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ABSTRACT

In-context learning lets large models adapt to new tasks from a few demonstrations,
but it has shown limited success in molecular design, where labeled data are
scarce and properties span millions of biological assays and material measurements.
We introduce demonstration-conditioned diffusion models (DemoDiff), which
define task contexts through molecule–score examples instead of texts. These
demonstrations guide a denoising Transformer to generate molecules aligned with
target properties. For scalable pretraining, we develop a new molecular tokenizer
with Node Pair Encoding that represents molecules at the motif level, requiring
5.5× fewer nodes. We pretrain a 0.7B parameter model on datasets covering drugs
and materials. Across 33 design tasks in six categories, DemoDiff matches or
surpasses language models 100–1000× larger and achieves an average rank of 3.63
compared to 5.25–10.20 for domain-specific approaches. These results position
DemoDiff as a molecular foundation model for in-context molecular design.

1 INTRODUCTION

In-context learning (ICL) is the emergent capability of large models to infer task-specific concepts
from a few demonstrations (Xie et al., 2021). ICL has been studied in large language models (LLMs),
but was found less effective for molecular design than specialized methods (Liu et al., 2024b). These
specialized models often depend on extensive Oracle calls (Gao et al., 2022) or large labeled datasets
beyond what context examples provide. Molecular tasks, however, involve millions of types, many
with only a few labeled examples (Zdrazil et al., 2024). Such examples are enough to form task
contexts but insufficient to train a new model. This trade-off motivates our in-context molecular
design, which combines the flexibility of ICL with the efficiency of molecular domain knowledge.

Molecular structures and properties are discrete graphs and numbers with varying scales and units.
Directly adapting the autoregressive framework from LLMs is infeasible (Brown et al., 2020) for
in-context molecular designs, as the input and output of language data are text in sequential order.
Diffusion models show promise for molecular structures (Vignac et al., 2022), and Graph Diffusion
Transformers (Graph DiTs) are effective for modeling their joint distribution with properties (Liu
et al., 2024c). However, Graph DiTs have been studied with at most five properties represented
in a single vector. In practice, molecular properties span millions of assays in biology, including
functions, binding, ADME, and toxicity, as well as material properties such as gas permeability,
thermal conductivity, and glass transition temperature (Figure 1). Representing all properties in
one-hot vector with millions of dimensions is inefficient, produces sparse pretraining data since many
assays have fewer than ten labels, and limits generalization to unseen properties in downstream tasks.

Instead of a property vector with a large embedding table, we use demonstrations to define the task
context for molecular design. As shown in Figure 1, the demonstrations consist of a set of molecules
with scores in [0, 1] and molecular design is framed as a query for the target score of 1. Molecules
in the context do not follow a strict order, and their scores serve as relative positions to the target,
functioning as a replacement for position IDs in Transformers. (Xie et al., 2021) described ICL in
LLMs as implicit Bayesian inference over latent concepts expressed by examples in the prompt.
Similarly, each task in Figure 1 shares the concepts defined by the joint distribution of molecules
and their scores. The denoising Transformer in the Graph DiT attends to the context, implicitly
extracts concepts, and uses them to guide the reverse process to refine the structure. An example
generation trajectory is shown in Figure 7. A simple way to represent the task concept is to use
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Figure 1: In-context molecular design with DemoDiff. Each demo is defined as a score–molecule
pair, and a set of them forms the task context as conditions. After pretraining on large and diverse
tasks, DemoDiff serves as a foundation model for designing molecules in new task contexts. Scores
represent relative distances to the target and are converted from raw labels, as shown in Section 3.3.

positive demonstrations, such as molecules close to the target or active in the assay. However, positive
examples alone may be insufficient, as they can overlap across tasks due to factors such as task
relatedness (e.g., activity in non-small-cell lung cancer but across different cell lines) or due to
sampling bias when the set of positives is extremely sparse (e.g., only one positive example shared by
two tasks). To address this, we form the task context using not only positive but also medium and
negative examples, providing a more complete representation of the task concepts.

With these task contexts, we propose demonstration-conditioned diffusion models (DemoDiff) and
pretrain a 0.7B model with a Graph DiT as the backbone, using over 140 H100 GPU days. To support
efficient pretraining, we introduce a molecular tokenizer trained with Node Pair Encoding (NPE)
for motif-level representation. On average, it reduces the number of nodes by 5.5× compared to
atom-level representations (Figures 9 and 10). The tokenizer iteratively merges neighboring nodes and
selects frequent motifs to construct vocabularies. Motifs are connected by directed edges that preserve
bond types and attachment rules, ensuring lossless reconstruction. Graph DiTs naturally use this
motif-level representation and attend to motif semantics for denoising. For pretraining, we construct a
dataset of over 1.6 million tasks from 155K unique properties and one million molecules. It combines
ChEMBL for drugs (Zdrazil et al., 2024) and multiple polymer data sources for materials (Otsuka
et al., 2011; Thornton et al., 2012; Kuenneth et al., 2021). For ICL, we propose a consistency score
as a confidence measure of whether a generation aligns more closely with higher-scoring molecules
in demonstrations, effectively filtering out false positives in generation (Section 4.3).

We evaluate DemoDiff on 33 design tasks across six categories. With 0.7B parameters, it matches or
surpasses LLMs 100–1000× larger in generating diverse, high-scoring molecules. Compared to ten
specialized models (average ranks 5.25–10.20), DemoDiff ranks 3.6, demonstrating its strength as a
molecular foundation model. The new molecular tokenizer further improves representation efficiency.

2 PRELIMINARIES

2.1 IN-CONTEXT LEARNING WITH DEMONSTRATIONS

In ICL, the context is a set of demonstrations C = {ei}Li=1, where each ei is an input–label pair.
Following (Xie et al., 2021), we assume C reflects a latent concept θ ∈ Θ from a family of concepts
Θ. For example, for a paragraph about Albert Einstein, the latent concept may be biography. Given a
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query Q, a foundation model with ICL generates an output X by marginalizing over θ:

p(X | C, Q) =

∫
θ

p(X | θ, C, Q) p(θ | C, Q) dθ. (1)

Here (C, Q) form the prompt. If p(θ|C, Q) concentrates on the prompt concept with more demonstra-
tions, then the model identifies and applies that concept through marginalization. ICL can thus be
implicit Bayesian inference. All context, query, and outcomes are texts in language modeling. In
inverse molecular design, we have molecule-score pairs as demonstrations. They capture the latent
task concept, with semantics like the task descriptions in Figure 1. Q is the target score, and X is the
molecule to be designed. We focus on a new molecular foundation model for ICL.

2.2 MOLECULAR DESIGN WITH GRAPH DIFFUSION TRANSFORMERS

Molecules are discrete graphs X = (A,B), where A denotes the set of atoms and B the set of bonds.
These structures are commonly modeled using discrete diffusion processes (Vignac et al., 2022; Liu
et al., 2024c). Graph DiTs concatenate atom and bond features to X into the input format of standard
Transformers. Given X , for each atom ai ∈ A with di neighbors, Graph DiTs define a token as
x = {ai, {bij}di

j=1}, where bij ∈ B encodes the bond type (single, double, triple, or none). Each
token is represented by a feature vector x ∈ RF , formed by concatenating the one-hot encoding of
the atom type and the connection types to all other atoms (either a bond type or a null type indicating
no connection). Discrete diffusion has a transition matrix Q, initialized based on the frequency of
atoms and bonds in the training set. At step t, [Qt]ij = q(xt

j | x
t−1
i ) for i, j ∈ [1, F ].

The forward diffusion with Q is: q(xt | xt−1) = Cat(xt;p = xt−1Qt), where Cat(x;p) denotes
two separate categorical sampling for atoms and bonds with probabilities from p. Starting from
the original data x = x0, we have q(xt | x0) = Cat

(
xt;p = x0Q̄t

)
, where Q̄t =

∏
i≤t Q

i. The
forward diffusion gradually corrupts data points. When the total timestep T is large enough, q(xT )
converges to a stationary distribution. The reverse process samples from q(xT ) and gradually removes
noise. The posterior distribution q(xt−1 | xt) is calculated as q(xt−1|xt,x0) ∝ xt(Qt)⊤ ⊙ x0Q̄t−1.
Given multiple properties {ci}ni=1, the denoising model approximates pϕ(x

t−1 | xt,x0, {ci}ni=1)
under property conditions. This model is trained by minimizing the negative log-likelihood for x0:

LDM = Eq(x0)Eq(xt|x0)

[
− log pϕ

(
x0 | xt, c1, c2, . . . , cn

)]
, (2)

In Graph DiTs (Liu et al., 2024c), the constraints {ci}ni=1 are numerical or categorical property values.
In this work, we explore them as demonstrations for in-context learning.

3 LEARNING DIFFUSION MODEL WITH DEMONSTRATIONS

Figure 2 shows the generation process of DemoDiff, combining motif-based representation (Sec-
tion 3.1) with graph diffusion transformers for in-context molecular generation (Section 3.2).

3.1 MOLECULAR GRAPH TOKENIZATION WITH NODE PAIR ENCODING

More demonstrations help capture the latent task concept and are empirically useful (Bertsch et al.,
2024). However, prior work (Liu et al., 2024c) uses atom-level molecular representations, similar to
modeling text at the character level, which fundamentally limits the number of examples in context.
For efficient representation, we merge frequent sub-molecular patterns as motif m = (Ã, B̃) ⊆ X ,
where Ã ⊆ A and B̃ ⊆ B define a connected substructure. A molecule becomes a collection of
disjoint motifs M = {mi}ni=1 such that: (1) Ãi ∩ Ãj = ∅ for all i ̸= j; (2)

⋃n
i=1 Ãi = A. Then,

each edge eij ∈ E is directed from a source motif mi to a target motif mj , with two associated
attributes: (1) bond type, and (2) attachment specification, indicating the atom within mi from
which the bond originates. This abstraction induces a tokenizer with two functions. They are
tokenizer. encode : X = (A,B) 7−→ X̂ = (M,E) that compresses the atom-level graph into
motif-level form and tokenizer.decode : X̂ = (M,E) 7−→ X = (A,B) for reconstruction. The
tokenizer uses two vocabularies:M for motif types and E for edge types. It starts with the 118 atom
types from the periodic table and one “*” for the polymerization point, which form the initial motifs

3
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Figure 2: Demonstration-conditioned diffusion generation. In the reverse process, DemoDiff starts
from random noise and denoises molecules conditioned on a set of molecule–score demonstration
pairs at the motif level, with a tokenizer bridging motif and atom representations.

inM. This guarantees that, in the worst case, a new molecule can still be represented at the atom
level. In each iteration, the tokenizer merges the most frequent neighbors until no further merge is
found inM, then proceeds with the corresponding connections between motifs.

