual-then-
integrated feedback. KO-RAG learns to or-
ganize knowledge in a two-stage framework.
In the individual feedback stage, our method
ranks and filters knowledge by comparing each
knowledge, which can measure the helpful-
ness of each knowledge individually. In the
integrated feedback stage, our method orga-
nizes the knowledge integratedly by utilizing
LLM’s feedback on sampled knowledge per-
mutations. Moreover, we design an empty
knowledge placeholder to make KO-RAG or-
ganize knowledge dynamically. Evaluation on
five open-domain question-answering datasets
proves that the proposed method has signifi-
cantly improves the LLMs’ performance, out-
performing the baseline methods.

1 Introduction

Retrieval-augmented generation (RAG) enhances
the large language models (LLMs) ability to pro-
vide up-to-date and contextually appropriate re-
sponses by incorporating relevant information from
curated knowledge bases or the Internet (Nakano
et al., 2021; Jiang et al., 2023d; Mallen et al.,
2023; Shi et al., 2023). Despite their utility, re-
trieved texts can be noisy, redundant, and mis-
leading due to imperfect retrievers and incomplete
knowledge bases, potentially decreasing perfor-
mance (Xu et al., 2023; Liu et al., 2024; Cuconasu
et al., 2024). Recognizing this shortcoming, re-
searchers have proposed various strategies to com-
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Figure 1: An example to show the necessary of knowl-
edge organization. In the example, Llama’s responses
are different to the same question under different knowl-
edge contexts. Golden Knowledge: Selected both by
human annotators and Llama feedback, which also con-
tains the right answer of the given question, yet fails
to elicit the correct answer. Organized Knowledge:
Includes information not directly related to the question,
but enables Llama to answer correctly. Shuffled Orga-
nized Knowledge: Randomly reordered version of the
organized knowledge, leading to an incorrect prediction.

press retrieved knowledge, broadly categorized into
two types. The first category is discriminator-based,
which relies on a discriminator to judge whether
tokens or sentences should be preserved (Jiang
et al., 2023c; Li et al., 2023; Xu et al., 2023; Pan
et al., 2024). The second method is reranker-based,
which uses a scoring model to assign scores to sen-
tences or paragraphs, then selects the top-k highest-
scored ones (Glass et al., 2022; Liu, 2022; Huang
and Huang, 2024).

Realizing the gap between pre-defined or heuris-
tic based and LLM’s preference, recent research



has explored using LL.M’s feedback to train dis-
criminators or rerankers (Xu et al., 2023; Jiang
et al., 2023b). However, these approaches typically
operate at a individual level, which use LLM’s feed-
back to measure one retrieved document’s helpful-
ness, but not take all the knowledge context into
consideration. While such method is straightfor-
ward to implement, but often leads to suboptimal
results. As illustrated in Figure 1, the golden knowl-
edge—both chosen by human annotators and the
LLM itself'—may not always enable the LLM to
generate the correct answer.> Our research demon-
strates that organized knowledge, which includes
information about "Death Valley" but is not directly
helpful to answer the question, can actually help the
LLM answer correctly. Moreover, we observed that
shuffling this organized knowledge can mislead the
LLM?. These observations underscore the critical
role of LLM’s integrated feedback in knowledge
content selection and arrangement.

Building on these insights, we introduce the con-
cept of knowledge organization. We define this as
the process of searching the optimal ordered sub-
sequence of original knowledge that maximizes an
LLM'’s probability of answering correctly. Given
that the precise mechanism by which LLMs in-
tegrate retrieved contextual knowledge with their
parametric knowledge remains unclear, and that
searching the optimal among all possible candi-
dates is an NP-Hard problem, we propose KO-
RAG, an external knowledge organization model
with a two-stage training framework to investigate
this problem. In the first stage, we rank knowl-
edge based on individual LLM feedback, select-
ing those that demonstrably improve the LLM’s
ability to answer correctly. The second stage in-
volves calculating the LLM’s knowledge context
preference using integrated feedback and optimiz-
ing the model through Direct Preference Optimiza-
tion (DPO, Rafailov et al., 2024). To enable dy-
namic knowledge ranking, we introduce the con-
cept of an empty knowledge placeholder, allowing
for flexible sequence lengths and more nuanced
organization strategies.

We conducted experiments across five
knowledge-intensive tasks, including open-domain

'Given the knowledge and question, calculate the condi-
tional probability that the LLM predict the correct answer.

This phenomenon is known as context-parameter knowl-
edge conflict (Tan et al., 2024; Xie et al., 2024) or extrinsic
hallucinations (Huang et al., 2023; Ji et al., 2023).

