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Abstract

Retrieval-augmented large language models001
have shown remarkable potential in knowledge-002
intensive tasks. However, their performance003
can be compromised by lengthy, noisy, or ir-004
relevant retrieved information. Recent work005
focus on knowledge compression, but ignore006
the feedback from LLM or just incorporate007
with individual feedback. In this paper, we008
introduce KO-RAG, a knowledge organiza-009
tion method with an external knowledge or-010
ganization model for retrieval augmented large011
language models, trained with individual-then-012
integrated feedback. KO-RAG learns to or-013
ganize knowledge in a two-stage framework.014
In the individual feedback stage, our method015
ranks and filters knowledge by comparing each016
knowledge, which can measure the helpful-017
ness of each knowledge individually. In the018
integrated feedback stage, our method orga-019
nizes the knowledge integratedly by utilizing020
LLM’s feedback on sampled knowledge per-021
mutations. Moreover, we design an empty022
knowledge placeholder to make KO-RAG or-023
ganize knowledge dynamically. Evaluation on024
five open-domain question-answering datasets025
proves that the proposed method has signifi-026
cantly improves the LLMs’ performance, out-027
performing the baseline methods.028

1 Introduction029

Retrieval-augmented generation (RAG) enhances030

the large language models (LLMs) ability to pro-031

vide up-to-date and contextually appropriate re-032

sponses by incorporating relevant information from033

curated knowledge bases or the Internet (Nakano034

et al., 2021; Jiang et al., 2023d; Mallen et al.,035

2023; Shi et al., 2023). Despite their utility, re-036

trieved texts can be noisy, redundant, and mis-037

leading due to imperfect retrievers and incomplete038

knowledge bases, potentially decreasing perfor-039

mance (Xu et al., 2023; Liu et al., 2024; Cuconasu040

et al., 2024). Recognizing this shortcoming, re-041

searchers have proposed various strategies to com-042

Where was the hottest unconfirmed 

ground temperature recorded on earth? El Azizia

Golden Knowledge:
1. The highest registered temperature 

on Earth was in Furnace Creek Ranch, 

California, located in Death Valley 

desert…

Al 

Azizziyah

Organized Knowledge:
1.  The highest registered temperature  

on Earth …  in Death Valley desert.

…

22. This remains a record for a 

directly recorded temperature….

23. … lies between Death Valley …

Death 

Valley
Llama

Shuffled Organized Knowledge:
…

2. The highest registered temperature  

on Earth …  in Death Valley desert.

…

22. At Eureka, Nunavut, in Canada, 

where the annual average …

23. This same conclusion has also 

been reached…

EurekaLlama

Llama

Llama

Figure 1: An example to show the necessary of knowl-
edge organization. In the example, Llama’s responses
are different to the same question under different knowl-
edge contexts. Golden Knowledge: Selected both by
human annotators and Llama feedback, which also con-
tains the right answer of the given question, yet fails
to elicit the correct answer. Organized Knowledge:
Includes information not directly related to the question,
but enables Llama to answer correctly. Shuffled Orga-
nized Knowledge: Randomly reordered version of the
organized knowledge, leading to an incorrect prediction.

press retrieved knowledge, broadly categorized into 043

two types. The first category is discriminator-based, 044

which relies on a discriminator to judge whether 045

tokens or sentences should be preserved (Jiang 046

et al., 2023c; Li et al., 2023; Xu et al., 2023; Pan 047

et al., 2024). The second method is reranker-based, 048

which uses a scoring model to assign scores to sen- 049

tences or paragraphs, then selects the top-k highest- 050

scored ones (Glass et al., 2022; Liu, 2022; Huang 051

and Huang, 2024). 052

Realizing the gap between pre-defined or heuris- 053

tic based and LLM’s preference, recent research 054
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has explored using LLM’s feedback to train dis-055

criminators or rerankers (Xu et al., 2023; Jiang056

et al., 2023b). However, these approaches typically057

operate at a individual level, which use LLM’s feed-058

back to measure one retrieved document’s helpful-059

ness, but not take all the knowledge context into060

consideration. While such method is straightfor-061

ward to implement, but often leads to suboptimal062

results. As illustrated in Figure 1, the golden knowl-063

edge—both chosen by human annotators and the064

LLM itself1—may not always enable the LLM to065

generate the correct answer.2 Our research demon-066

strates that organized knowledge, which includes067

information about "Death Valley" but is not directly068

helpful to answer the question, can actually help the069

LLM answer correctly. Moreover, we observed that070

shuffling this organized knowledge can mislead the071

LLM3. These observations underscore the critical072

role of LLM’s integrated feedback in knowledge073

content selection and arrangement.074

Building on these insights, we introduce the con-075

cept of knowledge organization. We define this as076

the process of searching the optimal ordered sub-077

sequence of original knowledge that maximizes an078

LLM’s probability of answering correctly. Given079

that the precise mechanism by which LLMs in-080

tegrate retrieved contextual knowledge with their081

parametric knowledge remains unclear, and that082

searching the optimal among all possible candi-083

dates is an NP-Hard problem, we propose KO-084

RAG, an external knowledge organization model085

with a two-stage training framework to investigate086

this problem. In the first stage, we rank knowl-087

edge based on individual LLM feedback, select-088

ing those that demonstrably improve the LLM’s089

ability to answer correctly. The second stage in-090

volves calculating the LLM’s knowledge context091

preference using integrated feedback and optimiz-092

ing the model through Direct Preference Optimiza-093

tion (DPO, Rafailov et al., 2024). To enable dy-094

namic knowledge ranking, we introduce the con-095

cept of an empty knowledge placeholder, allowing096

for flexible sequence lengths and more nuanced097

organization strategies.098

We conducted experiments across five099

knowledge-intensive tasks, including open-domain100

1Given the knowledge and question, calculate the condi-
tional probability that the LLM predict the correct answer.

