
Published at the Workshop on Understanding Foundation Models at ICLR 2023

VARIATIONAL PROMPT TUNING IMPROVES GENERAL-
IZATION OF VISION-LANGUAGE FOUNDATION MODELS

Mohammad Mahdi Derakhshani1,*, Enrique Sanchez4, Adrian Bulat4, Victor Guilherme
Turrisi da Costa2,*, Cees G. M. Snoek1, Georgios Tzimiropoulos3,4, Brais Martinez4

1University of Amsterdam
2University of Trento
3Queen Mary University London
4Samsung AI Cambridge

ABSTRACT

Using prompt tuning, large vision-language foundation models can be adapted to
downstream tasks by treating part of the input language prompts as learnable pa-
rameters and freezing the rest. However, existing work on prompt tuning may
damage the generalization capabilities of foundation models. To avoid such lim-
itations, we propose a probabilistic modeling of the underlying distribution of
prompts, allowing prompts within the support of an associated concept to be de-
rived through stochastic sampling. This results in a more complete and richer
transfer of the information captured by the language model, providing better gen-
eralization capabilities for downstream tasks. The resulting algorithm relies on
a simple yet powerful variational framework that can be directly integrated with
other developments. We show our approach is seamlessly integrated into both
standard and conditional prompt learning frameworks, improving the performance
in both cases considerably, especially with regard to preserving the generalization
capability of the original model. Our method provides the current state-of-the-art
for prompt learning, surpassing CoCoOp by 1.6% average Top-1 accuracy on the
standard benchmark. Remarkably, it even surpasses the original CLIP model in
terms of generalization to new classes. The implementation code will be released.

1 INTRODUCTION

In a continuous quest for better pre-training strategies, models based on image and language super-
vision have set impressive milestones, e.g. CLIP (Radford et al., 2021), ALIGN (Jia et al., 2021)
and Flamingo (Alayrac et al., 2022). Contrastively trained vision-language models consist of image
and text encoders that align semantic concepts in a joint embedding space. Such models offer im-
pressive zero-shot image classification by using the text encoder to generate classifier weights from
arbitrarily newly defined category classes. In particular, the class name is used within a handcrafted
prompt template, tokenized and then encoded into the shared embedding space to generate new clas-
sifier weights. Rather than manually defining prompts, Zhou et al. (2022b) and Lester et al. (2021)
proposed that prompts can be instead optimized in a data-driven manner. Although prompt learning
improves performance on downstream tasks, it adversely affects the vision-language model’s gener-
alization capability. Subsequent works have focused on bridging the generalization gap, e.g. Zhou
et al. (2022a); Zhu et al. (2022), however, the generalization power of the foundation models is still
less than that of the zero-shot CLIP model (Radford et al., 2021). In this work, we aim to improve
downstream performance without degrading the generalization ability of the original model.

We propose a data-driven method for directly learning the underlying distribution within the prompt
space associated with the target concept. We frame prompt tuning as a variational inference problem,
where a base learned prompt is combined with a residual vector sampled from the instance-specific
distribution. This formulation provides two advantages. First, it investigates the prompt space more
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Figure 1: Overview of variational prompt tuning. For each input image x, we use image features
f(x) to infer the mean µ(x) and standard deviation Σ(x) of the residual distribution using the
metanet πϕ. The prompts to generate the classifier weights are constructed by summing up learnable
prompts p and residual samples from the residual distribution. The obtained prompts are fed through
a text encoder g(t), and the classifier weights are estimated. Finally, the cosine similarity scores are
computed between the image features f(x) and the classifier weights.

thoroughly and results in a more informative use of the language space, leading to better gener-
alization. Second, it enables us to boost performance by capturing the uncertainty information in
fine-grained classification problems. The resulting approach is orthogonal to standard prompt learn-
ing approaches, being effective when combined with both standard (Zhou et al., 2022b) and condi-
tional (Zhou et al., 2022a) approaches. By combining our method with the conditional approach, we
are able to maintain the gains achieved with the conditional method while simultaneously exceeding
the generalization capabilities of the original vision-language models on unseen classes.

Our contributions in this paper are as follows: (1) We propose a variational framework that is capable
of capturing the general or instance-specific distribution within the prompt space. Since generaliza-
tion is obtained through transfer from the language space, we obtain better generalization capability.
(2) We show that the proposed approach is orthogonal to recent developments, and can be success-
fully combined with both standard and conditional prompt learning variants. (3) We empirically
show that our proposed method improves performance and provides better generalization on unseen
classes and harmonic mean, leading to state-of-the-art accuracy in 24 out of 28 standard benchmarks
set forth by prior work, surpassing CoCoOp by 1.6% average Top-1 accuracy.