3This finding is also corroborated by recent studies (Cu-
conasu et al., 2024; Liu et al., 2024)

question answering and long-form question answer-
ing. Our experimental results demonstrate that,
given similar input knowledge length constraints,
our method outperforms both discriminator-based
and reranker-based baseline approaches. These
findings suggest that our knowledge organization
technique more effectively leverages available
information, leading to improved performance on
language understanding and generation tasks.
We conclude our contribution as follows:

* We propose KO-RAG, a two stage framework
that enables model to organize knowledge
via LLM’s individual and integrated feedback.

* We model knowledge organization in a
unified process with proper distribution
estimation by introducing empty knowledge
placeholder.

* Experiments on various knowledge intensive
tasks proved the efficiency of our proposed
method.

2 Problem Formulation

In the basic RAG framework, we have a ques-
tion @, its corresponding answer A, and knowl-
edge retrieved from a knowledge base K =
{k1, ko, - ,kn}, where k; denotes a knowledge
sentence. We consider the knowledge organiza-
tion process as a picking and ranking task, which
can be viewed as finding a specific permutation
of knowledge. Let O = {01,029, ,Op},m =
Yoo (n”f'l), = |e % n!| represent all possible per-
mutations of retrieved knowledge, where O; de-
notes one partial permutation of {1,2,--- ,n}, e
denotes the Euler number and |. | denotes the floor
function. The target Ogptimar Of our knowledge
organization process can be defined as follows:

Ooptimal = glg)é P(A‘Q7K0z) ey

where Ko, denotes the knowledge under the order
O;. This formulation seeks to find the permutation
of knowledge that maximizes the probability of
generating the correct answer A given the question
@ and the organized knowledge Ko, .

3 Method

The vast search space, with O(n!) possible candi-
dates, renders exhaustive search computationally
infeasible. To navigate these complexities, we em-
ploy a sophisticated, two-stage training methodol-
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Figure 2: Overview of training process of the KO-RAG framework. k; denotes the retrieved knowledge and the
empty knowledge placeholder is denoted by /K ;. In the stage 1, LLM provides feedback to rank each retrieved
knowledge and the empty knowledge placeholder. In the stage 2, KO-RAG sample 2 different knowledge rank lists
based on the scores predicted by KO-RAG, in which the empty knowledge placeholder serves as the end of list.
KO-RAG is optimized with the integrated feedback of two knowledge lists and DPO.

ogy of knowledge organization. The overall pro-
cedure is illustrated in Figure 2, which includes
Ranking with Individual Feedback (§3.1) and Or-
ganization with Integrated Feedback (§3.2).

3.1 Ranking with Individual Feedback

Training procedure Following the definition
in Section 2, we can seek an order O,y =
{01,02,- - ,0,}, such that Vi > j P(A|Q, ko,) >
P(A|Q, k,;), which relies on LLM’s individual
feedback. To remove unhelpful knowledge, we in-
troduce an empty knowledge placeholder ¢, where
P(A|Q, ¢) = P(A|Q). This allows comparison of
each knowledge sentence’s utility against a base-
line of no additional knowledge. Hence we obtain
a knowledge rank based on the individual feedback
Oid = {01,02, s ,On+1} and kom = k¢. Then
we consider all knowledge rank higher than the
empty knowledge placeholder (including the empty
knowledge placeholder) as positive examples. For
each positive knowledge sentence kK,,, we sample
T lower-ranked knowledge sentences as negative
samples and construct the training dataset D with
@ and O, as follows.

D = {(Q,0p,0n,,. ,np)|0p, 0n; € Qiadop > 0, } (2)

based on the corresponding query ) and the knowl-
edge k,,, the score model F will predict the score
So; = F(Q, ko). The training loss which is In-
foNCE loss (Oord et al., 2018), is defined as fol-

lows:

exp(So, /T)
o ep €B(50, /7) + Sy €ap(s0, /7)
©)
Where 7 is a temperature parameter controlling the
sharpness of the probability distribution.

L=

>

(Q»Opvoﬂl,‘-‘,

Score Model Following recent approaches in the
field (Chen et al., 2024; Pan et al., 2024), we em-
ploy an encoder architecture as our score model.
Given an input query () and a knowledge sentence
k;, the model calculates a helpfulness score s; as
follows:

s; = Enc(Emb(Q o k;)) “)

where Enc represents the encoder function, Emb()
denotes the embedding output and o denotes string
concatenation.

