

000 TOWARDS FAITHFUL REASONING IN REMOTE SENS- 001 ING: A PERCEPTUALLY-GROUNDED GEOSPATIAL 002 CHAIN-OF-THOUGHT FOR VISION-LANGUAGE MOD- 003 ELS 004

005 **Anonymous authors**
 006

007 Paper under double-blind review
 008

012 ABSTRACT 013

014 Vision-Language Models (VLMs) in remote sensing often fail at complex ana-
 015 lytical tasks, a limitation stemming from their end-to-end training paradigm that
 016 bypasses crucial reasoning steps and leads to unverifiable outputs. To address this
 017 limitation, we introduce the Perceptually-Grounded Geospatial Chain-of-Thought
 018 (Geo-CoT), a framework that models remote sensing analysis as a verifiable,
 019 multi-step process. We instill this analytical process through a two-stage align-
 020 ment strategy, leveraging Geo-CoT380k, the first large-scale dataset of structured
 021 Geo-CoT rationales. This strategy first employs supervised fine-tuning (SFT) to
 022 instill the foundational cognitive architecture, then leverages Group Reward Pol-
 023 icy Optimization (GRPO) to refine the model’s reasoning policy towards factual
 024 correctness. The resulting model, RSThinker, outputs both a final answer and
 025 its justifying, verifiable analytical trace. This capability yields dominant perfor-
 026 mance, significantly outperforming state-of-the-art models across a comprehen-
 027 sive range of tasks. The public release of our Geo-CoT380k dataset and RS-
 028 Thinker model upon publication serves as a concrete pathway from opaque per-
 029 ception towards structured, verifiable reasoning for Earth Observation.
 030

031 1 INTRODUCTION 032

033 Vision-Language Models (VLMs) are rapidly redefining the analytical landscape for remote sensing,
 034 offering unprecedented capabilities for interpreting Earth Observation data (Kuckreja et al., 2024;
 035 Zhang et al., 2024; Soni et al., 2025; Pang et al., 2025). These capabilities are demonstrated across a
 036 diverse array of downstream tasks, from complex visual question answering (VQA) to fine-grained
 037 object counting. Yet, the prevailing paradigm of these models involves learning an implicit, end-
 038 to-end mapping directly from pixels to a final output. Such an implicit mapping, by collapsing
 039 the entire reasoning process into a monolithic transformation, lacks procedural transparency and is
 040 consequently prone to generating plausible yet factually ungrounded hallucinations. The risk of such
 041 hallucinations presents a formidable barrier in high-stakes remote sensing applications, like disaster
 042 response (Misra et al., 2025; Lenton et al., 2024) or environmental monitoring (Wang et al., 2025;
 043 Silsbe et al., 2025), where the verifiability of a result is paramount. In these critical applications, the
 044 ultimate utility of a model hinges not merely on the correctness of its output, but on the verifiability
 045 of the process that produced it.

046 This demand for a verifiable process motivates a paradigm shift from passive recognition to goal-
 047 directed active perception, a potential unlocked by the Multimodal Chain-of-Thought (MM-CoT)
 048 paradigm (Mitra et al., 2024; Shao et al., 2024; Gao et al., 2025). The promise of MM-CoT lies in its
 049 capacity to formulate and externalize an analytical plan, thereby transforming a model from a black-
 050 box recognizer into a methodical analyst. The necessity for such an explicit plan is uniquely acute
 051 in Earth Observation, where analytical challenges are multifaceted and deeply intertwined. This
 052 complexity directly translates into the challenge of navigating the sheer scale of regional-scale im-
 053 agery with systematic search strategies, a requirement exemplified by tasks such as object counting.
 These strategies must in turn be guided by a forensic discrimination of subtle textural cues to resolve
 semantic ambiguities. This entire analytical process is often further constrained by the prevalence

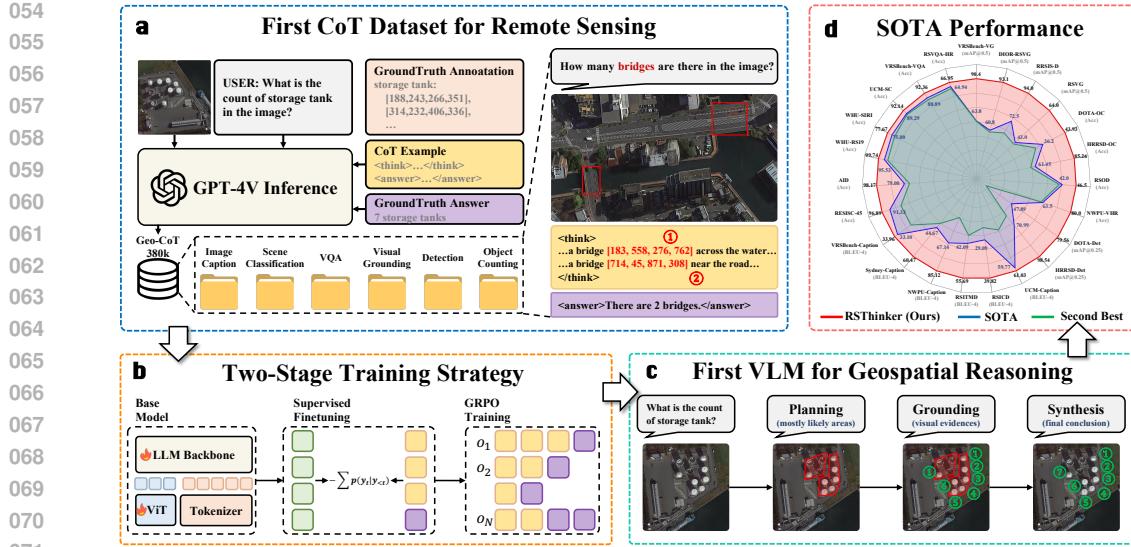


Figure 1: **An overview of the RSThinker framework.** Our novel Geo-CoT380k dataset (a) enables our two-stage alignment strategy (b) to instill a verifiable reasoning process (c), yielding state-of-the-art performance across a comprehensive suite of benchmarks (d).

of topologically-grounded queries, demanding computational paths such as tracing a river network to locate every crossing bridge. These expert strategies, when externalized into a structured and verifiable sequence, constitute what we introduce as the Geospatial Chain-of-Thought (Geo-CoT).

Despite the clear need for such a Geo-CoT, prevailing approaches often frame reasoning as a process of semantic interpretation rather than visual investigation (Li et al., 2025a; Zhu et al., 2025). This interpretation relies on the model’s parametric world knowledge for high-level deductions, such as identifying a stadium as a suitable evacuation point post-earthquake, rather than grounding its claims in immediate visual evidence. Even when contemporary models do attempt to incorporate visual evidence (Yao et al., 2025; Hu et al., 2025), it is typically presented as non-localizable text, mentioned without a verifiable link to a specific pixel region, thus leaving its claims unsubstantiated against hallucinated artifacts. This absence of a verifiable link stems from a more fundamental limitation: the lack of an intent-driven process for active perception. Instead of formulating and executing a decomposed analytical plan, these models perform a holistic, single-pass inference over the entire scene. This reactive inference is incapable of the systematic evidence gathering required for faithful reasoning, leaving a critical gap between the conceptual promise of MM-CoT and its practical realization in Earth Observation.

To bridge this critical gap in Earth Observation, we introduce a novel framework that instantiates the Perceptually-Grounded Geospatial Chain-of-Thought (Geo-CoT) within Vision-Language Models. Our framework materializes a rigorous cognitive architecture whose foundational principle is strict perceptual grounding, where abstract claims are replaced by assertions explicitly linked to specific spatial references. The operational flow of this grounding process follows a clear protocol of task planning, iterative evidence gathering, and final synthesis, enabling the VLMs to perform methodical visual interrogation rather than a reactive, holistic inference. We instill this reasoning protocol by first constructing Geo-CoT380k, a large-scale dataset populated via a scalable pipeline that retrofits verifiable rationales onto ground-truth data, and then leveraging this dataset in a two-stage alignment strategy. This strategy, a paradigm informed by recent large-scale LLM development (DeepSeek-AI, 2025; Guo et al., 2025), effectively decouples the architectural challenge of instilling a cognitive structure from the policy challenge of refining its factual correctness. Our first stage, supervised fine-tuning (SFT), establishes the foundational cognitive structure, followed by a subsequent stage leveraging Group Relative Policy Optimization (GRPO) to steer the model’s generative process towards high-fidelity reasoning chains. Our primary contributions can be summarized as follows:

- We define and formalize the Perceptually-Grounded Geo-CoT, a reasoning paradigm for remote sensing that mandates a verifiable link between each analytical step and its corresponding visual evidence.

- 108 • We construct the first large-scale supervised fine-tuning (SFT) dataset for remote sensing
109 chain-of-thought, Geo-CoT380k, explicitly designed to instill the cognitive architecture of
110 task decomposition, iterative evidence grounding, and final synthesis.
- 111 • We present RSThinker, a VLM embodying our framework, demonstrating that a two-stage
112 alignment strategy of SFT as a prerequisite for reinforcement learning (GRPO) is essen-
113 tial for faithfully eliciting this capability and setting a new state-of-the-art on a suite of
114 canonical remote sensing tasks, including visual question answering and object counting.

116 2 RELATED WORK

118 2.1 VISION-LANGUAGE MODELS IN REMOTE SENSING

120 The application of Vision-Language Models (VLMs) to remote sensing has recently catalyzed a
121 surge of innovation, fundamentally altering interactions with Earth Observation data. Pioneering
122 works such as GeoChat (Kuckreja et al., 2024) and EarthGPT (Zhang et al., 2024) established the
123 viability of equipping VLMs with the capacity for geospatial dialogue and handling a wide spec-
124 trum of queries. Subsequent models like EarthDial (Soni et al., 2025) and VHM (Pang et al., 2025)
125 further refined this interactive paradigm through enhanced conversational fluency and novel archi-
126 tectural designs, achieving state-of-the-art performance on canonical benchmarks. Yet, a common
127 architectural paradigm unites these powerful models: they are fundamentally optimized to map vi-
128 sual inputs to a final textual output. This end-to-end optimization, while successful, inherently treats
129 the intermediate reasoning process as a latent and inaccessible variable. Consequently, a critical gap
130 persists: the lack of a VLM capable of not only producing a correct answer, but also externalizing
131 the verifiable, step-by-step analytical process that justifies it. Our work is explicitly designed to
132 bridge this gap.

133 2.2 CHAIN-OF-THOUGHT AND REASONING IN VISION-LANGUAGE MODELS

135 The pursuit of a verifiable analytical process finds its intellectual origins in Chain-of-Thought (CoT)
136 reasoning, a paradigm first established to elicit step-by-step thinking in language models. This
137 paradigm has recently evolved into Grounded CoT within the general computer vision commu-
138 nity, where abstract reasoning is explicitly anchored to visual evidence. Pioneering frameworks
139 such as Visual CoT (Shao et al., 2024), VoCoT (Li et al., 2025b) and Argus (Man et al., 2025)
140 have demonstrated the efficacy of interleaving bounding boxes within reasoning traces, while ap-
141 proaches like V* (Wu & Xie, 2024) and CMMCoT (Zhang et al., 2025) have explored guided visual
142 search and memory augmentation to handle complex contexts. This methodological progression
143 has demonstrated remarkable success in domains predicated on the presence of salient, well-defined
144 entities. Existing frameworks thrive by reasoning over holistic objects, such as vehicles in traffic
145 scenes (Wang et al., 2024; Mandalika et al., 2025) or instruments in medical images (Liu et al.,
146 2024a; Jiang et al., 2025). However, this reliance on discrete, salient objects reveals a fundamental
147 perceptual mismatch with the nature of Earth Observation. Remote sensing data is typically char-
148 acterized by vast, non-uniform scenes and high-density, tiny objects that lack the semantic salience
149 found in natural or medical photography. Consequently, generalist grounded models often falter
150 in this domain, due to the lack of a domain-specific substrate, comprising large-scale specialized
151 datasets and adapted cognitive architectures, necessary to render this concept operational and robust
152 for Earth Observation.

153 2.3 REASONING IN REMOTE SENSING VISION-LANGUAGE MODELS

154 The pioneering efforts to apply reasoning chains within geospatial contexts have recently begun to
155 emerge. In the broader geographic domain, frameworks like GeoChain (Yerramilli et al., 2025) and
156 GAEA (Campos et al., 2025) have effectively utilized CoT for geolocation and landmark analysis.
157 However, these approaches primarily address semantic reasoning in ground-level imagery, relying
158 on cultural or architectural cues for knowledge retrieval. In the specific domain of overhead Earth
159 Observation, works like SegEarth-R1 (Li et al., 2025a) and RemoteReasoner (Yao et al., 2025) have
160 demonstrated the potential of generating step-by-step rationales to guide complex downstream tasks,
161 while others such as SkySense-O (Zhu et al., 2025) have advanced the quality of these textual ra-
162 tionales. Even agentic frameworks like Ringmo-Agent (Hu et al., 2025) have emerged, capable of

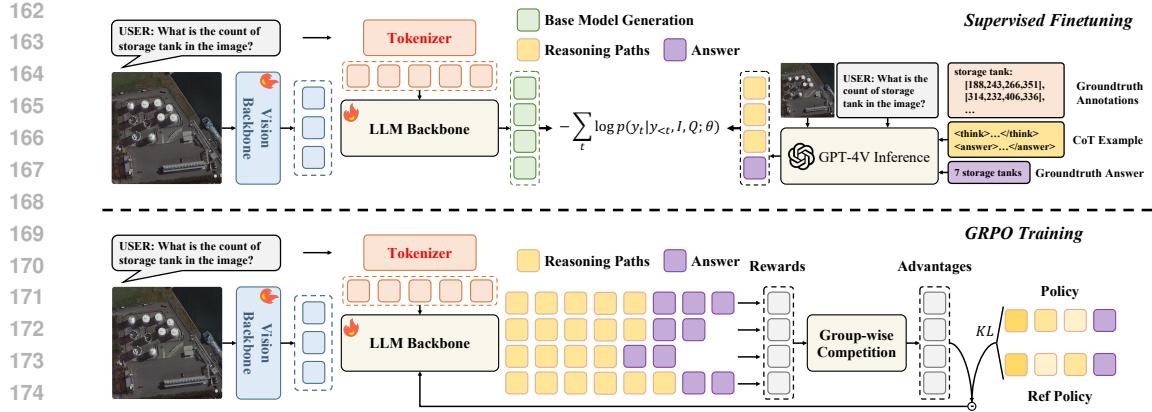


Figure 2: **The two-stage alignment process.** Our training strategy first instills a foundational cognitive architecture via supervised fine-tuning (SFT) and then refines this architecture’s faithfulness via outcome-based reinforcement learning (GRPO).

formulating high-level plans. However, a close examination reveals that these foundational frameworks share critical limitations. First, their reasoning steps often remain as abstract textual descriptions, lacking the direct, verifiable link to spatial areas that constitutes true perceptual grounding—a challenge uniquely acute in top-down views characterized by dense objects and scale variations. Second, the reasoning process itself, while sequential, typically lacks a methodical cognitive architecture. These explorations thus underscore a clear and unmet need for a framework that not only prompts for reasoning but fundamentally structures it around the principles of perceptual grounding and a systematic cognitive plan. Our work is the first to propose such a framework.

