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Abstract

It is well-known that real-world changes constituting distribution shift adversely
affect model performance. How to characterize those changes in an interpretable
manner is poorly understood. Existing techniques take the form of shift explana-
tions that elucidate how samples map from the original distribution toward the
shifted one by reducing the disparity between the two distributions. However,
these methods can introduce group irregularities, leading to explanations that
are less feasible and robust. To address these issues, we propose Group-aware
Shift Explanations (GSE), an explanation method that leverages worst-group
optimization to rectify group irregularities. We demonstrate that GSE not only
maintains group structures, but can improve feasibility and robustness over a
variety of domains by up to 20% and 25% respectively.

1 Introduction
Classic machine learning theory assumes that training and testing data are sampled from the
same distribution [1]. Unfortunately, distribution shifts infringe on this requirement and can
drastically change a model’s behavior [2]. For instance, training a model on data collected from
one hospital may result in inaccurate diagnoses for patients from other hospitals due to variations
in medical equipment [3]. Similarly, shifts from day to night or from clear to rainy weather are
obstacles for autonomous driving [4].
When such a distribution shift occurs, it is often useful to understand why and how the data
changed, independent of the model [5]. For example, suppose a doctor observes their medical AI
model’s performance degrading. Before modifying the model, the doctor should first understand
how their patient data changed [6]. Similarly, a self-driving engineer would have an easier time
adapting their system to a new environment if it was known that the shift resulted from changing
weather conditions [7].
The predominant method to understand a distribution shift is a shift explanation [8]. A shift
explanation maps the original distribution (the source) to the shifted one (the target) to reduce
their disparity. For example, Kulinski and Inouye [8] find a direct mapping of points from the
source toward the target via optimal transport [9] and its variant, K-cluster transport. Another
approach is to use counterfactual explanation methods such as DiCE [10] to explain a classifier
between the source and target distributions.
State-of-the-art shift explanations seek to optimize global objectives, e.g. minimizing the difference
between the target and the mapped source distribution [8]. However, these optimal mappings
are not necessarily good explanations: they may be infeasible or lack robustness to source
perturbations.
As an example, Figure 1 shows explanations from existing work that we learned to map individuals
with low income (source distribution) to individuals with high income (target distribution) in the
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(b) Instance level shift explana-
tion.

Figure 1: (a) Compares shift explanations we learned from low to high-income populations using
Vanilla and GSE K-cluster transport methods on the Adult dataset. Vanilla alters the race of
a predominantly Black subpopulation, while GSE maintains Black and White subpopulations
by slightly adjusting age (+6 years) and maximum education level (+2 years). (b) Illustrates
instance-level explanations we learned; Vanilla changes race while our method does not. Full
results in Appendix F.1.

Adult dataset [11]. Such explanations can help reveal insights about income inequalities that
enable a policymaker to propose better policies or an individual to understand how to increase
their income. At a dataset level, we see in Figure 1a that K-cluster transport can produce a
shift explanation that effectively maps the source distribution to the target, resulting in an 86.3%
reduction in the Wasserstein distance between these two distributions. However, upon closer
inspection, this explanation shifts a majority Black cluster to a majority White cluster. Focusing
on the Black racial subpopulation of the source and target, the explanation only decreases the
Wasserstein distance by 51.7%. Such an explanation is not useful if such changes to race are
considered infeasible1.
Our key insight to achieving high-quality shift explanations is to steer the generated explanations
to respect subpopulations, or groups, in the data. Since groups are highly context-specific, we
seek an approach that is general and still produces overall good explanations. In our running
example, assuming race-based grouping, such an approach should yield a mapping that minimizes
disruptions to the groups while maximizing overall fitness. As depicted at the bottom of Figure 1a,
we achieve such a mapping using the same underlying K-cluster transport method, that increases
the reduction of Wasserstein distance between source and target samples from 51.7% to 67.4%
within the Black subpopulation, and has a small impact on the reduction of Wasserstein distance
between the overall source and target populations (from 86.3% to 70.2%).
To this end, we propose Group-aware Shift Explanations (GSE), an explanation method for
distribution shift that preserves groups (equivalently conditional densities) in the data. We
develop a unifying framework that allows us to apply GSE to heterogeneous methods for
producing shift explanations including both optimal transport and counterfactual explanation
methods, making them maintain group structures and enhancing their feasibility and robustness.
Through extensive experiments over a wide range of tabular, language, and image datasets, we
demonstrate that GSE not only maps source samples closer to target samples belonging to the
same group, thus preserving group structure, but also boosts the feasibility and robustness by up
to 23% and 42% respectively.
Our main contributions are summarized as follows:
1. We identify group irregularities as a class of problems that can adversely affect the quality of

shift explanations, and we validate their existence empirically and theoretically.
2. We propose Group-aware Shift Explanations (GSE) to rectify group irregularities when ex-

plaining distribution shift, and enhance the feasibility and robustness of the shift explanations
simultaneously, which are justified theoretically.

3. We propose a general framework to unify heterogeneous shift explanation methods, allowing
the use of GSE for a wide range of shift explanation methods and domains.
1We note that the race attribute is not generally infeasible and decisions of infeasibility are left to the

user.
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4. We empirically demonstrate over a diverse set of datasets how GSE maintains group structures
and enables more feasible and robust shift explanations.

2 Motivation
Distribution shift is any change from an initial (source) to a different (target) distribution. We
follow Kulinski and Inouye [8] to define a shift explanation as a mapping from the source to the
target distribution. For instance, Figure 1 shows a K-cluster explanation from our experiments
which maps the source to the target distribution by changing race among other changes. In
this section, we empirically identify issues with all existing shift explanations in terms of group
irregularities.
To find a shift explanation, state-of-the-art methods primarily minimize the disparity between
the source and the target distribution. For example, K-cluster transport minimizes an objective
depending on the Wasserstein distance between the source and the target distribution. However,
this is not sufficient for finding high-quality explanations. Figure 1 shows such an example with
K-cluster explanations where a majority Black subpopulation of the source gets mapped to a
majority White subpopulation of the target. In this case, the overall Wasserstein distance is
reduced by 86.3%, but the Wasserstein distance for the Black subpopulation is reduced much less
in Figure 1a. Our full results in Table 1 show that this problem is pervasive across the datasets
and shift explanations we considered.

Impact on Explanation Feasibility Shift explanations which break apart groups of the data
can also be overall infeasible. Feasibility is a measure of how useful an explanation is to a
downstream user, quantified by the percent of the source samples it is useful for. For instance,
in Figure 1, the race attribute may be less actionable than others, so a K-cluster explanation
which modifies the race attribute would be useless for a policymaker who designs policies to help
increase the income of the low-income population. Overall, the K-cluster explanation from our
experiments shown in Figure 1 is only feasible for 21.0% of the source distribution, meaning that
79.0% of the source samples have their race changed by the shift explanation. Later, we show
how our method, which rectifies these group irregularities, results in more feasible explanations
for the overall source distributions.

Impact on Explanation Robustness Group irregularities can also reduce robustness, meaning
that small changes to a source distribution result in large changes to the shift explanation.
Figure 2 shows an example of poor explanation robustness from our experiments on the Adult
and Civil Comments datasets. In Figure 2a, a small perturbation to the source distribution leads
to the explanation modifying the race feature for a cluster of the data. Figure 2b shows a shift
explanation that maps a non-toxic sample relating to medicine into the target distribution of
toxic sentences. After a small perturbation, the explanation maps the same sample by adding
the words “shooter” and “stupid” which is an unfeasible change since it changes the topic of the
sample to violence. Ideally, we want a shift explanation to be robust to very small changes to the
source distribution since it should explain general behavior instead of relying on minute details of
a distribution.
Lastly, to formally validate that group irregularities are a fundamental problem, we study a simple
1D setting in Section 3.4 where we show that group irregularities always exist for explanations
that optimize the reduction in Wasserstein distance between the source and target.

3 Group-aware Shift Explanations (GSE)
In this section, we discuss our method applied to K-cluster explanations and formalize the notions
of feasibility and robustness introduced in Section 2 as metrics for evaluating shift explanations.
We give details in Appendix A for how to generalize our method to support most shift explanation
methods and diverse datasets including text and image data.

3.1 Preliminaries on K-cluster transport and PercentExplained (PE)
The shift explanations produced by K-cluster transport can be denoted by a mapping function
M(x; θx) which maps a source sample x towards the target distribution by a learnable distance
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(a) Adult dataset.

Perturbation

... And perhaps had they
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into the diagnoses this girl
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+[just, lie]... And perhaps had
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money) into the diagnoses this
girl would still be alive today...

+[feel]... And perhaps had they
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would still be alive today...
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And perhaps had they invested
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Feasibility

47.0 %

Group:
Religion and Medicine
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Religion and Medicine

Group:
Religion and Medicine

(b) Civil Comments dataset.
Figure 2: Poor explanation robustness illustrated. Even if an explanation is feasible for a
subpopulation (top), small perturbations to the source distribution can make it become infeasible
(bottom). (b) Illustration of explanation robustness issues in the Civil Comments dataset, shifting
from non-toxic to toxic text using KMeans-defined groups. More details on the group derivation
are in Appendix E.

of θx. As the name K-cluster transport suggests, all the source samples are grouped into a set
of clusters, C, with K-means clustering, and all the samples within one cluster, c ∈ C, share the
same θc. Therefore, the mapping function for K-cluster transport is formulated as follows:

M(x; θ) = x +
∑

c∈C
1x∈cθc, in which, θ = {θc|c ∈ C}.