2 METHOD

2.1 BACKGROUND

Contrastive Language-Image Pretraining (CLIP) (Radford et al., 2021) consists of an image en-
coder f(x) and text encoder g(t), each producing a d-dimensional (L2 normalized) embedding
from an arbitrary image x ∈ R3×H×W , and word embeddings t ∈ RL×e, with L representing
the text length and e the embedding dimension. Both encoders are trained together using a con-
trastive loss from a large-scale dataset composed of paired images and captions. Once trained,
CLIP can be used for zero-shot C-class image classification by generating each of the c classi-
fier weights wc as the d-dimensional text encoding g(tc). Here tc results from adding the class-
specific word embedding ec to a pre-defined prompt p ∈ RL−1×e, i.e., wc=g(tc) with tc={p, ec}.
The prompt p is manually crafted to capture the semantic meaning of the downstream task, e.g.,
tc = “An image of a {class}”. The probability of image x being classified as y ∈ {1...C}
is thus defined as p(y|x)= ef(x)T wy∑C

c ef(x)T wc
.

2.2 VARIATIONAL PROMPT TUNING

In this paper, we propose to model the input prompt space of CLIP’s text encoder in a probabilistic
manner, as an a priori, instance-specific distribution. In particular, we define a distribution pγ over
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the prompts p that is instance-specific, i.e. p ∼ pγ(x). To this end, we assume that p can be split
into a fixed set of prompts pi and an instance-specific residual vector r that act as a latent variable
over p. The instance-specific prompt is then defined as:

pγ(x) = [p1 + rγ ,p2 + rγ , · · · ,pL + rγ ], rγ ∼ pγ(x), (1)

where pγ(x) refers to the real posterior distribution over r conditioned on the observed features x.
Denoting the class-specific input as tc,γ(x), the marginal likelihood p(y|x) is defined as:

p(y|x) =
∫
γ

ef(x)
T g(tc,γ(x))∑

c′ e
f(x)T g(tc′,γ(x))

p(pγ(x))dγ, tc,γ(x)={pγ(x), ec} (2)

Solving the marginal likelihood defined as in Eq. 2 is intractable, as it requires computing
pγ(r|x)pγ(x). Instead, we resort to deriving a lower bound, by introducing a variational poste-
rior distribution πϕ(x) from which the residual rγ can be sampled. The variational bound is defined
as:

log p(y|x) ≥ Eπϕ(r|x)[log p(y|x, r)]−DKL

[
πϕ(r|z)∥pγ(r)

]
, (3)

with p(y|x, r) ∝ ef(x)
T g(tc,γ(x)), where the dependency on r comes through the definition of tc,γ .

The variational posterior distribution πϕ plays a role akin to the metanet in CoCoOp. Following stan-
dard variational optimization practices (Kingma & Welling, 2014; Gordon et al., 2019), we define
πϕ as a Gaussian distribution conditioned on the input image features x, as r(x) ∼ N (µ(x),Σ(x)),
with µ and Σ parameterized by two linear layers placed on top of the metanet πϕ (see Figure 1).
The prior pγ(r) is defined as N (0, I), and we make use of the reparameterization trick to generate
Monte-Carlo samples from πϕ to maximize the right side of Eq. 3. The optimization of Eq. 3 com-
prises learning the prompt embeddings {pi}Li=1 as well as the parameters of the metanet πϕ and the
linear layers parameterizing µ and Σ. Note that this adds little complexity as it requires learning p
and πϕ, given that µ and Σ are defined as two linear layers on top of πϕ.

3 RESULTS

3.1 BASE-TO-NEW GENERALIZATION

We report the few-shot generalization of our method on 11 datasets for three different random seeds
following (Zhou et al., 2022a) (see Table 5 appendix.) Table 7 shows that the CoOp approach lacks
generalization capability, as indicated by the considerable accuracy discrepancy between the base
and new classes. This is expected as CoOp only observes a small number of training samples to adapt
the CLIP model for downstream tasks, resulting in sample memortization and overfitting. CoOp with
variational prompt tuning improves new classes’ performance by 11.54% and the harmonic mean by
1.7%, at the expense of a 10.7% drop in accuracy for base classes. Figure 2(a) depicts the relative
improvement of our proposed strategy when compared to CoOp (Zhou et al., 2022b) in terms of the
harmonic mean, where we observe an improvement in 10 out of 11 datasets. As reported in Table 7,
the limited generalization capability of CoOp is mitigated by CoCoOp (Zhou et al., 2022a) by
exploiting instance-conditional prompts, which improves the accuracy on new classes from 63.22%
to 72.23%. Nonetheless, augmenting CoCoOp with variational prompts still improves performance
on the new classes and the harmonic mean by 3.25% and 1.6%, respectively, with a mere decrease
of 0.37% in base accuracy. Figure 2(b) shows per-dataset relative harmonic mean improvement.
We observe an improvement in 10 out of 11 datasets. Moreover, in Table 7, we also report that our
best performing model CoCoOp+VPT performs better than ProDA (Lu et al., 2022) in terms of new
classes accuracy and harmonic mean by %2.64 and %0.78.