Virtual Tokens for Empty Knowledge Place-
holder The empty sequence presents a signifi-
cant challenge in the training process due to its for-
mat contrasts with normal "question-knowledge"
pairs, as it lacks any knowledge text. To address
this issue, we draw inspiration from Prefix-Tuning
techniques (Li and Liang, 2021), and introduce
additional virtual tokens to represent the empty
knowledge placeholder. These virtual tokens serve
as a proxy for the absent content, providing a more



consistent input structure across all cases. The cal-
culation process of empty knowledge placeholder
K is defined as follows:

s¢ = Enc(V & Emb(Q)) ®)

where V' := [Vo, Vi, -+, Vin_1] € R™* repre-
sents m randomly initialized virtual tokens, each
with dimension d, & denotes vector concatenation
and E'mb() denotes the embedding output.

3.2 Organization with Integrated Feedback

Training procedure We begin by defining a
preference relationship between knowledge orders.
Given a question @, its corresponding answer A,
and two predicted knowledge orders O; and O, we
define the preference as follows

Oi = 0 if P(A|Q, Ko,) > P(A|Q, Ko;)  (6)

in which Ko, denotes the knowledge under the

order O;.
Based on this preference relation-
ship, we can construct a training dataset

D = (Q,Ow,OlﬂOw,Ol € 0,0, = Oy, where
Oy, is the preferred (winning) order and O is the
less preferred (losing) order for a given question.
Rather than pre-building the entire training
dataset, we adopt an online reinforcement learning
paradigm.

We employ DPO to train our model using feed-
back from LLM’s feedback. Let Py and Py de-
note the probability distributions estimated by the
reference model and the model being trained, re-
spectively. Given a preferred order O, and a less
preferred order Oy, the DPO loss function is defined
as:

PQ(Ow) : Pref(Ol)
Pref(Ow) - Py(Or)

where o (-) is the sigmoid function and £ is a con-
strained hyper-parameter.

To enhance training stability and maintain high
confidence in preferred orders, we introduce an
additional Maximum Likelihood Estimation (MLE)
loss for the preferred order O,,:

—log Py(Oy) )

this MLE loss encourages the model to assign high
probabilities to preferred orders. We combine the
DPO and MLE losses to form our final loss func-
tion:

Lppo = —logo(Slog ) (D)

Lyie =

L=Lppo+ALyuLE )

where ) is a hyper-parameter that balances the con-
tribution of the MLE loss relative to the DPO loss.

Distribution estimation of P(O) We first intro-
duce the distribution estimation of the permutation.
Given a query ¢ and a set of retrieved knowledge
K = {ki,ko, -+ ,kyn}, the score model M will
calculate the scores of each text S = {s;|s; =
M (q, k;)}. According to the Plackett-Luce model,
we can define the probability of a full ranking order

O ={of,,0¢,, -+ ,04,} as follows:
n
P(Oflz) = [[ Ploglo<y,, z)
i=1 (10)
H exp(sy,)
D 2= exp(sy,)

extending this concept, we propose a method to
calculate the probability of a partial ranking or-
der O, = {op,,0p,.- -+ ,0p,, }, where m < n and
ko,,, = ¢:

m

HP(OPi’O<Pi’x)

i=1

P(Oplz) =
(11)

_ exp(sp,)
i1 2ot {oep,) €TP(Sp;)

for a detailed proof, please refer to Appendix A.
This formulation allows us to treat the passage scor-
ing process as a sequential decision-making prob-
lem, opening the possibility of optimizing it using
reinforcement learning techniques.

3.3 Inference Stage

During inference, we employ a greedy method to
select and order the knowledge. Given a query ¢
and a set of retrieved knowledge passages K =
{k1,ka,-- -, ky}, our scoring model M calculates
a score for each passage, producing a set of scores
S = {si|si = M(q,k;)}. We then construct the
predicted order O = {01,092, -+ ,0,} such that:
Vi > j So; > So; and ko, = ¢ (the empty knowl-
edge placeholder).

4 Experiment setup

Datasets To evaluate the effectiveness of our pro-
posed method, we conduct experiments on sev-
eral knowledge intensive datasets. Specifically, we
conduct experiments on three open domain ques-
tion answering datasets: Natural Questions (NQ,
Kwiatkowski et al. 2019), AmbigNQ (Min et al.,
2020), PopQA* (Mallen et al., 2023) and two long-

*Since there is no official train-test split of PopQA, we use
top-13000 as the train set and 1267 as test set.