3 METHODOLOGY

To realize the Perceptually-Grounded Geospatial Chain-of-Thought (Geo-CoT) framework, we develop RSThinker, a foundational Vision-Language Model trained via a two-stage alignment process. This process is designed to instill the core cognitive architecture of Geo-CoT and subsequently refine its faithfulness. The initial stage of this process instills the foundational cognitive architecture of Geo-CoT, leveraging a large-scale supervised fine-tuning (SFT) corpus we constructed to explicitly embody the principles of task decomposition and iterative evidence grounding. The second stage subsequently employs reinforcement learning to refine the model’s reasoning, guided by a domain-specific reward function we designed to optimize for the faithfulness of the grounded evidence. The resulting model, which we name RSThinker and illustrate in Figure 2, is thus a specialist VLM that reasons faithfully and remains verifiably grounded in visual evidence.

3.1 BASE VISION-LANGUAGE MODEL

We initialize RSThinker from the pre-training checkpoint of GLM-4.1V-9B-Base (Team et al., 2025b), a state-of-the-art VLM. Its architecture employs a Vision Transformer, Aimv2-Huge (Fini et al., 2025), which is particularly suited for remote sensing due to its ability to handle variable image resolutions and aspect ratios. This crucial capability is realized through a dynamic positional encoding scheme that adapts its pre-trained position table, P_{orig} . Specifically, the scheme first normalizes each patch coordinate $g = (w, h)$ to a continuous grid g_{norm} spanning $[-1, 1]$, and then samples from P_{orig} via bicubic interpolation to compute the adapted encoding $P_{adapted}$:

$$g_{norm} = (w_{norm}, h_{norm}) = 2 \cdot \left(\frac{w + 0.5}{W_p}, \frac{h + 0.5}{H_p} \right) - 1, \quad (1)$$

$$P_{adapted}(g) = \mathcal{I}_{bicubic}(P_{orig}, g_{norm}),$$

This robust visual encoding mechanism, complemented by a 3D-RoPE language decoder for enhanced spatial awareness, provides a powerful and flexible foundation upon which we build our domain-specific alignment.

216 Table 1: The overview of the dataset Geo-CoT380k.
217

Tasks	Datasets	Samples
VQA	VRSBench-train-VQA	85,813
Image Captioning	VRSBench-train-cap	20,264
	FIT-RS-cap	65,197
Scene Classification	NWPU-RESISC45-train	31,500
	AID-train	10,000
Visual Grounding	DIOR-RSVG-train	34,744
	VRSBench-train-VG	35,967
Object Counting	DOTAv2-train	25,769
	HRRSD-train	24,784
Object Detection	DOTAv2-train	25,769
	HRRSD-train	24,784

218 Table 2: Additional Dataset for RL.
219

Tasks	Datasets	Samples
VQA	RSVQA-HR-train	67,228
Image Captioning	NWPU-Captions-train	28,350
	RSICD-train	10,921
RSTM-train		4,291

220 Table 3: Task-specific reward functions.
221

Task	Reward Design Details
VQA & Scene Classification	Reward = 1.0, 0.6, 0.0 for correct, partially correct, others
Visual Grounding	Reward = IoU
Object Counting	Reward = $1.0 - \alpha \times \frac{\text{MAE}}{\max(\text{Ans} , \text{GT})}$
Object Detection	Reward = mAP@0.5
Image Captioning	Reward = $\sum_{m \in M} w_m \cdot m$

$$m \in \{\text{BLEU-4, METEOR, CIDEr, ROUGE-L}\}$$

222 3.2 STAGE I: INSTILLING COGNITIVE ARCHITECTURE VIA SUPERVISED FINE-TUNING
223

224 The efficacy of our SFT stage is contingent upon a large-scale corpus of structured rationales that
225 embody the Geo-CoT principles. To this end, we developed a scalable annotation pipeline that
226 leverages a powerful, general-purpose VLM, GPT-4V (OpenAI, 2023), to generate these rationales.
227 Our pipeline empirically promotes faithfulness through strict conditioning: rather than tasking the
228 VLM with open-ended reasoning, we provide it with verified bounding boxes, image captions, and
229 chain-of-thought exemplars (detailed in Appendix A.7), minimizing the risk of hallucinated reasoning.
230 This methodology allows us to produce a vast, high-fidelity SFT-CoT dataset, Geo-CoT380k,
231 comprising 384,591 structured rationales sourced from diverse, publicly-available remote sensing
232 benchmarks (detailed in Table 1), including large-scale imagery from sources like DOTAv2 that was
233 tiled into 800×800 patches.

234 With this dataset established, the SFT stage compels the VLM to internalize the entire method-
235 ical workflow encoded in each structured output o_i . This workflow, represented as $\langle \text{think} \rangle \dots$
236 $\langle / \text{think} \rangle \langle \text{answer} \rangle \dots \langle / \text{answer} \rangle$, is learned through a standard auto-regressive objective that maxi-
237 mizes the log-likelihood of the target rationale:

$$238 \mathcal{L}_{\text{SFT}}(\theta) = - \sum_{t=1}^{|o_i|} \log p(o_{i,t} | o_{i,<t}, I, Q; \theta), \quad (2)$$

239 By optimizing this loss function, we are not simply fine-tuning for a task; we are fundamentally
240 reshaping the model’s internal reasoning process to explicitly model the decomposition, grounding,
241 and synthesis steps of the Geo-CoT cognitive architecture.

242 3.3 STAGE II: REFINING FAITHFULNESS VIA GROUP RELATIVE POLICY OPTIMIZATION
243

244 While the SFT stage successfully instills the structural template of Geo-CoT, its token-level maxi-
245 mization objective can still assign high probability to rationales that are locally plausible but
246 contain unfaithful links between evidence and claims. To address these sequence-level deficiencies,
247 our second alignment stage employs Group Relative Policy Optimization (GRPO), an outcome-
248 based reinforcement learning paradigm wherein the reward signal is derived solely from the final
249 output of the reasoning trace. For each task, this reward function directly embodies its canonical
250 evaluation metric (Table 3), ensuring our policy optimization is precisely aligned with established
251 performance protocols.

252 The GRPO training process directly optimizes the generative policy π_θ using on-policy sampling,
253 drawing inputs from a designated preference tuning corpus comprising the original, rationale-free
254 instances from Geo-CoT380k, augmented with additional datasets detailed in Table 2. Given an
255 input (I, Q) drawn from the dataset \mathcal{D} , we first sample a group of k outputs, $\{o_1, o_2, \dots, o_k\}$. The
256 raw reward scores for each, $\mathcal{R} = \{\mathcal{R}_1, \mathcal{R}_2, \dots, \mathcal{R}_k\}$, are then normalized to yield a low-variance
257 estimate of the group-relative advantage, \hat{A}_i . The policy is then updated by optimizing the following

270 Table 4: Comparison of RSThinker with existing generic and RS VLMs on Visual Grounding task.
271

Method	VRSBench-VG			DIOR-RSVG			RRSIS-D (ZS)			RSVG (ZS)		
	@0.5	@0.75	mIoU	@0.5	@0.75	mIoU	@0.5	@0.75	mIoU	@0.5	@0.75	mIoU
<i>Close-source Commercial Vision-Language Models</i>												
Claude-sonnet-4	11.1	2.4	16.66	17.6	1.2	25.33	20.5	1.5	29.91	24.0	7.0	24.99
Gemini-2.0-flash	22.9	6.3	28.59	20.8	3.3	27.45	29.5	5.0	36.13	19.5	4.5	24.07
ChatGPT-5	14.4	2.3	22.71	26.1	3.3	28.37	28.0	5.0	29.46	18.5	3.5	20.59
<i>Open-source Vision-Language Models</i>												
MiniGPT-v2	32.1	16.3	33.96	29.4	10.2	29.43	38.5	16.0	40.13	12.0	3.0	15.65
Qwen2.5-VL	45.2	20.6	42.45	36.3	15.9	34.34	0.5	0.0	5.17	1.0	0.0	7.24
<i>Open-source Reasoning Vision-Language Models</i>												
GLM-4.1V-Thinking	63.8	47.0	60.69	59.6	43.7	57.41	63.5	47.5	61.84	43.0	30.5	42.27
<i>Open-source Remote Sensing Vision-Language Models</i>												
GeoChat	56.3	24.6	53.50	31.4	11.0	34.99	10.0	0.5	20.35	5.5	0.5	12.55
VHM	33.9	10.0	34.91	55.9	35.5	49.90	64.0	37.5	55.20	2.5	0.0	5.80
SkySenseGPT	63.5	26.0	54.60	60.8	26.5	53.18	69.0	32.5	59.87	39.5	17.5	38.54
EarthDial	14.4	7.8	13.04	46.1	30.2	39.46	72.5	50.0	64.08	42.0	24.0	38.49
RSThinker	90.4	77.2	80.79	93.1	90.2	89.02	94.0	90.5	89.59	64.0	54.5	59.74

285 Table 5: Comparison of RSThinker with existing
286 generic and RS VLMs on Object Counting task.
287

Method	DOTAv2-val		HRRSD		RSOD (ZS)		NWPU-VHR (ZS)	
	Acc \uparrow	MAE \downarrow						
<i>Close-source Commercial Vision-Language Models</i>								
Claude-sonnet-4	25.17	10.232	50.11	2.231	25.0	4.115	51.5	2.205
Gemini-2.0-flash	29.36	15.057	54.65	1.921	39.0	4.095	63.5	1.835
ChatGPT-5	36.20	7.499	58.50	0.787	40.0	1.430	58.0	1.310
<i>Open-source Vision-Language Models</i>								
MiniGPT-v2	10.82	57.082	19.50	36.059	19.5	9.630	21.0	4.675
Qwen2.5-VL	33.77	9.733	57.82	0.846	42.0	1.370	58.0	1.170
<i>Open-source Reasoning Vision-Language Models</i>								
Kim-VL-Thinking	30.68	11.967	46.26	1.612	15.5	4.050	53.0	2.575
GLM-4.1V-Thinking	29.80	8.072	58.96	0.903	28.5	3.220	62.5	1.194
<i>Open-source Remote Sensing Vision-Language Models</i>								
VHM	32.67	9.266	46.71	1.063	16.0	1.791	48.5	1.289
SkySenseGPT	33.11	7.199	58.73	1.070	51.5	3.079	49.5	1.835
EarthDial	32.23	8.422	61.45	0.871	41.0	1.642	52.5	1.323
RSThinker	43.93	2.728	85.26	0.242	46.5	1.130	80.0	0.465

297 clipped surrogate objective:

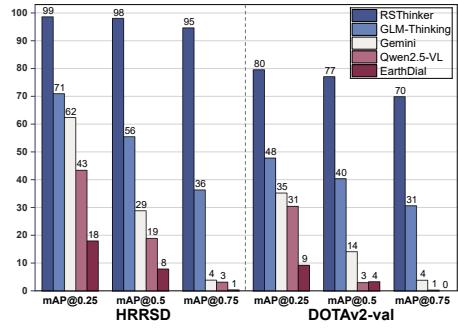
$$\begin{aligned}
 \mathcal{L}_{\text{GRPO}}(\theta) &= -\mathbb{E}_{[(I, Q) \sim \mathcal{D}, \{o_i\}_{i=1}^k \sim \pi_{\theta_{\text{old}}}(\cdot | I, Q)]} \\
 &\sum_{i=1}^k \sum_{t=1}^{|o_i|} \min \left(r_{t,i}(\theta) \hat{A}_i, \text{clip}(r_{t,i}(\theta), 1-\epsilon, 1+\epsilon) \hat{A}_i \right) - \beta D_{\text{KL}}(\pi_{\theta} \| \pi_{\text{ref}}), \quad (3) \\
 r_{t,i}(\theta) &= \frac{\pi_{\theta}(o_{i,t} | q, o_{i,<t})}{\pi_{\theta_{\text{old}}}(o_{i,t} | q, o_{i,<t})}, \hat{A}_i = \frac{\mathcal{R}_i - \text{mean}(\mathcal{R})}{\text{std}(\mathcal{R})}
 \end{aligned}$$

308 where the clip function constrains this ratio within the interval $[1-\epsilon, 1+\epsilon]$, thereby disincentivizing
309 overly aggressive policy updates. The final term is a KL-divergence penalty that regularizes the
310 policy π_{θ} , preventing it from deviating excessively from the reference policy π_{ref} (initialized from
311 the SFT checkpoint). This optimization process systematically shifts the probability mass of the
312 policy distribution, moving it away from regions that produce low-reward outcomes and towards
313 those that generate high-reward, verifiably correct conclusions. This final alignment step imbues
314 the model’s internal reasoning process with a functional alignment to the ultimate goal of achieving
315 factual correctness.

316

4 EXPERIMENT

317 We present a comprehensive experimental evaluation designed to validate our core contributions.
318 This evaluation first establishes the state-of-the-art performance of our model, RSThinker, across a
319 diverse suite of canonical remote sensing tasks. Beyond this aggregate performance, we conduct
320 a series of carefully designed ablation studies to isolate the causal impact of each component of
321 our framework. Finally, we provide a qualitative analysis to visually demonstrate the nature and
322 faithfulness of the Perceptually-Grounded Geo-CoT that our framework uniquely produces.

