Robust Hyperbolic Learning with Curvature-Aware

Optimization
Ahmad Bdeir Johannes Burchert Lars Schmidt-Thieme
Department of Data Science ISMLL ISMLL
University of Hildesheim University of Hildesheim University of Hildesheim
Hildesheim, Germany Hildesheim, Germany Hildesheim, Germany
bdeira@uni-hildesheim.de burchert@ismll.de schmidt-thieme@ismll.de
Niels Landwehr

Department of Data Science
University of Hildesheim
Hildesheim, Germany
landwehr@uni-hildesheim.de

Abstract

Hyperbolic deep learning has become a growing research direction in computer
vision due to the unique properties afforded by the alternate embedding space. The
negative curvature and exponentially growing distance metric provide a natural
framework for capturing hierarchical relationships between datapoints and allow-
ing for finer separability between their embeddings. However, current hyperbolic
learning approaches are still prone to overfitting, computationally expensive, and
prone to instability, especially when attempting to learn the manifold curvature to
adapt to tasks and different datasets. To address these issues, our paper presents
a derivation for Riemannian AdamW that helps increase hyperbolic generaliza-
tion ability. For improved stability, we introduce a novel fine-tunable hyperbolic
scaling approach to constrain hyperbolic embeddings and reduce approximation
errors. Using this along with our curvature-aware learning schema for Riemannian
Optimizers enables the combination of curvature and non-trivialized hyperbolic
parameter learning. Our approach demonstrates consistent performance improve-
ments across Computer Vision, EEG classification, and hierarchical metric learning
tasks while greatly reducing runtime.

1 Introduction

Recently, hyperbolic manifolds have gained attention in deep learning for their ability to model
hierarchical and tree-like data structures efficiently. Unlike Euclidean space, hyperbolic space has
negative curvature, allowing it to represent exponentially growing distances. This makes these
manifolds ideal for tasks like natural language processing, graph representation, and metric learning
[33]]. By embedding data into hyperbolic space, models can capture complex relationships more
effectively, and often with fewer parameters [11]. Hyperbolic geometry has also been applied in
computer vision, where its ability to better separate embeddings in high-dimensional spaces has
shown promise in improving tasks like image classification and segmentation [2, 3, [18} 40], few-shot
learning [25]], and feature representation [44].

These works rely on two main derivations of the hyperbolic space, the hyperboloid or Lorentz space
(L) and the Poincaré manifold (P). Typically, the hyperboloid offers better operational stability, as
demonstrated by Mishne et al. [29] but lacks clear definitions for basic vector operations such as
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addition and subtraction. To bridge this gap, recent research has focused on defining Lorentzian variant
of common deep learning operations, such as the feed-forward layer [6} 8 [11]], the convolutional
layer [6} 8} 34], and multinomial linear regression (MLR) [3]].

However, the use of these hyperbolic operations comes with challenges. Computations in hyperbolic
space are more complex and expensive, and the lack of optimized CUDA implementations drastically
slows down training and increases memory requirements. Additionally, optimizing hyperbolic
parameters such as class prototypes or batchnorm means can be unstable, especially in low precision
floating-point environments. This has required research to rely on parameter clamping techniques,
which can cause non-smooth gradient updates, to remain within the accurate representation radius
of the manifolds [[16, 29]. The instability is only exacerbated when we incorporate the negative
curvature as a learned parameter since it directly affects the embedding space. Finally, in data-scarce
scenarios, the higher representational capacity makes the hyperbolic spaces more prone to overfitting,
which heavily impacts their generalization ability.

This work addresses key challenges in the Lorentz model. To combat overfitting, we introduce an
AdamW-based optimizer that enhances regularization and generalization in hyperbolic learning. For
learning instability, we propose an optimization framework that stabilizes the learning of curvature
parameters. We also present a smoother scaling function to replace weight clipping, ensuring
hyperbolic vectors remain within the representational radius. To address computational complexity,
we introduce an implementation trick that leverages efficient CUDA-based convolutions for hyperbolic
learning. Improved stability not only boosts model performance but also enables lower-precision
training, further enhancing efficiency. Our contributions are then four-fold:

1. We propose an alternative schema for Riemannian optimizers that stabilize curvature learning
for hyperbolic parameters and a formulation for the Riemannian AdamW

2. We propose the use of our maximum distance rescaling function to restrain hyperbolic
vectors within the representative radius of accuracy afforded by the number precision, even
allowing for fp16 precision.

3. We present LHEIR, HyperMAtt, and HCNN+ as applications of our proposed optimization
scheme for the domains of hierarchical metric learning, EEG classification, and computer
vision for image classification and generation, respectively.

4. We empirically show the effectiveness of our proposed methods in five domains, hierarchical
metric learning, EEG classification, graph embedding, image classification, and image
generation to show the effectiveness of our optimizer in different problem settings. We
improve performance in all domains with a significant computational speed-up.

2 Related Work

Hyperbolic Embeddings in Deep Learning Initially, many hyperbolic deep learning methods
relied on a hybrid model architecture that utilizes Euclidean encoders and hyperbolic decoders [28]].
Euclidean encoders avoid the high computational complexity of hyperbolic operations, as well as the
lack of well-defined hyperbolic alternatives for Euclidean components. However, this trend has begun
to shift towards fully hyperbolic models. Chen et al. [6] propose hyperbolic components for a fully
connected linear layer, a graph convolution layer, and an attention layer with the square Lorentzian
distance as a similarity metric. For the classification head, they learn class prototypes directly on the
hyperbolic manifold and use the same distance metric as a loss estimator, following similar work
in the literature [2} |19} 28]]. This work was further extended to computer vision by Bdeir et al. [3]]
and van Spengler et al. [40]] with both developing fully hyperbolic ResNets, using Riemannian batch
normalization layers that rely on a learnable mean also embedded and optimized in hyperbolic space.
Bdeir et al. [3] attempt to alleviate these issues by including a hybrid encoder that only applies the
hyperbolic components in blocks that exhibit higher embedding hyperbolicity. Although this has
led to notable performance improvements, both models suffer from upscaling issues. Attempting to
apply these approaches to larger datasets or larger architectures becomes less feasible in terms of
time and memory requirements. Instead, our approach places a greater focus on efficient components
to leverage the beneficial hyperbolic properties of the model while minimizing the memory and
computational footprint.