Dataset Train  Test Avg token
NQ 87372 2837 3168
AmbigNQ 19363 5749 3177
PopQA 13000 1267 3237
ASQA 4353 948 3169
ELIS 272633 1507 3021

Table 1: Statistical information of datasets. We report
the number of question-answer pairs in train dataset and
test dataset in "Train" and "Test". We also introduce
the average number of tokens of retrieved knowledge in
"Avg token", which includes train set and test set.

form question answering datasets: ASQA (Stel-
makh et al., 2022), ELI5 (Fan et al., 2019). The
statistical information is listed in Table 1

Baselines In this paper, we consider the follow-
ing three categories baselines:

* Naive baselines: Zero-shot, without any con-
text knowledge. RAG, we use top-50% knowl-
edge scored by the retriever.

e Discriminator-based baselines for RAG:
Selective-Context (SC) (Li et al., 2023),
LongLLMLingua (LLingua) (Jiang et al.,
2023b), LLMLingua2(Lingua-2) (Pan et al.,
2024). For discriminator-based baselines, we
control the compression rate to 50%, which
means deleting 50% of retrieved knowledge
in token-level.

¢ Reranker-based baselines for RAG: BM25
(Robertson et al., 1995), RankT5 (T5)
(Zhuang et al., 2023), BGE-raranker (BGE)
(Chen et al., 2024). For reranker-based base-
lines, we use reranker to do a sentence-level
rerank and pick top 50%.

Implementation Detail In experiment, we use
Llama2-13B-chat (Touvron et al., 2023) as the
base model to provide feedback and as a answer
generator in RAG framework. We also test our
method based on Llama-2-7B-chat (Touvron et al.,
2023) and Mistral-7B-Instruct (Jiang et al., 2023a).
For knowledge retrieval, we use contriever (Izac-
ard et al., 2021) as a knowledge retriever, and
the 2019/08/01 Wikipedia dump pre-processed by
Petroni et al. (2021) as a knowledge base. For
each question, we retrieve top-20 chunks as re-
trieved knowledge. The model architecture is
XLM-roberta-large (Conneau et al., 2020). Hyper-
parameter and more details are listed in Appendix
B. Prompts we use are listed in Appendix D.

Metric For open-domain question answering, we
use fuzzy Exact Match(EM) to measure whether
generated answers contains the golden answers.
And for long-form question answering, we use
precision-based metric BLEU-1(B-1, Papineni
et al. 2002) to calculate the similarity between gen-
erated answers and golden answers. Besides re-
porting the performance, we also report average
knowledge token(#token)> of each method.

5 Results and Discussion

5.1 Main result

The experimental results are presented in Table
2. Our proposed method outperforms all baseline
methods across nearly all datasets with the shortest
average context length, with the exception of ELIS.
In ELIS, our proposed method achieve the best
performance with a comparable average context
length with discriminator-based and reranker-based
knowledge compression method.

Comparison with Discriminator-based Methods
Selective-context and LLMLingua?2, designed for
universal context compression rather than specif-
ically for RAG, demonstrate relatively lower per-
formance. LongL.LMLingua, which is tailored for
RAG and utilizes Llama2-7B for knowledge com-
pression, exhibits strong performance but still falls
short of our proposed method.

Comparison with Reranker-based Method
Model-based reranker methods show impressive
performance on open-domain question answering
tasks but appear less effective for long-form ques-
tion answering. N-gram based methods like BM25
perform poorly on open-domain question answer-
ing and long-form question answering scenarios.
In terms of overall performance across diverse
tasks, our proposed method consistently outper-
forms these approaches.

5.2 The Effectiveness of Integrated Feedback

To assess the impact of integrated feedback from
LLMs, we conducted a comparative analysis of
our system’s performance before and after the in-
tegrated feedback stage. The results are presented
in Table 3. Our findings demonstrate that the in-
corporation of integrated feedback leads to further
performance improvements across all the datasets.

5In this paper, all the token refers to the text tokenized by
Llama?2 tokenizer.



NQ AmbigNQ PopQA ASQA ELI5
EM  #token EM  #token EM  #token B-1  #token  B-1  #token
Naive
Zero-shot 43.32 0 3275 0 11.13 0 11.39 0 13.93 0
RAG 45.51 1576  36.49 1588 36.54 1613  10.40 1585 14.22 1511
" Discriminator-based baselines }o; RAG
SC (Li et al., 2023) 43.57 1890 33.55 1897 34.65 1987 10.33 1893 14.25 1795
LLingua (Jiang et al., 2023b) 47.83 1714 39.73 1729  39.07 1758 10.82 1722 14.22 1659
Lingua2(Pan et al., 2024) 46.00 1788 3543 1808 35.44 1829 10.98 1803 14.14 1696
" Reranker-based baselines for RAG
BM25 (Robertson et al., 1995)  43.56 1838 36.26 1861 34.65 1823 9.83 1841 13.88 1769
T5 (Zhuang et al., 2023) 46.67 1757 37.85 1725  37.17 1716 1042 1756  14.03 1578
BGE (Chen et al., 2024) 47.76 1787 37.82 1837 36.54 1863 10.38 1841 14.22 1692
KO-RAG 50.58 1350 42.29 1366 42.46 614 11.96 1206 14.74 1773