To construct M, existing methods, such as BRICS (Degen et al., 2008) or molecular grammars
(Sun et al., 2025; 2024), rely on domain-specific heuristics based on chemical reactions or expert
knowledge. The resulting vocabularies are independent of the pretraining data, often missing frequent
motifs. To address this limitation, we propose Node Pair Encoding (NPE), a frequency-based
algorithm for molecular graphs inspired by BPE, as outlined in Algorithm 1. We initializeM with
elements from the periodic table and polymerization points “*”. NPE iteratively performs three steps:
(1) Neighborhood merge: For each molecule X ∈ D in the dataset D and currentM, we identify
candidate motifs by merging adjacent substructures that appear inM; (2) Frequency selection: The
most frequent candidate motif is selected and added toM; (3) Graph update: Each X ∈ D is
updated by replacing instances of merged motif pairs with the new motif.

Constrained NPE: The standard NPE may produce multiple directed edges from a motif mi to
another mj when decomposing ring structures (e.g., aromatic rings). It leads to ambiguity during
decoding since eij does not uniquely determine the attachment specification within mj . To address
this, we introduce constraints such as rings into NPE at two stages. During initialization, we traverse
each molecule to identify its set of maximal connected rings, denotedR, compute their frequencies,
and include the top-Kring most frequent rings in the initial vocabularyM. During motif merging, any
m ∈M is merged with a ring r ∈ R \M as a complete unit, rather than merging individual atoms
within r. This strategy integrates frequent rings into the vocabulary while preserving atom-level
representations for rare rings, avoiding reconstruction ambiguity.

Using NPE, a molecule is represented as n tokens {xi}ni=1, where xi = {mi, {eij}di
j=1}, with mi

denoting a motif and eij the associated edges. We set the motif vocabulary size to K = 3000
(Kring = 300), with details and analysis provided in appendix B.2. As shown in Figure 2, an example
input with 38 atoms can be compactly expressed using four motifs. An empirical comparison of atom-
and motif-level representations over 1 million pretraining molecules is given in Figure 3b, with an
average compression ratio of 5.446± 2.569, reducing the median count from 30 atoms to 5 motifs.

3.2 IN-CONTEXT LEARNING WITH GRAPH DIFFUSION TRANSFORMERS

We construct the dataset D = {(Ci, Qi, Xi)}
Npretrain
i=1 for pretraining, where each task consists of a

context of molecule–score pairs Ci, a query score Qi, and a target molecule Xi. To pretrain DemoDiff
for in-context inverse molecular design, we replace the property conditions in Eq. (2) with C and Q:

Lpretrain = Eq(x0)Eq(xt|x0)

[
− log pθ

(
x0 | xt, C, Q

)]
. (3)
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With large and diverse pretraining data and scalable Transformers (Peebles & Xie, 2023), DemoDiff
learns to infer the latent task concept to generate the target molecule and can serve as a foundation
model for ICL. In a task, it performs implicit Bayesian inference over diffusion trajectories.

ICL with Context Consistency (appendix A.3): Given a query Y , demonstrations Ci are divided
into positive, medium, and negative groups. For a generated molecule X , we compare its fingerprint-
based similarity with these groups to assess whether it follows the relation pos > med > neg. This
yields a consistency score that measures how well the generated molecule aligns with the relative
relations in the context. In experiments (Section 4.1), we use this score to select high consistent
generations before conducting the final evaluation with Oracles.

3.3 MODEL DESIGN AND PRETRAINING

(a) Property rank vs. frequency in D. (b) Node counts (n ≤ 50; full in Figure 9).

Figure 3: Pretraining data statistics for property rank-frequency and node count density.

Model Designs: Figure 2 illustrates the model architecture. For the i-th task in the pretraining
set (Ci, Xi, Yi) ∈ D, the property score Yi is scaled within [0, 1], providing positional signals
for both demonstration molecules and the target. These scalar values are encoded using Rotary
Position Embedding (RoPE) (Su et al., 2024). DemoDiff uses a tokenizer to process the atom-level
representation and defines a maximum context length for the number of motif tokens. The context
includes the target along with as many demonstration tokens as fit within the target length. Since
molecules in the context are structurally disjoint, edge connectivity implicitly delineates context
boundaries, removing the need for explicit delimiter tokens. Details are in appendix A.

Pretraining: To construct the pretraining dataset as illustrated in Section 3.2, we use the ChEMBL
database (Zdrazil et al., 2024), the largest collection of biological assays, containing over 2.5 million
molecules and 1.7 million assay records. To increase chemical diversity for materials discovery,
we augment ChEMBL with polymer datasets from multiple sources (Liu et al., 2024b; Kuenneth
et al., 2021), including properties such as thermal conductivity, free volume fraction, and glass
transition temperature. For biological assays, we generate tasks by selecting a molecule-assay pair
as the target and treating other molecule-assay pairs as context. The target is assigned a score of 1,
and context scores are computed by normalizing differences in pChEMBL values (negative log of
bioactivity measures such as IC50 and potency) to the interval [0, 1]. We restrict targets to bioactive
molecules with pChEMBL > 6. For polymers, we apply the same strategy: each polymer is used as
a target, and its property value is normalized against those of other polymers to form context-target
pairs. We partition context examples into three groups by normalized scores: positive [0.75, 1],
medium (0.5, 0.75], and negative [0, 0.5], with up to 15 demonstrations from each. The final dataset
comprises around 1 million molecules with 155K unique assays or properties, yielding 1.6 million
tasks. As shown in Figure 3a, the frequency distribution of assays and properties follows Zipf’s law,
P (Yrank) ∝ rank−1.13, consistent with patterns in language corpora. These 1 million molecules
are used to initialize the motif vocabulary via NPE, which provides a more compact representation
by reducing node counts (Figure 3b). We further extract edge connections to construct an edge
vocabulary capturing motif-to-motif connectivity. Finally, we pretrain a DemoDiff model with 0.7B
parameter on Eq. (3), using 146 H100 GPU days. Details are provided in appendix B.
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Table 1: Harmonic mean of oracle and diversity scores. We group 33 tasks into six categories and
report the mean ± std within each category. The best results in each column are bolded. Task-specific
results and additional metrics are provided in appendix C.2.

Task Category Drug Drug Structure Drug Target Material Avg Total
Rediscovery MPO Constrained Design Based Design Rank Sum

# Tasks 7 7 5 4 5 5 33 33

Molecular Optimization Methods with 100 Oracle Calls

GraphGA 0.36±0.07 0.52±0.19 0.43±0.21 0.41±0.32 0.76±0.04 0.58±0.11 5.25 16.65
REINVENT 0.37±0.08 0.52±0.17 0.43±0.21 0.42±0.32 0.76±0.03 0.00±0.00 6.70 13.84
GPBO 0.37±0.07 0.51±0.18 0.42±0.22 0.39±0.33 0.76±0.03 0.60±0.21 5.63 16.65
STONED 0.36±0.07 0.52±0.19 0.43±0.21 0.41±0.32 0.76±0.04 NO SELFIES 6.42 13.75

Molecular Optimization Methods with 10000 Predictor Calls

GraphGA 0.37±0.09 0.50±0.18 0.45±0.29 0.49±0.26 0.64±0.06 0.55±0.14 7.34 16.30
REINVENT 0.30±0.13 0.23±0.23 0.25±0.24 0.38±0.26 0.17±0.13 0.51±0.16 10.20 9.82
GPBO 0.33±0.10 0.45±0.22 0.43±0.29 0.49±0.15 0.74±0.03 0.42±0.24 7.80 15.35
STONED 0.33±0.10 0.40±0.20 0.50±0.28 0.27±0.10 0.20±0.27 NO SELFIES 9.24 9.66

Conditional Generation Models

LSTM 0.39±0.25 0.16±0.07 0.55±0.32 0.33±0.35 0.72±0.04 0.16±0.11 9.31 12.30
Graph-DiT 0.43±0.21 0.50±0.18 0.58±0.34 0.48±0.37 0.71±0.04 0.55±0.17 6.91 17.64

Learning from In-Context Demonstrations

DeepSeek-V3 0.45±0.18 0.51±0.20 0.49±0.24 0.65±0.18 0.64±0.06 0.39±0.24 6.76 16.90
GPT-4o 0.47±0.21 0.53±0.20 0.52±0.30 0.48±0.40 0.73±0.05 0.43±0.16 6.34 17.25
Qwen-Max 0.15±0.21 0.17±0.15 0.32±0.32 0.29±0.29 0.19±0.26 0.10±0.18 11.56 6.46
DemoDiff (Ours) 0.44±0.21 0.54±0.23 0.56±0.33 0.79±0.11 0.78±0.05 0.67±0.11 3.63 20.10

4 EXPERIMENT

Setups: We curate 33 downstream tasks (see Table 1 and appendix C.1) across six categories to
evaluate DemoDiff against 13 baselines. These tasks are primarily curated by domain experts and
are distinct from pretraining. We include eight molecular optimization methods and two conditional
generation models (LSTMs and Graph DiT (Liu et al., 2024c)), and LLMs (DeepSeek-V3, GPT-
4o, and Qwen-Max). We select the top four molecular optimization algorithms from the PMO
benchmark (Gao et al., 2022) (out of 25 evaluated methods), under two settings: 100 oracle calls
and 10,000 predictor calls. For evaluation, we generate 10 valid, unique, and novel molecules per
task and score them with Oracles. We report the harmonic mean over two dimensions: (a) averaged
oracle scores and (b) the diversity score Eq. (6). Each task has up to 450 molecule–score pairs, evenly
divided into positive [0.75, 1], medium (0.5, 0.75], and negative [0, 0.5] groups. Each task has an
Oracle function for evaluation, with limited budgets for Oracle calls. We use all molecules to train
the task-specific predictor for predictor calls or to train conditional generation models directly. For
different ICL methods, demonstrations are randomly sampled with a similar budget for context.