285 Figure 3: Comparison of RSThinker with
286 SOTA VLMs on Object Detection task.
287

324 **Table 6: Comparison of RSThinker with generic and RS VLMs on Classification and VQA tasks.**

Method	Scene Classification					VRSBench-VQA						RSVQA-HR		
	RESISC45	AID	RS19 (ZS)	SIRI (ZS)	UCM (ZS)	Category	Existence	Position	Quantity	Scene	Color	Image	Presence	Comp
<i>Close-source Commercial Vision-Language Models</i>														
Claude-sonnet-4	58.44	60.33	76.32	64.33	67.86	43.28	52.78	30.17	66.67	64.79	63.29	91.67	46.95	64.94
Gemini 2.0-flash	74.89	76.00	90.00	72.00	85.95	44.03	86.11	43.97	46.00	60.56	56.96	95.83	56.94	42.96
ChatGPT-5	82.22	75.50	95.53	75.00	88.57	39.55	88.89	42.24	47.33	70.42	59.49	87.50	62.94	68.93
<i>Open-source Vision-Language Models</i>														
MiniGPT-v2	32.67	27.17	30.79	26.67	32.86	25.37	56.25	20.69	44.00	45.07	36.71	33.33	48.95	52.95
Qwen2.5-VL	68.89	71.67	86.05	67.33	78.33	37.31	75.69	37.93	44.00	67.61	63.29	91.67	57.92	56.94
<i>Open-source Reasoning Vision-Language Models</i>														
Kim-VL-Thinking	72.22	70.50	88.68	69.00	77.62	47.01	87.50	46.55	74.67	71.83	65.82	90.23	63.94	77.91
GLM-4.1V-Thinking	70.09	69.67	86.84	60.33	82.86	42.54	86.11	43.10	54.67	69.01	62.03	87.50	45.95	65.93
<i>Open-source Remote Sensing Vision-Language Models</i>														
VHM	91.33	79.00	91.84	64.33	89.29	50.75	86.81	36.21	42.67	53.52	55.70	54.17	61.94	76.92
SkySenseGPT	83.33	75.50	93.16	55.33	85.00	57.46	84.03	44.83	38.00	53.52	16.46	45.83	47.95	78.93
EarthDial	76.67	67.33	88.76	73.42	80.71	51.49	47.22	36.21	41.33	36.62	11.39	50.00	64.94	79.92
RSThinker	96.89	98.17	99.74	77.67	92.14	82.84	92.36	68.97	56.67	73.24	64.33	92.87	66.95	78.98

324

4.1 EXPERIMENTAL SETUP

337 **Tasks and Benchmarks.** We validate the performance of RSThinker across a comprehensive suite
 338 of canonical remote sensing tasks. This evaluation spans the full spectrum from fine-grained, object-
 339 level analysis (object counting, detection, and grounding) to holistic scene interpretation and com-
 340 plex reasoning (classification, captioning, and VQA), with a detailed breakdown of all benchmarks
 341 provided in Appendix A.4.1.

342 **Baseline Models.** To contextualize RSThinker’s performance, we conduct a rigorous comparison
 343 against a wide range of baseline models. These models are organized along two primary axes:
 344 their domain specialization (general-purpose vs. remote sensing) and their architectural support
 345 for explicit reasoning. This comparative analysis therefore includes leading proprietary systems,
 346 open-source generalist and domain-specific VLMs, and the latest reasoning-centric frameworks, a
 347 complete list of which is detailed in Appendix A.4.2.

348 **Implementation Details.** Our implementation of RSThinker is initialized from the GLM-4.1V-
 349 Base checkpoint, and its performance across all experiments is assessed using standard, community-
 350 accepted evaluation metrics. These metrics include mean Average Precision (mAP) and Intersection
 351 over Union (IoU) for object detection, **Accuracy (Acc)** and **Intersection over Union (IoU) for visual**
 352 **grounding**, Mean Absolute Error (MAE) for counting, Accuracy for classification and VQA, and
 353 BLEU-4, METEOR, and CIDEr for captioning. Further details regarding the full training protocol
 354 and hyperparameters are deferred to Appendix A.4.3.

355

4.2 MAIN RESULTS AND ANALYSIS

356 We present a comprehensive evaluation of RSThinker against a suite of state-of-the-art models. Our
 357 analysis is structured around distinct categories of remote sensing capabilities, moving from fine-
 358 grained perception to holistic scene understanding and reasoning.

361

4.2.1 FINE-GRAINED PERCEPTION: GROUNDING, DETECTION, AND COUNTING

363 The efficacy of the Geo-CoT framework is most directly validated in fine-grained perception, where
 364 the veracity of an output is inextricably linked to the model’s ability to localize spatial evidence.
 365 This principle is clearly demonstrated in Visual Grounding (Table 4), a task demanding an explicit
 366 link between text and pixels. RSThinker establishes a substantial performance margin in this task,
 367 an advantage that stems from a fundamental architectural divergence. Baseline models typically rely
 368 on end-to-end architectures where grounding remains a latent, unconstrained variable within the net-
 369 work. In contrast, our two-stage alignment mandates that the model externalize and report specific,
 370 falsifiable spatial references, making a commitment to tangible evidence a required component of
 371 the output format.

372 This foundational capability for precise localization naturally extends to the more complex task
 373 of Object Detection (Figure 3). The Geo-CoT framework transforms detection from a single-pass
 374 recognition into a methodical, sequential search. Its Planning–Grounding–Synthesize structure com-
 375 pels a systematic scan of the imagery, a critical advantage that enables the exhaustive identification
 376 of objects in dense scenes where holistic approaches can fail. The benefits of this structured ana-
 377 lytical process culminate in Object Counting (Table 5), which sees a significant reduction in Mean
 378 Absolute Error. This reduction in error is a direct consequence of the Geo-CoT architecture provid-

378 Table 7: Comparison of RSThinker with existing generic and RS VLMs on Image Captioning task.
379

380 Method	381 RSITMD			382 NWPU-Captions			383 RSICD			384 VRSBench-Cap		
	385 B-4	386 MT	387 Cr	388 B-4	389 MT	390 Cr	391 B-4	392 MT	393 Cr	394 B-4	395 MT	396 Cr
<i>388 Close-source Commercial Vision-Language Models</i>												
Claude-sonnet-4	20.14	17.15	19.31	28.32	21.98	32.46	11.58	13.90	24.57	14.62	22.36	73.49
Gemini-2.0-flash	15.73	9.27	17.11	20.55	11.42	22.58	10.85	8.71	21.53	14.19	22.30	86.33
ChatGPT-5	27.27	21.10	29.48	39.62	25.69	48.52	16.83	16.73	34.39	18.06	25.11	88.93
<i>388 Open-source Vision-Language Models</i>												
MiniGPT-v2	25.45	16.83	25.89	37.75	19.70	35.73	15.40	12.36	26.63	26.61	18.36	68.94
Qwen2.5-VL	27.92	17.24	24.90	38.89	21.40	42.11	17.80	13.72	32.19	29.21	25.01	91.84
<i>388 Open-source Reasoning Vision-Language Models</i>												
Kimi-VL-Thinking	24.82	16.47	22.02	34.84	20.08	37.14	15.60	13.57	30.00	26.07	24.34	83.86
GLM-4.1V-Thinking	20.57	19.55	24.98	29.59	23.33	40.35	12.57	15.86	30.47	13.52	22.57	79.71
<i>388 Open-source Remote Sensing Vision-Language Models</i>												
VHM	38.93	21.99	40.29	50.69	25.31	54.92	25.66	17.63	49.80	35.06	22.29	99.82
SkySenseGPT	37.76	19.06	34.98	23.33	14.02	40.48	42.47	24.95	52.58	33.10	22.50	102.8
EarthDial	42.09	23.92	42.56	67.14	46.17	123.6	29.09	25.20	85.82	21.49	15.88	90.51
RSThinker	55.69	32.29	73.55	85.12	58.88	94.81	39.82	27.17	99.83	33.96	21.19	107.5

393 *B-4 / MT / Cr: BLEU-4 / METEOR / CIDEr*

394 ing a natural defense against common failure modes. By requiring the model to first ground each
395 object as a distinct entry in its reasoning trace before synthesizing a final tally, the framework inherently
396 mitigates duplication and promotes a more complete search. The consistent, substantial gains
397 across these three related tasks provide strong empirical evidence that the Geo-CoT framework is a
398 key enabler for robust and faithful fine-grained perception.

400 4.2.2 HOLISTIC SCENE UNDERSTANDING: CLASSIFICATION AND CAPTIONING

401 We then assess the model’s ability to interpret the broader context of a scene, addressing whether a
402 methodical, step-by-step reasoning process compromises holistic comprehension. The performance
403 in Scene Classification (Table 6) demonstrates that, on the contrary, the fine-grained analysis fostered
404 by Geo-CoT provides a more robust foundation for high-level understanding. This consistent
405 superiority suggests the model’s capacity for systematic evidence gathering translates to a more
406 veridical holistic feature representation. By being trained to ground individual objects and their
407 attributes, the model bases its final classification on a rich, verifiable set of low-level visual facts,
408 rather than relying on potentially spurious correlations in global scene statistics.

409 This capacity for detailed, fact-based synthesis is further illuminated in Image Captioning (Table
410 7), where strong performance stems from the Geo-CoT architecture transforming captioning from a
411 monolithic image-to-text mapping into a structured process. The model first grounds key entities and
412 their spatial relationships within its reasoning trace, before synthesizing these grounded elements
413 into a coherent narrative. This mechanism prevents the generation of generic, prototypical captions,
414 instead promoting descriptions rich in detail and verifiably true to the visual evidence. The collective
415 evidence from both tasks indicates that the structured reasoning of Geo-CoT does not hinder, but
416 rather enhances, the model’s ability to achieve a profound and accurate understanding of the entire
417 scene.

418 4.2.3 COMPLEX GEOSPATIAL REASONING: VISUAL QUESTION ANSWERING

419 Finally, we evaluate RSThinker on Visual Question Answering (VQA), where the fine-grained per-
420 ception and holistic understanding capabilities cultivated previously must converge to resolve com-
421 plex queries. The architectural advantage of Geo-CoT becomes most salient on queries that necessi-
422 tate foundational fact-checking. This is demonstrated on the Existence category of VRSBench-VQA
423 (Table 6), where the model’s reliability in making a verifiable claim is a direct product of its struc-
424 tured, evidence-grounded reasoning process.

425 This foundational reliability in evidence verification underpins the model’s capacity to execute more
426 complex, multi-step procedures. For comparative queries such as “*Are there more cars near the*
427 *stadium than near the river?*”, the Planning–Grounding–Synthesize framework provides a natural
428 scaffold, compelling the model to first ground each component of the query before synthesizing
429 a final comparative judgment. This consistent performance across the full spectrum of reasoning
430 types—from simple existence checks to complex compositional analysis—reveals that the Geo-
431 CoT framework functions not as a narrow, task-specific solution, but as a general-purpose problem-

Table 8: Ablation study on the impact of CoT-based SFT and GRPO across multiple tasks.

Models	VG (mIoU)	OC (MAE \downarrow)	Det (mAP@0.5)	IC (BLEU-4)	SC (Acc)	VQA (Acc)
Base (GLM-4.1V-9B-Base)	56.26	10.81	3.56	10.99	69.78	8.16
+ SFT (w/o CoT)	81.80	3.272	49.36	31.14	93.33	63.57
\triangle	(+25.54)	(-7.54)	(+45.80)	(+20.15)	(+23.55)	(+55.41)
+ SFT (w/ CoT)	87.70	2.932	74.03	33.31	96.67	74.20
\triangle	(+31.44)	(-7.88)	(+70.47)	(+22.32)	(+26.89)	(+66.04)
+ SFT (w/o CoT) + GRPO	86.47	4.510	56.77	30.87	97.56	74.09
\triangle	(+30.21)	(-6.30)	(+53.21)	(+19.88)	(+27.78)	(+65.93)
+ SFT (w/ CoT) + GRPO	89.02	2.728	77.06	33.96	96.89	77.24
\triangle	(+32.76)	(-8.08)	(+73.50)	(+22.94)	(+27.11)	(+69.08)

What is the count of airplanes in the image?

An aerial photograph of an airport. In the foreground, a large white terminal building with a curved roof is visible. Several airplanes are parked on the tarmac, each marked with a red square. There are approximately 10-12 red squares in total, indicating the presence of multiple aircraft. The tarmac is marked with yellow lines and numbers, and a few people are visible near the terminal entrance.

Figure 5: **Qualitative example of RSThinker's Geo-CoT:** a methodical Planning-Grounding-Synthesis sequence culminating in a justified `<answer>`.

solving architecture. Ultimately, the VQA results confirm that this architecture seamlessly integrates precise, evidence-based localization with high-level scene interpretation, establishing a new benchmark for robust and complex geospatial reasoning.

4.3 ABLATION STUDY

Our comprehensive ablation studies (Table 8) reveal a clear hierarchy of contributions from each framework component. While direct fine-tuning on task-specific data (SFT w/o CoT) yields a significant performance gain over the base model, the introduction of our structured rationales (SFT w/ CoT) unlocks a fundamentally higher performance tier. This substantial performance delta between the two SFT variants stems directly from supervising the model on the computational process itself, rather than merely its final outputs.

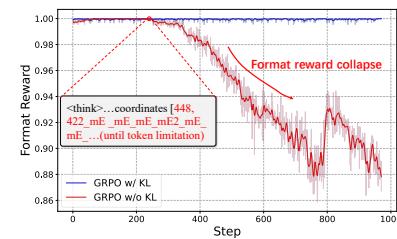
The full SFT (w/ CoT) + GRPO model consistently excels, particularly on complex, reasoning-intensive tasks, while applying GRPO without the prerequisite Geo-CoT rationales (SFT w/o CoT + GRPO) proves insufficient to instill the necessary cognitive scaffold. This highlights their symbiotic relationship: rationale-based SFT instills the essential cognitive structure, upon which KL-regularized GRPO subsequently refines the generative policy towards factual correctness. The stabilizing role of KL regularization is visualized in Figure 4, where its absence causes a catastrophic collapse of the learned reasoning format.

