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ABSTRACT

Is it possible to develop an “AI Pathologist” to pass the board-certified examina-
tion of the American Board of Pathology (ABP)? To build such a system, three
challenges need to be addressed. First, we need to create a visual question an-
swering (VQA) dataset where the AI agent is presented with a pathology image
together with a question and is asked to give the correct answer. Due to pri-
vacy concerns, pathology images are usually not publicly available. Besides, only
well-trained pathologists can understand pathology images, but they barely have
time to help create datasets for AI research. The second challenge is: due to the
fact that it is difficult to hire highly experienced pathologists to create pathology
visual questions and answers, the resulting pathology VQA dataset may contain
errors such as some questions may not be relevant to the image or the answers
are not given correctly. Training pathology VQA models using these noisy or
even erroneous data will lead to problematic models that cannot generalize well
on unseen images. The third challenge is: the medical concepts and knowledge
covered in pathology question-answer (QA) pairs are very diverse while the num-
ber of QA pairs available for modeling training is limited. How to learn effective
representations of diverse medical concepts based on limited data is technically
demanding. In this paper, we aim to address these three challenges. To our best
knowledge, our work represents the first one addressing the pathology VQA prob-
lem. To deal with the issue that a publicly available pathology VQA dataset is
lacking, we create PathVQA, a VQA dataset with 32,795 questions asked from
4,998 pathology images. The questions in PathVQA are similar to those in the
ABP tests. To our best knowledge, this is the first dataset for pathology VQA. To
address the second challenge, we propose a learning-by-ignoring approach which
automatically identifies training examples that have bad-quality and remove them
from the training dataset. To address the third challenge, we propose to use cross-
modal self-supervised learning to learn powerful visual and textual representations
jointly. We perform experiments on our created PathVQA dataset and the results
demonstrate the effectiveness of our proposed learning-by-ignoring method and
cross-modal self-supervised learning methods.

1 INTRODUCTION

Pathology studies the causes and effects of diseases or injuries. It underpins every aspect of patient
care, such as diagnostic testing, providing treatment advice, preventing diseases using cutting-edge
genetic technologies, to name a few. Medical professionals practicing pathology are called patholo-
gists, who examine bodies and body tissues. To become a board-certificated pathologist in the US,
a medical professional needs to pass a certification examination organized by the American Board
of Pathology (ABP), which is a very challenging task. We are interested in asking: whether an ar-
tificial intelligence (AI) system can be developed to pass the ABP examination? It is an important
step towards achieving AI-aided clinical decision support and clinical education. Among the ABP
test questions, one major type is to understand the pathology images. Given a pathology image
and a question, the examinees are asked to select a correct answer. Such a problem is called visual
question answering (VQA) (Antol et al., 2015) in the AI community. VQA is an interdisciplinary re-
search problem that has drawn extensive attention recently. Given an image (e.g., an image showing
a dog is chasing a ball) and a question asked about the visual content of the image (e.g., “what is the
dog chasing?”), VQA aims to develop AI algorithms to infer the correct answer (e.g., “ball”). VQA
requires a deep comprehension of both images and textual questions, as well as the relationship
between visual objects and textual entities, which is technically very demanding.
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To train an AI system to perform VQA on pathology images and pass the ABP test, we first need to
collect a dataset containing questions similar to those in the ABP test. ABP provides some sample
questions, but they are too few to be useful for training data-driven models. Some commercial
institutes provide a larger number of practice questions, but they are very expensive to buy and they
cannot be shared with the public due to copyright issues. One possible way to create pathology
VQA dataset is to leverage crowdsourcing, which is used successfully for creating general domain
VQA datasets (Malinowski & Fritz, 2014; Antol et al., 2015; Ren et al., 2015a; Johnson et al., 2017;
Goyal et al., 2017). However, it is much more challenging to build medical VQA datasets than
general domain VQA datasets via crowdsourcing. First, medical images such as pathology images
are highly domain-specific, which can only be interpreted by well-educated medical professionals.
It is very difficult and expensive to hire medical professionals to help create medical VQA datasets.
Second, to create a VQA dataset, one first needs to collect an image dataset. While images in the
general domain are pervasive, medical images are very difficult to obtain due to privacy concerns.