3.2 CROSS-DATASET TRANSFER LEARNING

We assess our method’s ability to generalize beyond the scope of a single dataset by training it
on a source dataset (ImageNet) and evaluating it on 10 distinct target datasets. As reported in Ta-
ble 1, CoOp+VPT has a drop in performance in ImageNet by 1.76% while outperforming the target
dataset on average by 1.63%. Moreover, our proposed method leads to an increase on 9 out of 10
target datasets, with a small drop in accuracy of 0.03% in Caltech101. Note that on target datasets
such as FGVCAircraft and DTD, our proposed method achieves an improvement of more than 3%.
Similarly to CoOp, augmenting CoCoOp with our method still leads to an overall performance

3



Published at the Workshop on Understanding Foundation Models at ICLR 2023

Average

ImageNet
Caltech101
OxfordPets

StanfordCars
Flowers102

Food101
FGVCAircraft

SUN397
DTD

EuroSAT
UCF101

+1.69

+0.83
+0.90

-0.31
+2.09

+0.34
+5.83

+2.80
+3.27

+3.94
+1.06

+6.47

(a) ∆(H) = H(CoOp+VPT)− H(CoOp)

+1.60

+0.28
+0.60

+0.39
+1.06

-0.59
+0.58

+6.95
+0.24

+2.42
+6.50

+1.36

(b) ∆(H) = H(CoCoOp+VPT)− H(CoCoOp)

Figure 2: Relative enhancement of variational prompt tuning over CoOp and CoCoOp in terms
of harmonic mean over 11 datasets for 3 distinct random seeds. Variational prompt tuning improves
the harmonic mean for all baselines other than OxfordPets for CoOp and Flowers102 for CoCoOp.
Table 1: Cross-dataset transfer learning comparison between the state-of-the-art and our varia-
tional prompt tuning in terms of average accuracy following (Zhou et al., 2022a). As shown, vari-
ational prompt tuning performs better than other baselines 16 out of 20 datasets, although it loses
performance on the source dataset.
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CoOp 71.51 93.70 89.14 64.51 68.71 85.30 18.47 64.15 41.92 46.39 66.55 63.88
+VPT 69.73 93.67 89.27 65.50 70.20 86.27 22.13 66.57 46.93 47.43 67.2 65.51
∆ −1.78 −0.03 +0.13 +0.99 +1.49 +0.97 +3.66 +2.42 +5.01 +1.04 +0.65 +1.63
CoCoOp 71.02 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 45.37 68.21 65.74
+VPT 70.70 93.67 90.63 65.00 70.90 86.30 24.93 67.47 46.10 45.87 68.67 65.95
∆ −0.32 −0.76 +0.49 −0.32 −0.98 +0.24 +1.99 +0.11 +0.37 +0.50 +0.46 +0.16

enhancement of 0.16% on 7 out of 10 target datasets, showing its effectiveness for cross-dataset
transfer learning. In addition, unlike CoCoOp , which has better performance in ImageNet-like
datasets such as Caltech101 and OxfordPets, our proposed method exhibits improvement on dis-
similar datasets (e.g. FGVCAircraft, DTD, and EuroSAT), demonstrating its capacity to capture the
unique characteristics of each dataset.

3.3 CROSS-DOMAIN GENERALIZATION

Lastly, We examine variational prompt tuning through the lens of distribution shift and robustness
following (Zhou et al., 2022a). Prior work such as CoOp (Zhou et al., 2022b) and CoCoOp (Zhou
et al., 2022a) demonstrate empirically that learning a soft-prompt improves the model’s resilience
against distribution shift and adversarial attack. Following their experiments, we are also interested
in determining if treating prompts in a variational manner maintain or improve the performance. As
reported in Table 2 our method enhances the accuracy of CoOp on ImageNet-Sketch, ImageNet-A,
and ImageNet-R by 0.88%, 0.70%, and 2.19% while degrading the performance on ImageNet and
ImageNetV2 by 1.78%, by 1.03%. However, on CoCoOp, adding VPT, while losing the perfor-
mance on source dataset similar to CoOp, consistently improves the accuracy on all target datasets
which highlight the effectiveness of our proposed method.

4 CONCLUSION

In this paper, we introduce variational prompt tuning allowing prompts within the support of an asso-
ciated concept to be derived through stochastic sampling, and allowing to generate adaptive context
tokens for each data point. This formulation leads to better generalization capabilities in terms of
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Table 2: Cross-domain Generalization comparison between the state-of-the-art and variational
prompt tuning in terms of average accuracy following (Zhou et al., 2022a). As shown, Variational
prompt tuning outperforms alternative baselines on the target datasets while losing performance on
the source dataset.