4.4 QUALITATIVE ANALYSIS

To illustrate the practical implications of our framework, we examine the analytical narrative visualized in Figure 5. The model first constructs a verifiable spatial model by breaking down the total count into its constituent sub-groups (e.g., “*three on one side*”, “*two on the opposite*”). This granular evidence, presented within the reasoning trace, directly substantiates the final conclusion. The conclusion is thus rendered verifiable, as it stands as the end-product of a transparent process designed from its inception for methodical analysis. Additional qualitative analysis can be found in Appendix A.6.

Reasoning from Implicit Intent. To validate the model's capacity for implicit intent understanding where queries specify functional goals rather than object names, we conducted qualitative experiments on the EarthReason benchmark (Li et al., 2025a). As visualized in Figure 6, in a sociocultural context, a request for a "traditional wedding" venue triggers a systematic search for specific ar-

Figure 4: Ablation Study on KL divergence.



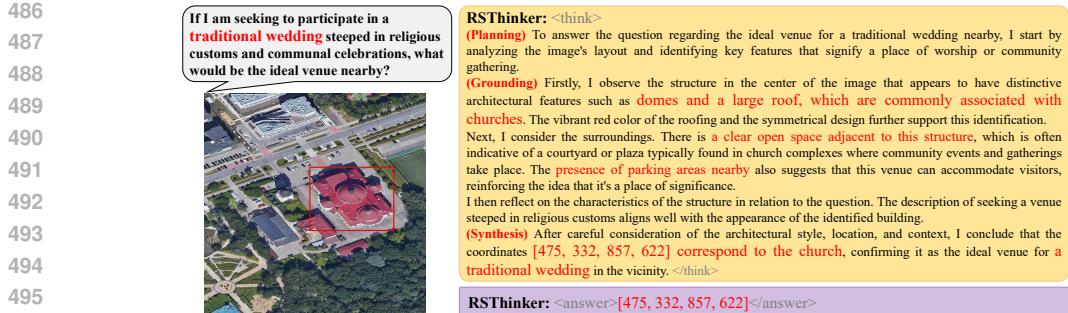
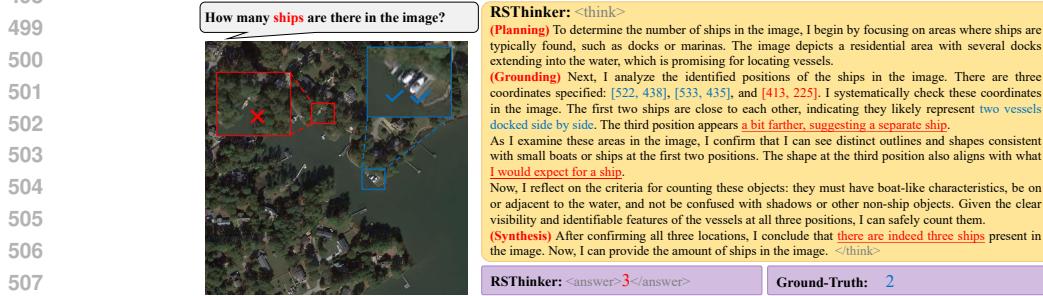


Figure 7: An instance of failure case in object counting. While the reasoning chain is structurally sound and logically coherent, the model misidentifies a non-ship object (red box) as a ship due to visual ambiguity. Crucially, the explicit grounding exposes this error to the user.

chitectural affordances, such as domes and open courtyards, enabling the precise localization of a church. The result demonstrates that RSThinker transcends simple semantic matching, actively reasoning about the functional affordances of geospatial entities to resolve complex, intent-driven queries. Additional examples can be found in Figure 8.

Failure Analysis. Despite the robustness of the Geo-CoT framework, Figure 7 reveals a subtle failure mode where the model maintains a coherent reasoning syntax but misidentifies a dock extension as a ship due to textural ambiguity, suggesting that the textual "verification" step can occasionally act as a stylistic heuristic. Crucially, however, the explicit grounding mechanism turns this into a safety feature. Unlike end-to-end baselines that produce opaque errors, RSThinker externalizes the failure by pinpointing the specific bounding box ([413, 225]). This renders the hallucination immediately falsifiable, transforming a potential silent failure into an auditable and interpretable error essential for high-stakes workflows.

5 CONCLUSION

In this work, we introduce a framework designed to elicit faithful reasoning in remote sensing Visioned-Language Models. We formalize this reasoning as a Perceptually-Grounded Geospatial Chain-of-Thought (Geo-CoT), where each analytical step must be verifiably grounded in visual evidence. This capability is instilled via a two-stage alignment process, beginning with supervised fine-tuning on Geo-CoT380k, the first large-scale corpus of structured rationales generated for this domain via a novel, scalable pipeline. This SFT-instilled cognitive architecture is then refined via Group Relative Policy Optimization (GRPO), which steers the model's policy toward factually correct final outcomes. While the rationales generated by our pipeline are anchored to ground-truth data, we acknowledge that they may inherit stylistic biases from the generative process itself, a promising avenue for future investigation. Our resulting model, RSThinker, exhibits state-of-the-art outcomes by not only deriving a final answer, but by externalizing the entire verifiable visual interrogation process. Ultimately, this work provides a foundational methodology for developing analytical agents whose reasoning is as verifiable as their final outputs are correct.

540 REFERENCES

541

542 Anthropic. Claude opus 4 & claude sonnet 4 system card. <https://www.anthropic.com/claude-4-system-card>, 2025.

543

544 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
545 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
546 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
547 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-v1 technical report. *arXiv*
548 preprint *arXiv*:2502.13923, 2025a.

549 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
550 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
551 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
552 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-v1 technical report, 2025b.
553 URL <https://arxiv.org/abs/2502.13923>.

554

555 Ron Campos, Ashmal Vayani, Parth Parag Kulkarni, Rohit Gupta, Aritra Dutta, and Mubarak Shah.
556 Gaea: A geolocation aware conversational model. *arXiv e-prints*, pp. arXiv–2503, 2025.

557 Jun Chen, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechun Liu, Pengchuan Zhang, Raghuraman
558 Krishnamoorthi, Vikas Chandra, Yunyang Xiong, and Mohamed Elhoseiny. Minigpt-v2: large
559 language model as a unified interface for vision-language multi-task learning, 2023. URL
560 <https://arxiv.org/abs/2310.09478>.

561 Gong Cheng, Junwei Han, Peicheng Zhou, and Lei Guo. Multi-class geospatial object detection
562 and geographic image classification based on collection of part detectors. *ISPRS Journal of Photo-*
563 *grammetry and Remote Sensing*, 98:119–132, 2014.

564 Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Bench-
565 mark and state of the art. *Proceedings of the IEEE*, 105(10):1865–1883, 2017.

566 Qimin Cheng, Haiyan Huang, Yuan Xu, Yuzhuo Zhou, Huanying Li, and Zhongyuan Wang. Nwpuc-
567 captions dataset and mlca-net for remote sensing image captioning. *IEEE Transactions on Geo-*
568 *science and Remote Sensing*, 60:1–19, 2022.

569

570 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
571 Dhillon, Marcel Blstein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
572 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
573 bilities. *arXiv preprint arXiv*:2507.06261, 2025.

574

575 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
576 2025. URL <https://arxiv.org/abs/2501.12948>.

577

578 Jian Ding, Nan Xue, Gui-Song Xia, Xiang Bai, Wen Yang, Michael Yang, Serge Belongie, Jiebo
579 Luo, Mihai Datcu, Marcello Pelillo, and Liangpei Zhang. Object detection in aerial images:
580 A large-scale benchmark and challenges. *IEEE Transactions on Pattern Analysis and Machine*
581 *Intelligence*, pp. 1–1, 2021. doi: 10.1109/TPAMI.2021.3117983.

582

583 Enrico Fini, Mustafa Shukor, Xiuju Li, Philipp Dufter, Michal Klein, David Haldimann, Sai
584 Aitharaju, Victor G Turrisi da Costa, Louis Béthune, Zhe Gan, et al. Multimodal autoregres-
585 sive pre-training of large vision encoders. In *Proceedings of the Computer Vision and Pattern*
586 *Recognition Conference*, pp. 9641–9654, 2025.

587

588 Jun Gao, Yongqi Li, Ziqiang Cao, and Wenjie Li. Interleaved-modal chain-of-thought. In *Proceed-*
589 *ings of the Computer Vision and Pattern Recognition Conference*, pp. 19520–19529, 2025.

590

591 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu
592 Zhang, Shirong Ma, Xiao Bi, et al. Deepseek-r1 incentivizes reasoning in llms through reinforce-
593 ment learning. *Nature*, 645(8081):633–638, 2025.

594

595 Huiyang Hu, Peijin Wang, Yingchao Feng, Kaiwen Wei, Wenxin Yin, Wenhui Diao, Mengyu Wang,
596 Hanbo Bi, Kaiyue Kang, Tong Ling, et al. Ringmo-agent: A unified remote sensing foundation
597 model for multi-platform and multi-modal reasoning. *arXiv preprint arXiv*:2507.20776, 2025.

594 Ding Jian, Xue Nan, Long Yang, Xia Gui-Song, and Qikai Lu. Learning roi transformer for detecting
 595 oriented objects in aerial images. In *The IEEE Conference on Computer Vision and Pattern
 596 Recognition (CVPR)*, June 2019.

597

598 Yue Jiang, Jiawei Chen, Dingkang Yang, Mingcheng Li, Shunli Wang, Tong Wu, Ke Li, and Li-
 599 hua Zhang. Comt: Chain-of-medical-thought reduces hallucination in medical report generation,
 600 2025. URL <https://arxiv.org/abs/2406.11451>.

601

602 Kartik Kuckreja, Muhammad Sohail Danish, Muzammal Naseer, Abhijit Das, Salman Khan, and
 603 Fahad Shahbaz Khan. Geochat: Grounded large vision-language model for remote sensing.
 604 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 27831–27840, 2024.

605

606 Timothy M Lenton, Jesse F Abrams, Annett Bartsch, Sebastian Bathiany, Chris A Boulton, Joshua E
 607 Buxton, Alessandra Conversi, Andrew M Cunliffe, Sophie Hebdon, Thomas Lavergne, et al. Re-
 608 mately sensing potential climate change tipping points across scales. *nature communications*, 15
 609 (1):343, 2024.

610

611 Kaiyu Li, Zepeng Xin, Li Pang, Chao Pang, Yupeng Deng, Jing Yao, Guisong Xia, Deyu Meng, Zhi
 612 Wang, and Xiangyong Cao. Segearth-r1: Geospatial pixel reasoning via large language model.
 613 *arXiv preprint arXiv:2504.09644*, 2025a.

614

615 Xiang Li, Jian Ding, and Mohamed Elhoseiny. Vrsbench: A versatile vision-language benchmark
 616 dataset for remote sensing image understanding. In *Advances in Neural Information Processing
 617 Systems*, volume 37, pp. 3229–3242. Curran Associates, Inc., 2024.

618

619 Zejun Li, Ruipu Luo, Jiwen Zhang, Minghui Qiu, Xuan-Jing Huang, and Zhongyu Wei. Vocot: Un-
 620 leashing visually grounded multi-step reasoning in large multi-modal models. In *Proceedings of
 621 the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational
 622 Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 3769–3798, 2025b.

623

624 Jiaxiang Liu, Yuan Wang, Jiawei Du, Joey Zhou, and Zuozhu Liu. Medcot: Medical chain of thought
 625 via hierarchical expert. In *Proceedings of the 2024 Conference on Empirical Methods in Natural
 626 Language Processing*, pp. 17371–17389, 2024a.

627

628 Sihan Liu, Yiwei Ma, Xiaoqing Zhang, Haowei Wang, Jiayi Ji, Xiaoshuai Sun, and Rongrong Ji.
 629 Rotated multi-scale interaction network for referring remote sensing image segmentation. In *Pro-
 630 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 26658–
 631 26668, 2024b.

632

633 Sylvain Lobry, Diego Marcos, Jesse Murray, and Devis Tuia. Rsvqa: Visual question answering for
 634 remote sensing data. *IEEE Transactions on Geoscience and Remote Sensing*, 58(12):8555–8566,
 635 2020.

636

637 Yang Long, Yiping Gong, Zhifeng Xiao, and Qing Liu. Accurate object localization in remote
 638 sensing images based on convolutional neural networks. *IEEE Transactions on Geoscience and
 639 Remote Sensing*, 55(5):2486–2498, 2017.

640

641 Xiaoqiang Lu, Binqiang Wang, Xiangtao Zheng, and Xuelong Li. Exploring models and data for
 642 remote sensing image caption generation. *IEEE Transactions on Geoscience and Remote Sensing*,
 643 56(4):2183–2195, 2017.

644

645 Junwei Luo, Zhen Pang, Yongjun Zhang, Tingzhu Wang, Linlin Wang, Bo Dang, Jiangwei Lao,
 646 Jian Wang, Jingdong Chen, Yihua Tan, and Yansheng Li. Skysensegt: A fine-grained instruction
 647 tuning dataset and model for remote sensing vision-language understanding, 2024. URL <https://arxiv.org/abs/2406.10100>.

648

649 Yunze Man, De-An Huang, Guilin Liu, Shiwei Sheng, Shilong Liu, Liang-Yan Gui, Jan Kautz, Yu-
 650 Xiong Wang, and Zhiding Yu. Argus: Vision-centric reasoning with grounded chain-of-thought.
 651 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 14268–14280,
 652 2025.

648 Sriram Mandalika, Athira Nambiar, et al. Primedrive-cot: A precognitive chain-of-thought frame-
 649 work for uncertainty-aware object interaction in driving scene scenario. In *Proceedings of the*
 650 *Computer Vision and Pattern Recognition Conference*, pp. 5293–5301, 2025.

651

652 Amit Misra, Kevin White, Simone Fobi Nsutezo, William Straka III, and Juan Lavista. Mapping
 653 global floods with 10 years of satellite radar data. *Nature Communications*, 16(1):5762, 2025.

654 Chancharik Mitra, Brandon Huang, Trevor Darrell, and Roei Herzig. Compositional chain-of-
 655 thought prompting for large multimodal models. In *Proceedings of the IEEE/CVF Conference*
 656 *on Computer Vision and Pattern Recognition*, pp. 14420–14431, 2024.