Table 2: Performance comparison on knowledge-intensive tasks. This table presents the evaluation results across
various knowledge-intensive tasks. The bold values indicate the best performance for each metric, while underlined
values represent the second-best performance. For context length, bold figures denote the shortest number of tokens,
and underlined figures indicate the second shortest. Note that the Zero-shot method is excluded from this token

count comparison due to its unique nature

Dataset w/o. IF  w.IF baseline
NQ 47.87 50.58 47.83
AmbigNQ 3820 4229 39.73
PopQA 40.81 42.46 39.07
ASQA 10.25 11.96 11.39
ELI5 13.76  14.74 14.25

Table 3: Impact of integrated feedback(IF) on model
performance. "w/o. IF* denotes the performance with-
out integrated feedback and "w. IF" denotes the per-
formance after organization with integrated feedback.
"baseline”" denotes the best performance of baseline
method.

Notably, even in the absence of the integrated feed-
back stage, our proposed method outperforms the
baseline approach on several datasets, including
NQ and PopQA. This underscores the effectiveness
of our initial knowledge reorganization stage. The
dual benefits observed—improvements from both
the initial knowledge reorganization and the subse-
quent integrated feedback stage—suggest that our
two-stage approach offers a powerful framework
for enhancing LLM performance.

5.3 Fine-grained Performance Analysis

While knowledge organization and compression
can lead to overall performance improvements,
they may also cause changes at the individual sam-
ple level. To analyze this, we categorize ques-
tions into four groups based on their pre- and post-
reorganization performance: PP (correct before

and after), NP (incorrect before, correct after),
PN (correct before, incorrect after), and NN (in-
correct before and after). We then introduce a fine-
grained efficiency score .S, defined as:

_|NP|

~ |PN| (12)

where | N P| and | PN| denotes the sample number
of NP and PN group. A higher S value indicates
that when the model potentially distorts one sam-
ple (PN), it can rectify a larger number of samples
(NP), thus demonstrating higher efficiency. We cal-
culate this efficiency score across three datasets:
NQ, AmbigNQ, PopQA. Our experimental results,
which are listed in table 4 that demonstrate our
proposed method consistently maintains higher ef-
ficiency scores across all datasets compared to base-
line approaches. This suggests that our knowledge
reorganization technique not only enhances overall
accuracy but also achieves this improvement more
efficiently, with a better trade-off between correct-
ing previously incorrect answers and maintaining
correct ones.

5.4 Generalize to Different LLMs

Our method is trained using feedback from a spe-
cific LLM. A natural question arises: can this
method generalize to different models? To ad-
dress this, we evaluated our approach on three
open-domain question answering datasets using
two distinct models: Llama2-7B (Touvron et al.,



NQ AmbigNQ PopQA Avg

SC 0.81 0.69 0.79 0.74
LLingua  1.30 1.57 1.51 147
Lingua2  1.05 0.87 0.85 093
BM25 0.82 0.97 0.75 0.89
TS5 1.14 1.20 1.10  1.17
BGE 1.27 1.19 1.00  1.20
KO-RAG 1.65 2.02 2.07 1.89

Table 4: The efficiency score of different method across
different datasets. We bold the highest stable score and
underline the score highest score.

2023) and Mistral-7B (Jiang et al., 2023a). We
present a summary of our findings in Table 6 for
Llama2-7B-chat and Table 5 for Mistral-7B®. The
results demonstrate that our method consistently
outperforms all baseline approaches across both
models, indicating strong generalization capabil-
ities. Interestingly, we observed that the perfor-
mance gap between our method and the baselines
narrows when applied to Mistral-7B, compared to
its performance with Llama?2 series models. This
suggests that the different LLMs may have similar
knowledge preference, thus enabling our method
generalize to these LLMs.

NQ AmbigNQ  PopQA

Zero-shot  46.21 37.35 31.41
RAG 50.26 39.73 40.41
SC 47.30 35.76 36.70
LLingua  52.73 43.19  43.09
Lingua2  51.00 38.28 40.02
BM25 48.82 38.41 36.54
T5 51.64 40.27 40.25
BGE 52.73 40.86 40.57
KO-RAG 54.04 43.50 45.54

Table 5: Performance on open-domain question answer-
ing tasks, which is based on Mistral-7b. The bold and
underlined values indicate the best and the second-best
performance for each metric, respectively.