Source Target

Methods Learnable ImageNet ImageNetV2 ImageNet-Sketch ImageNet-A ImageNet-R
CLIP ✗ 66.73 60.83 46.15 47.77 73.96

CoOp ✓ 71.51 64.20 47.99 49.71 75.21
+VPT ✓ 69.73 63.17 48.87 50.77 77.40
∆ - −1.78 −1.03 +0.88 +0.70 +2.19

CoCoOp ✓ 71.02 64.07 48.75 50.63 76.18
+VPT ✓ 70.70 64.23 49.20 51.33 77.00
∆ - −0.32 +0.16 +0.45 +0.70 +0.82

the new accuracy and harmonic mean for downstream tasks. We show that it can be seamlessly
integrated into both standard and conditional prompt learning frameworks, considerably improving
the performance in both cases. We conduct extensive experiments and demonstrate the benefits of a
variational formulation in learning data-driven prompts. Our method provides the current state-of-
the-art for prompt learning, and constitutes, to the best of our knowledge, the first method for CLIP
adaptation that fully maintains the generalization capability to new classes of the original model.
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A APPENDIX

A.1 RELATED WORKS

Prompt learning in NLP. Prompt learning was originally proposed within the NLP domain, follow-
ing the appearance of foundation models such as GPT-3 (Brown et al., 2020). Early prompt learning
methods constructed prompts by combining words in the language space such that the model would
perform better on downstream evaluation (Shin et al., 2020; Jiang et al., 2020). Subsequent meth-
ods, e.g. Li & Liang (2021); Lester et al. (2021), prepend a set of learnable prompts to the input
of a frozen model and optimize through back-propagation, which allows better flexibility than us-
ing existing words, at the cost of leading to prompts that do not correspond to an actual phrase.
Instead, He et al. (2022) focus on a multi-task scenario and use a HyperNetwork to conditionally
generate task-specific and layer-specific prompts that are pre-pended to the values and keys inside
the self-attention layers of a the frozen model. Within the NLP domain, prompt learning has also
been shown to work better than in-context learning (Liu et al., 2022).

Prompting in Vision and Language models. Research on prompt learning for vision-language
models have been largely inspired by prior work within NLP. Similar to e.g. Li & Liang (2021),
CoOp (Zhou et al., 2022b) proposes a prompt learning method that optimizes unified or class spe-
cific prompts in the continuous space through back-propagation. While CoOp obtains good accuracy
on downstream tasks, it negatively affects the generalization ability to new unseen classes. Co-
CoOp (Zhou et al., 2022a) extends CoOp and partially bridges the generalization gap by generating
instance-specific prompt residuals through a conditioning mechanism dependent on the visual data.
ProGrad (Zhu et al., 2022) shares the same goal as CoCoOp of bridging the generalization gap, but
instead proposes to match the gradient of the prompt to the general knowledge of the CLIP model
to prevent prompt tuning from forgetting the general knowledge learned from the foundation model.
Alternative directions consist of test-time prompt tuning (Shu et al., 2022), where consistency across
multiple views is used as the supervisory signal, and unsupervised prompt learning (Huang et al.,
2022), where a pseudo-labelling strategy is proposed instead to obtain the labels needed to drive
the prompt learning. Perhaps the most similar work to ours is Lu et al. (2022). In this work, the
authors use an ensemble of prompts and model their distribution within the language embedding
space, with optimization seeking to minimize the negative log-likelihood with respect to the cor-
responding visual embedding. Unlike ours, their method relies on hand-crafted rules to define the
prompt ensemble, thus still relying on the effectiveness of hand-crafted designs. The number of
learnable prompts is also pre-defined, potentially offering sub-optimal coverage of an NLP concept.
Finally, it is not clear how to apply their strategy within the context of conditional prompt learning.
We believe that modelling the input prompt space rather than relying on a fixed number of templates
is a more powerful and flexible approach. We provide empirical evidence of the superiority of our
approach in the experiments.

While beyond our current scope, it is worth noting that prompt learning has been applied to a wider
range of problems and scenarios, which highlights its power and flexibility. Among them are impor-
tant topics such as unsupervised domain adaptation (Ge et al., 2022), multi-label classification (Sun
et al., 2022), video classification (Ju et al., 2022), object detection (Du et al., 2022; Feng et al., 2022)
or pixel-level labelling (Rao et al., 2022). Finally, prompt learning as a means to adapt pre-trained
models has also been applied to purely vision models (Jia et al., 2022; Sandler et al., 2022) providing
similar performance to fine tuning the whole model but with great parameter efficiency.