Curvature Learning Previous work in hyperbolic spaces has explored various approaches to
curvature learning. In their studies, Gu et al. [14] and Giovanni et al. [[13]] achieve this by using a
parametrization that implicitly models variable-curvature embeddings under an explicitly defined
1-curve manifold. This method enables them to simulate K-curve hyperbolic and spherical operations
under constant curvature. They apply this method on mixed-curve manifold embeddings where
every portion of the embedding belongs to either the Euclidean, spherical, or Poincaré manifold.
Other approaches, such as the one by Kochurov et al. [20], simply set the curvature to a learnable
parameter but do not account for the manifold changes while performing the optimization steps with
the Riemannian optimizers. This leads to mathematical inconsistencies when updating the hyperbolic
parameters, resulting in instability and accuracy degradation. Additionally, some methods, like the
one by Kim et al. [[19], store all manifold parameters as Euclidean vectors and project them before
use. While this approach partially mitigates the issue of mismatched curvature operations, it requires
repeated backpropagation through hyperbolic mappings, making it computationally expensive and
more susceptible to projection errors. Other methods [3} |6, 40]] use a combination of Euclidean
parametrization, and direct hyperbolic parameter learning depending on the component and required
precision.

3 Methodology

3.1 The Lorentz Space

The hyperbolic space is a Riemannian manifold with a constant negative sectional curvature ¢ < 0.
There are many conformal models of hyperbolic space but we focus our work on the hyper-
boloid, or Lorentz manifold. The n-dimensional Lorentz model L% = (£", gX) is defined with
L= {x = [z, xs] € R | (x,x), = —K, x; > 0} implying a negative curvature of =1 and
the Lorentzian inner product as Riemannian metric g% = (x, y), := —x,y; + 1 y,. It then follows
that (x,y), < —K which is an important characteristic to note for the stability issues presented
later on. The formulation £™ then presents the Lorentz manifold as the upper sheet of a two-sheeted

hyperboloid centered at 0" = [VK,0,---,0]”. We inherit the terminology of special relativity and
refer to the first dimension of a Lorentzian vector as the time component x; and the remainder of the
vector as the space dimension . Below are the basic operations presented by the manifold with
more complex operations provided in Section[Alin the supplementary material.

Distance Distance in hyperbolic space is the magnitude of the geodesic forming the shortest path
between two points. Let x,y € L', then the distance between them is given by dy,(x,y) =

v/ Kacosh (LKW‘> We also define the square distance by Law et al. [22] as d? (z,y) = ||z —
ylIf = 2K —2(z,y) .

Exponential and Logarithmic Maps Since the Lorentz space is a Riemannian manifold, it
is locally Euclidean. This can best be described through the tangent space 7,M, a first-order
approximation of the manifold at a given point z. The exponential map, expX (z) : TLL% — L%
is then the operation that maps a tangent vector in 7,L% onto the manifold through expX (z) =

cosh(a)x + sinh(a)Z, witha = \/1/K||z|lL, [|z|]lL = \/(2,2) . The logarithmic map is the
inverse of this mapping and can be described as logf(y) = M(y—ﬁw), with g = — % (x,y)r.

VB2-1

3.2 Riemannian Optimization Schema

Background Many existing hyperbolic models adopt hybrid learning approaches that combine
Euclidean parameterization with direct hyperbolic optimization. Our work focuses on the latter. This
motivates our reliance on GeoOpt [20], a widely adopted library for Riemannian optimization based
on the definitions by Bécigneul and Ganea [4], whose methodology is also reflected in related work.
Here, the curvature K of the hyperbolic space is set as a learnable parameter. However, empirically, we
find that naively optimizing this curvature often leads to instability and performance degradation. We
argue that this stems from a fundamental oversight: Riemannian optimizers update curvature without
adjusting dependent hyperbolic operations, weights, or gradients, creating geometric inconsistencies.



Given a hybrid model with both Euclidean and hyperbolic parameters, we define the set of learnable
parameters as 6 = [0, 05, O], where O, are the parameters optimized in Euclidean space, 8/ are

the parameters constrained to a Riemannian manifold M with curvature K and origin ﬁK, and Ok
are learnable curvature parameters for the manifold. When optimizing the curvature, we refer to OH{( ¢
as the hyperbolic parameters defined on the manifold with the value of the curvature parameter at
timestep ¢. It is easy to see here that 65 is dependent on O since the hyperbolic parameters are
defined by their values. Current Riemannian optimization first calculates the Euclidean gradient G
through normal backpropagation. If the parameter we are currently updating is Euclidean (0g), we
perform a typical Euclidean update step. If the parameter being updated is hyperbolic (65), the
optimizer projects the gradient onto the tangent space of the parameter 7g, in the process egrad2rgrad
described in Appendix [A] Momentum vectors typically used with optimizers like Adam and SGD are
also initialized and updated on the tangent space. Finally, the update step is performed using some
form of retraction or exponential map.

Currently, Riemannian optimizers treat 8 as a Euclidean parameter. However, since the curvature
defines the geometry of the manifold, changing it during training renders prior projections, gradient
momentums, and 0{( parameters misaligned with the new curvature. GeoOpt attempts to mitigate
this instability through an "N-stabilize step," which periodically recomputes the time components
of hyperbolic parameters to ensure adherence to the manifold. However, this occurs after updates,
failing to prevent invalid intermediate states during optimization.

As a concrete example, let H and H' be two Lorentz manifolds with curvatures K and K'. Let x
be a learnable model parameter that lies on H, meaning it satisfies (x,x), = —K. The hyperbolic
distance from this point to itself, d . (x, x), should always be 0. However, if the optimizer first updates
the curvature to K’ but does not yet update the parameter x, any subsequent operation will use the
new curvature K’ with the old parameter coordinates. The distance calculation becomes:

de(x.3) = VR -acosh (B2 ) — V- acosh ()

If K < K’, the term % is less than 1. The acosh function is undefined for inputs less than 1, leading
to NaN values and a model crash. If K > K’, the calculation does not crash, but the distance is
no longer 0. This incorrect distance creates invalid gradients, which destabilizes training. Previous
similar works relied on rigorous training regimes with separate optimizers for the curvature, very
small learning rates, and "burn-in" epochs [[7, 36]] which we attempt to avoid. Other solutions such as
clipping may prevent undefined operations but cannot easily account for the inconsistencies in the
second scenario.