657

658 OpenAI. Gpt-4v system card. <https://openai.com/index/gpt-4v-system-card>,
 659 2023.

660 OpenAI. Introducing gpt-5. <https://openai.com/introducing-gpt-5/>, 2025.

661

662 Chao Pang, Xingxing Weng, Jiang Wu, Jiayu Li, Yi Liu, Jiaxing Sun, Weijia Li, Shuai Wang, Litong
 663 Feng, Gui-Song Xia, et al. Vhm: Versatile and honest vision language model for remote sensing
 664 image analysis. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp.
 665 6381–6388, 2025.

666 Bo Qu, Xuelong Li, Dacheng Tao, and Xiaoqiang Lu. Deep semantic understanding of high res-
 667 olution remote sensing image. In *2016 International conference on computer, information and*
 668 *telecommunication systems (Cits)*, pp. 1–5. IEEE, 2016.

669

670 Hao Shao, Shengju Qian, Han Xiao, Guanglu Song, Zhuofan Zong, Letian Wang, Yu Liu, and Hong-
 671 sheng Li. Visual cot: Advancing multi-modal language models with a comprehensive dataset and
 672 benchmark for chain-of-thought reasoning. *Advances in Neural Information Processing Systems*,
 673 37:8612–8642, 2024.

674 Greg M Silsbe, James Fox, Toby K Westberry, and Kimberly H Halsey. Global declines in net
 675 primary production in the ocean color era. *Nature Communications*, 16(1):5821, 2025.

676

677 Sagar Soni, Akshay Dudhane, Hiyam Debary, Mustansar Fiaz, Muhammad Akhtar Munir, Muham-
 678 mad Sohail Danish, Paolo Fraccaro, Campbell D Watson, Levente J Klein, Fahad Shahbaz Khan,
 679 et al. Earthdial: Turning multi-sensory earth observations to interactive dialogues. In *Proceedings*
 680 *of the Computer Vision and Pattern Recognition Conference*, pp. 14303–14313, 2025.

681 Yuxi Sun, Shanshan Feng, Xutao Li, Yunming Ye, Jian Kang, and Xu Huang. Visual grounding in
 682 remote sensing images. In *Proceedings of the 30th ACM International conference on Multimedia*,
 683 pp. 404–412, 2022.

684

685 Kimi Team, Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen, Chenlin
 686 Zhang, Chenzhuang Du, Chu Wei, Congcong Wang, Dehao Zhang, Dikang Du, Dongliang Wang,
 687 Enming Yuan, Enzhe Lu, Fang Li, Flood Sung, Guangda Wei, Guokun Lai, Han Zhu, Hao Ding,
 688 Hao Hu, Hao Yang, Hao Zhang, Haoning Wu, Haotian Yao, Haoyu Lu, Heng Wang, Hongcheng
 689 Gao, Huabin Zheng, Jiaming Li, Jianlin Su, Jianzhou Wang, Jiaqi Deng, Jiezhong Qiu, Jin Xie,
 690 Jinhong Wang, Jingyuan Liu, Junjie Yan, Kun Ouyang, Liang Chen, Lin Sui, Longhui Yu, Meng-
 691 fan Dong, Mengnan Dong, Nuo Xu, Pengyu Cheng, Qizheng Gu, Runjie Zhou, Shaowei Liu,
 692 Sihan Cao, Tao Yu, Tianhui Song, Tongtong Bai, Wei Song, Weiran He, Weixiao Huang, Weixin
 693 Xu, Xiaokun Yuan, Xingcheng Yao, Xingzhe Wu, Xinxing Zu, Xinyu Zhou, Xinyuan Wang,
 694 Y. Charles, Yan Zhong, Yang Li, Yangyang Hu, Yanru Chen, Yeqie Wang, Yibo Liu, Yibo Miao,
 695 Yidao Qin, Yimin Chen, Yiping Bao, Yiqin Wang, Yongsheng Kang, Yuanxin Liu, Yulun Du,
 696 Yuxin Wu, Yuzhi Wang, Yuzi Yan, Zaida Zhou, Zhaowei Li, Zhejun Jiang, Zheng Zhang, Zhilin
 697 Yang, Zhiqi Huang, Zihao Huang, Zijia Zhao, and Ziwei Chen. Kimi-VL technical report, 2025a.
 URL <https://arxiv.org/abs/2504.07491>.

698 V Team, Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale
 699 Cheng, Ji Qi, Junhui Ji, Lihang Pan, Shuaiqi Duan, Weihan Wang, Yan Wang, Yean Cheng,
 700 Zehai He, Zhe Su, Zhen Yang, Ziyang Pan, Aohan Zeng, Baoxu Wang, Bin Chen, Boyan Shi,
 701 Changyu Pang, Chenhui Zhang, Da Yin, Fan Yang, Guoqing Chen, Jiazheng Xu, Jiale Zhu, Jiali
 Chen, Jing Chen, Jinhao Chen, Jinghao Lin, Jinjiang Wang, Junjie Chen, Leqi Lei, Letian Gong,

702 Leyi Pan, Mingdao Liu, Mingde Xu, Mingzhi Zhang, Qinkai Zheng, Sheng Yang, Shi Zhong,
 703 Shiyu Huang, Shuyuan Zhao, Siyan Xue, Shangqin Tu, Shengbiao Meng, Tianshu Zhang, Tianwei
 704 Luo, Tianxiang Hao, Tianyu Tong, Wenkai Li, Wei Jia, Xiao Liu, Xiaohan Zhang, Xin Lyu,
 705 Xinyue Fan, Xuancheng Huang, Yanling Wang, Yadong Xue, Yanfeng Wang, Yanzi Wang, Yifan
 706 An, Yifan Du, Yiming Shi, Yiheng Huang, Yilin Niu, Yuan Wang, Yuanchang Yue, Yuchen Li,
 707 Yutao Zhang, Yuting Wang, Yu Wang, Yuxuan Zhang, Zhao Xue, Zhenyu Hou, Zhengxiao Du,
 708 Zihan Wang, Peng Zhang, Debing Liu, Bin Xu, Juanzi Li, Minlie Huang, Yuxiao Dong, and Jie
 709 Tang. Glm-4.5v and glm-4.1v-thinking: Towards versatile multimodal reasoning with scalable
 710 reinforcement learning, 2025b. URL <https://arxiv.org/abs/2507.01006>.

711 Tianqi Wang, Enze Xie, Ruihang Chu, Zhenguo Li, and Ping Luo. Drivecot: Integrating chain-of-
 712 thought reasoning with end-to-end driving, 2024. URL <https://arxiv.org/abs/2403.16996>.

713
 714 Xiaopeng Wang, Biqiong Wu, Guoliang Zhou, Tao Wang, Fanwei Meng, Li Zhou, Hui Cao, and
 715 Zhengyang Tang. How a vast digital twin of the yangtze river could prevent flooding in china.
 716 *Nature*, 639(8054):303–305, 2025.

717
 718 Penghao Wu and Saining Xie. V?: Guided visual search as a core mechanism in multimodal llms.
 719 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 720 13084–13094, 2024.

721
 722 Gui-Song Xia, Wen Yang, Julie Delon, Yann Gousseau, Hong Sun, and Henri Maître. Structural
 723 high-resolution satellite image indexing. In *ISPRS TC VII Symposium-100 Years ISPRS*, vol-
 724 ume 38, pp. 298–303, 2010.

725
 726 Gui-Song Xia, Jingwen Hu, Fan Hu, Baoguang Shi, Xiang Bai, Yanfei Zhong, Liangpei Zhang, and
 727 Xiaoqiang Lu. Aid: A benchmark data set for performance evaluation of aerial scene classifica-
 728 tion. *IEEE Transactions on Geoscience and Remote Sensing*, 55(7):3965–3981, 2017.

729
 730 Gui-Song Xia, Xiang Bai, Jian Ding, Zhen Zhu, Serge Belongie, Jiebo Luo, Mihai Datcu, Marcello
 731 Pelillo, and Liangpei Zhang. Dota: A large-scale dataset for object detection in aerial images. In
 732 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 3974–3983,
 2018.

733
 734 Yi Yang and Shawn Newsam. Bag-of-visual-words and spatial extensions for land-use classification.
 735 In *ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM GIS)*, 2010.

736
 737 Liang Yao, Fan Liu, Hongbo Lu, Chuanyi Zhang, Rui Min, Shengxiang Xu, Shimin Di, and
 738 Pai Peng. Remotereasoner: Towards unifying geospatial reasoning workflow. *arXiv preprint arXiv:2507.19280*, 2025.

739
 740 Sahiti Yerramilli, Nilay Pande, Rynaa Grover, and Jayant Sravan Tamarapalli. Geochain: Multi-
 741 modal chain-of-thought for geographic reasoning. *arXiv preprint arXiv:2506.00785*, 2025.

742
 743 Zhiqiang Yuan, Wenkai Zhang, Kun Fu, Xuan Li, Chubo Deng, Hongqi Wang, and Xian Sun. Ex-
 744 ploring a fine-grained multiscale method for cross-modal remote sensing image retrieval. *IEEE*
 745 *Transactions on Geoscience and Remote Sensing*, 60:1–19, 2021.

746
 747 Yang Zhan, Zhitong Xiong, and Yuan Yuan. Rsvg: Exploring data and models for visual grounding
 748 on remote sensing data. *IEEE Transactions on Geoscience and Remote Sensing*, 61:1–13, 2023.

749
 750 Guanghao Zhang, Tao Zhong, Yan Xia, Zhelun Yu, Haoyuan Li, Wanggui He, Fangxun Shu, Mushui
 751 Liu, Dong She, Yi Wang, et al. Cmmcot: Enhancing complex multi-image comprehension
 752 via multi-modal chain-of-thought and memory augmentation. *arXiv preprint arXiv:2503.05255*,
 753 2025.

754
 755 Wei Zhang, Miaoxin Cai, Tong Zhang, Yin Zhuang, and Xuerui Mao. Earthgpt: A universal multi-
 modal large language model for multi-sensor image comprehension in remote sensing domain.
IEEE Transactions on Geoscience and Remote Sensing, 2024.

756 Yuanlin Zhang, Yuan Yuan, Yachuang Feng, and Xiaoqiang Lu. Hierarchical and robust convolutional
757 neural network for very high-resolution remote sensing object detection. *IEEE Transactions
758 on Geoscience and Remote Sensing*, 57(8):5535–5548, 2019.

759

760 Bei Zhao, Yanfei Zhong, GS Xia, and Liangpei Zhang. Dirichlet-derived multiple topic scene clas-
761 sification model fusing heterogeneous features for high spatial resolution remote sensing imagery.
762 *IEEE Trans. Geosci. Remote Sens.*, 54(4):2108–2123, 2016a.

763 Bei Zhao, Yanfei Zhong, Liangpei Zhang, and Bo Huang. The fisher kernel coding framework for
764 high spatial resolution scene classification. *Remote Sensing*, 8(2):157, 2016b.

765

766 Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
767 hancing vision-language understanding with advanced large language models. *arXiv preprint
768 arXiv:2304.10592*, 2023.

769 Qi Zhu, Jiangwei Lao, Deyi Ji, Junwei Luo, Kang Wu, Yingying Zhang, Lixiang Ru, Jian Wang,
770 Jingdong Chen, Ming Yang, Dong Liu, and Feng Zhao. Skysense-o: Towards open-world re-
771 mote sensing interpretation with vision-centric visual-language modeling. In *Proceedings of the
772 Computer Vision and Pattern Recognition Conference (CVPR)*, pp. 14733–14744, June 2025.

773 Qiqi Zhu, Yanfei Zhong, Bei Zhao, Gui-Song Xia, and Liangpei Zhang. Bag-of-visual-words scene
774 classifier with local and global features for high spatial resolution remote sensing imagery. *IEEE
775 Geoscience and Remote Sensing Letters*, 13(6):747–751, 2016.

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A APPENDIX
811812 A.1 ETHICS STATEMENT
813

814 Our research is conducted with a commitment to academic integrity and transparency. All experi-
815 ments were conducted exclusively on publicly available, open-source remote sensing benchmarks to
816 ensure full reproducibility of our findings. We acknowledge that these datasets may contain inherent
817 geographical or sensor-related biases, a common limitation in the field that could affect the model’s
818 generalizability to underrepresented regions. The core objective of our work is to enhance the trans-
819 parency and verifiability of reasoning processes in VLMs, a goal we believe promotes responsible
820 AI development. We recognize the computational cost associated with training our models and have
821 strived for efficiency. To further promote transparency and enable the community to build upon
822 our work, we commit to the public release of our Geo-CoT380k dataset, model checkpoints, and
823 evaluation code upon publication.

824 A.2 REPRODUCIBILITY STATEMENT
825

826 We are committed to the full reproducibility of our work and will release all necessary artifacts upon
827 publication. To this end, we will release our primary dataset, Geo-CoT380k, including all structured
828 rationales and data splits, alongside scripts to automatically prepare the cited public benchmarks.
829 This dataset will be accompanied by the full source code for our two-stage alignment strategy, en-
830 compassing data preprocessing, SFT, GRPO, and evaluation. To ensure a consistent starting point
831 for replication, the codebase will be bundled with the final model checkpoints for RSThinker and
832 scripts to access the publicly available initialization checkpoint. All of these artifacts will be ac-
833 companied by detailed instructions and a requirement file to facilitate the setup of the computational
834 environment and the execution of the full experimental pipeline. After submitting the manuscript,
835 we will simultaneously release the model’s weights and related code as open-source.

836 A.3 LLM USAGE
837

838 This work utilized the large multimodal model GPT-4V (OpenAI, 2023) for the sole and explicit
839 purpose of generating the structured rationales that constitute our Geo-CoT380k dataset. Crucially,
840 the LLM operated within a highly constrained, scalable pipeline designed by the authors, which
841 retrofits verifiable rationales onto ground-truth data to ensure faithfulness by design. The intellectual
842 contribution of this work therefore lies not in the raw output of the LLM, but in the design of the
843 pipeline itself. The formulation of the core methodology, the analysis of experimental results, and
844 the final conclusions presented herein are solely the work of the authors.