A.2 BASELINES

Contrastive Language-Image Pretraining (CLIP) (Radford et al., 2021) consists of an image en-
coder f(x) and text encoder g(t), each producing a d-dimensional (L2 normalized) embedding
from an arbitrary image x ∈ R3×H×W , and word embeddings t ∈ RL×e, with L representing
the text length and e the embedding dimension. Both encoders are trained together using a con-
trastive loss from a large-scale dataset composed of paired images and captions. Once trained,
CLIP can be used for zero-shot C-class image classification by generating each of the c classi-

In CLIP the word embedding is learned together with the text encoder. A tokenizer is used to convert the
text into one-hot vectors, or tokens, that can be directly mapped into the word embeddings. For the sake of
clarity we refer indistinctly to words and word embeddings.

9
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fier weights wc as the d-dimensional text encoding g(tc). Here tc results from adding the class-
specific word embedding ec to a pre-defined prompt p ∈ RL−1×e, i.e., wc=g(tc) with tc={p, ec}.
The prompt p is manually crafted to capture the semantic meaning of the downstream task, e.g.,
tc = “An image of a {class}”. The probability of image x being classified as y ∈ {1...C}
is thus defined as p(y|x)= ef(x)T wy∑C

c ef(x)T wc
.

Context Optimization (CoOp) (Zhou et al., 2022b) provides a learned alternative to manually
defining prompts. CoOp learns a fixed prompt from a few annotated samples. The prompt is de-
signed as a learnable embedding matrix p ∈ RL×e which is updated via back-propagating the clas-
sification error through the frozen CLIP model. Specifically, for a set of N annotated meta-training
samples {xi, yi}Ni=1, the prompt p is obtained by minimizing the cross-entropy loss, as:

p∗ = argmin
p

Exi,yi
[− log p(yi|xi,p)]. (4)

Note that this approach, while resembling that of common meta-learning approaches, can still be
deployed in a zero-shot scenario provided that for new classes the classification weights will be
given by the text encoder. Although this approach allows to generalize to new tasks with few training
iterations, learning a fixed prompt is sensitive to domain shifts between the annotated samples and
the test set.

Conditional Prompt Learning (CoCoOp) (Zhou et al., 2022a) attempts to overcome domain shifts
by learning an instance-specific continuous prompt that is conditioned on the input image. To ease
the training of a conditional prompt generator, CoCoOp defines each conditional token in a residual
way, with a task-specific, learnable set of tokens p and a residual vector that is conditioned on the
input image. Assuming p to be composed of L learnable tokens p=[p1,p2, ...,pL], the residual
vector r(x)=πϕ(f(x)) ∈ Re is produced by a small neural network πϕ with as input the image
features f(x). The new prompt is then computed as p(x)=[p1 + r(x),p2 + r(x), ...,pL + r(x)].
The training now comprises learning the task-specific prompt p and the parameters ϕ of the neural
network πϕ. Defining the context-specific text embedding tc(x)={p(x), ec}, and p(y|x) as :

p(y|x) = ef(x)
T g(tc(x))∑C

c ef(x)T g(tc(x))
, (5)

the learning is formulated as:

p∗, ϕ∗ = argmin
p,ϕ

Exi,yi
[− log p(yi|xi,p, ϕ)]. (6)

While CoCoOp achieves state-of-the-art results in a large variety of downstream tasks, it is still
prone to the domain shift problem, considering that πϕ provides a deterministic residual vector from
the image features f(x) which are expected to be domain-specific.

Prompt Distribution Learning (ProDA) (Lu et al., 2022) is work concurrent to CoCoOp that fo-
cuses learning a distribution of prompts that generalize to a broader set of tasks. ProDA proposes
to learn a collection of prompts P={pk}Kk=1 that can be used to subsequently generate an a pos-
teriori distribution of the classifier weights for each of the target classes. For a given mini-batch
of K sampled prompts pk ∼ P, the classifier weights wc are sampled from the posterior distri-
bution N (µw1:C

,Σw1:C
), with mean µw1:C

and covariance Σw1:C
computed from the collection

{wk,c = g(tk,c)}c=1:C,k=1:K , with tk,c = {pk, ec}. The objective is now formulated as:

P∗ = argmin
P

Exi,yi
[− logEwl∼N (µw1:C

,Σw1:C
) p(yi|xi,wl)]. (7)

Computing Ewl
p(yi|xi,wl)] is intractable and an upper bound to Eq. 7 is derived. During inference,

the classifier weights are set to those given by the predictive mean wc = µw1:C
, computed across

the collection of learned prompts P. While showing promising results compared to CoOp, how to
combine it with the conditional prompt learning framework of CoCoOp is unclear.

A.3 VARIATIONAL PROMPT TUNING

Inference. At test time, K residuals are sampled from the conditional distribution πϕ(x), which are
used to generate K different prompts per class pk=[p1+rk,p2+rk, · · · ,pL+rk]. Each prompt is
prepended to the class-specific embedding to generate a series of K separate classifier weights wk,c.