Curvature Aware Optimization To address this, we propose a method that groups parameters
based on their respective spaces and staggers their updates. Specifically, at timestep ¢ we first isolate

05 *~' and update these parameters first. We then update g followed by Ok At this stage, we have

updated all the model parameters, but Bf *~* are still defined on the old curvature, so we must use a
. . K1 K

mapping function to update 8; ‘" — 6, °.

The N-stabilize step used by GeoOpt can be seen as a pseudo-map, but it alters the relative magnitudes
of the hyperbolic parameters 81, and gradients G, as well as the directions of the momentums, which
can degrade performance and lead to training instability. As such, we identify two alternate mapping
techniques commonly used in the literature and compare their properties. We start with the scaling
function used by Skopek et al. [36]], Tabaghi et al. [38]. In their works the authors simply multiply

K
Ki 1

to L% and scale all distances between points linearly by that factor. As such, it preserves the relative
distances between the hyperbolic parameters.

Of ‘! by the scaling factor [ = ; this would automatically map all the parameters from L, |

However, the method itself presents issues during optimization and input scaling. Hyperbolic models
suffer from instability and traditionally require higher precision computations to prevent invalid
values. Mishne et al. [29] show that the mathematical instability is proportional to the distance
between 0 and the hyperbolic embeddings. They are also able to derive the maximum distance
allowed before we begin to get undefined operations. By using the scaling factor [ we also scale
dy(z,0), which could then push it outside the stable range. We theorize this is why works using this
method need to adhere to strict training regimes, including burn-in periods without curvature learning,



a separate optimizer for the curvature, and very low learning rates. Clipping these parameters is
one solution, but larger [ values could make clipping too harsh, and it removes the nice property of
preserved relative distances.

Additionally, there is the issue of dealing with input projections, almost all hyperbolic learning
approaches assume that the Euclidean or input data exists on the tangent plane of the origin and
project it onto the manifold using the exponential map. This projection preserves the norm of the
Euclidean vectors as dy,(x, 0). When the input is then projected onto the scaled manifold, the relative
norms of the input and the hyperbolic class prototypes, for example, are now completely different,
breaking their relationship. One would then have to find a way to scale the inputs while adhering to the
maximum stability distance without clipping. This inconsistency is the same for mixed optimization
settings where both Euclidean trivialized parametrization and direct hyperbolic parameter learning
are used.

An alternative mapping method is presented in Fu et al. [10], Guo et al. [15] and is based on projecting
the parameters onto the tangent space at the origin 0;_; of the old curvature using the logarithmic
map and then projecting back after the curvature update. We show in Appendix [D|that this method
preserves the distances and angles between the hyperbolic parameters and the origin. These properties
are important as they are considered proxies for hierarchy level, and embedding similarity. We also
show why the tangent space at the origin is the most mathematically suitable space for this mapping.
This method also mitigates the instability caused by scaling, which removes the need for a more
complicated training regime and maintains symmetric parameter handling by operating analogously
to trivialized parameter learning.

Given the above, our work relies on the tangent-based mapping method. We extend it to the
optimization process by additionally deﬁning the mapping of parameter gradients and momentums
from T it to 7T, <t The entire mapping schema is shown in Algorithm|I} We additionally perform

emplrlcal experlments to comparing the scaling mapping and the tangent mapping in Appendix [E] It is
important to emphasize that our proposed optimization scheme is compatible with existing curvature
learning and meta-learning methods. Rather than being an alternative, it serves as an intermediate step
for updating manifold parameters during curvature changes, aimed at maintaining learning stability
throughout the process.

3.3 Riemannian AdamW Optimizer

Background The AdamW optimizer was first introduced by Loshchilov and Hutter [26] and
relies on an improved application of the L.2-regularization factor in the base Adam optimizer. L2-
regularization works on the principle that networks with smaller weights tend to have better generaliza-
tion performance than equal networks with higher weight values. Adam applied the L2-regularization
during the gradient update step by incorporating it in the loss. However, Loshchilov and Hutter
[26] argue that this is inconsistent since the regularization effect is reduced by the magnitude of
the gradient norms. Instead, they apply the weight decay directly during the parameter update step.
AdamW is then shown to generalize better and lead to better convergence and has become a popular
choice for many vision tasks.

Given the above, we believe AdamW is significant for hyperbolic learning. Hyperbolic spaces, with
their higher representational capacity, are prone to overfitting, especially under data scarcity during
training [[12]. Thus, AdamW’s enhanced L2-regularization could improve hyperbolic models.

Riemannian AdamW In the following, we derive AdamW for the Lorentz manifold and suggest
its extension to the Poincaré ball. The key difference between AdamW and Riemannian Adam lies
in direct weight regularization, which is challenging in Lorentz space due to the lack of an intuitive
subtraction operation. One option would be following the exponential mapping and retraction
typically used for the optimization step. However we propose a simpler operation that reduces the
need for expensive and less stable parallel transport operations. Specifically, we re-frame parameter
regularization in AdamW as a weighted centroid with the origin

Oi—1 —YAOi_1 = (1 —yA)0i_1 + 72O

where -y is the learning rate and A is the weight decay value. We can now directly translate this for
hyperbolic parameters 6y, as uL([Gt 1,0]) where p? is the weighted Lorentz centroid defined in
Law et al. [22]] and described in Append1x@ We define the centroid weights as v = [1 — v\, yA].



Algorithm 1 Tangent Based Manifold Mapping

1: Given:
Hyperbolic parameters 8 on the K-curve manifold, Parameter gradients G € ’7}{

2: function MAP PARAMETERS

3 for each p € 6, do

4 Giemp < Tp5,_,(9) > Parallel transport gradient to previous origin

5: z logg ’5’11 (p) > Project parameter onto tangent space
.