To address these challenges, we resort to pathology textbooks, especially those that are freely acces-
sible online, as well as online digital libraries. These textbooks contain a lot of pathology images,
covering the entire domain of pathology. Each image has a caption describing pathological findings
in the image. The caption is carefully worded and clinically precise. We extract images and captions
from the textbooks and online digital libraries. Given these images, question-answer pairs are cre-
ated based on image captions. These QA pairs are verified by medical professionals to ensure clinical
meaningfulness and correctness. In the end, we create a pathology VQA dataset called PathVQA,
which contains 32,795 questions asked from 4,998 pathology images. To our best knowledge, this
is the first dataset for pathology VQA.

Given the pathology VQA dataset, the next step is to develop a pathology VQA system, which is
also very challenging, due to the following reasons. First, while we have tried our best to ensure
the clinical correctness of the PathVQA dataset, it may still contain noises and errors that can only
be identified by very experienced pathologists who unfortunately do not have time to do so for
all the data examples in PathVQA. To address this problem, we propose a learning-by-ignoring
method which can automatically identify bad-quality data (errors, noises, outliers, etc.) and remove
them from the training set. The learning-by-ignoring strategy analyzes the collection of training
examples holistically and determines which ones should be ignored. The likelihood of ignoring
each training example is learned by maximizing the performance on the validation set in a bi-level
optimization framework. The second challenge is: the medical concepts involved in PathVQA are
very diverse while the number of question-answer pairs available for training is limited. Learning
effective representations of these diverse medical concepts using limited data is technically difficult.
Poorly learned representations lead to inferior VQA performance. To address the second challenge,
we propose cross-modal self-supervised learning approaches to pretrain the representation learning
modules in VQA models for obtaining effective visual and textual embeddings. Self-supervised
learning (SSL) (Gidaris et al., 2018b; Zhang et al., 2016a; Pathak et al., 2016b) is an unsupervised
learning approach which creates auxiliary tasks on input data without using human-provided labels
and learns data representations by solving these auxiliary tasks. We create two types of cross-modal
SSL tasks: 1) given an image and a question, judge whether this question is asked from this image;
2) given an image and an answer, judge whether this answer is relevant to this image. We also
conduct a single-modal SSL on question-answer pairs: we pretrain the text encoder by predicting
answers only based on the questions without considering the input images. Experiments on our
developed PathVQA dataset demonstrates the effectiveness of our proposed methods.

The major contributions of this paper are as follows:

• We create a pathology visual question answering dataset – PathVQA, to foster the research of
medical VQA. To our best knowledge, this is the first dataset for pathology VQA.

• We propose a learning-by-ignoring approach which automatically identifies problematic train-
ing examples and removes them from the training set. Our method performs data ignoring by
maximizing the validation performance end-to-end.

• We propose cross-modal self-supervised learning (SSL) approaches to learn better image encoders
and text encoders in VQA models. Three SSL strategies are studied, including 1) predicting
whether an image and a question match, 2) predicting whether an image and an answer match,
and 3) predicting answers solely based on questions.
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• On our PathVQA dataset, we demonstrate the effectiveness of our proposed learning-by-ignoring
and cross-modal SSL methods in detecting noisy training examples and learning powerful visual-
textual representations.