2This phenomenon is known as context-parameter knowl-
edge conflict (Tan et al., 2024; Xie et al., 2024) or extrinsic
hallucinations (Huang et al., 2023; Ji et al., 2023).

3This finding is also corroborated by recent studies (Cu-
conasu et al., 2024; Liu et al., 2024)

question answering and long-form question answer- 101

ing. Our experimental results demonstrate that, 102

given similar input knowledge length constraints, 103

our method outperforms both discriminator-based 104

and reranker-based baseline approaches. These 105

findings suggest that our knowledge organization 106

technique more effectively leverages available 107

information, leading to improved performance on 108

language understanding and generation tasks. 109

We conclude our contribution as follows: 110

111

• We propose KO-RAG, a two stage framework 112

that enables model to organize knowledge 113

via LLM’s individual and integrated feedback. 114

115• We model knowledge organization in a 116

unified process with proper distribution 117

estimation by introducing empty knowledge 118

placeholder. 119

120• Experiments on various knowledge intensive 121

tasks proved the efficiency of our proposed 122

method. 123

2 Problem Formulation 124

In the basic RAG framework, we have a ques- 125

tion Q, its corresponding answer A, and knowl- 126

edge retrieved from a knowledge base K = 127

{k1, k2, · · · , kn}, where ki denotes a knowledge 128

sentence. We consider the knowledge organiza- 129

tion process as a picking and ranking task, which 130

can be viewed as finding a specific permutation 131

of knowledge. Let O = {O1, O2, · · · , Om},m = 132∑n
i=0

n!
(n−i)! = ⌊e ∗ n!⌋ represent all possible per- 133

mutations of retrieved knowledge, where Oi de- 134

notes one partial permutation of {1, 2, · · · , n}, e 135

denotes the Euler number and ⌊.⌋ denotes the floor 136

function. The target Ooptimal of our knowledge 137

organization process can be defined as follows: 138

Ooptimal := max
Oi∈O

P (A|Q,KOi) (1) 139

where KOi denotes the knowledge under the order 140

Oi. This formulation seeks to find the permutation 141

of knowledge that maximizes the probability of 142

generating the correct answer A given the question 143

Q and the organized knowledge KOi . 144

3 Method 145

The vast search space, with O(n!) possible candi- 146

dates, renders exhaustive search computationally 147

infeasible. To navigate these complexities, we em- 148

ploy a sophisticated, two-stage training methodol- 149
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• Stage1: Ranking with Individual Feedback

• Stage2: Organization with Integrated feedback
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Figure 2: Overview of training process of the KO-RAG framework. ki denotes the retrieved knowledge and the
empty knowledge placeholder is denoted by Kϕ. In the stage 1, LLM provides feedback to rank each retrieved
knowledge and the empty knowledge placeholder. In the stage 2, KO-RAG sample 2 different knowledge rank lists
based on the scores predicted by KO-RAG, in which the empty knowledge placeholder serves as the end of list.
KO-RAG is optimized with the integrated feedback of two knowledge lists and DPO.

ogy of knowledge organization. The overall pro-150

cedure is illustrated in Figure 2, which includes151

Ranking with Individual Feedback (§3.1) and Or-152

ganization with Integrated Feedback (§3.2).153

3.1 Ranking with Individual Feedback154

Training procedure Following the definition155

in Section 2, we can seek an order Oid =156

{o1, o2, · · · , on}, such that ∀i > j P (A|Q, koi) >157

P (A|Q, koj ), which relies on LLM’s individual158

feedback. To remove unhelpful knowledge, we in-159

troduce an empty knowledge placeholder ϕ, where160

P (A|Q,ϕ) = P (A|Q). This allows comparison of161

each knowledge sentence’s utility against a base-162

line of no additional knowledge. Hence we obtain163

a knowledge rank based on the individual feedback164

Oid = {o1, o2, · · · , on+1} and kom = kϕ. Then165

we consider all knowledge rank higher than the166

empty knowledge placeholder (including the empty167

knowledge placeholder) as positive examples. For168

each positive knowledge sentence Koi , we sample169

T lower-ranked knowledge sentences as negative170

samples and construct the training dataset D with171

Q and Oid as follows.172

D = {(Q, op, on1,··· ,nT )|op, oni ∈ Qid&op > oni} (2)173

based on the corresponding query Q and the knowl-174

edge koi , the score model F will predict the score175

soi := F(Q, koi). The training loss which is In-176

foNCE loss (Oord et al., 2018), is defined as fol-177

lows: 178

L =
∑

(Q,op,on1,··· ,nT
)∈D

exp(sop/τ)

exp(sop/τ) +
∑T

j=1 exp(sonj
/τ)