845 A.4 EXPERIMENTAL SETUP
846847 A.4.1 TASKS AND DATASETS
848

849 To validate the versatility and robustness of RSThinker, we evaluate its performance on a diverse
850 set of canonical remote sensing tasks. These tasks are selected to span the full spectrum from
851 fine-grained perception to holistic scene understanding. To showcase the model’s core strengths
852 in systematic, object-level analysis, we first evaluate on object counting using the HRRSD (Zhang
853 et al., 2019), RSOD (Long et al., 2017), DOTAv2-val (Xia et al., 2018; Jian et al., 2019; Ding
854 et al., 2021), and NWPU-VHR (Cheng et al., 2014) datasets, and on object detection across bench-
855 marks such as DOTAv2-val and HRRSD. This precise object-level localization is further tested
856 through visual grounding on the VRSBench-test-VG(Li et al., 2024), DIOR-RSVG (Zhan et al.,
857 2023), RRSIS-D (Liu et al., 2024b) and RSVG (Sun et al., 2022) benchmarks. Moving from object-
858 centric analysis to holistic scene interpretation, we assess performance on scene classification with
859 the NWPU-RESISC45-test (Cheng et al., 2017), AID-test (Xia et al., 2017), WHU-RS19 (Xia et al.,
860 2010), SIRI-WHU (Zhao et al., 2016a;b; Zhu et al., 2016) and UCMerced Yang & Newsam (2010)
861 datasets, and on descriptive image captioning using benchmarks like UCM-Captions (Qu et al.,
862 2016), RSICD (Lu et al., 2017), RSITMD (Yuan et al., 2021), NWPU-captions (Cheng et al., 2022),
863 Sydney-Captions (Lu et al., 2017) and VRSBench-test-cap (Li et al., 2024). Finally, to evaluate
864 the model’s ability to handle complex, open-ended queries, we use the challenging VRSBench-test-
865 VQA (Li et al., 2024) and RSVQA-HR-test (Lobry et al., 2020) benchmarks.

864 Table 9: Comparison of RSThinker with existing generic and RS VLMs on Image Captioning task
865 across multiple benchmarks. B-4, MT, Cr and R-L denote BLUE-4, METEOR, CIDEr and ROUGE-
866 L scores, respectively.

Method	UCM-Captions				RSICD				RSITMD				NWPU-Captions				Sydney-Captions				VRSBench-cap			
	B-4	MT	Cr	R-L	B-4	MT	Cr	R-L	B-4	MT	Cr	R-L	B-4	MT	Cr	R-L	B-4	MT	Cr	R-L	B-4	MT	Cr	R-L
<i>Close-source Commercial Vision-Language Models</i>																								
Claude-sonnet-4	20.12	20.99	30.04	13.35	11.58	13.90	24.57	10.63	20.14	17.15	19.31	9.13	28.32	21.98	32.46	13.38	19.85	20.14	27.55	12.52	22.36	73.49	13.81	
Gemini-2.0-flash	9.31	6.72	13.23	5.48	10.85	8.71	21.53	9.41	15.73	9.27	17.11	7.92	20.55	11.42	22.58	9.45	31.41	24.17	38.76	16.99	14.19	22.30	86.33	13.31
ChatGPT-5	28.49	25.56	40.95	17.82	16.83	16.73	34.39	15.86	27.27	21.10	29.48	14.02	39.62	25.69	48.52	20.91	28.50	24.48	39.09	17.47	18.06	25.11	88.93	15.65
<i>Open-source Vision-Language Models</i>																								
MiniGPT-v2	25.46	19.62	30.94	13.82	15.40	12.26	26.63	12.21	25.45	16.83	25.89	11.55	37.75	19.70	35.73	15.18	26.17	17.03	23.55	12.30	26.61	18.36	68.94	16.75
Qwen2.5-VL	27.87	21.48	35.36	17.23	17.80	13.72	32.19	14.62	27.92	17.24	24.90	12.20	38.89	21.40	42.11	17.75	28.60	18.77	31.81	16.87	29.21	25.01	91.84	20.29
<i>Open-source Reasoning Vision-Language Models</i>																								
Kimi-VL-Thinking	25.72	20.95	34.29	16.91	15.60	13.57	30.00	13.74	24.82	16.47	22.02	11.38	34.84	20.08	37.14	16.81	27.04	23.94	32.73	16.81	26.07	24.34	83.86	18.95
GLM-4.1V-Thinker	20.97	22.61	33.32	15.04	12.57	15.84	30.47	13.17	20.57	19.55	24.98	11.15	29.59	23.33	40.35	16.33	20.64	22.15	29.49	13.90	13.52	22.57	79.71	13.55
<i>Open-source Remote Sensing Vision-Language Models</i>																								
VHM	42.06	27.86	66.12	25.17	25.66	17.63	49.80	20.50	38.93	21.99	40.29	18.43	50.69	25.31	54.92	22.01	44.67	35.11	67.50	23.76	35.06	22.29	99.82	24.88
SkySenseGPT	39.04	23.52	49.80	22.63	23.33	14.02	40.48	18.01	37.76	19.06	34.98	15.00	48.03	22.41	49.67	28.68	42.47	24.95	52.58	21.51	33.10	22.50	102.8	22.09
EarthDial	59.77	44.08	127.7	32.43	29.09	25.20	85.82	24.19	42.09	23.92	42.56	18.35	67.14	46.17	123.6	28.96	64.04	54.91	43.75	21.49	15.88	90.51	21.40	
RSThinker	61.03	41.54	123.4	34.80	39.82	27.17	99.83	29.38	55.69	32.29	73.55	25.66	85.12	58.88	94.81	28.97	60.47	35.28	73.50	25.96	33.99	21.19	107.5	24.44

866 Table 10: Comparison of RSThinker with existing generic and RS VLMs on Object Detection task
867 across multiple benchmarks.

Method	DOTA			HRRSD		
	mAP@0.25	mAP@0.5	mAP@0.75	mAP@0.25	mAP@0.5	mAP@0.75
<i>Close-source Commercial Vision-Language Models</i>						
Claude-sonnet-4	17.80	3.89	0.29	33.82	14.87	2.80
Gemini-2.0-flash	35.31	14.30	4.02	62.41	28.92	4.05
ChatGPT-5	20.93	8.66	1.56	50.19	13.15	0.80
<i>Open-source Vision-Language Models</i>						
MiniGPT-v2	8.10	3.02	1.03	16.57	9.15	4.60
Qwen2.5-VL	30.57	3.18	0.50	43.48	19.04	3.34
<i>Open-source Reasoning Vision-Language Models</i>						
GLM-4.1V-Thinker	47.89	40.45	30.77	70.99	55.53	36.43
<i>Open-source Remote Sensing Vision-Language Models</i>						
VHM	7.68	2.37	0.53	17.23	12.47	7.91
SkySenseGPT	8.42	4.56	0.27	14.83	6.23	1.42
EarthDial	9.42	3.52	0.00	18.13	8.05	0.59
RS-Thinker	79.56	77.06	69.88	98.54	97.99	94.59

A.4.2 BASELINES

We benchmark RSThinker against a comprehensive suite of competitive baseline models. These models first include leading proprietary, closed-source systems, such as ChatGPT-5 (OpenAI, 2025), Gemini-2.0-flash (Comanici et al., 2025) and Claude-sonnet-4 (Anthropic, 2025), to establish a performance ceiling against large-scale commercial offerings. Beyond these commercial offerings, our comparison spans open-source models organized along two key axes: their domain specialization (general-purpose versus remote sensing) and their architectural support for explicit reasoning. Our evaluation thus includes leading general-purpose VLMs like MiniGPT-v2 (Zhu et al., 2023) and Qwen2.5-VL (Bai et al., 2025a), alongside their domain-specific remote sensing counterparts such as Geochat (Kuckreja et al., 2024), VHM (Pang et al., 2025), SkysenseGPT (Luo et al., 2024) and EarthDial (Soni et al., 2025). To provide a direct comparison against reasoning-centric approaches, we further include results from both generalist models prompted for CoT and the latest domain-specific reasoning frameworks, namely GLM-4.1V-9B-Thinking (Team et al., 2025b) and Kimi-VL-A3B-Thinking-2506 (Team et al., 2025a).

A.4.3 IMPLEMENTATION DETAILS AND METRICS

Our implementation of RSThinker is initialized from the GLM-4.1V-9B-Base (Team et al., 2025b) checkpoint and trained on 8 NVIDIA A100 GPUs. During the SFT stage, we train for 3 epochs with a batch size of 32, using the AdamW optimizer with a learning rate of 1e-5. For the subsequent GRPO stage, we finetune for 970 steps, with details of the reward function provided before. Across all experiments, we employ standard, community-accepted metrics to ensure a fair and direct comparison. For object detection and visual grounding, we report mean Average Precision (mAP) and Intersection over Union (IoU). For object counting, we use Mean Absolute Error (MAE). Scene classification and VQA are evaluated on standard Accuracy, while image captioning is assessed using the BLEU-4, Rouge-L, METEOR and CIDEr scores.



Figure 8: Qualitative results on implicit intent understanding (EarthReason benchmark).

A.5 EXPERIMENTAL RESULTS

This section provides the complete experimental tables omitted from the main paper (Tabel 9 and Tabel 10).

A.6 ADDITIONAL VISUALIZATIONS

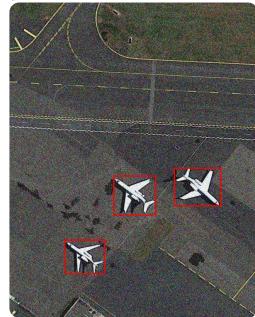
This section presents qualitative visualizations of RSThinker’s reasoning and predictions across tasks. In Object Detection task (Figure 9), RSThinker first performs a coarse enumeration of aircraft regions and then refines them into precise detection boxes, accurately marking all airplanes in the scene. In Visual Grounding task (Figure 10) with a relational query, “the vehicle on the right of the vehicle on the lower left in the image”, RSThinker locates the lower-left vehicle bounding box first and then identifies the target vehicle to its right. For another Visual Grounding task (Figure 11) query, “the building shaped like the number 8”, RSThinker detects a structure whose two large loops or curves resemble the key components of the numeral 8, and identifies the correct bounding box. These examples illustrate RSThinker’s Planning-Grounding-Synthesize cognitive architecture and its ability to handle relational and shape-centric references. Additional examples are shown in Figure 12 (Image Caption), Figure 13 (Scene Classification), and Figure 14 (VQA).

A.7 PROMPT FOR CoT GENERATION

We construct Geo-CoT with a two-tier prompting protocol: a shared base prompt that standardizes task intent, input–output format, and our desired Planning-Grounding-Synthesize cognitive architecture, followed by task-specific prompts augmented with a small set of curated in-context exemplars. Auxiliary information (e.g., bounding boxes, referring phrases, spatial attributes, normalized coordinates) is used only during construction to scaffold faithful reasoning and is removed from the released annotations.

972
973
974
975
976
977
978
979
980
981
982
983

Detect all airplane in the image.



RSThinker:<think>

(Planning) To detect all airplanes in the image, I start by examining the overall layout of the scene, which appears to be an airfield or an airport apron. The image shows a large expanse of concrete and asphalt, typical for aircraft parking and maneuvering. The presence of markings on the ground suggests designated parking areas and taxiways, which are common in airport settings. The next step is to identify the objects that match the characteristics of airplanes. In satellite imagery, airplanes are generally recognizable by their distinct shapes, including a fuselage and wings. They often contrast with the background due to their size and color, typically appearing lighter against the darker asphalt of the runway or apron.

(Grounding) Upon closely analyzing the image, I observe three distinct airplanes. The **first airplane** is located towards the bottom right quadrant, exhibiting a typical aircraft profile. The **second airplane** is situated in the middle of the image, slightly angled, which also conforms to expected aircraft geometry. The **third airplane** is positioned more towards the left side of the image, also identifiable by its shape and orientation. To ensure accurate detection, each airplane's position is noted, and bounding boxes are created to encapsulate their visible extents. The **first airplane** is captured in the coordinates [661, 522, 854, 645], the **second airplane** in [415, 549, 594, 673], and the **third airplane** in [225, 754, 386, 862]. These coordinates reflect the specific locations of the detected airplanes within the image.

(Synthesis) In conclusion, I have identified three airplanes at these specified coordinates. I can now provide the detection boxes for all airplanes present in the image. </think>

RSThinker: <answer>[[661, 522, 854, 645], [415, 549, 594, 673], [225, 754, 386, 862]]</answer>

Figure 9: Qualitative Object Detection example of RSThinker’s Geo-CoT: a methodical Planning-Grounding-Synthesis sequence culminating in a justified <answer>.

984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

Where is the vehicle on the right of the vehicle on the lower left?

RSThinker:<think>

(Planning) To answer the question regarding the location of the vehicle that is situated to the right of the vehicle on the lower left, I first need to establish the positions of the vehicles mentioned in the image. The reference vehicle is described as being on the lower left of the image, which gives me a starting point for my analysis.

(Grounding) I locate the vehicle on the lower left at coordinates [250, 763, 272, 791]. This vehicle's position is clear, and I note its coordinates to ensure I understand its exact placement within the image. Now, I need to identify the vehicle that is to the right of this reference vehicle.

Next, I look for vehicles in the vicinity to the right of the identified vehicle on the lower left. According to the image, there is another vehicle that is explicitly stated to be on the right of the lower left vehicle. I find this vehicle at the coordinates [323, 768, 366, 795]. This confirms that it is indeed positioned to the right based on the provided reference.

(Synthesis) Finally, I double-check the spatial relationship between the two vehicles. Given their respective coordinates, I can confirm that the vehicle located at [323, 768, 366, 795] is directly to the right of the vehicle on the lower left. This logical deduction leads me to conclude with certainty that the answer is correct, and thus the coordinates of the vehicle in question are [323, 768, 366, 795]. </think>

RSThinker: <answer>[323, 768, 366, 795]</answer>

Figure 10: Qualitative Visual Grounding example of RSThinker’s Geo-CoT: a methodical Planning-Grounding-Synthesis sequence culminating in a justified <answer>.

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009

Detect the building shaped like the number 8.

RSThinker:<think>

(Planning) To detect the building shaped like the number 8 in the image, I start by analyzing the overall structure and layout of the area. The aerial view provides a comprehensive perspective of various buildings and landscapes, which can help identify unique architectural forms.

First, I focus on the distinctive shapes within the image. Since the question specifically mentions a building shaped like the number 8, I look for structures that have a similar curvilinear design. This involves examining both the outlines of buildings and their spatial arrangements.