Optimizing θ. According to Kulinski and Inouye [8], θ is solved by maximizing PercentExplained
(PE). Suppose the source distribution and the target distribution are denoted by P and Q
respectively, then PE is formulated as the following:

PE(θ; M, P , Q) = 1 − W 2
2 (M(P ; θ), Q)/W 2

2 (P , Q), (1)

where W2(·) is the Wasserstein-2 distance and M(P ; θ) is notation for the mapping M applied
to every sample in the source, i.e. M(P ; θ) = {M(x; θ) | x ∈ P}. Intuitively, PE quantifies how
much the mapping M(·; θ) reduces the distance between P and Q. A high PE means that the
explanation, M(·, θ), closely matches the overall source to the overall target distribution. We
can directly optimize PE using gradient descent using a differentiable implementation of the
Wasserstein-2 distance such as the GeomLoss library’s [12].

3.2 Feasibility and Robustness Metrics

We formalize the metrics of feasibility and robustness, as introduced in Section 2.
Feasibility Counterfactual explanation literature has already defined feasibility [13]. Formally,
feasibility is the percentage of source samples with feasible explanations, i.e.:

% Feasible =
[∑

x∈P
a(x, M(x; θ))

]
/∥P ∥ (2)

where a(·, ·) is 1 when the change from x to M(x; θ) is feasible, and 0 otherwise (say changing
education is feasible while changing sex is infeasible for the Adult dataset).
Robustness The notion of robustness is also proposed in prior work [14, 15]. We define two
robustness metrics (denoted by Ω and Ωworst respectively) which are adapted from the robustness
metrics from Alvarez-Melis and Jaakkola [14]:

Ω(θ; M, P, Q, ϵ) = ∥M(P ; θ) − M(P (ϵ); θ(ϵ))∥2/∥P − P (ϵ)∥2,

Ωworst(θ; M, P, Q) = maxϵ Ω(θ; M, P, Q, ϵ),
(3)

in which θ and θ(ϵ) are derived by finding a shift explanation with the source distribution as P ,
or the perturbed source distribution P (ϵ), respectively. Details on producing a perturbation ϵ
and solving for Ωworst are provided in Appendix D.5.

4



Table 1: Comparison of PE, WG-PE, and %Feasible metrics between vanilla and GSE
K-cluster explanations (Higher is better).

PE ↑ WG-PE ↑ %Feas ↑
Vanilla GSE Vanilla GSE Vanilla GSE

Breast 97.56±0.00 96.89±0.00 83.42±0.00 93.42±0.00 34.43±0.00 35.38±0.00
Adult 99.83±0.01 97.40±0.04 75.13±0.06 96.16±0.02 86.63±0.12 89.27±2.18
Civil 0.63±0.10 0.88±0.10 0.62±0.10 0.83±0.11 90.30±0.80 91.07±0.05
Amazon -2.23±0.03 -1.11±0.66 -2.41±0.03 -1.17±0.73 87.00±0.00 87.00±0.00
ImageNet 18.26±1.75 20.07±3.45 -8.61±4.02 -3.78±7.65 37.25±4.58 50.11±4.94
FMoW 18.73±0.00 13.02±0.00 -17.30±0.00 7.46±0.00 50.20±0.00 54.55±0.00
iWildCam 14.60±1.29 15.71±0.68 2.39±2.07 -1.32±0.76 48.69±2.28 71.24±2.05

Table 2: Comparison of Robustness and Worst-case Robustness between vanilla and GSE
K-cluster explanations (Lower is better).

Method Adult Breast Civil Amazon ImageNet FMoW iWildCam

Rob. ↓ Vanilla 1.34±0.28 6907.79±3577.96 10.10±2.26 18.78±11.06 36.56±10.43 8.26±0.73 8.48±1.51
GSE 1.52±0.40 6500.83±3270.29 10.02±2.19 13.95±6.04 35.47±11.26 20.40±4.90 8.47±1.14

WC Rob. ↓ Vanilla 1.74 16086.54 16.59 38.14 59.19 9.62 11.94
GSE 2.18 15438.47 15.32 26.86 56.04 28.05 10.34

3.3 Worst-group PE for GSE
To rectify the issues identified in Section 2 in existing shift explanations, we can ideally optimize
PE for all pre-specified groups. This ideal, however, is not applicable to finding dataset-level
explanations since it requires an explanation per group, increasing explanation complexity by a
factor of the number of groups. Instead, we propose Group-aware Shift Explanations (GSE) to
optimize the worst-group PE, which leads to implicitly improving PE for all groups simultaneously.
Specifically, suppose the source and target are partitioned into G disjoint groups, i.e., P =
{P1, P2, . . . , PG} and Q = {Q1, Q2, . . . , QG}, in which, Pg and Qg belong to the same group,
e.g., the male sub-populations from P and Q. We can then evaluate PE on a shared group from
the source and target. The worst-group PE is calculated over all G groups as the following:

WG-PE(θ; M, P, Q) = ming PE(θ; M, Pg, Qg). (4)

This metric indicates how much the distance between any pair of Pg and Qg is reduced, in the
worst case. Optimizing θ to maximize WG-PE can guarantee that for every pair of Pg and Qg,
PE(θ; M, Pg, Qg) is not approaching 0.

3.4 Theoretical Analysis
We theoretically analyze the existence of group irregularities in a simple 1D setting and show
that our worst-group optimization method mitigates the problem.
Theorem 1. Suppose P = Bernoulli(p) and Q = α · Bernoulli(p) + β in one dimensional setting
where p ∈ [0, 1] and α, β ∈ R such that α + 2β ̸= 1. We further split the joint distribution
of P and Q into two groups depending on the sampling results, i.e., Group(x) = 1 if x ∼ P
and x = 0 or x ∼ Q and x = β, and Group(x) = 2 otherwise. Let M(x; θPE) = x + θPE and
M(x; θWG) = x + θWG be two K-cluster explanations (K=1) which are solved by maximizing
PE(θ) and WG-PE(θ) respectively. Then, PE(θWG) − WG-PE(θWG) = 0 for all α, β, and p while
PE(θPE) − WG-PE(θPE) > 0 except when p = β

α+2β−1 or p = β
1−α holds.

The takeaway is that group irregularities, or a disparity between the overall PE and worst-group
PE, exist when optimizing the overall PE. We also theoretically analyze the feasibility and
robustness of shift explanations in this setting in Appendix J.

4 Experiments
We present our experiments for evaluating the effectiveness of GSE compared to shift explanations
which ignore group structures. In what follows, we describe the datasets and experimental setup
in Section 4.1 and our results in Section 4.2.
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antelope: 1
background: 1
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head: 2
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male: 1

walking: 1
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Mapped source

Mapped source

Closest Target

Closest Targeta large antelope standing on top
of a grass covered field, gerenuk,
klipspringer, long tail with horns,
zoo photography, single horn,
sharp long horns, two small horn
on the head, young male with
walking stick, long horns

+[WILD, SPINES, SPIKY,
SPIKY, PORCUP, HAIR], a
large antelope standing on
top of a grass covered field,
gerenuk, klipspringer, long
tail with horns, zoo
photography, single horn,
sharp long horns, two small
horn on the head, young
male with walking stick,
long horns

+[HORSE, EQUINE], a
large antelope standing on
top of a grass covered field,
gerenuk, klipspringer, long
tail with horns, zoo
photography, single horn,
sharp long horns, two small
horn on the head, young
male with walking stick,
long horns

Text

Reverse featurization step

Figure 3: Vanilla vs. GSE K-cluster shift explanations for ImageNet sub-population shifts.
Vanilla maps an antelope (“ungulate/hooved mammal” group) cluster shown on the left to
porcupines shown on the top right. The explanation of “-2 horns” and “+2 spiky” means that
two occurrences of the word “horns” should be removed and “spiky” should be added twice
to the caption. In contrast, GSE preserves ’ungulate/hooved mammal’ structure, mapping
antelope to horses (bottom right). Source images for both techniques are generated using reverse
featurization (Section 4).

4.1 Datasets and Experimental Setup
Datasets We perform experiments on tabular, language, and vision data. For tabular data, we
use the Adult income (Adult) and Breast Cancer datasets (Breast) [16]. For language data, we
evaluate on the Civil Comments dataset [17] (Civil) and Amazon review dataset (Amazon) [18].
Finally, for image data we use the version of the ImageNet dataset from [19] (ImageNet), the
FMoW dataset [20], and the iWildCam dataset [21]. Appendix C provides further details on
these datasets as well as the source/target splits and group definitions.
Experimental Setup We evaluate three shift explanation methods: K-cluster transport (K-
cluster), Optimal transport (OT), and DiCE. Due to space limitations, only the results of K-cluster
transport are included in this section and other experiments can be found in Appendix C. For
each method, we compare GSE to vanilla explanations. The latter ones are derived by optimizing
group-free objectives such as PE in Equation 1 while the former are constructed by optimizing
group-aware objectives such as WG-PE in Equation 4.
The three different explanation methods in addition to their counterparts using GSE are evaluated
along the following axes: PE and WG-PE where we evaluate over ImageNet pretrained ResNet-50
embeddings for image data; % Feasible from Equation 2; and robustness and worst-case robustness
from Equation 3. Further details of the experimental setup are in Appendix D.