6 p expg t(z) > Project back onto updated manifold
t

7 G+ T5,-p(Gremp) > Transport gradient back for next update

8 end for

9: end function

By removing the later gradient decay and introducing this operation as seen in Algorithm 2] we adapt
AdamW for use in the Lorentz space.

Algorithm 2 Riemannian Adam (RAdam) and [Riemannian Adamw (RAdamw)|

Require: Manifold M, initial parameters 6, € M
Require: Learning rate o > 0, weight decay A > 0, exponential decay rates 31, 82 € [0,1)
Require: v-weighted Lorentzian Centroid py’
Require: Small constant ¢ > 0, max iterations 7’
Ensure: Optimized parameters p; € 6,
1: Initialize moment vectors mg < 0 € T, ) M, vy + 0 € T,y M
2: Initialize timestep ¢ < 0
3: fort =1to T do

gt < grad f(pi—1) +Xpi—1

gr < egrad2rgrad,  (g+) > See Appendix
my < Br-my1+ (1 —P1) - g

9: v Prrv1+ (1=P2) 9O g

10: Tht (*mt/(].*ﬂf)

11: ’lA)t(—Ut/(l—ﬁé)

12: N — - \/vm7t+e
13: pt < Retracty, | (—n¢) > See Appendix
14: My < 7;%71—)1% (mt)
15: end for
return p;

3.4 Maximum Distance Rescaling

Background Vectors in the hyperboloid models are defined as * = [z;,zs]7 € L% where

2+ = /||®s]|? + K, K = —1/c and c is the manifold curvature. As such, Lorentzian projections
and operations rely on the ability to accurately calculate the corresponding time component x; for
the hyperbolic vectors. In their work, Mishne et al. derive a maximum value for the time
component x;,_ . Values above this push vectors off the Lorentz manifold and onto the cone
defined by z7 = >_ x2. One prominent example of instability caused by this is the inner product in

dp(z,y) = v Kacosh (LKy“), where the approximations can lead to undefined mathematical

values by pushing the inverse hyperbolic cosine input to less than one. Based on the above, and given
a specific K, we can derive a maximum representational radius for the model as

K _ Ltmaz |
Dﬁm —acosh( \/Ii(') VK €))]



Under Float32 precision, and to account for values of K < 1 we use a limit value of x, =2.105.

When projected onto the tangent space of the origin, this translates to |[loggz|[r = D = =
9.1. Vectors outside this radius lead to instability and performance degradation due to inaccurate
approximation. This problem is only exacerbated as the dimensionality of the hyperbolic vector
increases. Higher dimensional vectors tend to have larger norms which limits hyperbolic models’

abilities to scale up.

To constrain hyperbolic vectors within a specified maximum distance, either a normalization function
or a parameter clipping method is required. Parameter clipping can be challenging as it may lead to
information loss and introduce non-smooth gradients. On the other hand, common normalization
functions like tanh and the sigmoid function tend to saturate quickly, limiting their effectiveness as
seen in the sigmoid implementation by Chen et al. [6]].

Flexible Scaling Function To address these issues, we introduce a modified scaling function,
designed to provide finer control over both the maximum values and the slope of the curve. A
visualization of this function is provided in Figure[2] and the formulation is presented below:

atanh(0.99) ) )

Yrescaled = l -m - tanh <||y|| :
Y §-m

where y € R4, m is our desired maximum value, and s controls the slope of the curve. We now
have a maximum distance value to adhere to and a flexible normalizing function. To apply this to
the hyperbolic embeddings, we suggest performing the scaling on the tangent plane of the origin.
However, this is an expensive operation to perform repeatedly, as such we derive in Section [C| the
equivalent factorized form for the scaling of the space values:

D(= 'a)rlcicalcd —D(= '6)1‘10(50;11011
e VK —e VK
Lsegeated — Ls X D(x,00K —D(z,0)K (3)
e VK —e VK

where D(z,0)X . are the distances obtained by plugging D(z,0) and Dg in Equation li

4 Experiments

In order to empirically prove the effectiveness of our proposed solutions, we apply them to metric
learning to test low precision learning, EEG classification for generalization ability in data hungry
scenarios, and image classification and generation tasks for component efficiency. We also apply the
curvature learning for most scenarios to study the new optimizer scheme and possible benefits. We
include more detailed ablations and experiments on graph embeddings in the Appendix [E]

4.1 Hierarchical Metric Learning Problem

Problem Setting and Reference Model In their paper Kim et al. [19] take on the problem of
hierarchical clustering using an unsupervised hyperbolic loss regularizer they name HIER. This
method relies on the use of hierarchical proxies as learnable ancestors of the embedded data points in
hyperbolic space. In the following experiment, we extend HIER to the Lorentz model (LHIER) and
compare against the results provided by Kim et al. [[19].

Moving to Lorentz Space To adapt the HIER model to the hyperboloid, we first replace the
Euclidean layer norm and linear layer with a Lorentzian norm and linear layer [3]]. We then modify
the HIER loss by replacing the Poincaré distance with the Lorentzian distance and optimizing
Lorentzian hierarchical proxy parameters directly on the manifold. We use our new optimization
schema and apply distance rescaling before layer norm and after the linear layer.

Experimental Goals Kim et al. [19] employ the Euclidean AdamW optimizer with Euclidean
parameterizations of hyperbolic proxies. Their experiments use FP16 precision. As the setting is
already hyperbolic, significant gains from transitioning to Lorentz space are unlikely. We use this
setup to evaluate our components’ ability to learn curvature in low-precision, unstable environments.



Table 1: Performance of metric learning methods on the four datasets as provided by [19]]. { indicates
models using larger input images. Network architectures are abbreviated as, R—ResNet50 [41].

CUB Cars SOP

Methods Arch. R@1 R@2 R@1 R@2 R@1 R@I0
CNN Backbone

NSoftmax [45] R512 613 739 842 904 782 906
TProxyNCA++ [39] R®5'2 690 798 865 925 80.7  92.0
Hyp [9] R512 655 762 819 888 799 915
HIER [19] R512 701 794 882 930 802 915
LHIER R512 734 824 900 940 819 931
Increase in % 471 378 204 108 149 120

Any improvements likely stem from better curvature adaptation to the data and task. We follow the
experimental setup in Kim et al. [19].