4.1 PERFORMANCE ON DIVERSE MOLECULAR DESIGNS TASKS

ICL achieves competitive performance with minimal supervision. Table 1 compares the harmonic
mean of the top-10 generated molecules based on both task scores and structural diversity, while
Table 5 (appendix) reports the top-1 scoring molecule per task. Under limited data and Oracle budgets,
ICL methods perform comparably to, or better than, fully trained conditional generators and molecular
optimization baselines. Excluding Qwen-Max, DemoDiff and other LLM-based ICL approaches
consistently attain top-tier average ranks. These ICL methods rely on tens of demonstrations per task,
significantly fewer than the training data or Oracle calls required by other models or algorithms.

DemoDiff designs molecules with accurate scores and high diversity. Across six task categories,
it performs best on property-driven tasks, including drug design with bioactivity targets, protein
binding affinity, and material design for polymer gas separation. It achieves the lowest average rank
of 3.62, outperforming the best baseline, GraphGA (rank 5.25). ICL methods with LLMs produce
high-scoring top designs (Table 5) but often generate structurally similar molecules. These do not
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Figure 4: Ablation studies on Albuterol drug rediscovery.

necessarily align better with the target score while reducing diversity. In contrast, DemoDiff designs
molecules with scores closer to the query and better structural diversity.

DemoDiff performs better on property-driven tasks than on structure-constrained ones. It
scores 0.67–0.79 on drug and material design, but around 0.44–0.56 for rediscovery and structure-
constrained tasks, where Oracle scoring is tied to the presence of specific structures. While DemoDiff
still ranks highly in structure-constrained tasks, its stronger results on property-driven tasks highlight
its advantage in exploring chemical spaces with broader solution ranges.

4.2 ABLATION STUDIES AND PERFORMANCE ANALYSIS

Table 2: Performance across model sizes using harmonic mean scores from Top-10 generations

DemoDiff Drug
Rediscovery

Drug
MPO

Structure
Constrained

Drug
Design

Target
Based

Material
Design

78M 0.39 ± 0.17 0.46 ± 0.24 0.59 ± 0.06 0.57 ± 0.31 0.73 ± 0.03 0.62 ± 0.13
311M 0.40 ± 0.17 0.46 ± 0.23 0.63 ± 0.06 0.53 ± 0.27 0.75 ± 0.04 0.62 ± 0.14
739M 0.44 ± 0.21 0.54 ± 0.23 0.56 ± 0.33 0.79 ± 0.11 0.78 ± 0.05 0.67 ± 0.11

Model Parameters: We pretrain DemoDiff with varying sizes: small (78.7M), medium (311M),
and large (739M) parameters. Table 2 reports performance using the top-10 harmonic means of task
score and diversity. We present averages with deviations across six categories. DemoDiff achieves
reasonable scores even at small scale. At the medium scale, performance improves in most tasks
except drug design, while the benefits of parameter scaling become more evident at the large scale.

ICL with Demonstrations: Figure 4 studies two factors in demonstrations: (1) context length and
(2) ratio of positive examples. In Figure 4a, longer context includes more molecular examples and
supports better ICL performance. This aligns with the rationale of motif-level tokenization, which
captures more examples within a fixed context. Figure 4b shows that diverse demonstrations are
important for ICL to represent the task accurately, while only positive examples are insufficient.
This is because positive, medium, and negative examples together provide a holistic view of the task
context, and DemoDiff pretrained on such contexts is better able to infer latent concepts from diverse
examples. In Figure 4b, we also observe that fewer positive examples may still yield reasonable
results. We investigate this further in Section 4.3 to assess whether DemoDiff can infer positive
examples (score > 0.5) using only negative examples with scores below 0.5.

ICL with Consistency Scores: We ablate consistency scores and analyze their correlation with
target scores in Figure 5. Using the consistency score as a confidence filter improves performance
across task categories, with gains from 0.8% to 27.5%. The second figure shows the correlation
between the consistency and target scores. Moderate correlation appears in tasks with explicit
structural constraints, such as drug rediscovery and structure-constrained design. For property-driven
tasks (drug MPO and materials design), high fingerprint-based consistency with positive examples
does not always correlate with high target scores. In these cases, latent concepts may rely on
subtle substructures (e.g., methyl groups (Liu et al., 2022)) that standard fingerprints fail to capture.
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0.0 0.2 0.4 0.6 0.8
Average Top-10 Harmonic Score

Target-Based

Drug Rediscovery

Materials Design

Structure Constrained

Drug MPO

Drug Design

0.774 0.780

0.411 0.441

0.641 0.672

0.526 0.560

0.459 0.540

0.623 0.794

0.0 0.1 0.2 0.3 0.4
Pearson Correlation

0.126 (1/5)

0.444 (6/7)

0.020 (0/5)

0.319 (2/5)

-0.010 (0/7)

0.231 (2/4)

w/ Consistency Score

Figure 5: Ablation studies on context consistency scores: (1) left shows improvements; (2) right
shows the relationship between consistency score and oracle scores.

(a) Isomer(C7H8N2O2) 

(b) Geometric Mean(Sim(Osimertinib), TPSA, LogP)

(c) Docking Score (PARP1). Converted to 0–1: Higher better

Figure 6: Learning from negative demonstrations (score < 0.5) to infer a target with score 1. All
demonstrations are shown in Figures 14 to 16, with only three displayed here.

Interestingly, context consistency still improves performance in these tasks. A possible reason is that
the score helps filter out false positive generations.

4.3 CASE STUDIES

Figures 6 and 7 present two studies for DemoDiff. In extreme cases of inverse molecular design,
demonstration sets may contain only negative examples, i.e., all scores < 0.5. In Figure 6, we
study whether DemoDiff can still generate positive candidates when prompted solely with negative
examples. Figure 6 presents the results for (a) structure-constrained design, (b) drug multi-objective
optimization (MPO), and (c) target-based design. These findings suggest two insights: (1) negative
demonstrations convey informative signals about the task concept, and (2) after pretraining, the
posterior over the concept-to-structure mapping allows DemoDiff to generate desirable candidates
that are aligned with the concept yet structurally distinct from the negative examples. Figure 7 is
the generation trajectory from diffusion models. The task score, measured as structural similarity to
Albuterol, rises from 0.22 at initial sampling to 0.74. This shows that the diffusion model refines the
molecule toward the desired structure step by step with demonstrations.
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Query
Score=1

Step1: 0.22 Step 100: 0.20 Step 200: 0.32 Step 300: 0.41 Step 400: 0.59 Step 500: 0.74

(Ground-truth)

Figure 7: Diffusion trajectory for Albuterol drug rediscovery: we sample five intermediate diffusion
steps and score them with the Albuterol Oracle, which computes similarity to the ground truth.

5 RELATED WORK

Inverse Molecular Design: Molecular optimization uses diverse approaches, including genetic
algorithms, Monte Carlo Tree Search (Jensen, 2019), and Bayesian optimization (Shahriari et al.,
2015), applied to representations such as fingerprints, SMILES, graphs, and synthetic pathways (Gao
et al., 2021). Gao et al. (2022) benchmarked 25 optimization methods and found that older models,
such as genetic algorithms, remain competitive. However, existing benchmarks require on the order
of 10,000 oracle calls, which is costly and limits applicability when single calls are expensive.
Deep learning models offer an alternative by modeling the joint distribution of atoms and bonds
without Oracle calls. GDSS applies noise and denoising in continuous space for graphs (Jo et al.,
2022). DiGress (Vignac et al., 2022) introduces discrete noise through transition matrices based
on marginal atom and bond distributions. Graph DiTs (Liu et al., 2024c) extend scalable diffusion
transformers (Peebles & Xie, 2023) to discrete graphs. Yet, training diffusion models still requires
hundreds of labeled molecules and is limited to specific tasks. Recent efforts explore chemical
foundation models based on LLMs (Yu et al., 2024; Liu et al., 2024b), but their applications are
either diverted to other molecular tasks, such as property prediction, or rely on fine-tuning within a
restricted scope of design tasks.

In-Context Learning: ICL is an emergent ability observed in LLMs (Brown et al., 2020; Chan et al.,
2022). Empirical and theoretical studies investigate this phenomenon from three perspectives: models,
data, and learning mechanisms (Xie et al., 2021; Min et al., 2022). For the learning mechanism,
ICL can be interpreted as implicit Bayesian inference (Xie et al., 2021), where pretraining data are
generated from latent concepts and the posterior distribution marginalizes over them for inference. On
the model side, Garg et al. (2022) trained Transformers from scratch on prompt-style input–label pairs
of simple functions and found performance comparable to task-specific algorithms. Bhattamishra
et al. (2023) compared Transformers with attention-free models and showed they do not match
Transformer performance across tasks. On the data side, Chan et al. (2022) found that Transformers
outperform recurrent models (e.g., LSTMs) on data with distributional properties resembling natural
language, such as burstiness (words appearing in clusters) and query tasks with many rare classes.
Singh et al. (2025) analyzed the strategy competition between ICL and in-weight learning, showing
that the asymptotic strategy depends on in-weight information but is also context-constrained. This
aligns with (Chan et al., 2022), suggesting that a foundation model should support both capacities. A
skewed Zipfian distribution over tasks (e.g., Figure 3a) balances learning by storing common task
information in weights while developing ICL ability from the long tail of rare tasks.