(Grounding) Upon reviewing the image, I notice a prominent building in the upper section that has an unusual, flowing shape. This building features two large loops or curves that resemble the vertical and horizontal components of the number 8. The unique design stands out against the more conventional rectangular and square shapes of the surrounding buildings. Next, to confirm that this building is indeed the target, I assess its coordinates and position relative to other features in the area. The identified building corresponds to the coordinates [164,321,344,466], which are provided in the image. This matches my visual assessment of the distinctive 8-shape building located within the urban layout.

(Synthesis) Finally, I conclude that the building matching the description in the question is accurately identified at the specified coordinates. Therefore, the detection box for the building shaped like the number 8 is [164,321,344,466]. </think>

RSThinker: <answer>[164,321,344,466]</answer>

Figure 11: Qualitative Visual Grounding example of RSThinker’s Geo-CoT: a methodical Planning-Grounding-Synthesis sequence culminating in a justified <answer>.

1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024

Describe this image in detail.

RSThinker:<think>

(Planning) To describe the image in detail, I start by identifying the central feature of the scene. The prominent structure in the image is a stadium, which is easily recognizable due to its distinctive oval shape and the green field visible inside.

(Grounding) The stadium is centrally positioned, making it the focal point of the image, and it appears to be well-maintained, with a high visibility of its structure at around 95%. This indicates that it is likely an active venue for events, possibly sporting events or concerts. Surrounding the stadium, I notice a parking lot that is densely filled with numerous cars. The arrangement of these vehicles suggests a busy day, likely indicating an ongoing event at the stadium. The parking lot is organized, with clearly defined spaces, and the cars vary in size and color, adding a sense of activity to the scene. The proximity of the parking lot to the stadium indicates that it serves the visitors attending events there. In addition to the stadium and parking lot, I observe a building adjacent to the stadium. This structure appears to be separate but related to the stadium, perhaps serving as a facility for concessions, merchandise, or administrative functions associated with the events hosted. The building's roof is visible in the image, and it seems to be a larger facility, contributing to the overall infrastructure supporting the stadium.

Considering the layout of the stadium, the busy parking lot, and the adjacent building, I can infer that this scene captures a vibrant location filled with potential energy and activity, likely during a game or event day. The combination of these elements paints a clear picture of a well-utilized sports complex.

(Synthesis) Therefore, I conclude my detailed description of the image by emphasizing the stadium's central position, the surrounding parking lot filled with cars, and the nearby building, all indicative of a lively atmosphere. </think>

RSThinker: <answer> In the image, there is a stadium located in the center surrounded by a parking lot and a building. The stadium is prominently visible with a high visibility of 95%. The parking lot is filled with numerous cars surrounding the stadium. The building stands adjacent to the stadium, completing the scene. The stadium is positioned centrally, with the parking lot extending around it and the building nearby. The overall scene depicts a busy day at the stadium with cars parked outside and the building standing tall in the background. </answer>

Figure 12: Qualitative Image Caption example of RSThinker’s Geo-CoT: a methodical Planning-Grounding-Synthesis sequence culminating in a justified <answer>.

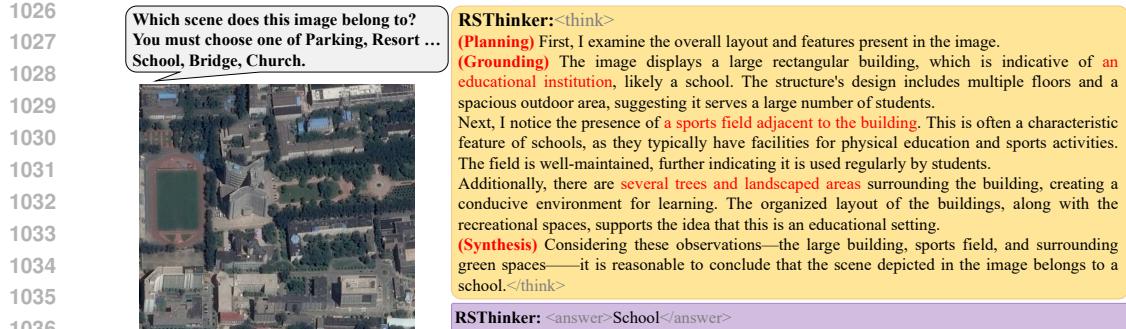


Figure 13: Qualitative Scene Classification example of RSThinker’s Geo-CoT: a methodical Planning-Grounding-Synthesis sequence culminating in a justified <answer>.

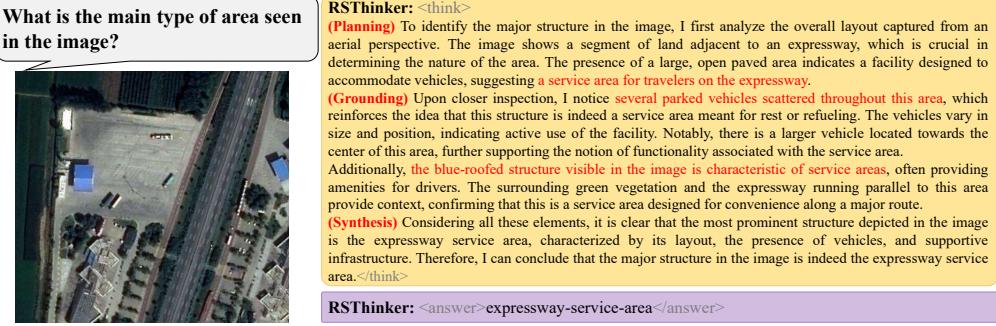


Figure 14: Qualitative VQA example of RSThinker’s Geo-CoT: a methodical Planning-Grounding-Synthesis sequence culminating in a justified <answer>.

1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Shared base prompt (prepended to all tasks).

You are an expert in the field of remote sensing with strong reasoning abilities, capable of identifying, analyzing, and inferring information in remote sensing images. Now you need to help construct a CoT dataset in the field of remote sensing, to help other models think better. For each remote sensing image, utilize the provided auxiliary information to better understand the image. Now construct a detailed remote sensing TASK-CoT dataset.

For each sample, you will receive ** image **, ** auxiliary information **, ** question **, and ** correct answer **. You need to carefully understand the ** image ** to facilitate the capture of key targets in the image by ** auxiliary information ** (Note: auxiliary information is correct, but may not be comprehensive, you need to combine it with your own understanding to identify all the information of the image). For the problem, fully understand the correct answer, and think of the solution path to the answer, integrating it into the general CoT from question to answer.

Importantly, auxiliary information is to help you understand the image and not let it appear in CoT. Even if you do not agree with certain viewpoints of the auxiliary information, you can ignore these viewpoints, but do not mention them in the CoT.

Note that the CoT should infer the answer from the problem, and the correct answer should not appear abruptly in advance. Therefore, statements such as 'this is consistent with the correct answer' should not be included in CoT. The CoT should include a process of thinking and deduction, as well as a process of reflection. The CoT should naturally be divided into several segments, with each segment separated by a "\n\n\n".

Next, provide few examples of TASK-CoT.

{Task-specific exemplars}

Now, please construct a TASK-CoT for the input. Please carefully examine the image, read and understand the question and correct answer, think carefully, deduce the thought process from question to answer, and organize it into a CoT presentation. The CoT format is "CoT": "CoT content". Do not return any additional information.

1080 The base prompt instantiates a Planning–Grounding–Synthesize cognitive architecture: first decom-
 1081 pose the task into tractable subgoals, then ground each step in observable, object/region-level ev-
 1082 idence, and finally synthesize a concise answer after explicit verification. It forbids unverifiable
 1083 claims and requires explicit reference to evidence when applicable (e.g., bounding boxes, coordi-
 1084 nates, directions, relative size/position). We implement the annotator with GPT-4V (OpenAI, 2023)
 1085 under constrained prompt, and employ in-context learning with a few high-quality exemplars to re-
 1086 inforce Planning–Grounding–Synthesize style reasoning. Minor task-specific variants of the base
 1087 prompt are used to explicitly cue the current task while keeping the core instructions unchanged.

1088 For each task, we append a minimal task-specific template to the shared base prompt and supply few
 1089 curated in-context exemplars. These exemplars are chosen to span diverse scene types and difficulty
 1090 levels (including edge cases) and must strictly follow the canonical output format to ensure reliable
 1091 parsing and consistent reasoning.

1092 **Object counting task exemplar**

1094 Next, provide two examples of count-CoT.
 1095 The first example for a smaller number of targets, maybe less than 8-10.
 1096 Input:
 1097 {
 1098 "question": "What is the amount of ship in the image? \textbackslash
 1099 nAnswer the question using a single word or phrase.",
 1100 "auxiliary information": {
 1101 "image_size": [800,800],
 1102 "objects": {
 1103 "ship_position": [[612, 761], [628, 705], [657, 531]],
 1104 "harbor_position": [[492, 715], [527, 504], [568, 8]]
 1105 },
 1106 "count": {
 1107 "ship": 3,
 1108 "harbor": 3
 1109 }
 1110 },
 1111 "answer": "3",
 1112 }

1112 Output: { "CoT": "To determine the number of ships in the image, we begin by identifying
 1113 the most likely locations for ships—typically near docks, piers, or water edges. This image
 1114 shows a coastal residential area with multiple piers extending from private properties into
 1115 the water.\n\n\nWe systematically analyze the image from top to bottom. The topmost dock
 1116 has no visible ship. The second dock from the top clearly has a small white vessel at its end,
 1117 identifiable by its sharp shape, white color, and shadow consistent with a boat. The third
 1118 dock—closer to the bottom of the image—shows two vessels: a large white yacht with a
 1119 visible bow and deck features, and a second boat partially covered with a blue tarp next to
 1120 it.\n\n\nSo all the ship targets we found in the image are as follows: a small white vessel
 1121 at the end of second dock, two vessels at the third dock—a large white yacht with a visible
 1122 bow and deck features and a second boat partially covered with a blue tarp next to it.\n\n\nNow
 1123 we cross-verify the water area away from the docks. No additional vessels are observed
 1124 floating independently or anchored elsewhere. All identifiable ships are docked at the piers,
 1125 suggesting no free-floating vessels.\n\n\nTo ensure accuracy, we reflect on the identification
 1126 criteria of 'ship': the objects must have boat-like geometry, orientation on water, and features
 1127 such as hulls, decks, or covers. All three identified objects meet this criterion. We do not
 1128 count objects such as floating platforms or shadows as ships. Now, I can provide the amount
 1129 of ships in the image." }

1130 The first example end.

1131 The Second example is a larger number of targets, maybe more than 8-10. For the large
 1132 number of targets, The count-CoT should count by region, identify all regions in the image
 1133 where targets exist, and provide **the exact number of targets in each region**, and finally
 1134 count the number of targets.

1135 Input:

```
1134
1135    {
1136        "question": "how many small-vehicles are there in the image?\n        nAnswer the question using a single word or phrase.",
1137        "auxiliary_information": {
1138            "image_size": [800, 800],
1139            "objects": {
1140                "small-vehicle_position": [
1141                    [695, 365], [723, 335], [752, 307], [781, 278], [796, 162],
1142                    [745, 216], [770, 188], [715, 244], [329, 791], [326, 754],
1143                    [664, 395], [619, 443], [584, 479], [549, 515], [519, 546],
1144                    [490, 574], [462, 605], [436, 630], [408, 660], [381, 687],
1145                    [352, 688], [687, 274], [660, 302], [623, 338], [596, 364],
1146                    [571, 393], [540, 423], [512, 452], [484, 482], [455, 511],
1147                    [427, 539], [392, 577], [361, 607], [334, 633], [263, 695],
1148                    [201, 679], [168, 666], [134, 657], [89, 652], [49, 650],
1149                    [12, 656], [641, 421]
1150                ],
1151                "swimming-pool_position": [[463, 687]]
1152            },
1153            "count": { "small-vehicle": 42, "swimming-pool": 1 }
1154        },
1155        "answer": "42"
1156    }
```

Output: { "CoT": "To answer the question regarding the number of small vehicles in the image, I begin by carefully inspecting the urban area depicted in the satellite image. The term 'small-vehicle' generally refers to passenger cars or similar-sized transportation units, which typically appear on roads, in parking areas, or near residential and commercial buildings.\n\nScanning the image, I identify several regions where such vehicles are likely to be found. The straight road along the right edge of the image contains two dense row of parked vehicles aligned parallel to the curb. These vehicles are of consistent size and shape, suggesting they are indeed small vehicles. Carefully count their number as 17 vehicles above the road and 16 vehicles below the road. Additionally, more vehicles are visible around the curved road at the bottom-left portion of the image. I can count 9 vehicles at the cured road. I must also check for any vehicles near building entrances or driveways, as small vehicles might be parked or partially obscured there.\n\nSo all the ship targets we found in the image are as follows: 17 vehicles above the right road, 16 vehicles below the right road, 9 vehicles at the cured road.\n\nTo ensure completeness, I systematically count each visible vehicle in these areas. I mark each location where a vehicle is visible—most are clearly distinguishable by their rectangular shape, shadow pattern, and contrast with the road surface. Even in areas where vehicles are clustered or partially covered by trees or nearby structures, their general size and alignment help confirm their identity as small vehicles.\n\nAfter completing a detailed inspection and verification of all visible small vehicles in the image, I conclude the total number of small vehicles present. Now, I can provide the amount of small vehicles in the image." } }

The second example end.

Image caption task exemplar

Next, provide an example of caption-CoT.