Results As shown in Table |1} LHIER learns curvature without stability issues. Our approach
improves model performance, with recall@1 gains ranging from 1.49% to 4.71%. Additional ablation
experiments with different optimizers and configurations are detailed in Table[7]

4.2 EEG Classification Problem

Problem Setting Given EEG recordings labeled into distinct categories, the goal is to classify
new recordings based on signal patterns. Each recording is a time series X € R€*T where C is
the number of channels and T is the time length. Each label is y € {1,..., K}. Given N labeled
recordings ((X1,¥1),- .-, (XN, yn)) from an unknown distribution p, the task is to train a model §
that maps EEG signals X to their correct class.

Reference Model In their work, Pan et al. [32] introduces Matt, a Riemannian model based on
the SPD manifold. The model processes data through convolutional denoisers, extracts embedding
covariances, and embeds them using a Riemannian attention mechanism before projecting the outputs
back into Euclidean space for classification via a linear layer. Our proposed model, HyperMatt,
extends this framework by projecting the resulting covariances onto the hyperboloid instead and
processing them with a hyperbolic attention layer [6]. The outputs are then classified directly on the
manifold using the MLR [3]].

Experimental Goals Hyperbolic spaces are prone to overfitting, especially in EEG classification,
where models are trained per subject with limited sessions, leading to data scarcity. The proposed
RAdamW optimizer theoretically improves regularization, ensuring smoother convergence. We apply
our method to the datasets and the evaluation criteria in Pan et al. [32] to test this.

Results In Table 2| we show the performance of HyperMAtt compared to the current state-of-the-
art baselines, where the results were aggregated from [5, 32]. The performance for HyperMAtt is
measured across 10 runs and we report the mean and standard deviation. Here, our new optimizer
achieves state-of-the-art results for SSVEP and ERN, the two comparatively smaller datasets, which
are more prone to overfitting. We also show the improved performance of our RAdamW optimizer
vs the existing RAdam by training the model using both and comparing the results in Table[8] We
also achieve these results in significantly less time/epoch compared to MAtt. Specifically for MI
0.077s/epoch vs 3.4s/epoch, for SSVEP 0.081s/epoch vs 4s/epoch, and for ERN 0.061s/epoch vs
1.9s/epoch, resulting in an average speed-up by a factor of 42.

4.3 Standard Image Classification Problem

Problem Setting and Model In their work, Bdeir et al. [3]] propose a fully hyperbolic and hybrid
encoder RessNet. To adapt our methods for both models, we introduce the distance rescaling function
after every convolution in the encoder. Additionally, we attempt to improve the performance by
performing a parametrization trick on existing CUDA convolutions to ensure hyperbolic outputs.



Table 2: Performance comparison for the EEG datasets MI, SSVEP, and ERN. We report the average
accuracy for MI and SSVEP and the AUC for ERN. The best result is highlighted in bold.

Models ‘ MI SSVEP ERN

ShallowConvNet[35]] | 61.844+6.39 56.934+6.97 71.86+2.64
EEGNet[23]] 57.43+6.25 53.7247.23 74.28+2.47
SCCNet[42] 71.95+£5.05 62.11+£7.70 70.93+2.31
EEG-TCNet[17] 67.09+4.66 55.454+7.66 77.05+2.46
TCNet-Fusion[31]] 56.52+3.07 45.00+6.45 70.46+2.94
FBCNet[27] 71.454+4.45 53.094+5.67 60.47+3.06
MBEEGSE[1]] 64.58+6.07 56.45+7.27 75.46+2.34
Inception[3] 62.85+3.21 62.714+2.95 73.55+5.08
MATtt[32] 74.71+5.01 65.50+8.20 76.01+2.28
HyperMALtt 74.13+3.09 68.12+2.63 77.98+1.60
Increase in % | -0.78 4.01 2.59

This is done by parametrizing the convolution weight as a rotation operation before passing the input,
and then applying a boost operation afterwards. The end result is then equivalent to the convolution
operation by Bdeir et al. [3]] while mitigating computational complexity. Specific implementation
details can be found in Section[B] We denote our Hybrid and Fully hyperbolic models as HECNN+
and HCNN+ respectively.

Experimental Goals In their paper, [3] notice lower performance in the fully hyperbolic models
compared to the hybrid models and attribute this to instability in training. Additionally, they cite
crashes and model divergence when learning the curvature instead of setting it to constant. This
would then be an ideal setting to test the optimization schema and rescaling function and their impact
on performance and stability.

Results In the ResNet-50 experiments in Table 3} HECNN+ significantly outperforms both the
Euclidean model and the base hybrid model across both datasets, demonstrating the positiv effect
of curvature learning. We also see a ~ 48% reduction in memory usage and ~ 66% reduction in
runtime. We attribute this improvement to efficient closed-source CUDA convolution operations we
can now leverage. One other benefit that we find from learning the curvature is quicker convergence,
where the model is able to reach convergence in 130 epochs vs the 200 epochs required by a static
curve model. ResNet-18 experiments show similar findings and can be found in Appendix [E]

Table 3: Performance and runtime Analysis for ResNet-50 models. We report classification accuracy
(%) and the best performance is highlighted in bold (higher is better). All experiments were conducted
on a single NVIDIA RTX 4090 GPU and an AMD EPYC 7543 CPU.

CIFAR-100 Tiny-ImageNet VRAM tepoch

(6ret =0.23)  (dret = 0.20)  For Cifarl00  For Cifar100
Euclid 78.52 66.23 4.5GB 30s
HECNN 79.83 66.30 15.6GB 300s
HECNN+ 80.86 67.18 8.1GB 100s

4.4 VAE Image Generation

Experimental Setup We reproduce the experimental setup from [3]] and re-implement the fully
hyperbolic VAE using our new efficient convolution and transpose convolution layers. We also use
curvature learning with our adjusted Riemannian SGD learning scheme.