(3) 179

Where τ is a temperature parameter controlling the 180

sharpness of the probability distribution. 181

Score Model Following recent approaches in the 182

field (Chen et al., 2024; Pan et al., 2024), we em- 183

ploy an encoder architecture as our score model. 184

Given an input query Q and a knowledge sentence 185

ki, the model calculates a helpfulness score si as 186

follows: 187

si = Enc(Emb(Q ◦ ki)) (4) 188

where Enc represents the encoder function, Emb() 189

denotes the embedding output and ◦ denotes string 190

concatenation. 191

Virtual Tokens for Empty Knowledge Place- 192

holder The empty sequence presents a signifi- 193

cant challenge in the training process due to its for- 194

mat contrasts with normal "question-knowledge" 195

pairs, as it lacks any knowledge text. To address 196

this issue, we draw inspiration from Prefix-Tuning 197

techniques (Li and Liang, 2021), and introduce 198

additional virtual tokens to represent the empty 199

knowledge placeholder. These virtual tokens serve 200

as a proxy for the absent content, providing a more 201
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consistent input structure across all cases. The cal-202

culation process of empty knowledge placeholder203

Kϕ is defined as follows:204

sϕ = Enc(V ⊕ Emb(Q)) (5)205

where V := [V0, V1, · · · , Vm−1] ∈ Rm×d repre-206

sents m randomly initialized virtual tokens, each207

with dimension d, ⊕ denotes vector concatenation208

and Emb() denotes the embedding output.209

3.2 Organization with Integrated Feedback210

Training procedure We begin by defining a211

preference relationship between knowledge orders.212

Given a question Q, its corresponding answer A,213

and two predicted knowledge orders Oi and Oj , we214

define the preference as follows215

Oi ≻ Oj if P (A|Q,KOi) > P (A|Q,KOj ) (6)216

in which KOi denotes the knowledge under the217

order Oi.218

Based on this preference relation-219

ship, we can construct a training dataset220

D := (Q,Ow, Ol)|Ow, Ol ∈ O,Ow ≻ Ol, where221

Ow is the preferred (winning) order and Ol is the222

less preferred (losing) order for a given question.223

Rather than pre-building the entire training224

dataset, we adopt an online reinforcement learning225

paradigm.226

We employ DPO to train our model using feed-227

back from LLM’s feedback. Let Pref and Pθ de-228

note the probability distributions estimated by the229

reference model and the model being trained, re-230

spectively. Given a preferred order Ow and a less231

preferred order Ol, the DPO loss function is defined232

as:233

LDPO = − log σ(β log
Pθ(Ow) · Pref (Ol)

Pref (Ow) · Pθ(Ol)
) (7)234

where σ(·) is the sigmoid function and β is a con-235

strained hyper-parameter.236

To enhance training stability and maintain high237

confidence in preferred orders, we introduce an238

additional Maximum Likelihood Estimation (MLE)239

loss for the preferred order Ow:240

LMLE = − logPθ(Ow) (8)241

this MLE loss encourages the model to assign high242

probabilities to preferred orders. We combine the243

DPO and MLE losses to form our final loss func-244

tion:245

L = LDPO + λLMLE (9)246

where λ is a hyper-parameter that balances the con-247

tribution of the MLE loss relative to the DPO loss.248

Distribution estimation of P (O) We first intro- 249

duce the distribution estimation of the permutation. 250

Given a query q and a set of retrieved knowledge 251

K = {k1, k2, · · · , kn}, the score model M will 252

calculate the scores of each text S = {si|si = 253

M(q, ki)}. According to the Plackett-Luce model, 254

we can define the probability of a full ranking order 255

Of = {of1 , of2 , · · · , ofn} as follows: 256

P (Of |x) =
n∏

i=1

P (ofi |o<fi , x)

=
n∏

i=1

exp(sfi)∑n
j=i exp(sfj )

(10) 257

extending this concept, we propose a method to 258

calculate the probability of a partial ranking or- 259

der Op = {op1 , op2 . · · · , opm}, where m ≤ n and 260

kopm = ϕ: 261

P (Op|x) =
m∏
i=1

P (opi |o<pi , x)

=

m∏
i=1

exp(spi)∑
pj /∈{o<pi}

exp(spj )

(11) 262

for a detailed proof, please refer to Appendix A. 263

This formulation allows us to treat the passage scor- 264

ing process as a sequential decision-making prob- 265

lem, opening the possibility of optimizing it using 266

reinforcement learning techniques. 267

3.3 Inference Stage 268

During inference, we employ a greedy method to 269

select and order the knowledge. Given a query q 270

and a set of retrieved knowledge passages K = 271

{k1, k2, · · · , kn}, our scoring model M calculates 272

a score for each passage, producing a set of scores 273

S = {si|si = M(q, ki)}. We then construct the 274

predicted order O = {o1, o2, · · · , om} such that: 275

∀i > j soi > soj and kom = ϕ (the empty knowl- 276

edge placeholder). 277

4 Experiment setup 278

Datasets To evaluate the effectiveness of our pro- 279

posed method, we conduct experiments on sev- 280

eral knowledge intensive datasets. Specifically, we 281

conduct experiments on three open domain ques- 282

tion answering datasets: Natural Questions (NQ, 283

Kwiatkowski et al. 2019), AmbigNQ (Min et al., 284

2020), PopQA4 (Mallen et al., 2023) and two long- 285

4Since there is no official train-test split of PopQA, we use
top-13000 as the train set and 1267 as test set.
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Dataset Train Test Avg token