4.2 Results
Quantitative results The main quantitative results of vanilla and GSE K-cluster explanations
are shown in Table 1-2. We can see from Table 1 that there is often a large gap between the
PE and WG-PE, showing the reality of group irregularities across datasets. When comparing
GSE explanations to vanilla explanations, GSE almost always results in higher WG-PE (over 20%
improvements on the Breast and FMoW datasets) than vanilla explanations, while minimally
changing overall PE. Surprisingly, GSE improves PE as seen on the ImageNet, Civil, and
iWildCam datasets. GSE also always produces more feasible explanations in comparison to vanilla
explanations, and has improvements of up to 22%. This is primarily due to the fact that GSE
penalizes explanations with low feasibility. Moreover, according to Table 2, GSE improves both
the robustness and worst-case robustness in most cases across all datasets, by as much as 25%
(see the Robustness metric for Amazon).
We note that GSE does not result in 100% WG-PE and %Feasible because the K-cluster
explanation with 20 clusters is not expressive enough to entirely explain the shift in the distribution.
Appendix G has results for more expressive explanation methods.
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These results for image data use text-based featurization for interpretability, as discussed in
Appendix A.2 and shown in Figure 4. There are other featurization options and Appendix H
includes additional results including explanations using raw pixel features. We see the same
trends in results for the raw pixel explanations as the text explanations shown here. For full
results and comparison with text features, see Appendix H.
Qualitative results A qualitative analysis of GSE explanations for tabular data is given in
Figure 1. GSE produces an explanation which modifies age, education level, and occupation
instead of changing the infeasible sex attribute like the vanilla explanation. For text data, we
analyze an explanation from Civil with respect to its robustness in Figure 2. Finally, for image
data, Figure 3 shows a shift explanation for ImageNet where we show the shift in an antelope
cluster of the K-cluster explanation. The vanilla explanation maps antelopes to porcupines
which breaks the “ungulate/hooved mammal” group, as antelopes are hooved animals while
porcupines are rodents. Observing the generated examples for this cluster shows the conversion
of an antelope to a porcupine yields unusual-looking results. On the other hand, GSE maps this
cluster of antelopes to horses which preserves the groups since horses are also hooved animals.
The resulting generated images from this explanation are also clearly images of horses.

5 Related Work
Explaining distribution shift. Kulinski and Inouye [8] proposes three different mappings of
varying levels of interpretability and expressiveness as shift explanations. Finding counterfactual
explanations to explain model behavior [10] is a related problem, where such explanations represent
the minimal perturbation which changes a model’s prediction on a given sample [22, 23, 24].
Although not originally created to explain distribution shift, we adapt these methods to our
setting (see Appendix A for details).
Worst group robustness. Improving model robustness over sub-populations using group
information is extensively studied. Here, the main goal is to minimize the loss on the worst
performing sub-population which often becomes a form of distributionally robust optimization
(DRO) [25]. The problem of improving model robustness or accuracy on subgroups can be
addressed through applications of DRO over subgroups [26, 27], re-weighting sub-populations
[28, 29], or performing data augmentation on the worst group [30]. Rather than focus on
improving model robustness, our focus is on finding explanations that preserve group structures.
Domain generalization and adaptation. Common solutions for dealing with distribution shift in
regards to a model include domain generalization and domain adaptation. Unlike these methods,
our setting is independent of a model. We survey these methods in detail in Appendix I.

6 Conclusion and Future Work
We identified a problem with all existing approaches for explaining distribution shift: the blindness
to group structures. Taking group structures into account, we developed a generic framework
that unifies existing solutions for explaining distribution shift and allows us to enhance them
with group awareness. These improved explanations for distribution shift can preserve group
structures, as well as improve feasibility and robustness. We empirically demonstrated these
properties through extensive experiments on tabular, language, and image settings.
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Figure 4: Pipeline of generating a shift explanation for an image. First, each image from the
source and the target is transformed to a caption using a pretrained image-to-text model. For
each caption, we derive shift explanations over interpretable features, i.e., BoW features (denoted
by P̃ and Q̃ for source images and target images respectively). The modified caption is then
produced from the shift explanation, which is fed to a pretrained text-to-image model for reverse
featurization.

A Additional Framework Instantiations
A.1 Generalizing to other shift explanation methods
Generalizing the Mapping M(x; θ) Recall that shift explanations produced by K-cluster
transport can be represented by the mapping function M(x; θ), which can be any function taking
the sample x ∈ P and the moving distance θ as input. For example, for optimal transport,
M(x; θ) = x + θx where the moving distance, θx, varies between different x.

Generalizing the Objective Function beyond PE So far we have only introduced one objective
function, PercentExplained (PE), for optimizing the parameters of the mapping function. Indeed,
we can replace PE by any differentiable loss function, L(θ; M, P , Q). For instance, for optimal
transport and K-cluster transport, L is 1 − PE. The details of instantiating M and L for other
shift explanation methods, e.g., optimal transport and DiCE, are in Appendix A. Note that the
feasibility and robustness metrics introduced in Section 2 (and formalized in Section 3.2) are
not suitable due to their non-differentiability. Therefore, they only serve as post-hoc evaluation
metrics.
We can now provide a general form of GSE for any shift explanation method decomposed as a
parameterized mapping M(·; θ) and an objective function L for learning θ. First, we extend our
formulation of WG-PE in Equation 4 beyond PE by replacing PE with 1 − L (recall that L is
1 − PE for K-cluster transport), i.e:

WG-L(θ; M, P , Q) = ming({1 − L(θ; M, Pg, Qg)}G
g=1) = maxg({L(θ; M, Pg, Qg)}G

g=1) (5)

Recall that Pg and Qg represent a group of samples from the source and target respectively,
belonging to the same group. We further generalize Equation 5 by using an arbitrary aggregation
function F in place of the max function and regularizing with the loss calculated between the
whole P and Q to balance the optimization between the worst group and the overall distribution,
i.e.:

WG-L(θ; M, P , Q) = F ({Lg(θ; M, Pg, Qg)}G
g=1) + λ · L(θ; M, P , Q) (6)

where λ is a hyper-parameter and F is an aggregation function. The choice of F and λ for our
experiments is given in Appendix D.4.

A.2 Generalizing to language and image data
Since shift explanations are built upon interpretable features, for instance the age and education
level for the Adult dataset, we need such interpretable features to produce shift explanations for
image and language data. Therefore, we add two additional steps in our framework. The first
is a featurization step, which extracts interpretable features from the language and image data.
Second, we add a reverse featurization step for converting modifications to the interpretable
features back to the raw data space for producing mapped source samples.
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For language data, the featurization step leverages techniques such as Bag-of-words (BoW) and
N-Gram models to produce token-level features. Therefore, in the reverse featurization step, we
follow the explanations to either remove words or prepend words to the beginning of the input
sentences. For image data, the featurization step leverages image-to-text models such as CLIP
Interrogator [31] to produce captions for each image from the source distribution and the target
distribution. These captions are then processed in the same manner as language data to obtain
interpretable features, such as BoW features. Finally, the reverse featurization step follows the
explanation to produce modified captions for each source image, which is then transformed back
to an image using a text-to-image model such as stable diffusion [32].

A.3 Optimal Transport (OT)
Similar to K-cluster Transport (K-cluster) [8], Optimal Transport (OT) finds the moving distance
θ(x) for shift explanations directly. In the next two sub-sections, we discuss how to instantiate
M(x; θ) and L(θ; M, P, Q) for OT within our framework.
Mapping function for OT. In OT, the mapping is almost the same as that for K-cluster except
that the moving distance θ now depends on each individual sample, x, from the source. Therefore,
the counterfactual mapping M(x; θ) can be written as M(xi; θi) = xi + θi for every xi ∈ P .
Objective function for OT. The objective function for OT is exactly the same as that for
K-cluster which is the PE metric. The optimization now results in learning θ = {θ1, . . . , θ|P |}, or
a separate moving distance for every source sample such that the PercentExplained is maximized.

A.4 DiCE
For vanilla counterfactual explanation methods such as DiCE, model behavior for a given sample x
is explained. To construct such explanations, these methods perform counterfactual modifications
to x such that the model prediction changes. We adapt these methods to construct a surrogate
shift explanation by finding counterfactual examples for models that classify between source
and target distributions. In this subsection, we investigate how general methods for finding
counterfactual examples can be adapted to fit within our framework. We take DiCE as an
example to describe how to instantiate M(x; θ) and L(θ; M, P, Q) for these methods.
Mapping function for DiCE. The counterfactual examples produced by DiCE depend on a
given model (parameterized by θ). As a consequence, the mapping function for DiCE, M(x, θ),
is represented as M(x, θ) = x + f(x; θ). Let h denote the fixed model which classifies between
the source and target data. The moving distance, f(x; θ), used in the counterfactual explanation
relies on this model, h, that DiCE is used to explain.
Objective function for DiCE. As indicated above, it is essential to obtain the parameter θ to
learn the shift explanation. Since the model, h, discriminates between the source data, P , and
the target data, Q, we optimize the following objective function for DiCE, in which all source
samples and target samples are labeled as 0 and 1 respectively:

arg min
θ

LDiCE(θ; M, P, Q)

= arg min
θ

∑
x,y∈D

ℓ(h(x; θ), y). (7)

In the above formula, the loss ℓ(·) represents the Cross Entropy loss and h denotes the model
which classifies between the source and target data D = {(x, 0) : x ∈ P} ∪ {(x, 1) : x ∈ Q}.
Note that the above loss function is an instantiation of the abstract objective function, L, used
in Equation equation 6. This optimization leads to learning a θ which is the model parameter for
the classifier between the source and target. Once we have learned the model parameter for the
model h to be explained with DiCE, we derive the moving distance as

f(x; θ) = argminδx
dist(x, x + δx)

s.t. h(x + δx; θ) = 1.
(8)

For any x ∈ P the moving distance f(x; θ) is found such that it is a minimal change to x which
results in the previously learned classifier, h, classifying the modified sample as a target sample.
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Figure 5: Visualizations of feasibility and robustness. % Feasible is shown in Figure 5a and it
measures the percent of samples which are mapped by G(x; θ) to a sample with the same group
as the original sample. Robustness is shown in Figure 5b and it measures how small perturbations
on the source data distribution change shift explanation.