10
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We then compute p(y=c |x)=(1/K)
∑K

k=1 p(y=c |x,wk,c) and select ĉ=argmaxc p(y=c |x)
as the predicted class. It is worth noting that because the posterior distribution is generated
by the text encoder, it is not expected that for K → ∞, (1/K)

∑
k p(y=c |x,wc,k) →

p(y=c|x, g({µ(x), ec}), meaning that sampling at inference time remains relevant. We study the
dependency on the number of samples in the ablations.

A.4 EXPERIMENTAL SETUP

We follow the exact experimental setup of CoCoOp (Zhou et al., 2022a), which is currently the
state-of-the-art approach for prompt tuning for vision-language models. We describe the setup in
the following for completeness.

Three tasks and fifteen datasets. We evaluate variational prompt tuning for three different tasks:
base-to-new generalization, cross-dataset transfer, and domain generalization. For base-to-new
generalization and cross-dataset transfer tasks, we rely on the same 11 image recognition datasets
as Zhou et al. (2022b;a). These include generic image classification datasets (ImageNet by (Deng
et al., 2009) and Caltech101 by (Fei-Fei et al., 2004)), fine-grained classification datasets (Oxford-
Pets by (Parkhi et al., 2012), StanfordCars by (Krause et al., 2013), Flowers102 by (Nilsback & Zis-
serman, 2008), Food101 by (Bossard et al., 2014) and FGVCAircraft by (Maji et al., 2013)), scene
recognition (SUN397 by (Xiao et al., 2010)), action recognition (UCF101 by (Soomro et al., 2012)),
texture classification (DTD by (Cimpoi et al., 2014)), and satellite imagery recognition (EuroSAT
by (Helber et al., 2019)). For the domain generalization task, we first train our model on ImageNet
and report our evaluation metric on ImageNetV2 (Recht et al., 2019), ImageNet-Sketch (Wang et al.,
2019), ImageNet-A (Hendrycks et al., 2021b), and ImageNet-R (Hendrycks et al., 2021a).

Evaluation metrics. We report average accuracy and harmonic mean H=2×(base×new)/(base+
new) (Xian et al., 2017) for the base-to-new generalization tasks. For cross-dataset transfer learning
and domain adaptation, we provide average accuracy results.

Baselines. We compare against zero-shot CLIP (Radford et al., 2021), CoOp (Zhou et al., 2022b),
CoCoOp (Zhou et al., 2022a), and ProDA (Lu et al., 2022). For zero-shot CLIP, CoOp, CoCoOp,
all results are adopted from (Zhou et al., 2022a), and we reproduce all results for ProDA.

Implementation details. Our variational prompt tuning contains three sub-networks: an image
encoder f(x), a text encoder g(t), and a metanet πϕ. The image encoder f(x) and text encoder g(t)
are a ViT-B/16 (Dosovitskiy et al., 2021) and transformer (Vaswani et al., 2017), which are initialized
with CLIP’s pre-trained weights and kept frozen during training, as in Zhou et al. (2022b;a). The
metanet πϕ consists of two linear layers followed by ELU activation function as trunk and two
linear heads on top to estimate the µ and Σ of the residual distribution. For each task and dataset,
we optimize the number of samples K and epochs. Other hyper-parameters as well as the training
pipeline in terms of few-shot task definitions are identical to Zhou et al. (2022b;a) (see table 5 and 6
in the appendix). Implementation code will be released.

A.5 TASKS SETUP

Cross-dataset transfer learning the model is trained on a source dataset (ImageNet) and then as-
sessed on 10 distinct target datasets. This experiment tries to determine how effectively our methods
generalizes transfer beyond the scope of a single dataset.

Base-to-new generalization We report the few-shot generalization of our method on 11 datasets
for three different random seeds. Each dataset is divided into two disjoint subsets: base classes and
new classes. We train our method on base classes and evaluate it on both base and new classes. (see
Table 5 appendix.)

Cross-domain Generalization Lastly, We examine variational prompt tuning through the lens of
distribution shift and robustness. We train our proposed model on the source dataset (ImageNet)
for three different random seeds, and assess it on ImageNetV2, ImageNet-Sketch, ImageNet-A,
and ImageNet-R. Prior work such as CoOp (Zhou et al., 2022b) and CoCoOp (Zhou et al., 2022a)
demonstrate empirically that learning a soft-prompt improves the model’s resilience against distribu-
tion shift and adversarial attack. Following their experiments, we are also interested in determining
if treating prompts in a variational manner maintain or improve the performance.