NQ 87372 2837 3168
AmbigNQ 19363 5749 3177
PopQA 13000 1267 3237
ASQA 4353 948 3169
ELI5 272633 1507 3021

Table 1: Statistical information of datasets. We report
the number of question-answer pairs in train dataset and
test dataset in "Train" and "Test". We also introduce
the average number of tokens of retrieved knowledge in
"Avg token", which includes train set and test set.

form question answering datasets: ASQA (Stel-286

makh et al., 2022), ELI5 (Fan et al., 2019). The287

statistical information is listed in Table 1288

Baselines In this paper, we consider the follow-289

ing three categories baselines:290

• Naive baselines: Zero-shot, without any con-291

text knowledge. RAG, we use top-50% knowl-292

edge scored by the retriever.293

• Discriminator-based baselines for RAG:294

Selective-Context (SC) (Li et al., 2023),295

LongLLMLingua (LLingua) (Jiang et al.,296

2023b), LLMLingua2(Lingua-2) (Pan et al.,297

2024). For discriminator-based baselines, we298

control the compression rate to 50%, which299

means deleting 50% of retrieved knowledge300

in token-level.301

• Reranker-based baselines for RAG: BM25302

(Robertson et al., 1995), RankT5 (T5)303

(Zhuang et al., 2023), BGE-raranker (BGE)304

(Chen et al., 2024). For reranker-based base-305

lines, we use reranker to do a sentence-level306

rerank and pick top 50%.307

Implementation Detail In experiment, we use308

Llama2-13B-chat (Touvron et al., 2023) as the309

base model to provide feedback and as a answer310

generator in RAG framework. We also test our311

method based on Llama-2-7B-chat (Touvron et al.,312

2023) and Mistral-7B-Instruct (Jiang et al., 2023a).313

For knowledge retrieval, we use contriever (Izac-314

ard et al., 2021) as a knowledge retriever, and315

the 2019/08/01 Wikipedia dump pre-processed by316

Petroni et al. (2021) as a knowledge base. For317

each question, we retrieve top-20 chunks as re-318

trieved knowledge. The model architecture is319

XLM-roberta-large (Conneau et al., 2020). Hyper-320

parameter and more details are listed in Appendix321

B. Prompts we use are listed in Appendix D.322

Metric For open-domain question answering, we 323

use fuzzy Exact Match(EM) to measure whether 324

generated answers contains the golden answers. 325

And for long-form question answering, we use 326

precision-based metric BLEU-1(B-1, Papineni 327

et al. 2002) to calculate the similarity between gen- 328

erated answers and golden answers. Besides re- 329

porting the performance, we also report average 330

knowledge token(#token)5 of each method. 331

5 Results and Discussion 332

5.1 Main result 333

The experimental results are presented in Table 334

2. Our proposed method outperforms all baseline 335

methods across nearly all datasets with the shortest 336

average context length, with the exception of ELI5. 337

In ELI5, our proposed method achieve the best 338

performance with a comparable average context 339

length with discriminator-based and reranker-based 340

knowledge compression method. 341

Comparison with Discriminator-based Methods 342

Selective-context and LLMLingua2, designed for 343

universal context compression rather than specif- 344

ically for RAG, demonstrate relatively lower per- 345

formance. LongLLMLingua, which is tailored for 346

RAG and utilizes Llama2-7B for knowledge com- 347

pression, exhibits strong performance but still falls 348

short of our proposed method. 349

Comparison with Reranker-based Method 350

Model-based reranker methods show impressive 351

performance on open-domain question answering 352

tasks but appear less effective for long-form ques- 353

tion answering. N-gram based methods like BM25 354

perform poorly on open-domain question answer- 355

ing and long-form question answering scenarios. 356

In terms of overall performance across diverse 357

tasks, our proposed method consistently outper- 358

forms these approaches. 359

5.2 The Effectiveness of Integrated Feedback 360

To assess the impact of integrated feedback from 361

LLMs, we conducted a comparative analysis of 362

our system’s performance before and after the in- 363

tegrated feedback stage. The results are presented 364

in Table 3. Our findings demonstrate that the in- 365

corporation of integrated feedback leads to further 366

performance improvements across all the datasets. 367

5In this paper, all the token refers to the text tokenized by
Llama2 tokenizer.
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NQ AmbigNQ PopQA ASQA ELI5