B Details on Feasibility and Robustness
Feasibility and robustness are defined in Equation 2 and 3 respectively, but here we give a visual
example of each. A concrete example for calculating feasibility is shown in Figure 5a. The source
cluster of four males and one female becomes three males and two females from the mapping, so
feasibility is 4

6 = 0.667.
Similarly, we calculate robustness for an example in Figure 5b. Suppose there are two clusters
in the source distribution and the target distribution respectively, and each cluster consists of
a single sample. After applying K-cluster transport, the moving distance θ from the source to
the target can be interpreted as “increasing the age by 1 and flipping the sex attribute”. After
perturbing the sex attribute of one source sample from 1 to 0, the magnitude of changes on
the source data distribution is ∥P − P (ϵ)∥2 = 1. This produces a new moving distance θ(ϵ),
which is interpreted as “increasing the age by 1 and only flipping the sex attribute of the first
source sample”. By leveraging Equation equation 3, the Robustness measure Ω for this example
is ∥M(P ;θ)−M(P (ϵ);θ(ϵ))∥2

∥P −P (ϵ)∥2
≈ ∥θ−θ(ϵ)∥2

∥P −P (ϵ)∥2
=

√
5.

The details for how we produce a perturbation, calculate worst-case robustness, and perform the
robustness experiment are given in Appendix D.5.

C Datasets
The tabular, language, and image datasets that we use in the experiments are described in this
section.

C.1 Tabular data

Dataset overview. The Adult dataset and the Breast Cancer dataset are standard tabular
datasets from the UCI Machine Learning Repository [16]. The Adult dataset consists of 48,842
samples with categorical and integer features from census data. The typical task is to predict
whether income exceeds $50K per year. The Breast Cancer dataset contains 569 samples with
10 real-valued features relating to an imaged cell. This dataset is similarly used for binary
classification between the classes of benign and malignant tumors.
Distribution shift setup. For both the Adult and Breast Cancer datasets, we match the setup
by [8] and consider distribution shift between the different class labels: above 50k and below
50K for Adult, and benign and malignant for Breast Cancer.
Sub-population setup. For the Adult dataset, we use the existing demographic feature of “male"
to define two groups. For the Breast Cancer data, we define groups by thresholding on a new
attribute which is calculated by using “cell radius” and “cell area” attributes (see Appendix D for
details). This leads to 3 groups in total.
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C.2 Language data
Dataset overview. The Civil Comments dataset [17] and the Amazon review dataset [18] are
used for our language application. The Civil Comments dataset targets predicting the toxicity
of up to 2 million public comments and it additionally contains annotations of demographic
categories including gender, race, and religion of the authors of each comment. The Amazon
review dataset is used for sentiment classification where there is a distribution shift between
the subpopulations of reviewers. These datasets are part of the WILDS [33] distribution shift
benchmarks and they are used to benchmark subpopulation shift. Subpopulation shift occurs
when the proportions of samples from different demographic categories changes between the
source and target.
Distribution shift, sub-population and featurization setup. For the Civil Comments dataset,
we build a distribution shift setting by splitting it into toxic and non-toxic text as the source and
target respectively as done by [8]. After balancing the size of this split, there are 4,437 samples in
each of the source and target. The groups are defined by samples with and without the “female"
demographic feature. For the Amazon review dataset, we use the default split from the WILDS
benchmark which splits the data into two sets of reviews with reviews from different reviewers
between the two sets, and we define two groups based on the year the review was written. After
balancing the size of the source and target, there are 4,910 samples in each.
The interpretable features for this data are defined by the bag-of-words representation for each
sample. We limit the bag-of-words to 50 words which we find helps to avoid model overfitting
when using DiCE.

C.3 Image data
Dataset overview. For image data, we use BREEDS [19], FMoW [20], and iWildCam [34].
The BREEDS dataset is a collection of ImageNet [35] subsets created using the wordnet class
hierarchy for sub-population shift studies. For our experiments, we take a subset of the ImageNet
validation set based on a subpopulation shift between hooved mammals and rodents. The FMoW
dataset consists of over 1 million satellite images labelled with one of 62 building or land use
categories. This dataset is used to study domain generalization and subpopulation shift since
it additionally provides geographic region and time attributes which can be used for creating
subsets exhibiting different distribution shifts. Finally, the iWildCam dataset consists of camera
trap images taken in different geographic regions. This dataset is used to study subpopulation
shift because the distributions of animals shifts between regions.
Distribution shift setup. In BREEDS, We start at the subtree under “mammal" in ImageNet’s
wordnet hierarchy and select three ImageNet classes under the superclass “rodent/gnawer" and
three classes under the superclass “ungulate/hooved mammal" for both the source and target.
These three classes for each superclass are chosen in an adversarial way according to [19] to
increase the level of subpopulation shift. In total, this subset consists of 298 samples in each
of the source and target. In our experiments on FMoW, we subset to the first three land use /
building classes and construct the source distribution from samples taken before 2012 and the
target from samples taken after 2012 which results in 253 samples for the source and 279 samples
for the target. In our experiments on iWildCam, we take the source distribution as images from
a single region and the target distribution as images from a separate region. This results in 204
samples for the source and target each.
Featurization and sub-population setup. As described in Section A.2, features for BREEDS
and iWildCam are extracted by using an img-to-text model and then treating the caption as a
bag-of-words representation. We use a total of 50 words in the bag-of-words as features. Groups
are defined for BREEDS by the superclasses “rodent/gnawer" and “ungulate/hooved mammal"
to encourage an explanation which does not map rodents to hooved mammals. This grouping
allows us to define an infeasible explanation as one which maps rodents to hooved mammals or
vice versa. For the FMoW dataset, we featurize based on raw pixel values since the text-to-image
model does not perform well on generating satellite images. To construct groups, we use the
provided geographic region attribute to define groups since we want our distribution shifts to
respect geographic boundaries. For the iWildCam dataset, we define groups by the daytime and
nighttime attribute of the images since we don’t expect that animals in one region will become
nocturnal in another region.
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Table 3: Learning rates for all experiments
Dataset OT K-cluster DiCE
Adult 0.1 0.5 0.1
Breast 0.1 5 0.5
Civil 0.1 0.5 0.5
ImageNet 0.5 1.0 0.5
FMoW 0.1 0.5 0.005
iWildCam 1.0 1.0 0.5
Amazon 0.5 0.5 0.5

Note that for datasets such as Civil Comments, iWildCam, and FMoW, the groups are determined
by extra annotations which are not available after mapping the source samples by the shift
explanations. To determine the group assignments of a mapped source sample, we leverage the
group annotation of the mapped sample’s closest target sample as an approximated annotation.

D Datasets and Hyperparameters for Experiments
D.1 Tabular data

All categorical features in the Adult data are one-hot encoded resulting in a total of 35 features.
We balance the size of both source and target distribution which results in a total of 15,682
samples for the Adult data and 424 samples for the Breast dataset.
The new meta-feature that is used for grouping the Breast dataset is calculated by the expression

Avg. cell radius2

Avg. cell area ,

and then we group the data by thresholding on this meta-feature. To find a good threshold, we
compute the meta-feature for the entire source and target dataset and get the first and third
quartiles. Thus, we create three groups: samples with meta-feature value below the first quartile,
between the first and third quartile, or above the third quartile.
When learning vanilla and GSE explanations, we use the same hyperparameters between both.
For all methods, we optimize for 200 iterations and list all the specific hyperparameters in Table 3.
For DiCE, we use a neural network with a single hidden layer of size 16 as the source vs. target
discriminator in all experiments. This network is trained for 500 iterations, with a weight decay
of 0.0001. For GSE DiCE, we train the neural network using group DRO [36] with the same
hyperparameters used for the vanilla training.

D.2 Language data

For the K-cluster experiments, we use 4 clusters and optimize for 200 iterations using a learning
rate of 20. For OT explanations, we optimize for 200 iterations using a learning rate of 0.1.
Finally, for the DiCE explanations we first train a logistic regression classifier for classifying the
source and target samples using 1000 epochs with learning rate of 0.5 and weight decay of 0.0001.
For GSE with DiCE, we train this logistic regression classifier using group DRO with the same
hyperparameters used in the regular training procedure.

D.3 Image data

For K-cluster explanations, we use 5 clusters and optimize for 100 iterations using a learning
rate of 150.0. For OT explanations, we optimize for 100 iterations using a learning rate of 0.5.
Finally, for the DiCE explanations we first train a logistic regression classifier for classifying the
source and target samples using 100 epochs with learning rate of 0.1 and weight decay of 0.0001,
and we use group DRO to train this classifier for GSE.

15



D.4 Framework hyperparameters

For all experiments, we use the sum function F (X) =
∑

x∈X x for the function F in Equation 6.
We also experimented with group DRO loss [36] and F (X) = max X with λ = 0.1. Note that
for the summation F (X), it is only applicable to the loss function L which does not preserve
the addition operation over groups, such as PE. Otherwise, Equation 6 could be rewritten as
minθ ((1 + λ) · L(θ; M, P , Q)), which is not a group-aware loss.