6 CONCLUSION

We presented DemoDiff, a demonstration-conditioned diffusion Transformer model for in-context
molecular design. We constructed a large-scale pretraining dataset with over one million molecules
and 155K unique biological assays and material properties, yielding millions of demonstration–target
pairs. Using this dataset, we pretrained a 0.7B-parameter model and showed that it matches or
outperforms much larger LLMs and ranks higher than domain- and task-specific methods. To support
scalable pretraining, we introduce Node Pair Encoding, a motif-level graph tokenizer that efficiently
represents molecules with fewer nodes while preserving reconstruction. Experiments demonstrate
that DemoDiff is a promising molecular foundation model, highlighting its potential to scale further
with larger models, broader datasets, and greater compute.
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REPRODUCIBILITY STATEMENT

We provide pretraining and inference code in the supplementary materials. The appendix describes
the method and model settings to ensure reproducibility.
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A DETAILS ON DEMODIFF

A.1 GRAPH-LEVEL TOKENS AND PRETRAINING LOSS

Graph DiTs define a graph-level token that concatenates the node feature with all related edge
features. In molecular generation, we use a special type of edge, the null edge, to represent that
there is no edge between two nodes. Thus, The feature vector x (or x0) of a graph-level token
x = {M, {ej}dj=1} consists of three components: Fmotif motif types, Fbond bond types, and Fattach

attachment specifications. Here, Fmotif is the size of the motif vocabularyM, Fbond = 4 represents
null, single, double, and triple bonds, and Fattach = argmaxM∈M |M | is the maximum number of
atoms inM. Eq. (3) can be decomposed as Lpretrain = Lmotif + Lbond + Lattach. Specifically,

Lpretrain = Eq(x) Eq(xt|x)

[
− log pmotif

θ

(
m | xt, C, Y

)︸ ︷︷ ︸
Lmotif

−
d∑

j=1

log pbondθ

(
bj | xt, C, Y

)
︸ ︷︷ ︸

Lbond

−
d∑

j=1

log pattachθ

(
aj | xt, C, Y

)
︸ ︷︷ ︸

Lattach

]
. (4)

To align feature dimensions across tokens, we use the dense edge representation by treating all non-
connections as null bonds. The resulting feature dimension is F = Fmotif +n×Fbond+n×Fattach,
where n is the maximum number of nodes in the motif-represented dataset. For optimization
with Eq. (4), we include the null bond type in Lbond but exclude attachment specifications of null
edges in Lattach.

A.2 TRANSITION MATRICES IN DIFFUSION MODELS

We define the transition matrix Q that perturbs molecules at the motif level to pretrain DemoDiff. We
model the joint distribution of nodes and edges with the transition matrix. It is constructed from four
submatrices QV ,QEV ,QE ,QV E , denoting transitions node→ node, edge→ node, edge→ edge,
and node→ edge, respectively:

QG =

[
QV 1′

N ⊗QV E

1n ⊗QEV 1n×n ⊗QE

]
, (5)

where ⊗ denotes the Kronecker product, and 1N , 1′
n, and 1n×n are the column vector, row vector,

and all-ones matrix, respectively. Here n is the number of nodes. For edges, diffusion is applied to
bond types only, while attachment attributes are optimized and predicted directly by the denoising
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model as in Eq. (4). For categorical sampling, we separate the unnormalized logits of node and edge
from the model outputs, compute probabilities for each motif and bond individually before sampling.

To obtain the transition matrices, we use the prior from the pretraining data. The noisy distribution is
defined as the marginal distributions of motif types mV and bond types mE . The transition matrices
are defined as QV = ᾱtI+ (1− ᾱt)1m′

V and QE = ᾱtI+ (1− ᾱt)1m′
E , where m′ denotes the

transpose and I is the identity matrix. We compute co-occurrence frequencies of motif and bond
types in training graphs to obtain the marginal distributions mEV and mV E . Each row in mEV

gives the probability of co-occurring motifs for a bond type, and mV E is its transpose. The transition
matrices are then defined as QEV = ᾱtI + (1 − ᾱt)1m′

EV and QV E = ᾱtI + (1 − ᾱt)1m′
V E ,

where ᾱt is cumulative noise coefficient in diffusion. The cosine schedule is chosen as ᾱt =
cos(0.5π(t/T + s)/(1 + s))2.

A.3 DETAILS ON CONSISTENCY SCORE

Given a query Y , demonstrations Ci = {(Xij , Yij)}Lj=1 are divided into positive Cpos, medium
Cmed, and negative Cneg examples to guide ICL. For a generated molecule X , we use the Tanimoto
similarity of fingerprints as the similarity measure. We compute the similarity between X and all
molecules in each group and average them to obtain group-wise similarity scores

simpos, simmed, simneg ∈ [0, 1].

Difference-based score. We compute margin differences between groups:

dpos,med = max(simpos − simmed, 0), dmed,neg = max(simmed − simneg, 0),

dpos,neg = max(simpos − simneg, 0).

The normalized difference-based score is

sdiff = min

(
dpos,med + dmed,neg + dpos,neg

3
, 1

)
.

In experiments, the consistency score can be computed efficiently before applying Oracle functions.
For example, we generate 1000 molecules and select the top 100 with the highest consistency
scores. These molecules better follow the order of structural similarity across positive, medium, and
negative examples. This removes poor generations that conflict with the demonstration semantics and
increases confidence that selected molecules align with the query scores. Table 3 reports empirical
improvements across task categories, each containing 4–7 tasks (appendix C.1).

Table 3: Improvement with the consistency score (average Top-10 harmonic scores).

Category Without With Improvement

Drug Design 0.6230 0.7943 +27.5%
Drug MPO 0.4592 0.5400 +17.6%
Drug Rediscovery 0.4110 0.4407 +7.2%
Structure Constrained 0.5258 0.5598 +6.5%
Materials Design 0.6407 0.6724 +4.9%
Target-Based 0.7745 0.7803 +0.8%

B DETAILS ON PRETRAINING

The final pretraining dataset contains 1,084,566 molecules (polymers) and 155,150 unique assays
or properties, yielding 1,639,515 tasks. These are constructed from ChEMBL (Zdrazil et al., 2024)
and multiple polymer data sources (Otsuka et al., 2011; Thornton et al., 2012; Kuenneth et al., 2021).
Each task has a query molecule–score pair with the query score fixed at 1. Up to 45 molecules
are grouped into positive, medium, and negative demonstrations based on their scores. The query
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molecule is the target, while the query score and demonstrations serve as inputs to DemoDiff during
pretraining on Eq. (3). For pretraining with a fixed maximum context window, we allocate half the
window to positive demonstrations and one quarter each to medium and negative demonstrations,
after excluding the target molecule.

B.1 PRETRAINING DATASET

ChEMBL dataset We constructed molecular activity contexts from the ChEMBL database
(version 35), which provides a large collection of bioactivity measurements across diverse as-
says. ChEMBL standardizes published activity types, values, and units into a unified variable,
pChEMBL = − log(molar IC50,XC50,EC50,AC50,Ki,Kd, or Potency). This value places dif-
ferent measures of half-maximal response, potency, or affinity on a comparable negative logarithmic
scale. For example, an IC50 of 1 nanomolar (1×10−9 M) corresponds to a pChEMBL value of 9. We
extracted assay-level activity values (pChEMBL). For each assay, molecules were grouped according
to their recorded activities. Within each group, we selected anchor molecules with strong activity
(pChEMBL > 6) as targets for building demonstrations. Each anchor was compared against all
other molecules in the same assay to compute normalized distances, defined as the relative difference
between the anchor’s pChEMBL value and that of the candidate molecule, converted to the range
[0, 1]. Specifically, for an anchor with value va and a candidate with value vc, the normalized distance
was given by d = (v1− vc)/10. Based on this distance, we partitioned candidate molecules into three
categories relative to the anchor. Molecules with distances in [0, 0.25) correspond to candidates with
activity between 75% and 100% of the anchor and were assigned to the positive context. Molecules
with distances in [0.25, 0.5) correspond to candidates with activity between 50% and 75% of the
anchor and were assigned to the medium context. Molecules with distances [0.5, 1.0] correspond to
candidates with activity below 50% of the anchor and were assigned to the negative context. From
each category, we sampled up to 15 molecules to balance neighborhood size. Thus, there are up to
45 demonstration molecules for each task. Not all of them are used during pretraining due to the
constraint of maximum context length. This procedure produced triplets of anchor molecules and
their associated positive, medium, and negative contexts.

Polymeric materials We have polymeric material datasets from different sources, including Poly-
Info (Otsuka et al., 2011), MSA (Thornton et al., 2012), and from (Thornton et al., 2012). We
considered a wide range of polymer properties spanning several categories, including thermal proper-
ties (e.g., heat capacity, glass transition temperature, melting temperature, and thermal conductivity),
electronic properties (e.g., ionization energy, electron affinity, and band gap), structural properties
(e.g., density, crystallinity, and radius of gyration), and transport properties (e.g., gas diffusion,
solubility, and permeability coefficients). For each property, raw values were normalized to the
unit interval using min–max scaling, with logarithmic transformation applied when dynamic ranges
exceeded 1000 and non-negative shifts applied when necessary. Each polymer with valid property
values was treated as an anchor, and pairwise distances in normalized property space were computed
against all other polymers. Candidate molecules were partitioned into positive [0, 0.25), medium
[0.25, 0.5), and negative [0.5, 1] contexts, with up to 15 examples sampled per category based on
smallest distances.

B.2 TOKENIZER PREPARATION

We present NPE in Algorithm 1, inspired by both the classic BPE and (Kong et al., 2022). We build
the tokenizer with NPE on the pretraining data. To choose the motif vocabulary size, we analyze
the number of nodes in motif-represented molecular graphs as the vocabulary size varies (Figure 8).
We report mean, max, and median counts. We set Kring = K/10, except for K = 6000, where
Kring = 300. When K ≥ 3000, the mean and max node counts no longer significantly decrease, and
the median remains unchanged. Therefore, we select K = 3000 with Kring = 300 for pretraining.

Next, Figure 9 presents the tokenization results on the pretraining dataset. log-scale distributions of
motif- and atom-level node counts. Both representations exhibit heavy-tailed behavior, as shown by
the rank-frequency plots and complementary cumulative distribution functions (CCDFs).
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Algorithm 1 Node Pair Encoding (NPE) with Constraints

Require: molecule list D, motif vocabularyM = ∅, max size K, ring count threshold Nring
Ensure: motif vocabularyM

1: Initialize each molecule X ∈ D with atom-level and ring-based motifs
2: Count frequencies of ring-based motifs across D
3: Add all periodic-table elements, polymerization “*”, and top-Nring frequent rings toM
4: while |M| < K do
5: (1) Merge Neighbor: Initialize empty multiset S ← ∅
6: for each molecule X ∈ D do
7: for each motif m from X do
8: for each adjacent motif m′ in X such that m and m′ are mergeable under structural

constraints (e.g., rings treated as units) do
9: form new motif m← m ∪m′

10: add m to multiset S with frequency count
11: end for
12: end for
13: end for
14: (2) Frequency Selection: Find most frequent motif m∗ ∈ S
15: (3) Update Graph:
16: for each molecule X ∈ D do
17: for each pair of adjacent motifs (m,m′) in X do
18: if their merged form equals m∗ then
19: replace m and m′ with m∗ in X
20: end if
21: end for
22: end for
23: Add m∗ toM if not already in it
24: end while
25: return M
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Figure 8: Change in node count with varying motif vocabulary size.