EM #token EM #token EM #token B-1 #token B-1 #token

Naive
Zero-shot 43.32 0 32.75 0 11.13 0 11.39 0 13.93 0
RAG 45.51 1576 36.49 1588 36.54 1613 10.40 1585 14.22 1511
Discriminator-based baselines for RAG
SC (Li et al., 2023) 43.57 1890 33.55 1897 34.65 1987 10.33 1893 14.25 1795
LLingua (Jiang et al., 2023b) 47.83 1714 39.73 1729 39.07 1758 10.82 1722 14.22 1659
Lingua2(Pan et al., 2024) 46.00 1788 35.43 1808 35.44 1829 10.98 1803 14.14 1696
Reranker-based baselines for RAG
BM25 (Robertson et al., 1995) 43.56 1838 36.26 1861 34.65 1823 9.83 1841 13.88 1769
T5 (Zhuang et al., 2023) 46.67 1757 37.85 1725 37.17 1716 10.42 1756 14.03 1578
BGE (Chen et al., 2024) 47.76 1787 37.82 1837 36.54 1863 10.38 1841 14.22 1692

KO-RAG 50.58 1350 42.29 1366 42.46 614 11.96 1206 14.74 1773

Table 2: Performance comparison on knowledge-intensive tasks. This table presents the evaluation results across
various knowledge-intensive tasks. The bold values indicate the best performance for each metric, while underlined
values represent the second-best performance. For context length, bold figures denote the shortest number of tokens,
and underlined figures indicate the second shortest. Note that the Zero-shot method is excluded from this token
count comparison due to its unique nature

Dataset w/o. IF w. IF baseline

NQ 47.87 50.58 47.83
AmbigNQ 38.20 42.29 39.73

PopQA 40.81 42.46 39.07
ASQA 10.25 11.96 11.39
ELI5 13.76 14.74 14.25

Table 3: Impact of integrated feedback(IF) on model
performance. "w/o. IF“ denotes the performance with-
out integrated feedback and "w. IF" denotes the per-
formance after organization with integrated feedback.
"baseline" denotes the best performance of baseline
method.

Notably, even in the absence of the integrated feed-368

back stage, our proposed method outperforms the369

baseline approach on several datasets, including370

NQ and PopQA. This underscores the effectiveness371

of our initial knowledge reorganization stage. The372

dual benefits observed—improvements from both373

the initial knowledge reorganization and the subse-374

quent integrated feedback stage—suggest that our375

two-stage approach offers a powerful framework376

for enhancing LLM performance.377

5.3 Fine-grained Performance Analysis378

While knowledge organization and compression379

can lead to overall performance improvements,380

they may also cause changes at the individual sam-381

ple level. To analyze this, we categorize ques-382

tions into four groups based on their pre- and post-383

reorganization performance: PP (correct before384

and after), NP (incorrect before, correct after), 385

PN (correct before, incorrect after), and NN (in- 386

correct before and after). We then introduce a fine- 387

grained efficiency score S, defined as: 388

S =
|NP |
|PN |

(12) 389

where |NP | and |PN | denotes the sample number 390

of NP and PN group. A higher S value indicates 391

that when the model potentially distorts one sam- 392

ple (PN), it can rectify a larger number of samples 393

(NP), thus demonstrating higher efficiency. We cal- 394

culate this efficiency score across three datasets: 395

NQ, AmbigNQ, PopQA. Our experimental results, 396

which are listed in table 4 that demonstrate our 397

proposed method consistently maintains higher ef- 398

ficiency scores across all datasets compared to base- 399

line approaches. This suggests that our knowledge 400

reorganization technique not only enhances overall 401

accuracy but also achieves this improvement more 402

efficiently, with a better trade-off between correct- 403

ing previously incorrect answers and maintaining 404

correct ones. 405

5.4 Generalize to Different LLMs 406

Our method is trained using feedback from a spe- 407

cific LLM. A natural question arises: can this 408

method generalize to different models? To ad- 409

dress this, we evaluated our approach on three 410

open-domain question answering datasets using 411

two distinct models: Llama2-7B (Touvron et al., 412
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NQ AmbigNQ PopQA Avg

SC 0.81 0.69 0.79 0.74
LLingua 1.30 1.57 1.51 1.47
Lingua2 1.05 0.87 0.85 0.93
BM25 0.82 0.97 0.75 0.89

T5 1.14 1.20 1.10 1.17
BGE 1.27 1.19 1.00 1.20

KO-RAG 1.65 2.02 2.07 1.89

Table 4: The efficiency score of different method across
different datasets. We bold the highest stable score and
underline the score highest score.

2023) and Mistral-7B (Jiang et al., 2023a). We413

present a summary of our findings in Table 6 for414

Llama2-7B-chat and Table 5 for Mistral-7B6. The415

results demonstrate that our method consistently416

outperforms all baseline approaches across both417

models, indicating strong generalization capabil-418

ities. Interestingly, we observed that the perfor-419

mance gap between our method and the baselines420

narrows when applied to Mistral-7B, compared to421

its performance with Llama2 series models. This422

suggests that the different LLMs may have similar423

knowledge preference, thus enabling our method424

generalize to these LLMs.425

NQ AmbigNQ PopQA

Zero-shot 46.21 37.35 31.41
RAG 50.26 39.73 40.41
SC 47.30 35.76 36.70

LLingua 52.73 43.19 43.09
Lingua2 51.00 38.28 40.02
BM25 48.82 38.41 36.54

T5 51.64 40.27 40.25
BGE 52.73 40.86 40.57

KO-RAG 54.04 43.50 45.54

Table 5: Performance on open-domain question answer-
ing tasks, which is based on Mistral-7b. The bold and
underlined values indicate the best and the second-best
performance for each metric, respectively.