D.5 Robustness experiment

To compute the robustness metric, we use a random small perturbation to the source distribution.
To create this perturbation, we randomly select 75% of the features and perturb 1% of the
feature values for each of these features. The manner in which we perturb this 1% of the feature
values depends on the type of the feature. For real valued features, we find the standard deviation
of the feature value for the current feature we are perturbing and we randomly either add or
subtract 0.05 · stdev to 1% of the feature values. For integer features, we randomly either add
or subtract 1 to 1% of the feature values. Finally, for boolean features, we randomly either flip
the label of 1% of the True feature values or 1% of the False features values. For categorical
features, we first convert the categories to integers such that each category is given an integer
from 0 to K-1 where K is the number of categories. This allows us to generate a perturbation
for categorical features in the same way as for integer features.
We use the same hyperparameters as above for learning each shift explanation on the perturbed
distribution. To speed up the experiments, we first train the shift explanation on the original
source distribution and then initialize the parameters of the shift distribution with the parameters
learned from the original source distribution when learning the shift explanation for the perturbed
distribution.
For computing the robustness metric, we use three random perturbations as described above
and average the robustness over the three runs. To compute worst-case robustness, we calculate
robustness from 100 random perturbations and take the worst (highest) value of robustness from
the 100 trials. Since each calculation of robustness requires learning a shift explanation using the
vanilla method and GSE, this experiment is time consuming, so we don’t report error bars for the
worst-case robustness.

D.6 Compute details

For all experiments, we use a local server with four Nvidia 2080 Ti GPUs and 80 Intel Xeon Gold
6248 CPUs. Each experiment required around 2 GB of GPU memory.

E Experiments Without Group Labels
It is possible that group labels are not always available for a dataset, but we can still use either
pretrained models to extract attributes to use for defining groups or use unsupervised methods for
grouping the data. We perform an experiment on the language data to show that our group-aware
method is still applicable even without group supervision.
To get groups for the language data, we cluster the sentence embeddings of our source and
target data. The sentence embeddings are from a state-of-the-art sentence embedding model,
all-mpnet-v22, and we use K-means clustering with 10 clusters to get 10 groups for the source
and target. Experimental results are shown in Table 4, and we see the same trends as for the
experiments with specified groups. In particular, our group-aware explanation always results
in higher worst-group PE and % Feasible than the regular explanation. The most significant
improvement in WG-PE is seen for the OT explanation with a change from 63.07% to 93.48%.
Interestingly, we also see that our group-aware explanation has slightly improved overall PE over
the vanilla DiCE and K-cluster explanations.

2https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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Table 4: Comparison of distribution shift explanation methods on Civil without groups given.
Method PE WG-PE % Feas. Robustness WC Robustness
DiCE 1.08 ± 0.1 −5.84 ± 0.5 54.50 ± 0.82 7.82 ± 0.01 7.93
GSE DiCE 14.32 ± 0.9 7.52 ± 0.5 56.33 ± 0.85 7.71 ± 0.08 7.92
K-cluster 5.19 ± 1.75 2.64 ± 0.34 66.00 ± 0.71 3.00 ± 0.20 4.60
GSE K-cluster 5.72 ± 0.88 3.79 ± 0.27 67.00 ± 0.41 3.02 ± 0.05 3.21
OT 99.89 ± 0.00 63.07 ± 2.97 55.17 ± 4.11 1.00 ± 0.02 1.05
GSE OT 98.34 ± 0.28 93.48 ± 0.26 84.67 ± 0.24 1.06 ± 0.03 1.14
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(a) Cluster level shift explanation.

Apply
GSE K-cluster
Explanation

Apply
Vanilla K-cluster

Explanation

Source Sample
age: 17
White: 1
education: 7
never-married: 1
occup. sales: 1
female: 1

Modified
age: 17 36
White: 1
education: 7 10
never-married: 1 0
married: 0 1
occup. sales: 1 0
female: 1

Modified
age: 17 24
White: 1
education: 7
never-married: 1 0
married: 0 1
occup. sales: 1 0
female: 1

 
< 30

 
≥ 30

 
< 30

(b) Instance level shift explanation.
Figure 6: (a) shows an example shift explanation from a low-income population to a high-income
population from the Adult dataset using two different methods: Vanilla K-cluster transport and
our GSE K-cluster transport. The shift explanation produced by the Vanilla method explains
the shift by increasing age by 19 years, increasing total education by 3 years, making the cluster
married, and making the cluster no longer work in sales. On the other hand, GSE generates an
explanation that better preserves the subpopulations of people less than 30 and those at least 30
years old depicted as black and white figures respectively, by modifying the age feature by only
seven years. The change of +3 to education means increasing the maximum education level in
grades by three years. (b) shows the instance-level explanation. This explanation changes the
sample’s age from 17 to 36 whereas our method only increases age to 24.

F Motivating Example Details

F.1 Full Results for Motivating Example

The full results for the explanations shown in the motivating example in Figure 1 and Figure 2.

Table 5: Full results for learning a K-cluster explanation for low to high income shift in the Adult
dataset. Groups are defined by Black and White racial groups.

Method PE White PE Black PE % Feas. Robustness WC Rob.
K-cluster 86.29±0.09 87.62±0.06 51.77±1.60 24.17±2.57 3.69±1.98 6.49
GSE K-cluster 70.22±0.65 68.72±0.80 67.39±0.05 100.00±0.00 1.93±0.95 3.27

F.2 Additional Example

We provide another motivating example to show that different choices of infeasible features is
possible. Figure 6 can be used in place of Figure 1 and Figure 7a in place of Figure 2a. The
choice of which features are infeasible is entirely dependent on the user of the shift explanation
and their goals.
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(a) Adult dataset.
Figure 7: Examples of poor robustness of an explanation. Even if an explanation is feasible (top),
small perturbations to the source distribution can make it become infeasible (bottom).

G Results for OT and DiCE Shift Explanations
The full results for tabular data, Civil Comments, and ImageNet are given in Table 6, 7, and
8 respectively. With DiCE and OT shift explanations, we see the same trends as previously
mentioned in relation to K-cluster explanations. In particular, WG-PE is always improved by
GSE, and feasibility and robustness are improved in most cases.

Table 6: Comparison of distribution shift explanation methods on tabular datasets.

Method PE WG-PE % Feas Robustness WC Robustness
Vanilla DiCE 2.25 ± 0.29 2.25 ± 0.24 100.0 ± 0.00 23.74 ± 4.05 41.58
GSE DiCE 26.02 ± 3.00 21.69 ± 4.77 100.0 ± 1.52 22.34 ± 1.29 34.56
Vanilla OT 95.88±0.08 80.39±0.16 84.87±0.52 0.77±0.16 1.22
GSE OT 96.07±0.03 90.91±0.17 91.7±4.67 0.79±0.17 1.23

(a) Adult data

Method PE WG-PE % Feas Robustness WC Robustness
Vanilla DiCE 29.6 ± 2.43 25.16 ± 1.00 25.94 ± 0.00 4908.99±3886.07 15504.20
GSE DiCE 38.21 ± 1.58 33.48 ± 0.40 27.20 ± 1.46 5001.72±2924.73 11334.15
Vanilla OT 99.37±0.03 84.10±0.03 39.62±0.77 89.88±24.95 112.00
GSE OT 99.87±0.00 99.37±0.00 93.87±0.00 45.51±8.20 56.44

(b) Breast data

H Image and Text Featurization Ablation
Table 9 and Table 10 include the results of an ablation on the featurization method used in
the experiments. For the BREEDS dataset, we experiment with four different featurization
techniques: using raw image pixels, using the Stable Diffusion [32] text-to-image model finetuned
on the BREEDS source and target dataset using LoRA [37], using a recent semantic image
editing technique LEDITS [38], and using embeddings from a state-of-the-art classification model
and interpreting them using concepts [39]. We extract embeddings using ViT-Huge [40] and
learn concepts using ACE [41] by constructing roughly 32 patches per image for a sample of 200
images from the source and target and then using KMeans to get 100 clusters in the ViT-Huge
embedding space. Once we learn a shift explanation in the ViT-Huge embedding space, we
interpret the explanation in terms of the 100 concepts and visualize the explanation for one
source cluster in Figure 8.
For the Civil dataset, we experiment with two different featurization techniques: using topic
modeling to extract features and perform reverse featurization and using text embeddings from a
language model and an embedding inversion technique [42] to interpret them. Specifically, for
topic modelling, we follow the topic modeling technique from Dieng et al. [43] to construct a
topic model over the Civil source and target data. For the explanation in embedding space, we
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Table 7: Comparison of distribution shift explanation methods on language data.

Method PE WG-PE % Feas. Robustness WC Robustness
DiCE 2.75 ± 0.19 1.11 ± 0.30 63.33 ± 1.25 5.28 ± 1.72 6.75
GSE DiCE 19.29 ± 0.80 15.12 ± 2.47 64.67 ± 0.62 1.72 ± 0.06 3.40
OT 3.03± 0.07 2.51±0.16 88.10±0.14 4.45±0.79 5.89
GSE OT 3.24±0.14 3.17±0.12 95.07±0.05 4.24±0.74 5.56

(a) Civil Comments

Method PE WG-PE % Feas. Robustness WC Robustness
DiCE -17.02±0.19 -17.02±0.19 79.0±0.08 967.04±161.30 –
GSE DiCE -16.79±0.18 -16.79±0.18 79.00±0.05 897.17±127.22 –
OT -1.10±0.02 -1.21±0.07 79.03±0.25 25.31±5.03 36.11
GSE -1.25±0.20 -1.25±0.20 88.10±0.36 29.60±4.80 36.50

(b) Amazon Review

Table 8: Comparison of distribution shift explanation methods on image data.