Figure 10 shows the distribution of compression ratios, defined as Uncompressed Graph Size
Compressed Graph Size , in both linear

and logarithmic scale. The ratio ranges from 1 to 40, with a median and mean around 5.5, indicating
a consistent reduction in graph size by approximately a factor of five.

Figure 11 provides a detailed analysis of the relationship between atom-level and motif-level repre-
sentations. We observe a mild positive correlation: larger molecules tend to yield higher compression
ratios. Notably, molecules with 150 to 200 atoms are reduced by up to a factor of 15, demonstrating
efficient compression at larger scales.

B.3 MODEL PRETRAINING

We pretrain a 0.7B-parameter model (Transformer depth 24, hidden size 1280, 16 heads, MLP ratio
4) for 550 epochs, requiring 49 days on 2–4 H100 GPUs, or about 146 GPU days. We monitor
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Figure 9: Comparison of the number of nodes in atom- and motif-based representations for 1 million
molecules from the pretraining set.

Figure 10: Analysis on the compression ratio.

training loss and reconstruction accuracy for each component in Eq. (4). As shown in Figure 12,
loss decreases and accuracy increases throughout training. Near the end, values plateau but still
show incremental gains. Pretraining was stopped once reconstruction accuracy exceeded 0.99 for all
components due to resource limits. During training, we also generated 512 molecules at sampled
steps using the validation set. In Figure 13, we report chemical validity and structural similarity to
ground truth measured by MACCS fingerprints (Durant et al., 2002). Both metrics improve with
training and reach about 0.83 validity and 0.69 similarity.

These trends in loss, accuracy, validity, and similarity indicate that larger models, more data, and
additional compute could further improve DemoDiff as a molecular foundation model.

C DETAILS ON EXPERIMENTS

C.1 DETAILS ON EXPERIMENTAL SET-UPS

We curate 33 benchmark tasks across six categories to evaluate DemoDiff against 13 baselines,
including eight molecular optimization methods, two conditional generation models, and three LLMs.
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Table 4: Benchmark Task Statistics: Example Counts and Score Ranges [min, median, max]

Task Name Total Pos Med Neg All Scores Pos Scores Med Scores Neg Scores
Drug Rediscovery

Albuterol Similarity 450 150 150 150 [0.075, 0.537,
1.000]

[0.752, 0.807,
1.000]

[0.502, 0.537,
0.744]

[0.075, 0.219,
0.476]

Celecoxib Rediscovery 450 150 150 150 [0.015, 0.548,
1.000]

[0.753, 0.786,
1.000]

[0.505, 0.548,
0.735]

[0.015, 0.153,
0.367]

Median 1 150 0 0 150 [0.000, 0.057,
0.419]

[0.000, 0.057,
0.419]

Median 2 150 0 0 150 [0.038, 0.122,
0.413]

[0.038, 0.122,
0.413]

Mestranol Similarity 450 150 150 150 [0.004, 0.538,
1.000]

[0.752, 0.824,
1.000]

[0.500, 0.538,
0.713]

[0.004, 0.150,
0.379]

Thiothixene Rediscovery 336 36 150 150 [0.019, 0.510,
1.000]

[0.753, 0.790,
1.000]

[0.505, 0.560,
0.736]

[0.019, 0.155,
0.354]

Troglitazone Rediscovery 383 83 150 150 [0.018, 0.526,
1.000]

[0.752, 0.792,
1.000]

[0.504, 0.553,
0.727]

[0.018, 0.143,
0.250]

Drug MPO
Amlodipine Mpo 450 150 150 150 [0.000, 0.517,

0.871]
[0.750, 0.784,
0.871]

[0.502, 0.517,
0.742]

[0.000, 0.145,
0.500]

Fexofenadine Mpo 450 150 150 150 [0.000, 0.570,
0.960]

[0.750, 0.772,
0.960]

[0.501, 0.570,
0.720]

[0.000, 0.125,
0.498]

Osimertinib Mpo 450 150 150 150 [0.000, 0.638,
0.908]

[0.750, 0.761,
0.908]

[0.501, 0.638,
0.747]

[0.000, 0.047,
0.493]

Perindopril Mpo 306 6 150 150 [0.000, 0.502,
0.790]

[0.766, 0.778,
0.790]

[0.502, 0.522,
0.680]

[0.000, 0.114,
0.415]

Ranolazine Mpo 450 150 150 150 [0.000, 0.575,
0.867]

[0.750, 0.764,
0.867]

[0.502, 0.575,
0.743]

[0.000, 0.052,
0.454]

Sitagliptin Mpo 389 89 150 150 [0.000, 0.610,
0.841]

[0.750, 0.768,
0.841]

[0.500, 0.641,
0.748]

[0.000, 0.000,
0.213]

Zaleplon Mpo 300 0 150 150 [0.000, 0.493,
0.637]

[0.501, 0.528,
0.637]

[0.000, 0.003,
0.486]

Structure Constrained Design
Deco Hop 450 150 150 150 [0.252, 0.529,

0.953]
[0.793, 0.842,
0.953]

[0.502, 0.529,
0.677]

[0.252, 0.283,
0.500]

Isomers C7H8N2O2 450 150 150 150 [0.000, 0.592,
1.000]

[0.799, 0.819,
1.000]

[0.535, 0.592,
0.741]

[0.000, 0.000,
0.449]

Isomers C9H10N2O2Pf2Cl 450 150 150 150 [0.000, 0.561,
0.882]

[0.767, 0.779,
0.882]

[0.503, 0.561,
0.720]

[0.000, 0.000,
0.386]

Scaffold Hop 450 150 150 150 [0.333, 0.510,
0.828]

[0.754, 0.782,
0.828]

[0.500, 0.510,
0.627]

[0.333, 0.380,
0.444]

Valsartan Smarts 188 23 15 150 [0.000, 0.000,
0.975]

[0.757, 0.806,
0.975]

[0.512, 0.686,
0.739]

[0.000, 0.000,
0.000]

Drug Design
DRD2 450 150 150 150 [0.000, 0.623,

1.000]
[0.760, 0.961,
1.000]

[0.507, 0.623,
0.742]

[0.000, 0.004,
0.344]

GSK3B 450 150 150 150 [0.000, 0.615,
1.000]

[0.760, 0.880,
1.000]

[0.510, 0.615,
0.750]

[0.000, 0.030,
0.380]

JNK3 450 150 150 150 [0.000, 0.570,
1.000]

[0.760, 0.890,
1.000]

[0.510, 0.570,
0.750]

[0.000, 0.010,
0.340]

QED 450 150 150 150 [0.010, 0.644,
0.947]

[0.751, 0.819,
0.947]

[0.501, 0.644,
0.749]

[0.010, 0.348,
0.499]

Target Based Design
Docking 5ht1b 450 150 150 150 [0.000, 0.607,

0.879]
[0.757, 0.771,
0.879]

[0.507, 0.607,
0.729]

[0.000, 0.450,
0.500]

Docking braf 450 150 150 150 [0.000, 0.600,
0.871]

[0.757, 0.771,
0.871]

[0.507, 0.600,
0.736]

[0.000, 0.464,
0.500]

Docking fa7 305 5 150 150 [0.000, 0.507,
1.000]

[0.764, 0.800,
1.000]

[0.507, 0.536,
0.629]

[0.000, 0.450,
0.500]

Docking jak2 450 150 150 150 [0.000, 0.586,
0.936]

[0.757, 0.771,
0.936]

[0.507, 0.586,
0.714]

[0.000, 0.464,
0.500]

Docking parp1 450 150 150 150 [0.000, 0.614,
0.864]

[0.757, 0.771,
0.864]

[0.507, 0.614,
0.750]

[0.000, 0.471,
0.500]

Material Design
Polymer CO2 CH4 160 1 9 150 [0.042, 0.203,

0.777]
[0.777, 0.777,
0.777]

[0.538, 0.603,
0.731]

[0.042, 0.198,
0.487]

Polymer CO2 N2 158 0 8 150 [0.000, 0.110,
0.631]

[0.506, 0.561,
0.631]

[0.000, 0.102,
0.498]

Polymer H2 CH4 177 13 14 150 [0.000, 0.117,
1.000]

[0.752, 0.988,
1.000]

[0.509, 0.615,
0.739]

[0.000, 0.050,
0.487]

Polymer H2 N2 175 7 18 150 [0.005, 0.178,
1.000]

[0.783, 0.974,
1.000]

[0.514, 0.619,
0.731]

[0.005, 0.151,
0.495]

Polymer O2 N2 173 0 23 150 [0.309, 0.355,
0.726]

[0.501, 0.579,
0.726]

[0.309, 0.346,
0.493]
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Figure 11: Analysis on the relationship between atom- and motif-level representations.
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Figure 12: Training curves showing (a) losses and (b) accuracies.

Details are in Table 4. The benchmarks span seven drug rediscovery tasks, seven drug multi-objective
optimization (MPO) tasks, five structure-constrained generation tasks, four drug design tasks, five
target-based generation tasks, and five polymer property design tasks. Specifically, the benchmarks
span the following tasks:

• Drug rediscovery (7 tasks): Celecoxib rediscovery, Mestranol similarity, Thiothixene
rediscovery, Troglitazone rediscovery, Median 1 (median similarity between camphor and
menthol), Median 2 (median similarity between tadalafil and sildenafil), and Albuterol
similarity. These tasks use Oracle scoring functions based on the similarity between the
drug and the target using extended connectivity fingerprint (Brown et al., 2019).

• Drug MPO (7 tasks): Perindopril MPO, Ranolazine MPO, Osimertinib MPO, Zaleplon
MPO, Sitagliptin MPO, Amlodipine MPO, and Fexofenadine MPO. These tasks use Oracle
scoring functions based on drug–target similarity with extended connectivity fingerprints,
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Figure 13: Generation validity and structure similarity to the target during pretraining.

along with additional constraints such as logP, TPSA, and Bertz, computed using RD-
Kit (Brown et al., 2019).