5.5 Model Context Preference Estimation

In this section,we address two critical questions:
"Is our trained model an effective estimator of
LLM’s context preferences?" and "Does reinforce-
ment learning improve the model’s ability to es-
timate LLM preferences?". To investigate these
issues, we compare the agreement and Cohen’s
kappa (Cohen, 1960) between KO-RAG and LLMs.
Specifically, we reuse the LLMs’ preference de-

®We use the Mistral-7B-instruct-v0.2 version

NQ AmbigNQ  PopQA

Zero-shot  41.28 30.27 28.97
RAG 43.11 34.27 36.23
SC 40.01 31.41 30.54
LLingua ~ 44.70 36.88  37.02
Lingua2  43.29 33.74 32.99
BM25 40.82 32.63 32.83
T5 42.47 34.61 35.44
BGE 43.18 34.04 35.28
KO-RAG 47.44 40.22 43.49

Table 6: Performance on open-domain question answer-
ing tasks, which is based on Llama2-7b. The bold and
underlined values indicate the best and the second-best
performance for each metric, respectively.

Agreement w/o. and w. IF
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Figure 3: Agreement rate and Cohen’s kappa between
KO-RAG and LLM preferences w/o. and w. inte-
grated feedback (IF) across NQ, AmbigNQ, and PopQA
datasets

fined in equation 6 and KO-RAG’s preference de-
fined in equation 11. Figure 3 illustrates our find-
ings. Interestingly, while reinforcement learning
does not significantly improve the raw agreement
rate, it does enhance the Cohen’s kappa score. This
suggests that the reinforcement learning process
refines the model’s ability to capture more nuanced
aspects of LLM preferences, beyond simple binary
agreement. However, it is important to note that
both the agreement rate and Cohen’s kappa remain
below satisfactory levels. This indicates that while
our approach shows promise, there is still consider-
able room for improvement in accurately modeling
LLM context preferences.

5.6 Case Study

Table 7 illustrates examples comparing model per-
formance using contexts processed by KO-RAG
versus silver knowledge contexts (The optimization
target in Stage 1, refer to Chapter 3.1). Consider



the question, "Who plays the science officer on Star
Trek: Discovery who is also a chief engineer?"
When the initially retrieved knowledge lacks the
correct answer, the silver context fails to guide the
LLM towards an accurate response. In contrast,
KO-RAG demonstrates its effectiveness by suc-
cessfully leveraging the LLM’s inherent parameter
knowledge that "Paul Stamets is played by actor
Anthony Rapp." By effectively filtering and reorga-
nizing this information, KO-RAG enables the LLM
to provide the correct answer: Anthony Rapp.

Question:

Who plays the science officer on Star Trek discovery who
is a chief engineer?

Standard answer:
"Anthony Rapp", "Anthony Deane Rapp"

Silver context:
1: Yelchin died in a car accident on June 19, 2016,
2: ... specifically from Captain Christopher Pike, ...

* LLM’s prediction:
The character who plays the science officer and chief engi-
neer on Star Trek: Discovery is Captain Christopher Pike,
portrayed by Anson Mount.

KO-RAG context:

1: Yelchin died in a car accident on June 19, 2016,
2. Science Officers Saru and Stamets, respectively.
3. After the first season concluded with the ...

6. ... the relationship between Culber and Stamets would
continue to be explored.

LLM’s prediction:

The character who plays the science officer and chief en-
gineer on Star Trek: Discovery is Paul Stamets, played by
actor Anthony Rapp.

Table 7: Case comparison between silver context and
KO-RAG processed context On AmbigNQ dataset. En-
tities that appear in both the context and the LLM’s
prediction are highlighted in red.

6 Related Work

Retrieval Augmentation Generation Retrieval
augmented generation, which uses retrieved knowl-
edge as generation context, significantly improves
the the accuracy, credibility and interpretability
of generated texts (Gao et al., 2023; Ren et al.,
2023; Wang et al., 2023b; Louis et al., 2024). One
mainstream method is training retriever and LLMs
end-to-end (Guu et al., 2020; Wang et al., 2024a;
Nakano et al., 2021; Asai et al., 2023; Borgeaud
et al., 2022; Wang et al., 2023a). Another method
freezes the LLMs and uses retrieved knowledge as
additional context with various strategies including

retrieval query refinement, structured knowledge
indexing, and iterative retrieval mechanisms (Ma
et al., 2023; Jiang et al., 2023d; Wang et al., 2024b).
Nonetheless, the inclusion of retrieved data can in-
troduce new challenges, as it often yields noisy
or redundant information that might distract the
LLMs from pertinent content (Yoran et al., 2023;
Liu et al., 2024).