Method PE WG-PE % Feas. Robustness WC Robustness
DiCE -1.09 ± 1.54 -17.25 ± 2.55 50.39 ± 0.42 5.08 ± 0.36 16.24
GSE DiCE 0.19 ± 1.63 -15.27 ± 3.08 49.94 ± 0.32 6.39 ± 0.64 15.73
OT 7.18 ± 1.04 -17.30 ± 2.74 36.12 ± 0.55 18.77 ± 2.56 24.33
GSE OT 12.81 ± 1.34 -14.70 ± 2.50 48.16 ± 0.72 7.76 ± 1.73 22.79

(a) ImageNet

Method PE WG-PE % Feas. Robustness WC Robustness
DiCE 6.26±1.18 -1.02±1.67 67.16±0.40 4.37±0.59 –
GSE DiCE 7.61±0.22 0.92±0.42 67.97±0.46 3.96±1.01 –
OT 14.36±0.10 3.59±0.77 66.67±0.47 2.89±1.36 7.46
GSE OT 18.64±0.26 -1.77±0.58 100±0.0 2.72±1.32 7.27

(b) iWildCam

Method PE WG-PE % Feas. Robustness WC Robustness
DiCE -17.04±0.09 -17.04±0.09 51.52±0.19 706.15±22.32 –
GSE DiCE -16.57±0.44 -16.57±0.44 51.65±0.19 730.96±25.03 –
OT 98.78±1.42 -8.34±0.0 47.43±0.0 5.24±0.77 6.82
GSE OT 89.72±0.0 85.34±0.0 97.63±0.0 4.75±0.79 6.26

(c) FMoW

use text-embedding-ada-002 [44] to get text embeddings for all samples in the source and
target datasets. After learning a shift explanation, we decode the shifted source centroids to text
using vec2text [42]. Figure 9 shows an example explanation learned on text embeddings where
we visualize a decoded centroid and the mapped centroid from the Vanilla K-cluster method
compared to our K-cluster method.
In general, these results show the same trends as our previous results which empirically supports
our claim that our framework is not dependent on a given featurization technique. For BREEDS,
even if we choose no featurization (raw pixels), we still see that GSE reduces group irregularities
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Centroid's Top Concepts Vanilla K-cluster
Explanation

GSE K-cluster
Explanation

Figure 8: Concept visualization of a Vanilla and GSE K-cluster shift explanation learned for
sub-population shift in the BREEDS dataset using embedding space featurization. On the left is
are the top concepts for a centroid of the source data where patches from the same concept are
in a row and different rows are different concepts. This cluster contains squirrel (rodent), fur,
and different tree and grass concepts. The Vanilla explanation adds different concepts associated
with pigs and horses (hooved mammals) thus breaking the rodent group of this cluster. The
GSE explanation adds different types of grass concepts and removes highly saturated single color
concepts and blurred background concepts.

and improves feasibility. Interestingly, there is not always a clear tradeoff between interpretability
of the features used and the resulting PE of the explanation. For instance, comparing K-cluster
with raw pixel features for BREEDS to K-cluster with text features, we see that pixel features
result in slightly lower overall PE than text features. This is because the text-based explanation
can add, for example, different horses based on the other features in an image while the pixel
explanation must add the same horse to each sample in a cluster.
We emphasize that extracting interpretable features is a separate problem to what this paper
studies, but our methods and framework are independent of feature choice, so as new featurization
techniques are developed, they can be used with our method.
Some of the worst-case robustness results in Table 9 and Table 10 are marked as “–" since the
experiment took too long to run, and we omit DiCE results from the Concepts and Embedding
featurization since DiCE did not scale to data with a dimension of 1536 and 768 respectively.
We also visualize the concept featurization explanations and the language embedding featurization
explantions. The explanation learned over image embeddings is visualized in Figure 8 in terms of
concepts. We learned concepts by taking patches from 200 samples from the source and target
and then using KMeans clustering where cluster centroids were treated as concepts. This is
equivalent to ACE [41], a common concept extraction method.

I Additional Related Work
Domain generalization and adaptation. Common solutions for dealing with distribution
shift include domain generalization and domain adaptation. Domain generalization assumes
that the target distribution is unknown and the goal is to improve model robustness to unseen
out-of-distribution data. In contrast, domain adaptation aims to adapt a model learned on the
source distributions to some known target distribution. But similar techniques were proposed for
domain generalization and domain adaptation, including augmenting training data [45, 46, 47],
adding regularization terms to the loss function [48, 49, 50, 51, 52] and meta-learning [47, 53].
There are also many real world distribution shift datasets such as the iWildCam dataset [21] and
the Camelyon17 dataset of [54] as part of the WILDS datasets [33].
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Table 9: BREEDS featurization ablation

(a) Raw pixels

Method PE WG-PE % Feas. Robustness WC Robustness
DiCE -4.22±3.00 -4.87±3.46 54.70±0.55 1222.97±19.99 –
GSE DiCE -2.32±3.30 -2.67±3.79 55.26±0.16 1224.29±51.85 –
OT 100.0±0.0 36.65±0.17 51.45±0.32 581.71±8.97 –
GSE OT 100.0±0.0 100.0±0.0 100.0±0.0 1.0±0.0 –
K-cluster 13.25±0.05 9.42±0.06 53.91±0.16 104.59±72.67 –
GSE K-cluster 12.72±0.01 12.72±0.01 57.16±0.32 81.56±109.53 –

(b) Finetuned Stable Diffusion

Method PE WG-PE % Feas. Robustness WC Robustness
DiCE 4.43±0.90 -8.58±1.83 53.69±1.45 12.52±3.24 –
GSE DiCE 3.88±1.13 -10.45±2.34 51.57±0.84 9.96±2.89 –
OT 18.18±1.19 -9.80±0.63 40.83±0.16 20.61±6.78 –
GSE OT 20.48±0.28 -8.24±0.67 55.82±1.58 21.28±7.98 –
K-cluster 7.03±0.57 -14.83±3.01 25.50±2.96 29.58±1.45 –
GSE K-cluster 7.07±0.61 -13.09±0.84 30.09±1.78 31.50±2.00 –

(c) LEDITS

Method PE WG-PE % Feas. Robustness WC Robustness
DiCE -0.29±0.14 -7.86±0.54 25.95±0.42 6.53±0.83 –
GSE DiCE 32.32±0.52 -2.52±0.70 42.51±0.96 8.33±1.81 –
OT 2.39±0.90 -8.54±0.75 18.57±1.35 20.61±6.78 –
GSE OT 38.58±0.61 1.38±0.65 47.32±0.27 21.28±7.98 –
K-cluster 3.74±0.23 0.48±0.69 10.62±0.96 29.58±1.45 –
GSE K-cluster 26.92±0.86 -6.03±0.24 30.76±1.27 31.50±2.00 –

(d) Concepts

Method PE WG-PE % Feas. Robustness WC Robustness
DiCE 8.10±0.07 3.03±0.08 76.85±0.47 20.59±3.95 26.08
GSE DiCE 7.65±0.08 2.41±0.03 77.52±0.47 14.32±3.30 18.97
OT 73.83±0.25 53.59±0.40 82.77±0.16 35.69±8.93 48.27
GSE OT 71.58±0.25 67.52±0.05 100.00±0.00 28.30±2.10 31.14
K-cluster 28.28±0.48 16.31±0.09 85.57±0.47 81.42±50.15 151.45
GSE K-cluster 25.93±0.02 20.75±0.06 92.62±0.00 37.90±27.15 91.64

J Theoretical Analysis

As mentioned in Theorem 1, to study group irregularities from a theoretical perspective, we
consider a simple setting where Wasserstein distance has a closed-form solution. We define our
source and target distributions as P = Bernoulli(p) and Q = α · Bernoulli(p) + β where p ∈ [0, 1]
and α, β ∈ R. In this case, our source distribution consists of a 1 − p fraction of the data at
x = 0 and a p fraction of the data at x = 1 while the target consists of a 1 − p fraction of the
data at x = β and the other p fraction of the data at x = α + β. In this one-dimensional case,
we will consider a 1-cluster transport explanation introduced by Kulinski and Inouye [8]. Hence,
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Table 10: Civil Comments featurization ablation

(a) Topic Modeling

Method PE WG-PE % Feas. Robustness WC Robustness
DiCE -7.09±0.18 -6.67±0.19 90.56±0.0 60.54±3.33 –
GSE DiCE -6.50±0.07 -6.05±0.12 90.89±0.0 61.64±4.20 –
OT -10.11±0.31 -10.84±0.46 76.63±0.60 2.19±0.25 2.85
GSE OT -9.85±0.11 -9.85±0.11 83.23±0.54 2.31±0.27 3.08
K-cluster -9.29±0.01 -8.19±0.01 82.53±0.0 4.58±1.92 8.50
GSE K-cluster -8.78±0.04 -7.65±0.03 82.80±0.0 2.70±0.84 5.19

(b) Embedding

Method PE WG-PE % Feas. Robustness WC Robustness
OT 81.35±0.21 19.32±0.13 82.95±0.11 1.28±0.06 1.32
GSE OT 67.42±1.16 65.19±1.22 100.00±0.00 1.19±0.05 1.25
K-cluster 6.18±0.02 4.04±0.00 82.88±0.16 0.56±0.02 0.57
GSE K-cluster 5.21±0.71 4.96±0.88 85.15±0.57 0.65±0.06 0.74

In the case of this woman, she was arrested
for threatening two teenage girls with a hard
handed handgun as they walked out of the
house. I'm sure there are those who don't

realize how much harm is done to your child.?