Results Our fully hyperbolic VAE implementation outperforms on both datasets, as shown in
Table ] while using 2.5x less memory and training 3x faster. This highlights the effectiveness of our
curvature learning process and efficient model components.



Table 4: Reconstruction and generation FID of manifold VAEs across five runs (lower is better).

CIFAR-100 CelebA
Rec. FID Gen. FID Rec. FID Gen. FID

Euclid 63.814£0.47 103.5440.84 54.8040.29 79.2510.89
Hybrid (P) 62.6440.43 98.1940.57 54.62+0.61 81.30+0.56
Hybrid (L) 62.1440.35 98.3440.62 54.6440.34 82.7840.93
HCNN (L) 61.44 1 64 100.27, g4 54.17 44 66 78.11 4 95
HCNN+ (]L) 57.69:|:0.52 98.14;&0,44 52.73:]:0,27 77.98:]:0,32
Decrease in % 6.10 2.12 2.66 0.17

5 Conclusion

In this work, we propose a robust curvature-aware optimization framework for hyperbolic deep
learning, addressing challenges in stability, computational efficiency, and overfitting. By introducing
Riemannian AdamW, a novel distance rescaling function, and leveraging efficient CUDA imple-
mentations, our approach achieved performance improvements in hierarchical metric learning, EEG
classification, and image classification tasks, while reducing computational costs, highlighting the
practicality of our methods for large-scale applications. These findings emphasize the importance of
proper curvature adaptation in hyperbolic learning, paving the way for future research in optimizing
hyperbolic embeddings across diverse fields. Further work should be done however to address the
limitations on theoretical reasoning and efficiency presented in Appendix [F|
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to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
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Justification: We use only publicly available datasets and have attached our code in the
supplemental material. The code will be released on GitHub upon acceptance.

Guidelines:
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* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We do specify the dataset splits and, where applicable, use the same ones
already established in the literature. We also provide a README in our code with all
hyperparameters that can be optimized and state which optimizer is being used.
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» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We provide the standard deviation for our experiments.
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* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
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* The factors of variability that the error bars are capturing should be clearly stated (for
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eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The main focus of the paper is a hyperbolic optimizer. There is no inherent
social impact because it is not domain-specific.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: We do not use any new datasets, and all data is already well established in the
literature.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Where applicable, we have credited the original authors in the README of
the submitted code.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:

Justification: The experiments on the EEG dataset contain human subjects, however, these
dataset are commonly used in the literature and publicly available.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:

Justification: While the experiments on the EEG datasets contain human subjects, they are
commonly used in the literature and fully anonymized. During the collection of the data,
there were no discernible risks.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:
Justification: This paper uses LLM exclusively to improve writing and formatting.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Operations in hyperbolic geometry

Parallel Transport A parallel transport operation PT,f Ly (v) describes the mapping of a vector

on the manifold v from the tangent space of € L to the tangent space of y € L. This operation is

given as PTf_W (v) =v+ %(m + ).

Lorentzian Centroid [22] Also denoted as py,, is the weighted centroid between points on the

manifold based on the Lorentzian square distance. Given the weights v, pu = mﬁ"ﬁmwmi Bk
i=1 Vi%illc

Optimization Operations egrad2rgrad converts a Euclidean gradient (computed in the ambient
space) to a Riemannian gradient by projecting it onto the tangent of the corresponding hyperbolic
parameter. For the Lorentz manifold this is then:

<’U7 X> L

egrad2rgrad(x,v) = v + % X

The retraction maps the updated hyperbolic vector from the tangent space back onto the manifold. In
the case of the hyperboloid this is the proposed exponential mapping equation.

Lorentz Transformations In the Lorentz model, linear transformations preserving the structure
of spacetime are termed Lorentz transformations. A matrix AFDX(HD) §¢ defined as a Lorentz
transformation if it provides a linear mapping from R"*! to R"*! that preserves the inner product,
ie., (Ax,Ay), = (z,y), forall x,y € R, The collection of these matrices forms an orthogonal
group, denoted O(1, n), which is commonly referred to as the Lorentz group.

In this model, we restrict attention to transformations that preserve the positive time orientation,
operating within the upper sheet of the two-sheeted hyperboloid. Accordingly, the transformations we
consider lie within the positive Lorentz group, denoted O (1,n) = A € O(1,n) : aj1 > 0, ensuring
preservation of the time component sign x; for any x € L. Specifically, in this context, Lorentz
transformations satisfy the relation

O (1,n) = A e ROFDX )y ¢ L2 - (Am, Az), = Az)y > 0). 4)

1
- Ea (
Each Lorentz transformation can be decomposed via polar decomposition into a Lorentz rotation
and a Lorentz boost, expressed as A = RB [30]]. The rotation matrix R is designed to rotate points
around the time axis and is defined as

T
[ %]

where O represents a zero vector, R satisfies RTR =1, and det(f{) = 1. This structure shows that
Lorentz rotations on the upper hyperboloid sheet belong to a special orthogonal subgroup, SO™ (1, n),

which preserves orientation, with R € SO(n).

In contrast, the Lorentz boost applies shifts along spatial axes given a velocity vector v € R" with
[lv]] < 1, without altering the time axis.

T
v —yv
B = 2 T bl (6)
l —yv I+ 177/'0'” ]

with v = —L— However, this can also be any operation that scales the norms of the space values
Y ol y op! p

without changing the vector orientation.

B Convolution Trick

To address the computational requirements issue, we adopt an alternative definition of the Lorentz
Linear layer from Dai et al. [8], which decomposes the transformation into a Lorentz boost and a
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(a) Tangent space at a random point on (b) Tangent space at the origin
the manifold

Figure 1: Tangent planes of a hyperboloid with curvature -1 relative to another hyperboloid with
curvature -0.7. Tangential properties between manifolds are better respected at the origin where
tangents remain parallel.

Lorentz rotation. Using this definition, we replace the matrix multiplication employed by Bdeir et al.
for the spatial dimensions and time component projection with a learned rotation operation and
a Lorentz boost. Additionally, we can achieve the rotation operation using a parameterization of
the convolution weights while still relying on the CUDA convolution implementations, significantly
improving computational efficiency.