Input:

```
1180
1181     {
1182         "question": "Describe the image in detail.",
1183         "auxiliary_information": {
1184             "objects": [
1185                 {
1186                     "obj_id": 0,
1187                     "referring_sentence": "The toll station is positioned at
the center of the image.",
1188                     "obj_cls": "expressway-toll-station",
1189                 }
1190             ]
1191         }
1192     }
1193 }
```

```

1188
1189         "obj_coord": [
1190             0.45,
1191             0.43,
1192             0.59,
1193             0.59
1194         ],
1195         "obj_position": "center",
1196         "obj_rel_position": "",
1197         "obj_size": "small",
1198         "obj_rel_size": "",
1199     },
1200     {
1201         "obj_id": 3,
1202         "referring_sentence": "The right-most small vehicle is
located near the center, to the right of the toll station.",
1203         "obj_cls": "vehicle",
1204         "obj_coord": [
1205             0.58,
1206             0.44,
1207             0.62,
1208             0.47
1209         ],
1210         "obj_position": "center",
1211         "obj_rel_position": "right-most",
1212         "obj_size": "small",
1213         "obj_rel_size": "",
1214     }
1215 ],
1216 },
1217
1218 "answer": "The image, sourced from GoogleEarth, shows a rural area
1219 with an expressway-toll-station situated at the center.
1220 Alongside the toll station, multiple small vehicles are visible,
1221 with one positioned on the middle-left and another that is the
1222 right-most in the center relative to the toll station.",
1223
1224
1225 Output: { "CoT": "To describe the image in detail, I begin by identifying key man-made
1226 structures and their surroundings. The image appears to be taken from a satellite or aerial
1227 perspective, capturing a segment of a road that intersects the center of the image. A distinctive
1228 blue-roofed structure is positioned along the road, which is indicative of a toll station,
1229 given its placement and function at a narrow point in the road. This structure is centrally
1230 located and stands out due to the contrast of its blue roof against the surrounding green
1231 terrain. \n\n\nNext, I observe the presence of several small vehicles on the road. These vehicles
1232 are distinguishable by their size and light-colored shapes. At least two vehicles are clearly
1233 visible: one is to the left of the toll station (middle-left in the image), and another is to the
1234 right of the toll station, as the right-most vehicle near the center. Their relative positions to
1235 the toll station confirm their function as vehicles in transit or waiting. \n\n\nAdditionally,
1236 below the toll station, there is a rectangular area containing a building with a red roof and
1237 surrounding features like shadows and parked cars, suggesting it is a nearby facility related
1238 to the toll station or local administration. The walls around this structure further support
1239 that this is a standalone, purpose-built building, likely a residential or administrative facility.
1240 \n\n\nConsidering the layout, objects, and spatial relationships, I deduce that this is a rural
1241 location due to the surrounding undeveloped green landscape and limited infrastructure. The
1242 toll station and vehicles are the primary indicators of human activity. After reflecting on the
1243 structures visible in the image, I conclude a comprehensive and detailed description must
1244 include these components—the rural environment, central toll station, nearby vehicles, and
1245 the presence of a building below the toll station. Now, I can provide a detailed description
1246 about this image. " }
1247 The example end.
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
```

1242
1243

Object Detection task exemplar

1244
1245
1246

Next, provide two examples of Object Detect-CoT.

The first example for a smaller number of targets, maybe less than 8-10.

Input:

1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

```
{
    "question": "Detect all airplane in the image.",
    "answer": [
        [703,252,805,345], [835,487,985,582], [855,734,936,793]],
    "auxiliary information":{
        "objects": {
            "airplane": [
                [703,252,805,345], [835,487,985,582], [855,734,936,793]],
                "ground track field": [38,11,383,394]
            },
            "count": {
                "airplane": 3,
                "ground track field": 1
            }
        },
    }
}
```

Output: { "CoT": "To detect all airplanes in the image, we first need to understand the overall layout and characteristics of the scene. From a top-down perspective, the image appears to depict a large airport or airbase facility. On the right side of the image, there is a wide expanse of concrete consistent with an airport apron or taxiway, commonly used for aircraft parking, loading, and movement. The left portion of the image includes multiple buildings, greenery, and a ground track field, suggesting mixed-use infrastructure possibly associated with aviation operations or nearby institutional facilities.\n\nThe task is to locate all airplanes within the image. From a visual perspective, airplanes in satellite imagery are generally characterized by a fuselage, wings extending laterally, and sometimes visible tail sections or shadows. They are usually white or light gray and stand out against the concrete apron due to their shape and symmetry.\n\nCarefully scanning the apron area on the right side of the image, three distinct airplanes can be observed. The first airplane is near the top right quadrant of the apron, oriented roughly northwest to southeast. The second airplane is positioned slightly below center, larger in size, and is placed near the midsection of the apron. The third airplane is in the bottom right quadrant, near the edge of the apron area. These three objects clearly exhibit the typical geometry of airplanes when viewed from above and are isolated from other vehicles or structures, confirming their identification.\n\nAfter identifying and verifying the airplane locations, we convert their positions into coordinate ranges in the thousandths scale relative to the image dimensions. The bounding boxes for the airplanes are as follows: the first airplane is near the top right quadrant of the apron at [703,252,805,345], the second airplane is positioned slightly below center at [835,487,985,582], and the third airplane is in the bottom right quadrant at [855,734,936,793]. These coordinates accurately encompass the visual extents of each detected airplane. Thus, the image contains exactly three airplanes at these specified locations. Now I can provide the detection box for all airplanes in the image." }

The first example end.

The Second example is a larger number of targets, maybe more than 8-10. For the large number of targets, The Object Detect-CoT should count by region, identify all regions in the image where targets exist, and provide **the exact targets in each region**, and finally provide the detection box for all targets.

Input:

```
{
    "question": "Detect all small-vehicle in the image.",
    "auxiliary information":{
        "objects": {
            "small-vehicle": [
                [182,325,205,338], [263,268,288,278],
                [212,282,236,295], [100,806,123,828],
            ]
        }
    }
}
```

```

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

```

```

[791,122,812,141], [775,93,796,115],
[530,301,552,318], [341,81,358,102],
[592,295,620,315], [478,342,497,355],
[498,332,522,348], [52,296,78,313],
[132,258,161,271], [738,121,756,138],
[782,71,808,92]
],
"storage-tank": [[317,5,387,65]]
},
"count": {
    "small-vehicle": 15,
    "storage-tank": 1
}
},
"answer": [
    [182,325,205,338], [263,268,288,278], [212,282,236,295],
    [100,806,123,828], [791,122,812,141], [775,93,796,115],
    [530,301,552,318], [341,81,358,102], [592,295,620,315],
    [478,342,497,355], [498,332,522,348], [52,296,78,313],
    [132,258,161,271], [738,121,756,138], [782,71,808,92]
]
}
}

Output: { "CoT": "To detect all small vehicles in the image, I begin by scanning the image systematically from top-left to bottom-right, focusing on regions that contain roads, intersections, or parking areas, as these are the most likely locations for small vehicles. In remote sensing imagery, small vehicles are typically identifiable by their small rectangular or oval shapes, high contrast with road surfaces, and regular spacing when parked.\n\n\nThe first noticeable region is near the top of the image, where a broad road runs horizontally across. Within this region, multiple small objects are visible that match the expected characteristics of small vehicles. These objects have rectangular shapes and are aligned along traffic lanes or parking areas. Carefully examining this section reveals multiple vehicles, including one near the center and two others slightly left and right. A curved structure is also visible, but it is not a vehicle, so I ignore it.\n\n\nNext, I look at the middle and lower-middle sections of the image. A prominent bright structure (possibly a roof or overpass) obscures part of the area, but beneath and around it, vehicles are visible. There are several parked or moving vehicles, particularly clustered near entrances and exits of adjacent roads. At least four vehicles are evident by their size, color contrast, and position relative to the road.\n\n\nThe lower-left section of the image contains another road with curved lanes and an exit area. Vehicles can be seen parked or moving along this segment as well. These vehicles are again identified by their compact shapes and positions aligned with road markings. A vehicle appears at the bottom left corner, and another is slightly above it.\n\n\nFinally, I inspect the far-right region and the top-right quadrant. This area includes a continuation of the road network, and I identify several more vehicles, particularly at intersections and nearby parking zones. These are less occluded and clearly match the known signature of small vehicles.\n\n\nIn total, I identify 15 small vehicles distributed across various regions of the image: Top central road region: 3 vehicles; Mid-upper right road network: 4 vehicles; Under the curved roof structure: 3 vehicles; Bottom-left road area: 2 vehicles; Bottom-central area: 1 vehicle; Upper-left road: 2 vehicles. Each of these vehicles is matched to a detection box based on their visible boundaries. After bounding each vehicle, I obtain the following bounding boxes: [[182, 325, 205, 338], [263, 268, 288, 278], [212, 282, 236, 295], [100, 806, 123, 828], [791, 122, 812, 141], [775, 93, 796, 115], [530, 301, 552, 318], [341, 81, 358, 102], [592, 295, 620, 315], [478, 342, 497, 355], [498, 332, 522, 348], [52, 296, 78, 313], [132, 258, 161, 271], [738, 121, 756, 138], [782, 71, 808, 92]]. Now I can provide the detection box for all small vehicles in the image." }
The second example end.

```

1350
1351

VQA task exemplar

1352
1353

Next, provide an example of VQA-CoT.

1354

Input:

1355

```
{
  "question": "Are the vehicles predominantly parked on the left
  or right side of the image?",
  "answer": "left",
  "type": "object position",
  "auxiliary information": {
    "caption": "This high-resolution image from GoogleEarth
    depicts a parking area with several vehicles and distinguished
    by a combination of asphalt surfaces and surrounding greenery.
    In total, there are nine small vehicles, distributed in
    different positions throughout the image. Notable objects
    include trees casting shadows and a building located on the left
    side, indicating a semi-urban environment. All vehicles are
    parked, with many situated along the edges of the lot.",
    "objects": [
      {
        "obj_id": 4,
        "referring_sentence": "The vehicle located at the
        top-middle of the image.",
        "obj_cls": "vehicle",
        "obj_coord": [
          0.52,
          0,
          0.55,
          0.06
        ],
        "obj_position": "top-middle",
        "obj_rel_position": "top-most",
        "obj_size": "",
        "obj_rel_size": ""
      }
    ]
  }
},
```

1383

Output: "CoT": "To determine whether the vehicles are predominantly parked on the left or right side of the image, we must first clearly define what constitutes the 'left' and 'right' regions. In this context, the image is oriented with the top representing the north, meaning the left and right refer to the western and eastern parts of the image, respectively.\n\n\nNext, I begin by visually scanning both sides of the image. I identify and count the number of parked vehicles on each side. On the left side of the image (the western half), I can observe several vehicles parked near the building and along the road. Specifically, there are 9 vehicles clearly visible parked in this region, of which 3 vehicles are next to buildings and 6 vehicles are on the road. On the right side (the eastern half), I observe significantly fewer vehicles, with only around 2 vehicles clearly parked, and possibly one more partially visible near the lower edge.\n\n\nHaving made these observations, I can now compare the counts. The left side shows a denser concentration of parked vehicles compared to the right. Moreover, the spatial distribution of these vehicles confirms this trend — the majority of parking appears clustered in the upper-left quadrant of the image, near the building and shaded area. The right side, in contrast, is more open and has fewer parked cars.\n\n\nTherefore, through a visual examination and vehicle count comparison across both sides of the image, I conclude that the vehicles are predominantly parked on the left side."

The example end.

1399

1400

1401

1402

1403

1404

1405

1406 Next, provide an example of Scene Classification-CoT.

1407 Input:

1408

1409

```
{
    "question": "Classify the given image in one of the following
classes. Classes: parking, baseballfield, school, resort,
industrial, square, commercial, playground, port, mountain,
forest, bareland, farmland, desert, denseresidential, airport,
meadow, mediumresidential, center, storagetanks, park, bridge,
church, pond, railwaystation, viaduct, stadium, beach, river,
sparseresidential. \nAnswer in one word or a short phrase.",
    "answer": "airport",
}
```

1416

1417 Output: { "CoT": "First, I observe the overall layout and features present in the image. The
1418 image shows a large built structure with a highly organized layout and multiple identical
1419 objects aligned along both sides of a central building. The structures extending from the
1420 central building resemble jet bridges or concourses, which are commonly found in airports
1421 for boarding and deplaning passengers from aircraft.\n\n\nNext, I examine the objects that
1422 are aligned with these structures. These appear to be commercial aircraft, identifiable by their
1423 wings, fuselage, and tail configurations. The high number of aircraft, their close positioning
1424 to the terminal building, and the presence of taxiways and runways strongly suggest that this
1425 location is used for air travel operations.\n\n\nI also notice a network of runways, taxiways,
1426 and apron areas typical of an airport's design. The large paved areas around the terminal
1427 allow for aircraft movement and parking. The presence of service roads, ground vehicles, and
1428 gate markings further reinforces this being an operational airport.\n\n\nGiven the presence
1429 of a terminal structure, multiple commercial aircraft, and surrounding airport infrastructure
1430 such as taxiways and aprons, the most fitting classification among the provided categories is
1431 airport." }

1432 The example end.

1433

1434

Visual grounding task exemplar

1435

1436

Next, provide an example of VG-CoT.

Input:

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

```
{
    "question": "where is the vehicle situated towards the bottom-
right side of the image is on the road parallel to the overpass
.",
    "answer": [790,820,820,860],
    "auxiliary_information":{
        "caption": "This high-resolution image from GoogleEarth
depicts a parking area with several vehicles and distinguished
by a combination of asphalt surfaces and surrounding greenery.
In total, there are nine small vehicles, distributed in
different positions throughout the image. Notable objects
include trees casting shadows and a building located on the left
side, indicating a semi-urban environment. All vehicles are
parked, with many situated along the edges of the lot.",
        "objects": [
            {
                "obj_id": 0,
                "referring_sentence": "The overpass runs diagonally
across the image and casts a shadow to its right.",
                "obj_cls": "overpass",
                "obj_coord": [
                    390,
                    530,
                    1060,

```


1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565

Output: { "CoT": "To address the question, I must first understand the spatial layout of the image. The question refers to a vehicle towards the bottom-right side of the image that is situated on a road running parallel to an overpass. This indicates a relationship between the location of the vehicle and the orientation of the overpass.\n\nUpon examining the image, I observe a large overpass running diagonally from the lower-left to the upper-right. The overpass crosses above two visible roadways, one above and one below it, each carrying vehicular traffic. The shadow of the overpass is cast to the right side, confirming the orientation.\n\nNext, I identify multiple vehicles in the image. The target vehicle must be towards the bottom-right of the image and located on a road that runs roughly in parallel to the overpass. Looking in the bottom-right quadrant of the image, I spot a small vehicle traveling along a lane that follows the same general diagonal direction as the overpass. This suggests the road is parallel to the overpass and supports the condition stated in the question.\n\nFinally, I verify that this vehicle's position aligns with the described location—bottom-right—and confirm it is situated on the correct road. This process ensures that my identification is accurate. Thus, the coordinates [790,820,820,860] correctly correspond to the vehicle referenced in the question." }

The example end.