Knowledge Compression For RAG Knowledge
compression could remove the irrelevant contexts
and reduce the input context length, thus improv-
ing the model’s performance and decrease the cost
of inference. One effective method is reranker-
based, which use a reranker model to modeling the
relevance between retrieved knowledge and ques-
tion, then remove the less relevant knowledge to
improve performance and reduce context length
(Glass et al., 2022; Izacard et al., 2023; Wang et al.,
2023c; Xu et al., 2023; Huang and Huang, 2024).
Another main method is discriminator based, which
relies on a discriminator to determine which part
should be deleted, including sentence-level self-
information calculated by a small language model
(Li et al., 2023; Jiang et al., 2023c), token-level
discriminator (Pan et al., 2024) or combine token-
level disciminator and reranker (Jiang et al., 2023b).
But these method ignores LLM’s feedback or just
utilize LLM’s feedback in a individual level with
greedy search. Recently, there are several stud-
ies to tackle this problem with a Seq2Seq model
(Yang et al., 2023; Jin et al., 2024; Zhu et al., 2024).
While these methods are easily trained with LLM’s
feedback, they have different drawbacks inherited
from Seq2Seq architecture, such as generation hal-
lucinations, limited input context and could not
inference in parallel. Since these method have dif-
ferent drawbacks and model architectures, we do
not consider them as baselines.

7 Conclusion

We introduce KO-RAG, an advanced knowledge
organization model to enhance RAG system. Our
method is accomplished with two-stage training
framework, utilizing LLM’s individual and inte-
grated feedback respectively. Our comprehensive
experiments across diverse open-domain and long-
form question answering datasets demonstrate the
efficacy of our method. Through in-depth analysis,
we elucidate the benefits of the integrated feedback,
and highlight our method’s fine-grained efficiency
and its ability to generalize across various LLMs.



Limitation

We conclude the limitation of our method as fol-
lows: First, we test our method in various open
domain question answering datasets and long form
question answering datasets, but the questions in
these datasets are not complex. For complex ques-
tions, which need LLM to perform multi-step rea-
soning and iterative retrieval, whether our method
still works remains to be examined. Secondly, our
method relies on training with LLM’s feedback,
thus making it more time costing and GPU cost-
ing than the heuristic method such as Selective-
Context (Li et al., 2023) and LLMLingua (Jiang
et al., 2023c).
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A Detail Proof of the Extend
Plackett-Luce Model

Given retrieved knowledge K = {kq, ko, , kpn}
and responding scores S = {s1,S2, - ,Sp}, ac-
cording to Plackett-Luce model, the probability
distribution of a full rank O; = {01,092, - ,0,}
defined is as follows:

= HP(oi|o<,~)

(13)
H exp(so,)
T 2 €T (So;)

Then, we consider the empty case ¢ € K, the
predicted extractive rank F; = {eg,e1,- - ,em}
that satisfying m < n and k., = ¢. In this case,
we consider the remain index set R = {r;|i =
1,2,--- ,nand r; ¢ E;} and remain score set
Sk = {si|i € R}. Then we have
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Then, considering the empty knowledge as
a special case, we have a knowledge K

{ko,k1,k2, - ,kn}, ko = ¢ and its responding
scores S = {so, s1, S2, -+ , Sp }. For a partial rank
E; = {eo,e1, - ,en} that satisfyingm < n + 1

and k.,, = ¢, its probability distribution is

exp(se, )
i=0 Zj€{0<e,;} exp(s;)

P(E;) (14)

To approve this, we consider the remaining
knowledge set R = {k;|i = 1,2,--- ,nand k; ¢
E;}, the remaining scores set Sp = {s;|k; € R}
and R’s all possible permutation Or = {Og, }.
The partial rank F; and one permutation of Op, €
Opr make up a full rank of O; € O. Noting that two
different permutation of K, which share the same
partial rank F;, shows no difference to LLM, the
probability of E; should be the sum of probability
of permutation O; € O which starts with £;. In
other words, we have :

= > PEPOR)

OR,€0R

Z H exp(se;)
n—m-41
OR, €OR i= o 2y €Tp(se;) + =1 + exp(sr;)
i Z;L:im+l 6wp(srj)
exp(se;)

S eap(se;) + 307 eap(sr))

I
> M o

OR;€0r j=1

exp(sr;)
> m+1 exp(sr;)
(15)
in which €5 means concatenation of two sequence.