To apply this concept to the convolution operation, the convolution weights, after unfolding, must
form a rotation matrix. We define the dimensions of this matrix as n = (channels;, - kernelyqp -
kernelpeignt) and n' = channels,,; respectively. We then use either rotation operation presented

above to a norm-preserving transformation z = W'z - HVU,’”T“E” where W € R This formula-
tion allows us to utilize existing efficient implementations of the convolution operation by directly
parameterizing the kernel weights before passing them into the convolutional layer. Finally, we

formalize the new Lorentz Convolution as:

out = LorentzBoost(DistanceRescaling(RotationConvolution(x))) @)

where TanhRescaling is the operation described in Eq[4]and RotationConvolution is a normal convo-
lution parameterized through the procedure in Algorithm [3| where Transform is the norm-preserving
transformation above.

Algorithm 3 Lorentz Convolution Parameterization

1: W e R Cin, Cout, Kwidtn, Kiengtn
2: function ADAPTWEIGHT
if Kwidth . Klength . Cin < Cout then
W« rCShape(Wa Kwidth : Klength . Cim C'oul)

~

3
4
5: Weore < Transform(W')

6: W <« reshape(W, Cin, Cout, Kwidath, Kiength)
7 end if

8 return W

9: end function

C Scaling Lorentzian Vectors

Tanh Scaling We show the output of the tanh scaling function in Figure 2] By changing the
transformation parameters we are able to fine-tune the maximum output and the slope to match our
desired function response.
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Figure 2: The output of the proposed flexible tanh function. Here the maximum value m is set to 9.1
in the vanilla version with an alternate value of m=18 and the slope s is set to 2.6 with an alternate
value of 3.5

Hyperbolic Scaling We isolate the transformation of the expg (y) operation on the space values
of y as:

2y = VE x sinh(J¥IL) II?j/HL ®)

where y € R? = log%( (z). However, at the tangent plane of the origin, the first element yo becomes
0. As such ||y|l = [[ylle = 32", y2. This gives us:

z, = VK x sinh( ”\?;EE) ”;’HE ©)

We can now scale the norm of the Euclidean vector y bay a value a and find the equivalent value for
the hyperbolic space elements:

. ax|lylle axlylg —axllylg
msrescaled Slnh( VK ) e VK — € VK 10
aL = —, = T ey g Tyl (10)
s sinh(~7Z) eVE —e VK

Additionally, we know that the hyperbolic distance from the origin of the manifold to any point
is equal to the norm of the projected vector onto the tangent plane. Supposing that we want

MK _ MK o
ax D(x,0)" = D(x,0),% . 0cq> W get the final equation:
D(@0) s cated D@0 carea
e VK —e
Ls,escatea — Ls X D(=,0)K —D(z,0)K (11)
e VK —e VK

D Proofs

In the following, we show that the distances and angles between the origin and the hyperbolic points
are preserved. This is relatively trivial but we add it for sake of clarity. For this discussion, we work
in the Lorentz manifold and repeat the definitions here for easier referencing.

Lr = {x = [z4,%xs] € R" | (x,x), = —K, 7, > 0}, < X,y >c= —2y; + X_ys and the
origin is O = [0, O,] = [VK,0,...,0].

We also define two hyperboloids H and H’ with curvatures — K and — K respectively. Let x, y be
two points on I and v, w € Tp H be their logarithmic map onto the tangent space at the origin of 1.
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Proof of distance preservation We can show that distances to the origin are preserved because
dr(x, O) collapses to ||v||ewciiqa- This gives di,(x, O) = ||v||euctia = dL (X', O).

Proof of angle preservation We can similarly show that angles w.r.t to the origin are preserved.
The angle 0 between = and y at O is actually computed via the Euclidean inner product in T H using

<v,w >

cos 0
[[ol][[w]|

As such the angle w.r.t. origins also does not change when moving between manifolds of different
curvature using this method since v and w don’t change.

E Additional Experiments

E.1 Image Classification

Problem Setting and Reference Model In their work, Bdeir et al. [3] proposed a fully hyperbolic
2D convolutional layer by breaking down the convolution operation into a window-unfolding step
followed by a modified version of the Lorentz Linear Layer from Chen et al. [6]. This approach
ensured that the convolution outputs remained on the hyperboloid. However, the manual patch
creation combined with matrix multiplication made the computation extremely expensive, as it
prevented the use of highly optimized CUDA implementations for convolutions. As such, the
authors proposed a two versions of their hyperbolic ResNet classifier. A fully hyperbolic model
with all Lorentz ResNet blocks (HCNN) and a hybrid encoder model with alternating Euclidean and
hyperbolic blocks (HECNN).

Table 5: Performance and runtime Analysis for the ResNet-18 models. We report classification
accuracy (%) and estimate the mean and standard deviation from five runs. The best performance is
highlighted in bold (higher is better).

CIFAR-100  Tiny-ImageNet VRAM tepoch

(6rer = 0.23) (6rer = 0.20) For Cifar100  For Cifar100
Euclidean 77.7240.15 65.1910.12 1.2GB 12s
Hybrid Poincaré [16] 77.19+0.50 64.934+0.38 - -
Hybrid Lorentz [3] 78.03+0.21 65.6340.10 - -
Poincaré ResNet [40] 76.60+0.32 62.0140.56 - -
HECNN [3])(LL) 78.76+0.24 65.9640.18 4.3GB 100s
HECNN+ (ours) 78.80+0.12 65.9840.11 3GB 80s
HCNN [3] (I) 78.07+0.17 65.71+0.13 10GB 175s
HCNN+ (ours) 78.8140.19 66.1240.14 5GB 140s

Resnet-18 Experiments  Table[5|shows that the new models are able to remain stable while learning
the curvature. Additionally, we see significant performance improvements between HCNN and
HCNN+, where our proposed architecture now matches the performance of the hybrid encoders.
We hypothesize that the improved scaling function helps mitigate the previous performance incon-
sistencies. However, the performance difference between the hybrid models is not significant, we
hypothesize this is due to the alternating architecture which could limit the effect and instability of
hyperbolic components. Finally, both models manage to maintain performance while reducing the
memory footprint and runtime by approximately 25 — 50% and 18 — 25% respectively.