• Structure-constrained design (5 tasks): Isomers C7H8N2O2, Isomers C9H10N2O2PF2Cl,
Decoration hop, Scaffold hop, and Valsartan SMARTS. These tasks use Oracle scoring
functions primarily based on SMARTS patterns that evaluate whether a particular structure
is present or absent in the target, optionally combined with other computational constraints.
Or whether the target is an isomer of the molecular formula.

• Drug design (4 tasks): DRD2, JNK3, GSK3β, and QED. These tasks use Oracle scoring
functions based on ML models. QED is based on RDKit.

• Target-based design (5 tasks): Docking BRAF, Docking PARP1, Docking JAK2, Docking
FA7, and Docking 5-HT1B. These tasks use Oracle scoring functions based on the docking
program QuickVina 2 (Alhossary et al., 2015). Docking scores are negative, with smaller
values indicating better binding. To map them into [0, 1] (where larger values are better), we
use s = clip

(
− docking score

14 , 0, 1
)

, where clip(x, a, b) = min(max(x, a), b).

• Material design (5 tasks): Polymer gas separation for different gas pairs: CO2/CH4,
CO2/N2, H2/CH4, H2/N2, and O2/N2. Each task studies whether two gases can be separated
based on the polymeric membrane materials. We evaluate their selectivity score for gas
separation (Robeson, 2008), defined as the log-ratio of permeabilities relative to an empirical
boundary, shifted and clipped into the range [0, 1]. Gas permeabilities are calculated using
ML models trained on all available labeled data (a superset of the task-specific data), and
the selectivity score is then computed based on gas permeabilities.

Each task contains up to 450 molecule–score pairs, evenly split into positive, medium, and negative
groups. Some tasks may have fewer pairs due to insufficient positive examples, as shown in Table 4.
For instance, the Median 1 and Median 2 tasks in drug rediscovery have no positive or medium
examples. These pairs are used to train predictors for molecular optimization methods, conditional
generators, or to provide demonstrations for ICL methods. Task scores lie within [0, 1], with the
objective of generating molecules with score 1. Each task also defines an oracle function, which is
used only for evaluation, except by molecular optimization methods that actively query the oracle.

For baselines, we compare against four molecular optimization methods from the PMO bench-
mark (Gao et al., 2022). They are the top four methods selected from 25 candidates: Graph Genetic
Algorithm (GraphGA), REINVENT (SMILES-based), Gaussian Process Bayesian Optimization
(GPBO), and Superfast Traversal, Optimization, Novelty, Exploration, and Discovery (STONED,
based on SELFIES). SELFIES is unavailable for polymers and STONED cannot be applied to material
design tasks. We have two evaluation settings: one with 100 oracle calls and one with 10,000 predictor
calls. While PMO permits up to 10,000 Oracle calls, such budgets are impractical in real-world
settings due to the cost and time associated with laboratory experiments, which may require days to
months for a single call. To address this issue, we examine whether molecular optimization methods
can be paired with predictor calls. Following prior work (Gao et al., 2022; Liu et al., 2024c), we use
a random forest predictor trained on all 450 molecule–score pairs as the task-specific predictor.

We include conditional generation models such as LSTM and Graph DiT (Liu et al., 2024c). They are
trained on all available training data for each task. For ICL, we compare DemoDiff (739M parameters)
with recent large-scale LLMs, including DeepSeek-V3 (Liu et al., 2024a), GPT-4o (Achiam et al.,
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Table 5: Top-1 performance across 33 tasks. Scores are reported with a target of 1 as mean ± std by
category. Best results in each column is bolded.

Task Category Drug Drug Structure Drug Target Material Avg Total
Rediscovery MPO Constrained Design Based Design Rank Sum

# Tasks 7 7 5 4 5 5 33 33

Molecular Optimization Methods with 100 Oracle Calls

GraphGA 0.28±0.06 0.49±0.18 0.46±0.14 0.45±0.33 0.74±0.04 0.72±0.23 6.65 16.73
REINVENT 0.31±0.07 0.47±0.16 0.45±0.14 0.56±0.38 0.75±0.06 0.00±0.00 7.55 13.68
GPBO 0.28±0.06 0.46±0.18 0.47±0.14 0.41±0.35 0.75±0.07 0.80±0.25 7.03 16.95
STONED 0.28±0.06 0.49±0.18 0.46±0.14 0.44±0.35 0.74±0.06 NO SELFIES 8.31 13.07

Molecular Optimization Methods with 10000 Predictor Calls

GraphGA 0.33±0.14 0.56±0.21 0.54±0.38 0.60±0.41 0.83±0.12 0.70±0.21 6.04 19.03
REINVENT 0.36±0.29 0.38±0.30 0.42±0.43 0.77±0.12 0.59±0.37 0.87±0.17 6.73 17.67
GPBO 0.37±0.31 0.50±0.25 0.47±0.32 0.64±0.38 0.84±0.08 0.58±0.34 7.06 18.13
STONED 0.28±0.17 0.43±0.25 0.51±0.32 0.30±0.10 0.26±0.36 NO SELFIES 9.93 10.07

Conditional Generation Models

LSTM 0.47±0.36 0.33±0.20 0.64±0.39 0.36±0.34 0.73±0.12 0.48±0.29 8.76 16.30
Graph-DiT 0.46±0.27 0.53±0.07 0.60±0.36 0.51±0.44 0.70±0.07 0.78±0.23 7.61 19.44

Learning from In-Context Demonstrations

DeepSeek-V3 0.66±0.37 0.60±0.26 0.54±0.25 0.74±0.14 0.71±0.12 0.75±0.27 6.34 21.77
GPT-4o 0.53±0.31 0.56±0.20 0.52±0.32 0.54±0.41 0.69±0.09 0.77±0.22 7.34 19.69
Qwen-Max 0.18±0.28 0.19±0.17 0.53±0.34 0.51±0.45 0.21±0.29 0.25±0.40 10.25 9.60
DemoDiff (Ours) 0.54±0.33 0.54±0.19 0.59±0.37 0.91±0.07 0.77±0.10 0.93±0.16 3.94 22.63

2023), and Qwen-Max (Yang et al., 2025), each with up to hundreds of billions of parameters. For
LLMs, we sample 12 positive, 6 medium, and 6 negative as demonstrations.

For DemoDiff, we set the context size to 150 motif tokens. Excluding the target molecule, the context
includes on average 23 demonstrations: half positive, one quarter medium, and one quarter negative.
For evaluation, each method generates 100 valid, unique, and novel molecules per task, which are
scored by oracle functions. We report the average of the top-10 oracle scores as the performance
score and compute its harmonic mean with the diversity score. The diversity score is computed as

IntDiv(G) = 1 −

 1

|G|2
∑

m1,m2∈G
m1 ̸=m2

T (m1,m2)
2


1
2

, (6)

where G denotes the generated set of molecules for evaluation. For DemoDiff, we first generate 1000
candidates and select the top 100 with the highest consistency scores, prioritizing alignment with the
context order of positive, medium, and negative examples.

C.2 ADDITIONAL DISCUSSION OF EXPERIMENTAL RESULTS

We include more results in Tables 6 to 9 and 12 to 15. Beyond the discussion of ICL methods and
DemoDiff in Section 4.1, we have additional observations:

Oracle quality critically affects molecular optimization. Comparing molecular optimization
methods under varying numbers of function calls, we find that allowing more predictor queries
does not consistently lead to better performance. This suggests that both the quantity and quality of
function evaluations (oracle or predictor) are essential for guiding molecular optimization. While
not the main focus of this study, this insight points to an important direction for future work.
For instance, in the structure-constrained design task involving the Valsartan SMARTS pattern
(CN(C=O)Cc1ccc(c2ccccc2)cc1), shown in Table 14, all molecular optimization methods
receive a score of zero. This failure is due to a predictor trained on limited data, which cannot model
the latent design constraints, such as satisfying multiple SMARTS patterns and physicochemical
properties (e.g., logP, TPSA, and Bertz index (Brown et al., 2019)). In contrast, in target-based design
tasks (e.g., Table 16), where training data are sufficient, more predictor calls improve performance by
allowing finer structural optimization.
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Table 6: Harmonic mean of Top-10 performance and diversity scores on the Drug Design task
category. Scores are reported with a target of 1. Best results in each column is bolded.

Task DRD2 JNK3 GSK3B QED Avg Total
Rank Sum

Molecular Optimization Methods with 100 Oracle Calls

GraphGA 0.22 0.23 0.31 0.90 6.25 1.65
REINVENT 0.31 0.21 0.26 0.90 7.00 1.68
GPBO 0.20 0.25 0.24 0.89 7.75 1.57
STONED 0.22 0.23 0.31 0.90 7.25 1.65

Molecular Optimization Methods with 10000 Predictor Calls

GraphGA 0.60 0.18 0.40 0.79 7.00 1.97
REINVENT 0.31 0.09 0.40 0.71 8.75 1.51
GPBO 0.55 0.27 0.54 0.60 6.00 1.97
STONED 0.14 0.23 0.37 0.32 9.50 1.07

Conditional Generation Models

LSTM 0.15 0.04 0.27 0.83 11.00 1.30
Graph-DiT 0.78 0.08 0.23 0.81 9.50 1.90

Learning from In-Context Demonstrations

DeepSeek-V3 0.71 0.65 0.42 0.84 3.75 2.62
GPT-4o 0.80 0.13 0.13 0.84 8.25 1.90
Qwen-Max 0.00 0.14 0.36 0.68 10.75 1.18
DemoDiff (Ours) 0.88 0.65 0.78 0.87 2.25 3.18

Performance alignment across methods may indicate task difficulty. It is challenging to formally
quantify task difficulty, as it depends on the oracle definition and data quality. However, we observe
that tasks where molecular optimization performs well—such as target-based or material design—are
also more tractable for ICL methods, which can infer the underlying concept with few demonstrations.
This alignment suggests that task difficulty may be partially reflected in cross-method consistency.
Nonetheless, exceptions exist. As shown in Table 7, for DRD2 and JNK3, molecular optimization
underperforms under limited supervision, while ICL methods, including DeepSeek-V3, GPT-4o, and
DemoDiff, achieve strong results.