5.5 Model Context Preference Estimation426

In this section,we address two critical questions:427

"Is our trained model an effective estimator of428

LLM’s context preferences?" and "Does reinforce-429

ment learning improve the model’s ability to es-430

timate LLM preferences?". To investigate these431

issues, we compare the agreement and Cohen’s432

kappa (Cohen, 1960) between KO-RAG and LLMs.433

Specifically, we reuse the LLMs’ preference de-434

6We use the Mistral-7B-instruct-v0.2 version

NQ AmbigNQ PopQA

Zero-shot 41.28 30.27 28.97
RAG 43.11 34.27 36.23
SC 40.01 31.41 30.54

LLingua 44.70 36.88 37.02
Lingua2 43.29 33.74 32.99
BM25 40.82 32.63 32.83

T5 42.47 34.61 35.44
BGE 43.18 34.04 35.28

KO-RAG 47.44 40.22 43.49

Table 6: Performance on open-domain question answer-
ing tasks, which is based on Llama2-7b. The bold and
underlined values indicate the best and the second-best
performance for each metric, respectively.

NQ AmbigNQ PopQA
40 %

45 %

50 %

55 %

60 %

65 %

70 %

63%
62%

68%
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54%

Agreement w/o. and w. IF
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w. IF

NQ AmbigNQ PopQA

-0.04
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0.19

0.08

0.18
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w/o IF
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Figure 3: Agreement rate and Cohen’s kappa between
KO-RAG and LLM preferences w/o. and w. inte-
grated feedback (IF) across NQ, AmbigNQ, and PopQA
datasets

fined in equation 6 and KO-RAG’s preference de- 435

fined in equation 11. Figure 3 illustrates our find- 436

ings. Interestingly, while reinforcement learning 437

does not significantly improve the raw agreement 438

rate, it does enhance the Cohen’s kappa score. This 439

suggests that the reinforcement learning process 440

refines the model’s ability to capture more nuanced 441

aspects of LLM preferences, beyond simple binary 442

agreement. However, it is important to note that 443

both the agreement rate and Cohen’s kappa remain 444

below satisfactory levels. This indicates that while 445

our approach shows promise, there is still consider- 446

able room for improvement in accurately modeling 447

LLM context preferences. 448

5.6 Case Study 449

Table 7 illustrates examples comparing model per- 450

formance using contexts processed by KO-RAG 451

versus silver knowledge contexts (The optimization 452

target in Stage 1, refer to Chapter 3.1). Consider 453

7



the question, "Who plays the science officer on Star454

Trek: Discovery who is also a chief engineer?"455

When the initially retrieved knowledge lacks the456

correct answer, the silver context fails to guide the457

LLM towards an accurate response. In contrast,458

KO-RAG demonstrates its effectiveness by suc-459

cessfully leveraging the LLM’s inherent parameter460

knowledge that "Paul Stamets is played by actor461

Anthony Rapp." By effectively filtering and reorga-462

nizing this information, KO-RAG enables the LLM463

to provide the correct answer: Anthony Rapp.464

Question:
Who plays the science officer on Star Trek discovery who
is a chief engineer?

Standard answer:
"Anthony Rapp", "Anthony Deane Rapp"

Silver context:
1: Yelchin died in a car accident on June 19, 2016,
2: ... specifically from Captain Christopher Pike, ...
LLM’s prediction:
The character who plays the science officer and chief engi-
neer on Star Trek: Discovery is Captain Christopher Pike,
portrayed by Anson Mount.

KO-RAG context:
1: Yelchin died in a car accident on June 19, 2016,
2. Science Officers Saru and Stamets, respectively.
3. After the first season concluded with the ...
...
6. ... the relationship between Culber and Stamets would
continue to be explored.
LLM’s prediction:
The character who plays the science officer and chief en-
gineer on Star Trek: Discovery is Paul Stamets, played by
actor Anthony Rapp.

Table 7: Case comparison between silver context and
KO-RAG processed context On AmbigNQ dataset. En-
tities that appear in both the context and the LLM’s
prediction are highlighted in red.