11
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A.6 ABLATIONS

Effectiveness of the posterior distribution qϕ. We first ablate the effectiveness of the varia-
tional posterior distribution. To do this, we consider sampling one residual vector from the uniform
distribution U(0, 1), normal distribution N (0, I), normal distribution N (µ(x), 0), normal distribu-
tion N (µ(x),Σ(x)), and report the new class accuracy for CoCoOp+VPT for one random seed in
Table 3. Except for the EuroSAT dataset, a sample from the normal distribution N (µ(x), 0) ob-
tains the best-performingce in comparison with alternatives, showing that the mean of the normal
distribution µ(x) is the most effective sample. In addition, we find that drawing one sample from
N (µ(x),Σ(x)) yields superior results compared to drawing one sample from uniform distribution
U(0, 1) and normal distribution N (0, I), further demonstrating the efficacy of our proposed method
in capturing the underlying distribution of the prompt space. We also ablate increasing the number
of samples from the normal distribution N (µ(x),Σ(x)) to understand the informativeness of the
learned variational distribution. It is shown that enlarging the number of samples further improves
the model performance as they capture the prompt space appropriately.

Table 3: Effectiveness of the posterior distribution. The informative posterior distribution
N (µ(x),Σ(x)) outperforms the two uninformative distributions U(0, 1) and N (0, I) by a large mar-
gin for all datasets. Increasing the number of samples further improves results.

Methods Samples DTD Flowers102 EuroSAT FGVCAircraft UCF101
U(0, 1) 1 33.20 45.30 54.20 10.50 55.70
N (0, I) 1 26.60 36.10 50.00 07.70 48.80
N (µ(x), 0) 1 59.80 73.50 59.90 34.10 76.50
N (µ(x),Σ(x)) 1 56.40 72.30 64.50 33.00 75.60

N (µ(x),Σ(x)) 2 60.00 73.90 67.40 33.90 76.20
N (µ(x),Σ(x)) 5 62.20 74.00 71.00 34.20 76.60
N (µ(x),Σ(x)) 10 61.60 73.50 73.60 34.40 77.00

Prompt initialization. We investigate the effectiveness of the prompt initialization on the new
class accuracy for CoCoOp+VPT for one random seed. We consider two variants. In the first one,
we initialize the context tokens randomly using a normal distribution, whereas in second one we
initialize the context tokens with “An image of a {class}”. Table 4 summarizes this ablation.
Comparing the two variants demonstrates that an appropriately initialized prompt consistently out-
performs a randomly initialized prompt, highlighting the necessity for further research of the prompt
space. We will leave it open for future research direction.

Table 4: Prompt initialization. Initializing the context tokens with an appropriate prompt “An
image of a {class}” improves the performance compared to random tokens.

Method DTD Flowers102 EuroSAT FGVCAircraft UCF101
Random 74.10 67.23 75.10 34.30 81.30
“An image of a {class}” 74.80 70.05 77.90 35.50 82.50
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Figure 3: Effectiveness of Monte
Carlo samples on new accuracy. As
demonstrated, increasing the number
of Monte Carlo samples boosts perfor-
mance initially but reaches a plateau af-
ter 10 samples for all datasets.

Number of Monte-Carlo samples. When approximat-
ing the log-likelihood of input data, the number of Monte
Carlo samples is an important hyperparameter. Generally,
a large number of samples should lead to a better approx-
imation and better classification accuracy. We ablate this
hyperparameter on new accuracy for CoCoOp+VPT by
varying the number of Monte Carlo samples at inference
time. We show results for a varying number of samples in
Figure 3 for DTD, Flowers102, EuroSAT, FGVCAircraft,
and UCF101. Increasing the Monte Carlo samples from 1
to 10 consistently improves the new accuracy, afterwards
the accuracy saturates. Hence, we recommend evaluating
variational prompt tuning on a larger number of Monte
Carlo samples for better model accuracy.

Vision encoder alternatives. All previous experiments
benefit from ViT-B/16 as the vision encoder’s backbone
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following (Zhou et al., 2022b;a; Lu et al., 2022). For completeness, in Figures 4, 5, and 6, we replace
this vision encoder with a Resnet50 and Resnet100 and examine its impact on base accuracy, new
accuracy and harmonic mean for one random seed. The visual transformer outperforms the Resnet
alternatives across all 10 datasets for new accuracy and harmonic mean and in 9 out of 10 datasets
for base accuracy. Hence, we suggest training and evaluating variational prompt tuning on visual
transformer for better model performance.
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Figure 4: Ablation of different vision encoder backbones with respect to base accuracy. A
more over-parameterized model leads to better performance across all datasets except EuroSAT.
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Figure 5: Ablation of different vision encoder backbones with respect to new accuracy. A more
over-parameterized model leads to better generalization performance across all datasets.
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Figure 6: Ablation of different vision encoder backbones with respect to harmonic mean. A
more over-parameterized model leads to better performance across all datasets.

A.7 HYPERPARAMETERS

In this section, we provide the detailed hyperparameter settings in Tables 5 and 6 that are used to
generate results in the main paper for each dataset. There are two sets of hyperameters. The first are
shared among the two variants of variational prompt tuning CoOp+VPT and CoCoOp+VPT (See
Table 5). The second correspond to dataset-specific parameters that are optimized per dataset (See
Table 6).
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Table 5: Shared hyperparameters used to generate all results in the main paper.