C.3 DETAILS ON CASE STUDIES

Figures 14 to 16 present case studies using negative demonstrations to generate molecules with
positive scores. The tasks include structure-constrained design of an isomer with 17 demonstrations,
drug MPO of Osimertinib with 23 demonstrations, and protein target design of PARP1 with 26
demonstrations. These molecules contain 460, 631, and 481 atoms, respectively, far exceeding the
150-token context window under atom-level representations. The motif-level representation efficiently
encodes all demonstrations within the same window.
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Table 7: Top-1 performance on the Drug Design task category. Scores are reported with a target of 1.
Best results in each column is bolded.

Task DRD2 JNK3 GSK3B QED Avg Total
Rank Sum

Molecular Optimization Methods with 100 Oracle Calls

GraphGA 0.23 0.23 0.41 0.94 6.50 1.82
REINVENT 0.83 0.23 0.24 0.94 6.00 2.25
GPBO 0.23 0.23 0.23 0.94 8.25 1.64
STONED 0.19 0.23 0.41 0.94 8.25 1.77

Molecular Optimization Methods with 10000 Predictor Calls

GraphGA 0.99 0.14 0.38 0.90 8.00 2.41
REINVENT 0.76 0.61 0.80 0.91 5.25 3.08
GPBO 0.99 0.19 0.47 0.93 6.50 2.58
STONED 0.25 0.21 0.44 0.30 9.75 1.20

Conditional Generation Models

LSTM 0.28 0.06 0.26 0.85 11.00 1.45
Graph-DiT 0.99 0.07 0.22 0.78 10.25 2.06

Learning from In-Context Demonstrations

DeepSeek-V3 0.77 0.75 0.54 0.88 5.75 2.94
GPT-4o 0.94 0.21 0.17 0.85 10.25 2.17
Qwen-Max 0.00 0.26 0.89 0.89 7.25 2.04
DemoDiff (Ours) 1.00 0.83 0.89 0.93 2.00 3.65

Table 8: Harmonic mean of Top-10 performance and diversity scores on the Drug MPO task category.
Scores are reported with a target of 1. Best results in each column is bolded.

Task Perindopril Ranolazine Osimertinib Zaleplon Sitagliptin Amlodipine Fexofenadine Avg Total
MPO MPO MPO MPO MPO MPO MPO Rank Sum

Molecular Optimization Methods with 100 Oracle Calls

GraphGA 0.52 0.35 0.77 0.47 0.24 0.60 0.70 4.29 3.64
REINVENT 0.50 0.39 0.75 0.48 0.24 0.59 0.66 5.14 3.62
GPBO 0.51 0.39 0.76 0.45 0.23 0.59 0.68 6.29 3.60
STONED 0.52 0.35 0.77 0.47 0.24 0.60 0.70 5.29 3.64

Molecular Optimization Methods with 10000 Predictor Calls

GraphGA 0.41 0.60 0.64 0.48 0.13 0.59 0.62 7.00 3.48
REINVENT 0.11 0.24 0.65 0.39 0.00 0.09 0.10 12.57 1.58
GPBO 0.23 0.36 0.68 0.45 0.12 0.62 0.67 7.43 3.12
STONED 0.53 0.26 0.47 0.47 0.01 0.60 0.45 8.00 2.79

Conditional Generation Models

LSTM 0.06 0.14 0.26 0.09 0.13 0.21 0.21 12.57 1.10
Graph-DiT 0.59 0.24 0.71 0.43 0.31 0.55 0.66 7.00 3.49

Learning from In-Context Demonstrations

DeepSeek-V3 0.49 0.63 0.70 0.42 0.10 0.63 0.58 7.14 3.55
GPT-4o 0.63 0.39 0.68 0.46 0.17 0.69 0.67 4.71 3.70
Qwen-Max 0.26 0.21 0.00 0.39 0.00 0.25 0.06 12.86 1.17
DemoDiff (Ours) 0.52 0.58 0.80 0.43 0.09 0.62 0.73 4.71 3.78
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Table 9: Top-1 performance on the Drug MPO task category. Scores are reported with a target of 1.
Best results in each column is bolded.

Task Perindopril Ranolazine Osimertinib Zaleplon Sitagliptin Amlodipine Fexofenadine Avg Total
MPO MPO MPO MPO MPO MPO MPO Rank Sum

Molecular Optimization Methods with 100 Oracle Calls

GraphGA 0.43 0.36 0.78 0.40 0.23 0.56 0.62 5.86 3.40
REINVENT 0.40 0.41 0.74 0.43 0.23 0.48 0.58 8.14 3.26
GPBO 0.38 0.36 0.78 0.37 0.23 0.48 0.60 9.71 3.20
STONED 0.43 0.36 0.78 0.40 0.23 0.56 0.62 7.29 3.40

Molecular Optimization Methods with 10000 Predictor Calls

GraphGA 0.40 0.67 0.83 0.41 0.28 0.53 0.81 4.14 3.93
REINVENT 0.17 0.34 0.82 0.40 0.00 0.22 0.72 9.43 2.68
GPBO 0.15 0.41 0.78 0.40 0.30 0.64 0.80 6.00 3.48
STONED 0.44 0.26 0.77 0.42 0.01 0.52 0.62 8.57 3.03

Conditional Generation Models

LSTM 0.08 0.11 0.59 0.22 0.44 0.42 0.46 11.71 2.31
Graph-DiT 0.58 0.51 0.61 0.46 0.46 0.48 0.61 6.00 3.71

Learning from In-Context Demonstrations

DeepSeek-V3 0.74 0.77 0.78 0.39 0.10 0.77 0.63 5.57 4.17
GPT-4o 0.74 0.47 0.71 0.43 0.19 0.71 0.65 5.57 3.90
Qwen-Max 0.30 0.21 0.00 0.49 0.00 0.22 0.12 11.29 1.33
DemoDiff (Ours) 0.44 0.65 0.77 0.39 0.24 0.55 0.73 5.71 3.77

Table 10: Harmonic mean of Top-10 performance and diversity scores on the Drug Rediscovery task
category. Scores are reported with a target of 1. Best results in each column is bolded.

Task Celecoxib Mestranol Thiothixene Troglitazone Median 1 Median 2 Albuterol Avg Total
Rediscovery Similarity Rediscovery Rediscovery Similarity Rank Sum

Molecular Optimization Methods with 100 Oracle Calls

GraphGA 0.39 0.39 0.38 0.34 0.26 0.29 0.49 7.14 2.54
REINVENT 0.39 0.44 0.37 0.34 0.30 0.28 0.50 6.29 2.62
GPBO 0.37 0.39 0.39 0.33 0.28 0.30 0.51 6.57 2.57
STONED 0.39 0.39 0.38 0.34 0.26 0.29 0.49 8.14 2.54

Molecular Optimization Methods with 10000 Predictor Calls

GraphGA 0.38 0.41 0.38 0.35 0.28 0.28 0.55 6.86 2.61
REINVENT 0.31 0.15 0.38 0.26 0.19 0.27 0.53 9.29 2.08
GPBO 0.34 0.43 0.37 0.26 0.19 0.27 0.46 10.14 2.32
STONED 0.39 0.49 0.38 0.32 0.19 0.27 0.26 8.71 2.30

Conditional Generation Models

LSTM 0.61 0.66 0.20 0.25 0.20 0.12 0.70 7.71 2.74
Graph-DiT 0.60 0.58 0.33 0.22 0.39 0.17 0.73 6.57 3.02

Learning from In-Context Demonstrations

DeepSeek-V3 0.54 0.46 0.47 0.57 0.18 0.25 0.70 5.29 3.18
GPT-4o 0.54 0.64 0.61 0.37 0.20 0.19 0.73 4.29 3.28
Qwen-Max 0.48 0.00 0.00 0.00 0.00 0.15 0.40 12.57 1.03
DemoDiff (Ours) 0.50 0.57 0.42 0.49 0.12 0.23 0.75 5.43 3.09
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Table 11: Top-1 performance on the Drug Rediscovery task category. Scores are reported with a
target of 1. Best results in each column is bolded.

Task Celecoxib Mestranol Thiothixene Troglitazone Median 1 Median 2 Albuterol Avg Total
Rediscovery Similarity Rediscovery Rediscovery Similarity Rank Sum

Molecular Optimization Methods with 100 Oracle Calls

GraphGA 0.27 0.28 0.28 0.23 0.23 0.23 0.40 7.71 1.93
REINVENT 0.34 0.39 0.32 0.25 0.23 0.23 0.41 6.14 2.18
GPBO 0.28 0.31 0.29 0.23 0.23 0.23 0.41 7.43 1.99
STONED 0.27 0.28 0.28 0.23 0.23 0.23 0.40 9.43 1.93

Molecular Optimization Methods with 10000 Predictor Calls

GraphGA 0.35 0.38 0.28 0.25 0.21 0.20 0.62 7.29 2.30
REINVENT 0.36 0.28 0.28 0.27 0.13 0.20 1.00 7.29 2.51
GPBO 0.25 0.57 0.26 0.20 0.13 0.20 1.00 9.29 2.61
STONED 0.27 0.64 0.28 0.23 0.13 0.20 0.22 10.14 1.96

Conditional Generation Models

LSTM 1.00 0.82 0.18 0.33 0.20 0.09 0.69 6.86 3.31
Graph-DiT 0.78 0.47 0.51 0.18 0.40 0.10 0.81 6.43 3.25

Learning from In-Context Demonstrations

DeepSeek-V3 0.77 1.00 0.84 0.75 0.12 0.17 1.00 4.71 4.64
GPT-4o 0.53 0.68 0.81 0.46 0.15 0.15 0.93 5.43 3.70
Qwen-Max 0.72 0.00 0.00 0.00 0.00 0.10 0.41 12.14 1.23
DemoDiff (Ours) 0.84 0.64 0.34 0.65 0.14 0.16 1.00 4.71 3.77

Table 12: Harmonic mean of Top-10 performance and diversity scores on the Material Design task
category. Scores are reported with a target of 1. Best results in each column is bolded.