Decoded Centroid Vanilla K-cluster
Explanation

GSE K-cluster
Explanation

Decoded Transformed Centroid

Decoded Transformed Centroid

This woman is a slut. Some

A woman who killed a bunch of children
while walking around in a car was a

hypocrite. And this is why you think the
mentally retarded might want to get their

fuck out of their penis before they do
anything else.

Figure 9: Visualization of a Vanilla and GSE K-cluster shift explanation learned for non-toxic
to toxic shift in the Civil dataset using an embedding space featurization. Inappropriate words
are redacted. The cluster centroid embedding is decoded to text using the embedding inversion
model vec2text. This visualized cluster consists mostly of discussions of crimes and legal cases
somehow involving women. The vast majority of the comments in this cluster are written by
women but get mapped by the Vanilla explanation to a comment that is far from other comments
written by women (it contains a slur for a woman). On the other hand, the GSE explanation
makes the source centroid more toxic while making it align better with the group of comments
written by women.

given this context, we can first optimize PE(θ) and WG-PE(θ) to obtain the value of θPE and
θWG, i.e.:
Lemma 2. Given the context in Theorem 1, maximizing PE(θ) and WG-PE(θ) respectively yields
the solution θPE and θWG as follows:

θPE = (α − 1)p + β, θWG = 2β(α + β − 1)
α + 2β − 1

(9)

Proof. The overall proof is composed of two steps. The first step explicitly calculates the
Wasserstein-2 distance between the source and target distributions, which is followed by the cal-
culation and optimization of PE(θ) and WG-PE(θ) for Vanilla explanations and GSE explanations
respectively.

Step 1: calculating Wasserstein-2 distance According to [55], we can obtain the closed-form
solution of the Wasserstein-2 distance between two distributions P and Q, i.e.:

W 2
2 (P , Q) =

∫ 1

0

∣∣F −1
p (u) − F −1

q (u)
∣∣2

du, (10)
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where FP and FQ are the Cumulative Distribution Function of the distribution P and Q and
thus F −1

P and F −1
q represents the quantile functions of P and Q.

Given that P and Q are Bernoulli distributions, F −1
P and F −1

q are derived as follows:

F −1
p (q) =

{
0 q < (1 − p)
1 q ≥ (1 − p) F −1

q (q) =
{

β q < (1 − p)
α + β q ≥ (1 − p) .

By plugging the above formula into equation 10, W 2
2 (P , Q) becomes:

W 2
2 (P, Q) = (1 − p)β2 + p(1 − α − β)2 (11)

Similarly, for the mapped source distribution M(P ; θ) = {x + θ; x ∈ P} after we apply the
mapping M , the quantile function of M(P ; θ) becomes:

F −1
M(P ;θ)(q) =

{
θ q < (1 − p)
1 + θ q ≥ (1 − p)

which is then plugged into equation 10 to calculate the Wasserstein-2 distance between M(P ; θ)
and Q:

W 2
2 (M(P ; θ), Q) = (1 − p)(θ − β)2 + p(1 + θ − (α + β))2 (12)

By denoting group 1 and 2 from the source distribution P as P1 and P2 and group 1 and 2 from
the target distribution Q as Q1 and Q2 respectively, we can also calculate the Wasserstein-2
distance within each group in a similar fashion:

W 2
2 (P1, Q1) = |β|2 (13)

W 2
2 (M(P1; θ), Q1) = |θ − β|2 (14)

W 2
2 (P2, Q2) = |1 − (α + β)|2 (15)

W 2
2 (M(P2; θ), Q2) = |1 + θ − (α + β)|2 (16)

Step 2: calculating and optimizing PE(θ) and WG-PE(θ) By plugging equation 11 and
equation 12 to equation 1, we can further calculate PE(θ) as follows:

PE(θ) = 1 − W 2
2 (M(P ; θ), Q)/W 2

2 (P , Q)

= 1 − (1 − p)(θ − β)2 + p(1 + θ − (α + β))2

(1 − p)β2 + p(1 − α − β)2 .

Through some algebraic manipulations, we simplify the above formula as follows:

PE(θ) = 1 − (θ − p(α − 1) − β)2 + p(1 − p)(α − 1)2

(1 − p)β2 + p(1 − α − β)2 .

Therefore, the above formula is quadratic with respect to θ and we maximize PE(θ) when
θPE := θ = (α − 1)p + β.
Similarly, to derive the GSE explanations, we can plug equation 13 - equation 16 into equation 4
to obtain the worst-group objective WG-PE(θ) as follows:

WG-PE(θ) = min
(

1 − W 2
2 (M(S1; θ), T 1)
W 2

2 (S1, T1) , 1 − W 2
2 (M(S2; θ), T 2)
W 2

2 (S2, T2)

)
= min

(
1 − (θ − β)2

β2 , 1 − ((1 + θ) − (α + β))2

(1 − (α + β))2

)
Note that since both 1 − (θ−β)2

β2 and 1 − ((1+θ)−(α+β))2

(1−(α+β))2 are quadratic to θ, then there are three
possible θWG which maximizes WG-PE(θ), i.e., θ = β which maximizes 1 − (θ−β)2

β2 , θ = α + β − 1
which maximizes the other term while θ = 2β(α+β−1)

α+2β−1 which makes these two terms equal3. We
discuss these three cases respectively as follows.

3Note that 1 − (θ−β)2

β2 = 1 − ((1+θ)−(α+β))2

(1−(α+β))2 can also happen when θ = 0. But this means that no
shifts happen, which is thus ignored
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Case 1: θWG = β This case happens when 1 − (θ−β)2

β2 ≤ 1 − ((1+θ)−(α+β))2

(1−(α+β))2 . By plugging
θ = β into this inequality, we can get the following constraints on α and β:

((1 + θ) − (α + β))2

(1 − (α + β))2 = (1 − α)2

(1 − (α + β))2 <= 0,

which is only valid when α = 1, θ = α + β − 1 and thus 1 − (θ−β)2

β2 = 1 − ((1+θ)−(α+β))2

(1−(α+β))2 .

Case 2: θWG = α + β − 1 This case happens when 1 − (θ−β)2

β2 ≥ 1 − ((1+θ)−(α+β))2

(1−(α+β))2 . By
plugging θWG = α + β − 1 into this inequality, we get the following constraints on α and β:

(θ − β)2

β2 = (α − 1)2

β2 ≤ 0,

which is only valid when α = 1, θ = β and thus 1 − (θ−β)2

β2 = 1 − ((1+θ)−(α+β))2

(1−(α+β))2 .

Case 3: θWG = 2β(α+β−1)
α+2β−1 This case happens when 1 − (θ−β)2

β2 = 1 − ((1+θ)−(α+β))2

(1−(α+β))2 holds.
As the analysis of Case 1 and Case 2 suggests, WG-PE(θ) gets maximized when the two terms of
WG-PE(θ) are equal. Therefore, Case 1 and Case 2 could be regarded as special cases of Case
3. Therefore, this suggests that the Wasserstein-2 distance within each group gets reduced by
the same amount when WG-PE is optimized. But it is worth noting that there are two implicit
constraints on α and β, i.e., α + 2β ̸= 1 and β(α + β − 1) ̸= 0.
This thus concludes the proof.

Given Lemma 2, we can then show the proof of Theorem 1 as follows.

J.1 Proof of Theorem 1
Proof. First of all, by plugging the values of θWG and θPE into PE and WG-PE respectively, we
can get the following expressions after some algebraic manipulations:

PE(θPE) = 1 − W 2
2 (M(P ; θPE), Q)

W 2
2 (P, Q) = 1 − p(1 − p)(α − 1)2

(1 − p)β2 + p(α + β − 1)2 , (17)

PE(θWG) = 1 − W 2
2 (M(P ; θWG), Q)

W 2
2 (P, Q) = 1 − (α − 1)2

(α + 2β − 1)2 , (18)

WG-PE(θPE) = min
(

1 − p2(α − 1)2

β2 , 1 − (1 − p)2(α − 1)2

(α + β − 1)2

)
, (19)

WG-PE(θWG) = 1 − (α − 1)2

(α + 2β − 1)2 . (20)

The worst-group PE for GSE, i.e., WG-PE(θ), can be written without a min. Plus, PE(θWG) −
WG-PE(θWG) = 0, which thus finished the part of the proof for GSE.
The rest of the proof concerns the comparison between PE(θPE) and WG-PE(θPE), we will show
that θPE has a discrepancy between the resulting PE and WG-PE in most cases, which we call a
group irregularity. Since WG-PE(θPE) involves a minimum of two expressions, 1 − p2(α−1)2

β2 and
1 − (1−p)2(α−1)2

(α+β−1)2 , we consider the following three cases: the left expression is less than the right
expression, the right expression is less than the left expression, or both expressions are equal.

Case 1 Since the left expression is less than the right expression, we know that
p2

(1 − p)2 >
β2

(α + β − 1)2 .
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So we can get the following through algebraic manipulation,

(α + β − 1)2 >
β2(1 − p)2

p2 .