6 Related Work465

Retrieval Augmentation Generation Retrieval466

augmented generation, which uses retrieved knowl-467

edge as generation context, significantly improves468

the the accuracy, credibility and interpretability469

of generated texts (Gao et al., 2023; Ren et al.,470

2023; Wang et al., 2023b; Louis et al., 2024). One471

mainstream method is training retriever and LLMs472

end-to-end (Guu et al., 2020; Wang et al., 2024a;473

Nakano et al., 2021; Asai et al., 2023; Borgeaud474

et al., 2022; Wang et al., 2023a). Another method475

freezes the LLMs and uses retrieved knowledge as476

additional context with various strategies including477

retrieval query refinement, structured knowledge 478

indexing, and iterative retrieval mechanisms (Ma 479

et al., 2023; Jiang et al., 2023d; Wang et al., 2024b). 480

Nonetheless, the inclusion of retrieved data can in- 481

troduce new challenges, as it often yields noisy 482

or redundant information that might distract the 483

LLMs from pertinent content (Yoran et al., 2023; 484

Liu et al., 2024). 485

Knowledge Compression For RAG Knowledge 486

compression could remove the irrelevant contexts 487

and reduce the input context length, thus improv- 488

ing the model’s performance and decrease the cost 489

of inference. One effective method is reranker- 490

based, which use a reranker model to modeling the 491

relevance between retrieved knowledge and ques- 492

tion, then remove the less relevant knowledge to 493

improve performance and reduce context length 494

(Glass et al., 2022; Izacard et al., 2023; Wang et al., 495

2023c; Xu et al., 2023; Huang and Huang, 2024). 496

Another main method is discriminator based, which 497

relies on a discriminator to determine which part 498

should be deleted, including sentence-level self- 499

information calculated by a small language model 500

(Li et al., 2023; Jiang et al., 2023c), token-level 501

discriminator (Pan et al., 2024) or combine token- 502

level disciminator and reranker (Jiang et al., 2023b). 503

But these method ignores LLM’s feedback or just 504

utilize LLM’s feedback in a individual level with 505

greedy search. Recently, there are several stud- 506

ies to tackle this problem with a Seq2Seq model 507

(Yang et al., 2023; Jin et al., 2024; Zhu et al., 2024). 508

While these methods are easily trained with LLM’s 509

feedback, they have different drawbacks inherited 510

from Seq2Seq architecture, such as generation hal- 511

lucinations, limited input context and could not 512

inference in parallel. Since these method have dif- 513

ferent drawbacks and model architectures, we do 514

not consider them as baselines. 515

7 Conclusion 516

We introduce KO-RAG, an advanced knowledge 517

organization model to enhance RAG system. Our 518

method is accomplished with two-stage training 519

framework, utilizing LLM’s individual and inte- 520

grated feedback respectively. Our comprehensive 521

experiments across diverse open-domain and long- 522

form question answering datasets demonstrate the 523

efficacy of our method. Through in-depth analysis, 524

we elucidate the benefits of the integrated feedback, 525

and highlight our method’s fine-grained efficiency 526

and its ability to generalize across various LLMs. 527
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Limitation528

We conclude the limitation of our method as fol-529

lows: First, we test our method in various open530

domain question answering datasets and long form531

question answering datasets, but the questions in532

these datasets are not complex. For complex ques-533

tions, which need LLM to perform multi-step rea-534

soning and iterative retrieval, whether our method535

still works remains to be examined. Secondly, our536

method relies on training with LLM’s feedback,537

thus making it more time costing and GPU cost-538

ing than the heuristic method such as Selective-539

Context (Li et al., 2023) and LLMLingua (Jiang540

et al., 2023c).541
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A Detail Proof of the Extend 832

Plackett-Luce Model 833

Given retrieved knowledge K = {k1, k2, · · · , kn} 834

and responding scores S = {s1, s2, · · · , sn}, ac- 835

cording to Plackett-Luce model, the probability 836

distribution of a full rank Oi = {o1, o2, · · · , on} 837

defined is as follows: 838

P (Oi) =
n∏

i=1

P (oi|o<i)

=
n∏

i=1

exp(soi)∑n
j=i exp(soj )

(13) 839

Then, we consider the empty case ϕ ∈ K, the 840

predicted extractive rank Ei = {e0, e1, · · · , em} 841

that satisfying m ≤ n and kem = ϕ. In this case, 842

we consider the remain index set R = {ri|i = 843

1, 2, · · · , n and ri /∈ Ei} and remain score set 844

SR = {si|i ∈ R}. Then we have 845
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Then, considering the empty knowledge as846

a special case, we have a knowledge K =847

{k0, k1, k2, · · · , kn}, k0 = ϕ and its responding848

scores S = {s0, s1, s2, · · · , sn}. For a partial rank849

Ei = {e0, e1, · · · , em} that satisfying m ≤ n+ 1850

and kem = ϕ, its probability distribution is851

P (Ei) =

m∏
i=0

exp(sei)∑
j /∈{o<ei

} exp(sj)
(14)852

To approve this, we consider the remaining853

knowledge set R = {ki|i = 1, 2, · · · , n and ki /∈854

Ei}, the remaining scores set SR = {si|ki ∈ R}855

and R’s all possible permutation OR = {ORi}.856

The partial rank Ei and one permutation of ORi ∈857

OR make up a full rank of Oi ∈ O. Noting that two858

different permutation of K, which share the same859

partial rank Ei, shows no difference to LLM, the860

probability of Ei should be the sum of probability861

of permutation Oi ∈ O which starts with Ei. In862

other words, we have :863

P (Ei) =
∑

ORi
∈OR

P (Ei

⊕
ORi)

=
∑

ORi
∈OR

m∏
i=0

exp(sei)∑m
j=i exp(sej ) +

∑n−m+1
j=1 exp(srj )

n−m+1∏
j=1

exp(sri)∑n−m+1
j=i exp(srj )