We notice that ———+ (sr)
S eap(sr;)

of O, under the set R, which simplify the equation
as

PE) =[] eap(se,)

=0 E;n A exp(SeJ) + E" it exp(srj)

> P(Og,)

OR,€0R

fH

is the probability
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exp(se,) o

n— m+1
e exp(se;) + 22" exp(syy)
= emp(sei)
i=0 Zje{o«i} exp(s;)

B Implementation Details

B.1 Datasets

Natural Question (NQ) is a corpus of real ques-
tions issued to the Google search engine. We use
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the data processed by KILT.

AmbigNQ collects questions from NQ and rewrite
the questions to solve the ambiguity. We use the
official released data.

PopQA collects knowledge triples from Wikidata
and convert the knowledge triple to a question-
answer pair with templates. We use the official
released data and use the top-13000 as the train set,
remaining 1267 as the test set.

ASQA is a dataset of high-quality long-form an-
swers to 6,316 ambiguous factoid questions. We
use the official released data.

ELIS collects question-answer pair from a sub-
reddit from Reddit, named as Explain Like I'm
Five(ELIS5). We use the data processed by KILT.

B.2 Hyper parameter

In stage 1, we search the learning rate in {2e-4,
le-4, 5e-5, 1e-5}, and the learning rate for NQ is
2e-4, AmbigNQ is le-4, PopQA is 5e-5, ASQA is
le-5 and eli5 is 1e-5. We set the number of batch
size as 8 and the number of negative samples as 31.
we set the gradient accumulation steps as 2. We set
the number of virtual token in equation 5 as 50.

In stage 2, we set the learning rate as le-6, the
B 1is 0.2 and the A in equation 9 as 0.1. We set the
batch size as 4 and the gradient accumulation steps
as 4.

B.3 Additional Details

In data preparation stage, we split the retrieved
knowledge chunks into sentences by open-source
tools’ and drop the sentences which is incomplete
and too short (less than 5 words). In training stage,
we use Adam (Kingma and Ba, 2014) as the opti-
mizer. In inference stage, we use the vllm (Kwon
et al., 2023) to accelerate text generation. In text
generation process, we use the greedy decoding.
All the process, including data preparation, model
training and model inference is accomplished on a
8*A800 GPU server.

C Case study

The full content of the case 7 is listed in table 8.

D Prompts For Data Preparation and
Inference

In data preparation, training (stage 2) and infer-
ence, we use the same prompts. When the input
knowledge is none, we use the following prompt:

"https://github.com/mediacloud/sentence-splitter



Question:
Who plays the science officer on Star Trek dis-
covery who is a chief engineer?

Standard answer:
"Anthony Rapp", "Anthony Deane Rapp"

Silver context:

1: Yelchin died in a car accident on June 19,
2016,

2: After the first season concluded with the "Dis-
covery" receiving a distress call from the USS
"Enterprise"”, specifically from Captain Christo-
pher Pike, Harberts expressed interest in explor-
ing that character; Anson Mount was

LLM’s prediction:

The character who plays the science officer
and chief engineer on Star Trek: Discovery is
Captain Christopher Pike, portrayed by Anson
Mount.

KO-RAG context:

1: Yelchin died in a car accident on June 19,
2016,

2. Science Officers Saru and Stamets, respec-
tively.

3. After the first season concluded with the "Dis-
covery" receiving a distress call from the USS
"Enterprise"”, specifically from Captain Christo-
pher Pike, Harberts expressed interest in explor-
ing that character; Anson Mount was

4: Scotty joins Kirk and Pavel Chekov (Walter
Koenig)

5: Scotty joins Kirk’s crew aboard the USS
"Enterprise"-A at the end of "" (1986).

6. However, the executive producers of the se-
ries, Cruz, and GLAAD immediately released a
statement saying "death is not always final in the
"Star Trek" universe" and that the relationship
between Culber and Stamets would continue to
be explored.

LLM’s prediction:

Based on the passage, the character who plays
the science officer and chief engineer on Star
Trek: Discovery is Paul Stamets, played by actor
Anthony Rapp.

Table 8: Case study
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"Answer the subsequent question. \n\n Question:
[Q] \n\n Answer: ". When the input knowledge
is not none, we use the following prompt:Given
the following passage, answer the subsequent ques-
tion\n\n Passages: [P] \n\n Question: [Q] \n\n
Answer:. The "[P]" represents the input knowledge
and "[Q]" indicates the input question.
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