Task Polymer Polymer Polymer Polymer Polymer Avg Total
CO2/CH4 CO2/N2 H2/CH4 H2/N2 O2/N2 Rank Sum

Molecular Optimization Methods with 100 Oracle Calls

GraphGA 0.59 0.42 0.71 0.52 0.64 4.60 2.88
REINVENT 0.00 0.00 0.00 0.00 0.00 11.00 0.00
GPBO 0.46 0.31 0.76 0.79 0.68 3.40 3.00
STONED NO SELFIES NO SELFIES NO SELFIES NO SELFIES NO SELFIES NO SELFIES NO SELFIES

Molecular Optimization Methods with 10000 Predictor Calls

GraphGA 0.60 0.55 0.75 0.40 0.44 4.20 2.75
REINVENT 0.32 0.37 0.56 0.69 0.61 5.80 2.55
GPBO 0.55 0.00 0.57 0.52 0.46 7.20 2.09
STONED NO SELFIES NO SELFIES NO SELFIES NO SELFIES NO SELFIES NO SELFIES NO SELFIES

Conditional Generation Models

LSTM 0.00 0.29 0.16 0.12 0.23 10.00 0.80
Graph-DiT 0.27 0.55 0.74 0.57 0.63 4.60 2.76

Learning from In-Context Demonstrations

DeepSeek-V3 0.13 0.45 0.53 0.68 0.15 7.40 1.94
GPT-4o 0.37 0.30 0.44 0.70 0.33 7.00 2.14
Qwen-Max 0.00 0.09 0.00 0.00 0.42 10.80 0.51
DemoDiff (Ours) 0.63 0.52 0.72 0.81 0.68 2.00 3.36
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Table 13: Top-1 performance on the Material Design task category. Scores are reported with a target
of 1. Best results in each column is bolded.

Task Polymer Polymer Polymer Polymer Polymer Avg Total
CO2/CH4 CO2/N2 H2/CH4 H2/N2 O2/N2 Rank Sum

Molecular Optimization Methods with 100 Oracle Calls

GraphGA 0.79 0.41 1.00 0.57 0.84 5.60 3.60
REINVENT 0.00 0.00 0.00 0.00 0.00 11.20 0.00
GPBO 0.89 0.43 1.00 1.00 0.68 4.40 4.00
STONED NO SELFIES NO SELFIES NO SELFIES NO SELFIES NO SELFIES NO SELFIES NO SELFIES

Molecular Optimization Methods with 10000 Predictor Calls

GraphGA 0.69 0.82 1.00 0.51 0.50 6.20 3.52
REINVENT 0.71 0.67 1.00 1.00 0.97 3.60 4.35
GPBO 0.67 0.00 0.80 0.85 0.57 8.40 2.90
STONED NO SELFIES NO SELFIES NO SELFIES NO SELFIES NO SELFIES NO SELFIES NO SELFIES

Conditional Generation Models

LSTM 0.00 0.77 0.55 0.63 0.44 8.60 2.39
Graph-DiT 0.44 1.00 1.00 0.79 0.69 5.60 3.92

Learning from In-Context Demonstrations

DeepSeek-V3 0.35 0.60 0.95 1.00 0.86 6.20 3.76
GPT-4o 0.67 0.52 1.00 1.00 0.65 6.80 3.85
Qwen-Max 0.00 0.34 0.00 0.02 0.91 9.60 1.27
DemoDiff (Ours) 1.00 0.64 1.00 1.00 1.00 1.80 4.64

Table 14: Top-1 performance on the Structure Constrained Design task category. Scores are reported
with a target of 1. Best results in each column is bolded.

Task Isomers Isomers Deco Hop Scaffold Valsartan Avg Total
c7h8n2o2 c9h10n2o2pf2cl Hop Smarts Rank Sum

Molecular Optimization Methods with 100 Oracle Calls

GraphGA 0.55 0.47 0.58 0.45 0.23 7.60 2.29
REINVENT 0.55 0.44 0.58 0.45 0.23 8.20 2.26
GPBO 0.55 0.50 0.59 0.47 0.23 6.80 2.34
STONED 0.55 0.47 0.58 0.45 0.23 9.40 2.29

Molecular Optimization Methods with 10000 Predictor Calls

GraphGA 1.00 0.78 0.54 0.39 0.00 8.00 2.72
REINVENT 1.00 0.00 0.62 0.47 0.00 6.60 2.09
GPBO 0.88 0.47 0.55 0.45 0.00 10.20 2.36
STONED 0.82 0.72 0.57 0.47 0.00 8.40 2.57

Conditional Generation Models

LSTM 1.00 0.87 0.54 0.78 0.00 6.20 3.18
Graph-DiT 0.88 0.82 0.53 0.77 0.00 7.80 3.01

Learning from In-Context Demonstrations

DeepSeek-V3 0.72 0.50 0.84 0.41 0.21 7.80 2.68
GPT-4o 0.74 0.82 0.59 0.46 0.00 6.20 2.61
Qwen-Max 0.90 0.73 0.56 0.45 0.01 7.40 2.67
DemoDiff (Ours) 0.88 0.73 0.86 0.49 0.00 4.40 2.96
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Table 15: Harmonic mean of Top-10 performance and diversity scores on the Structure Constrained
Design task category. Scores are reported with a target of 1. Best results in each column is bolded.

Task Isomers Isomers Deco Hop Scaffold Valsartan Avg Total
c7h8n2o2 c9h10n2o2pf2cl Hop Smarts Rank Sum

Molecular Optimization Methods with 100 Oracle Calls

GraphGA 0.30 0.44 0.68 0.57 0.14 6.40 2.13
REINVENT 0.36 0.40 0.68 0.57 0.14 7.00 2.15
GPBO 0.27 0.45 0.68 0.57 0.14 6.00 2.11
STONED 0.30 0.44 0.68 0.57 0.14 7.40 2.13

Molecular Optimization Methods with 10000 Predictor Calls

GraphGA 0.71 0.69 0.42 0.45 0.00 8.60 2.27
REINVENT 0.49 0.00 0.46 0.30 0.00 12.00 1.24
GPBO 0.69 0.29 0.65 0.53 0.00 10.00 2.16
STONED 0.62 0.65 0.68 0.57 0.00 7.20 2.51

Conditional Generation Models

LSTM 0.80 0.75 0.65 0.55 0.00 7.20 2.75
Graph-DiT 0.85 0.74 0.66 0.66 0.00 5.60 2.91

Learning from In-Context Demonstrations

DeepSeek-V3 0.64 0.47 0.70 0.52 0.09 6.40 2.43
GPT-4o 0.61 0.78 0.67 0.54 0.00 6.80 2.60
Qwen-Max 0.70 0.55 0.00 0.36 0.01 9.00 1.62
DemoDiff (Ours) 0.82 0.77 0.64 0.57 0.00 5.40 2.80

Table 16: Top-1 performance on the Target Based Design task category. Scores are reported with a
target of 1. Best results in each column is bolded.

Task Docking Docking Docking Docking Docking Avg Total
Braf Parp1 Jak2 Fa7 5HT1B Rank Sum

Molecular Optimization Methods with 100 Oracle Calls

GraphGA 0.75 0.76 0.74 0.67 0.76 6.60 3.69
REINVENT 0.77 0.80 0.69 0.66 0.80 5.60 3.73
GPBO 0.79 0.83 0.72 0.64 0.78 5.60 3.76
STONED 0.74 0.77 0.77 0.64 0.76 7.20 3.69

Molecular Optimization Methods with 10000 Predictor Calls

GraphGA 0.84 0.91 0.79 0.66 0.95 2.60 4.15
REINVENT 0.68 1.00 0.59 0.69 0.00 8.20 2.96
GPBO 0.84 0.91 0.84 0.71 0.91 2.00 4.21
STONED 0.71 0.00 0.61 0.00 0.00 12.80 1.32

Conditional Generation Models

LSTM 0.74 0.76 0.63 0.61 0.92 8.20 3.66
Graph-DiT 0.72 0.77 0.66 0.59 0.74 9.60 3.49

Learning from In-Context Demonstrations

DeepSeek-V3 0.80 0.72 0.81 0.52 0.72 8.00 3.57
GPT-4o 0.77 0.72 0.64 0.57 0.76 9.80 3.46
Qwen-Max 0.54 0.00 0.00 0.51 0.00 13.80 1.06
DemoDiff (Ours) 0.81 0.86 0.79 0.60 0.77 5.00 3.84
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Table 17: Harmonic mean of Top-10 performance and diversity scores on the Target Based Design
task category. Scores are reported with a target of 1. Best results in each column is bolded.

Task Docking Docking Docking Docking Docking Avg Total
Braf Parp1 Jak2 Fa7 5HT1B Rank Sum

Molecular Optimization Methods with 100 Oracle Calls

GraphGA 0.78 0.79 0.76 0.70 0.79 2.80 3.82
REINVENT 0.77 0.79 0.73 0.71 0.78 3.80 3.78
GPBO 0.77 0.79 0.76 0.70 0.78 3.80 3.79
STONED 0.77 0.78 0.77 0.70 0.78 4.00 3.80

Molecular Optimization Methods with 10000 Predictor Calls

GraphGA 0.66 0.70 0.60 0.57 0.70 10.40 3.22
REINVENT 0.19 0.27 0.31 0.09 0.00 12.80 0.86
GPBO 0.69 0.78 0.76 0.73 0.74 6.00 3.70
STONED 0.48 0.00 0.52 0.00 0.00 12.80 1.00

Conditional Generation Models

LSTM 0.73 0.73 0.71 0.66 0.77 7.40 3.61
Graph-DiT 0.71 0.74 0.70 0.66 0.75 8.20 3.55

Learning from In-Context Demonstrations

DeepSeek-V3 0.63 0.64 0.63 0.57 0.73 10.60 3.19
GPT-4o 0.77 0.74 0.70 0.66 0.76 7.00 3.63
Qwen-Max 0.48 0.00 0.00 0.49 0.00 13.40 0.96
DemoDiff (Ours) 0.81 0.82 0.78 0.69 0.79 2.00 3.90
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Figure 14: Structure constrained generation for Isomer with all negative demonstrations.
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Figure 15: Drug MPO for Osimertinib with all negative demonstrations.
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Figure 16: Target-based design for PARP1 with all negative demonstrations.
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