=

m∏
i=0

exp(sei)∑m
j=i exp(sej ) +

∑n−m+1
j=1 exp(srj )∑

ORi
∈OR

n−m+1∏
j=1

exp(sri)∑n−m+1
j=i exp(srj )

(15)864

in which
⊕

means concatenation of two sequence.865

We notice that exp(sri )∑n−m+1
j=i exp(srj )

is the probability866

of ORi under the set R, which simplify the equation867

as868

P (Ei) =

m∏
i=0

exp(sei)∑m
j=i exp(sej ) +

∑n−m+1
j=1 exp(srj )∑

ORi
∈OR

P (ORi)

=

m∏
i=0

exp(sei)∑m
j=i exp(sej ) +

∑n−m+1
j=1 exp(srj )

=

m∏
i=0

exp(sei)∑
j /∈{o<ei

} exp(sj)

(16)869

B Implementation Details870

B.1 Datasets871

Natural Question (NQ) is a corpus of real ques-872

tions issued to the Google search engine. We use873

the data processed by KILT. 874

AmbigNQ collects questions from NQ and rewrite 875

the questions to solve the ambiguity. We use the 876

official released data. 877

PopQA collects knowledge triples from Wikidata 878

and convert the knowledge triple to a question- 879

answer pair with templates. We use the official 880

released data and use the top-13000 as the train set, 881

remaining 1267 as the test set. 882

ASQA is a dataset of high-quality long-form an- 883

swers to 6,316 ambiguous factoid questions. We 884

use the official released data. 885

ELI5 collects question-answer pair from a sub- 886

reddit from Reddit, named as Explain Like I’m 887

Five(ELI5). We use the data processed by KILT. 888

B.2 Hyper parameter 889

In stage 1, we search the learning rate in {2e-4, 890

1e-4, 5e-5, 1e-5}, and the learning rate for NQ is 891

2e-4, AmbigNQ is 1e-4, PopQA is 5e-5, ASQA is 892

1e-5 and eli5 is 1e-5. We set the number of batch 893

size as 8 and the number of negative samples as 31. 894

we set the gradient accumulation steps as 2. We set 895

the number of virtual token in equation 5 as 50. 896

In stage 2, we set the learning rate as 1e-6, the 897

β is 0.2 and the λ in equation 9 as 0.1. We set the 898

batch size as 4 and the gradient accumulation steps 899

as 4. 900

B.3 Additional Details 901

In data preparation stage, we split the retrieved 902

knowledge chunks into sentences by open-source 903

tools7 and drop the sentences which is incomplete 904

and too short (less than 5 words). In training stage, 905

we use Adam (Kingma and Ba, 2014) as the opti- 906

mizer. In inference stage, we use the vllm (Kwon 907

et al., 2023) to accelerate text generation. In text 908

generation process, we use the greedy decoding. 909

All the process, including data preparation, model 910

training and model inference is accomplished on a 911

8*A800 GPU server. 912

C Case study 913

The full content of the case 7 is listed in table 8. 914

D Prompts For Data Preparation and 915

Inference 916

In data preparation, training (stage 2) and infer- 917

ence, we use the same prompts. When the input 918

knowledge is none, we use the following prompt: 919

7https://github.com/mediacloud/sentence-splitter
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Question:
Who plays the science officer on Star Trek dis-
covery who is a chief engineer?

Standard answer:
"Anthony Rapp", "Anthony Deane Rapp"

Silver context:
1: Yelchin died in a car accident on June 19,
2016,
2: After the first season concluded with the "Dis-
covery" receiving a distress call from the USS
"Enterprise", specifically from Captain Christo-
pher Pike, Harberts expressed interest in explor-
ing that character; Anson Mount was
LLM’s prediction:
The character who plays the science officer
and chief engineer on Star Trek: Discovery is
Captain Christopher Pike, portrayed by Anson
Mount.

KO-RAG context:
1: Yelchin died in a car accident on June 19,
2016,
2. Science Officers Saru and Stamets, respec-
tively.
3. After the first season concluded with the "Dis-
covery" receiving a distress call from the USS
"Enterprise", specifically from Captain Christo-
pher Pike, Harberts expressed interest in explor-
ing that character; Anson Mount was
4: Scotty joins Kirk and Pavel Chekov (Walter
Koenig)
5: Scotty joins Kirk’s crew aboard the USS
"Enterprise"-A at the end of "" (1986).
6. However, the executive producers of the se-
ries, Cruz, and GLAAD immediately released a
statement saying "death is not always final in the
"Star Trek" universe" and that the relationship
between Culber and Stamets would continue to
be explored.
LLM’s prediction:
Based on the passage, the character who plays
the science officer and chief engineer on Star
Trek: Discovery is Paul Stamets, played by actor
Anthony Rapp.

Table 8: Case study

"Answer the subsequent question. \n\n Question: 920

[Q] \n\n Answer: ". When the input knowledge 921

is not none, we use the following prompt:Given 922

the following passage, answer the subsequent ques- 923

tion.\n\n Passages: [P] \n\n Question: [Q] \n\n 924

Answer:. The "[P]" represents the input knowledge 925

and "[Q]" indicates the input question. 926
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