Ablation Experiments In table [6| we run ablation
experiments to verify the effectiveness of our individual Taple 6: Resnet-50 Ablations on Cifar-100.
components. Specifically, the default case refers to the

current model with the tanh rescaling function, learn- CIFAR-100
able curvature, and our proposed optimization scheme. ™[ ~NN& - Default 80.86
In the setting "fixed curve" we use a non-learnable cur-  HCONN+ - fixed curve 79.6
vature K = 1, and keep the tanh rescaling. The use of ~ HCNN+ - no scaling 80.13

the new optimization schema here has no effect since ~ HCNN+ - no optim scheme NaaN
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Table 7: Ablation on components for Metric Learning

CUB Cars SOP
Methods Arch. R@1 R@2 R@l R@2 R@l R@I10
CNN Backbone
LHIER - RSGD R%12 642 721 739 814 678 739
LHIER - RAdam R%12 701 798 876 920 79.8 903
LHIER - Fixed Curvature R%12 712 808 887 918  79.1 89.7
LHIER - No Optim Scheme R%12 658 720 - - - -
LHIER - Default R%12 734 824 900 940 819 931

curvature is not learnable which means the staggered

updates and parameter projections are not needed. In

the setting "no scaling" we continue to learn the curvature with the new optimization schema but
do not use the tanh rescaling. And in the setting "no optim scheme", we learn the curvature and
use the scaling but do not use the new optimization schema. As we can see, the best results are
achieved when all the architectural components are included. In the case of attempting to learn
the curvature without the proposed optimizer schema, the model breaks completely down due to
excessive numerical inaccuracies.

E.2 Metric Learning

Problem Setting and Reference Model In their paper [19] rely on a hybrid hyperbolic architecture
for modeling hierarchical relationships in image datasets. They include a new hyperbolic metric
learning loss dubbed HIER which takes into consideration the intrinsic hierarchy in the data. Given
a triplet of points x4, xj, vk where x; and x; are determined to be related by a reciprocal nearest
neighbor measure, and xj, is an unrelated point, the HIER loss is calculated as

Luer (t) = [Dp (i, pij) — Dp(xi, piji) + 0]+
+ [Dp(xj,pij) — Dp(xj, pijk) + 6]+ (12)
+ [DB (2, pijk) — DB(xk, pij) + 0],

where Dp denotes the hyperbolic distance on the Poincaré ball, and p;; is the most likely least
common ancestor of points z; and x;. This encourages a smaller hyperbolic distance between x;,
x;, and p;;, and a larger distance with p;;,. The opposite signal is then applied in the case of xy,
the irrelevant data point. Kim et al. [19] show substantial performance uplifts for the HIER loss
when applied to a variety of network architectures. We rely on four main datasets: CUB-200-2011
(CUB)[43]], Cars-196 (Cars)[21], Stanford Online Product (SOP)[37]], and In-shop Clothes Retrieval
(InShop)[24]. Performance is measured using Recall @k, the fraction of queries with at least one
relevant sample in their k-nearest neighbors. All model backbones are pre-trained on ImageNet for
fair comparisons.

Ablation Experiments In table|/| we verify the effectiveness of our RAdamW optimizer, along
with the additional components proposed. Specifically, "default" refers to the current LHIER model
with learnable curvature and the new optimization scheme trained using RAdamW. The remaining
settings are the same as default but differ in the mentioned component e.g. "RSGD" is trained with
RSGD instead of RAdamW.

E.3 EEG Classification

Ablation Experiments We also train the model with the original Adam Optimizer and include the
results in Table[§] This clearly shows the improvement provided by our RAdamW optimizer over
standard RAdam.

E.4 Graph Learning

Problem Setting We follow the experimental setup described in Chen et al. 6] for the node
classification problem in four popular graph embedding datasets. We choose the node classification
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Table 8: Performance comparison for the EEG datasets MI, SSVEP, and ERN. We report the average
accuracy for MI and SSVEP and the AUC for ERN. The best result is highlighted in bold.

Models \ MI SSVEP ERN

HyperMAtt + RAdam 68,53+1.29 62.424+2.62 74.98+5.84
HyperMAtt + RAdamW | 74.12+291 68.10+2.41 78.01+1.30

task since the task decoder used by the fully hyperbolic graph convolution network (GCN) [6]
relies on class prototypes learned directly on the hyperboloid. Additionally, the model is already
Lorentz-based, this means we do not need to modify it, and we can test our components directly in a
simple problem setting. Table[9]summarizes the training conditions for the ablations performed. Here,
a checked AdamW refers to the use of the Euclidean AdamW for the trivialized model (hyperbolic
parameters learned on the tangent space of the origin) and our proposed hyperbolic RAdamW for
the others. We keep the same hyperparameters defined in Chen et al. [6] for all training settings.
Additionally, for the scalemap-based method we scale the input data to match the new norms of the
manifold before projecting.

Results From table E] we can see that that the model using Learnable curvature, our RAdamW
and the tangent-based scaling achieves the highest performance. It should also be noted that the
performance values for the the HyboNet paper are extracted directly from the paper [6], we were able
to reproduce all results except the Disease dataset where we could only achieve a score of 91% using
their setting.

Table 9: Results on the node classification task using GCNs.

Disease ~ Airport PubMed Cora
Trivialized AdamW  Learnable K  Scale Map

HyboNet - - - - 96 90.9 78 80.2

H1 - - v - 94.09 92.56 76.60 80.80
H2 - v - - 92.89 93.25 77.23 81.5
H3 - v v - 94.82 93.6 78.3 82.1
H4 v v v - 91.94 91.3 77.10 80.3
H5 - v v v 94.88 93.55 78 81.8

F Limitations

The proposed work still suffers greatly from the computational complexity introduced by hyperbolic
operations. The effect of approximations for common operations such as the exponential map and
the logarithmic map should be studied to reduce these issues. Additionally, alternatives for moving
between manifolds should be researched and correlated with the task at hand and the loss being used.
The different properties for the different alternatives could be better leveraged depending on the
desired component outputs.
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