Hyperparameters Values
Batch Size 1
Input Size 224× 224
Input Interpolation Method “Bicubic”
Input Mean [0.48145466, 0.4578275, 0.40821073]
Input STD [0.26862954, 0.26130258, 0.27577711]
Transformation [“random resized crop”, “random flip”, “normalize”]
Optimizer SGD
Learning Rate 2e− 3
LR Scheduler “cosine”
Warmup Epoch 1
Warmup Type “Constant”
Warmup LR 1e− 5
Backbone ViT-B/16
Prompt Length 4
Prompt Initialization “a photo of a {class}”
Number of Shots 16

Table 6: Dataset-specific hyperparameters used to generate all results in the main paper.
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Table 7: Base-to-new generalization comparison between the state-of-the-art and variational
prompt tuning. We average our accuracy over three random seeds. Our proposed model is trained
on a few-shot training set (base) and then evaluated on held-out classes (new). As shown, CoOp and
CoCoOp overfit on base classes and do not provide good generalization on new classes. However,
our model provides better generalization performance on new classes as well as harmonic mean.

Dataset CLIP CoOp +VPT ∆ CoCoOp +VPT ∆ ProDA

Average
Base 69.34 82.66 71.98 −10.71 80.47 80.10 −00.37 81.56
New 74.22 63.22 74.76 +11.54 71.69 74.94 +03.25 72.30

H 71.69 71.65 73.34 +01.69 75.83 77.43 +01.60 76.65

ImageNet
Base 72.43 76.14 74.73 −01.41 75.98 76.00 +00.02 75.40
New 68.14 67.88 70.60 +02.72 70.43 70.93 +00.50 70.23

H 70.21 71.77 72.60 +00.83 73.10 73.37 +00.27 72.72

Caltech101
Base 96.84 98.00 95.47 −02.53 97.96 98.00 +00.04 98.27
New 94.00 89.81 93.80 +03.99 93.81 94.93 +01.12 93.23

H 95.39 93.72 94.62 +00.90 95.84 96.44 +00.60 95.68

OxfordPets
Base 91.17 93.67 90.77 −02.90 95.20 95.67 +00.47 95.43
New 97.26 95.29 97.83 +02.54 97.69 98.00 +00.31 97.83

H 94.11 94.47 94.16 −00.31 96.43 96.82 +00.39 96.62

StanfordCars
Base 63.37 78.12 65.27 −12.85 70.49 72.93 +02.44 74.70
New 74.89 60.40 75.97 +15.57 73.59 73.23 −00.36 71.20

H 68.65 68.12 70.21 +02.09 72.01 73.07 +01.06 72.91

Flowers102
Base 72.08 97.60 72.97 −24.63 94.87 95.70 +00.83 97.70
New 77.80 59.67 75.90 +16.23 71.75 70.40 −01.35 68.68

H 74.83 74.06 74.40 +00.34 81.71 81.12 −00.59 80.66

Food101
Base 90.10 88.33 90.37 +02.04 90.70 91.03 +00.33 90.30
New 91.22 82.26 91.67 +09.41 91.29 92.13 +00.84 88.57

H 90.65 85.18 91.01 +05.83 90.99 91.57 +00.58 89.43

FGVCAircraft
Base 27.19 40.44 29.57 −10.87 33.41 34.40 −00.99 36.90
New 36.29 22.30 33.80 +11.50 23.71 35.00 +11.29 34.13

H 31.08 28.74 31.54 +02.80 27.74 34.69 +06.95 35.46

SUN397
Base 69.36 80.60 73.77 −06.83 79.74 79.17 −00.57 78.67
New 75.35 65.89 77.90 +12.01 76.86 77.87 +01.01 76.93

H 72.23 72.50 75.77 +03.27 78.27 78.51 +00.24 77.79

DTD
Base 53.24 79.44 57.67 −21.77 77.01 75.30 −01.71 80.67
New 59.90 41.18 58.70 +17.52 56.00 60.80 +04.80 56.48

H 56.37 54.24 58.18 +03.94 64.85 67.27 +02.42 66.44

EuroSAT
Base 56.48 92.19 67.97 −24.22 87.49 80.30 −07.19 83.90
New 64.05 54.74 71.63 +16.89 60.04 75.30 +15.26 66.00

H 60.02 68.69 69.75 +01.06 71.21 77.71 +06.50 73.88

UCF101
Base 70.53 84.69 73.23 −11.46 82.33 82.53 +00.20 85.23
New 77.50 56.05 74.63 +18.58 73.45 75.77 +02.32 71.97

H 73.85 67.45 73.92 +06.47 77.64 79.00 +01.36 78.04
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