We now lower bound the difference between the overall PE and the worst-group PE:

PE(θPE) − WG-PE(θPE) =
(

1 − p(1 − p)(α − 1)2

(1 − p)β2 + p(α + β − 1)2

)
−

(
1 − p2(α − 1)2

β2

)
= p2(α − 1)2

β2 − p(1 − p)(α − 1)2

(1 − p)β2 + p(α + β − 1)2 ,

Then by leveraging the fact that (α + β − 1)2 > β2(1−p)2

p2 , we can derive the lower bound of the
above formula:

PE(θPE) − WG-PE(θPE) >
p2(α − 1)2

β2 − p(1 − p)(α − 1)2

(1 − p)β2 + p
(

β2(1−p)2

p2

)
= p2(α − 1)2

β2 − p(1 − p)(α − 1)2

(1 − p)β2
(
1 + 1−p

p
)
) = p2(α − 1)2

β2 − p2(α − 1)2

β2 = 0

Case 2 Since the right expression is less than the left expression, we know that
p2

(1 − p)2 <
β2

(α + β − 1)2

so we can get the following through algebraic manipulation,

β2 >
(α + β − 1)2p2

(1 − p)2 .

We now lower bound the difference between the overall PE and the worst-group PE:

PE(θPE) − WG-PE(θPE) =
(

1 − p(1 − p)(α − 1)2

(1 − p)β2 + p(α + β − 1)2

)
−

(
1 − (1 − p)2(α − 1)2

(α + β − 1)2

)
= (1 − p)2(α − 1)2

(α + β − 1)2 − p(1 − p)(α − 1)2

(1 − p)β2 + p(α + β − 1)2

Then based on the fact that β2 > (α+β−1)2p2

(1−p)2 , we can derive the lower bound of the above
formula as follows:

PE(θPE) − WG-PE(θPE) >
(1 − p)2(α − 1)2

(α + β − 1)2 − p(1 − p)(α − 1)2

(1 − p)
(

(α+β−1)2p2

(1−p)2

)
+ p(α + β − 1)2

= (1 − p)2(α − 1)2

(α + β − 1)2 − p(1 − p)(α − 1)2

p(α + β − 1)2
(

p
1−p

+ 1
)

= (1 − p)2(α − 1)2

(α + β − 1)2 − (1 − p)2(α − 1)2

(α + β − 1)2 = 0

Case 3 For the final case where the left and right expression are equal, this means that
p2

(1 − p)2 = β2

(α + β − 1)2 .

From the analysis in the two above cases, we can see that we have that PE(θPE)−WG-PE(θPE) = 0,
so there is no disparity between the overall and worst-group PE. We can solve the equality

p2

(1 − p)2 = β2

(α + β − 1)2 .

for p to determine what values of p end up in this case. Solving for p results in p = β
α+2β−1 or

p = β
1−α .

We have now shown that group irregularities exist for all p for cases 1 and 2 and that group
irregularities do not exist for case 3 when p = β

α+2β−1 or p = β
1−α , which thus concludes the

proof.
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J.2 Analysis of Robustness and Feasibility
First we analyze robustness in a 1D setting using a 1-cluster transport explanation and then we
analyze feasibility in the same setting but with an optimal transport explanation.
Robustness is formally defined in Section 3.2 as

Ω(θ; M, P, Q, ϵ) = ∥M(P ; θ) − M(P (ϵ); θ(ϵ))∥2/∥P − P (ϵ)∥2.

We analyze the robustness of an explanation which optimizes PE and one which optimizes WG-PE
with the following theorem.
Theorem 3. Given the same setting as that in Theorem 1, the robustness with respect to a
small perturbation ϵ to p is Ω(θPE; M, P, Q, ϵ) = O(α) while Ω(θWG; M, P, Q, ϵ) = 0.

Proof. We will analyze robustness with respect to a small perturbation ϵ to p, the proportion of
samples in each group of the source and target. First, as analyzed in Lemma 2, θWG = 2β(α+β−1)

α+2β−1 is
independent of p. Thus, any change to p will not affect the explanation, so Ω(θWG; M, P, Q, ϵ) = 0.
Next, for the regular explanation, θPE = (α − 1)p + β. Thus,

Ω(θ; M, P, Q, ϵ) = ∥(α − 1)p + β − (α − 1)(p + ϵ) − β∥2/∥ϵ∥2

= ∥(α − 1)ϵ∥2/∥ϵ∥2

= ∥(α − 1)∥2 = O(α),

which concludes the proof.

For feasibility, we can perform the analysis in more general settings where the shift explanations
are in the form of the optimal transport map. An optimal transport explanation has the form
M(x; θ) = x + θ(x). Based on the solution to the optimal transport problem in 1D [56], the
form of the optimal transport map is:

θ(x) = (FS)−1 ◦ FT (x)

where FS is the cumulative distribution function (cdf) of the source, FT is the cdf of the target.
Thus (FS)−1 is the quantile function of the source distribution. When the source and target are
defined as Bernoulli distributions, we have the next lemma.
Lemma 4. Let α, β ∈ R, p ∈ [0, 1], and define P = α · Bernoulli(p) + β. Then the cdf and
quantile functions for P are the following:

FP (x) =
{

1 − p if x = β

1 if x = α + β
FP (x)−1 =

{
β if x ≤ (1 − p)
α + β if x > (1 − p) .

To analyze feasibility, we use the definition of feasibility from equation 2:

% Feasible =
[∑

x∈P
a(x, M(x; θ))

]
/∥P ∥

Let p ∈ [0, 1], α, β ∈ R and define P = Bernoulli(p) and Q = α · Bernoulli(p) + β. Define groups
for x ∼ P as group 1 if x = 0 and group 2 if x = 1. Define groups for x ∼ Q as group 2 if
x = α + β and group 1 if x = β.
We can write the optimal transport explanation to explain the shift between S and T using
Lemma 4 as:

M(x; θPE) =
{

x + β if x = 0
x + α + β − 1 if x = 1.

We then find the worst-group optimal transport solution. The worst-group optimal transport is
an optimal transport in the worst case over the groups of the source and target data. Thus, we
have that this worst-case optimal transport has the following form based on the definition of an
optimal transport map [56]:

π∗ = inf
π

max
(∫

x=0,y=α+β

∥x − y∥2
2dπ(x, y),

∫
x=1,y=β

∥x − y∥2
2dπ(x, y)

)
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where π is a valid transport map. Since the subgroups are point distributions, the optimal
transport between the two point groups has a direct solution which is to map the source point to
the target point. Thus, the worst-group optimal transport is optimal for both groups as seen by
the optimal transport explanation shown below:

M(x; θWG) = π∗ =
{

x + α + β if x = 0
x + β − 1 if x = 1.

Theorem 5. Let p ∈ [0, 1], α, β ∈ R and define P = Bernoulli(p) and Q = α · Bernoulli(p) + β.
Define groups for x ∼ P as group 1 if x = 0 and group 2 if x = 1. Define groups for x ∼ Q as
group 2 if x = α + β and group 1 if x = β. Let M(x; θPE) be an optimal transport explanation
and M(x; θWG) be a worst-group optimal transport explanation. Then, M(x; θPE) has feasibility
of 0 while M(x; θWG) has feasibility of 1.

Proof. In the definition of Feasible, we define

a(x, y) =
{

1 if x = 0 and y = α + β or x = 1 and y = β

0 otherwise.

This definition encapsulates the desire to keep samples from group 1 in the source in group 1 in
the target and the same for group 2. We can immediately see that XPE maps all samples from
group 1 in the source to group 2 in the target, so feasibility will be 0. On the other hand, XWG
maps samples respecting the defined group structure, so feasibility is 1.

K Limitations and Societal Impacts
GSE explanations are only as good as the underlying shift explanation method. For instance,
K-cluster transport can result in weak explanations that minimally reduce the Wasserstein
distance between the source and target distributions if too few clusters are used (i.e. K is
chosen too small). On the other hand, the Optimal Transport explanation that we found reduced
the Wasserstein distance the most, is not very interpretable since each source sample can be
mapped differently. This results in the explanation being interpretable only on a per-sample basis.
Improved interpretability of shift explanations is an area for future work.
In addition to interpretability of the explanation, our shift explanations for image and language
data rely on interpretable feature extraction methods and methods for counterfactual modification
based on changes to the features as described in Section A.2. We designed a system for
interpretable feature extraction which uses a bag-of-words feature representation, but this method
looses the context that words are used in and it is difficult to make counterfactual modifications.
Creating disentangled embedding spaces for interpretable embeddings that can also be used for
counterfactual modification is an area of active research, but there is still work left to make these
approaches more general.
We also found that GSE is sensitive to the choice of groups. Even though unsupervised methods
can be used to select groups as shown in Appendix E, future work can look at how to best select
or design groups. For instance, it may be the case that we know of some groups, but we want
the rest of the data to be grouped appropriately.
Finally, while we evaluated the worst-case robustness, our method sometimes results in worse
worst-case robustness than the vanilla approach. This is again due to the choice of groups.
Future work should investigate how to extend group robustness to worst-case group robustness
of shift explanations so that a bad choice of groups does not negatively impact robustness.
Explanations which look plausible but are actually wrong can be harmful. This creates the illusion
of understanding, and this can have serious downstream implications especially if policies are
constructed from a shift explanation. With this work we hope to uncover some properties that a
good shift explanation should have and design metrics and learning procedures based on group
robustness to rectify these issues.
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