2 RELATED WORKS

2.1 MEDICAL VQA DATASETS

To our best knowledge, there are two existing datasets for medical visual question answering. The
VQA-Med (Abacha et al., 2019) dataset is created on 4,200 radiology images and has 15,292
question-answer pairs. Most of the questions are in multiple-choice (MC) style and can be an-
swered by multi-way classifiers. This makes the difficulty of this dataset significantly lower. VQA-
RAD (Lau et al., 2018) is a manually-crafted dataset where questions and answers are given by clin-
icians on radiology images. It has 3515 questions of 11 types. Our dataset differs from VQA-Med
and VQA-RAD in two-fold. First, ours is about pathology while VQA-Med and VQA-RAD (Lau
et al., 2018) are both about radiology. Second, our dataset is a truly challenging QA dataset where
most of the questions are open-ended while in VQA-Med and VQA-RAD the majority of questions
have a fixed number of candidate answers and can be answered by multi-way classification. Besides,
the number of questions in our dataset is much larger than that in VQA-Med and VQA-RAD.

2.2 SELF-SUPERVISED LEARNING

Self-supervised learning (SSL) has been widely studied to learn better representations of images and
texts. SSL learns useful features automatically by constructing a loss from a pretext task without
much demand for human annotations. It purely uses the input data to create auxiliary tasks and
enables deep networks to learn effective latent features by solving these auxiliary tasks. Various
strategies have been proposed to construct auxiliary tasks, based on temporal correspondence (Li
et al., 2019b; Wang et al., 2019a), cross-modal consistency (Wang et al., 2019b), etc. In computer
vision, examples of auxiliary tasks include rotation prediction (Gidaris et al., 2018a), image inpaint-
ing (Pathak et al., 2016a), automatic colorization (Zhang et al., 2016b), instance discrimination (Wu
et al., 2018), to name a few. In SSL for natural language processing, examples of auxiliary tasks
include next-word prediction in the GPT model (Radford et al., 2019), next sentence prediction,
masked word prediction in the BERT model (Devlin et al., 2018), and so on.

Cross-modal self-supervised learning has been studied as well, which learns representations
for data with multiple modalities by solving cross-modal auxiliary tasks. VisualBERT (Li
et al., 2019a) learns representations for images and texts by implicitly aligning elements of
an input text and regions in an associated input image with self-attention. Two visually-
grounded language model objectives are used for pretraining VisualBERT on image caption data.

 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Q1: What are dilated and congested? 
Q2: Are the sinuses dilated and congested? 
Q3: Is there increased fibrosis in the  
red pulp, capsule and the trabeculae? 
Q4: Where is increased fibrosis?  
Q5: Is gamna-gandy body also seen? 
 

Q1: What is slightly depressed on 
 the surface? 
Q2: Where is the wedge-shaped  
infarct slightly depressed? 
Q3: Is the wedge-shaped infarct  
slightly depressed on the surface? 
Q4: What is on the surface? 
Q5: What is pale while the margin  
is haemorrhagic? 
 

Figure 1: Two exemplar images with generated ques-
tions. Both images have three types of questions: “what”,
“where”, and “yes/no”.

VideoBERT (Sun et al., 2019) per-
forms vector quantization on video
frames to get visual tokens, and
then trains masked language mod-
els on the concatenation of visual
tokens and text tokens. Chung
et al. (2020) proposes to learn
cross-modal joint embeddings using
self-supervised learning for cross-
modal retrieval. CVLP (Shi et al.,
2020) proposes an unbiased con-
trastive visual-linguistic pretraining
approach, which constructs a visual
self-supervised loss based on con-
trastive learning. LXMERT (Tan &
Bansal, 2019) designs five pretrain-
ing tasks: masked language model-
ing, feature regression, label classi-
fication, cross-modal matching, and
image question answering, to pretrain a large Transformer model. ViLBERT (Lu et al., 2019) pro-
poses to pretrain a vision-and-language BERT model through masked multi-modal modeling and
multi-modal alignment prediction tasks and then transfer the model to visual question answering
tasks.
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2.3 DATA SELECTION AND DATA REWEIGHTING

A number of approaches have been proposed for data selection. Matrix column subset se-
lection (Deshpande & Rademacher, 2010; Boutsidis et al., 2009) aims to select a subset of
data examples that can best reconstruct the entire dataset. Similarly, coreset selection (Bachem
et al., 2017) chooses representative training examples in a way that models trained on the
selected examples have comparable performance with those trained on all training exam-
ples. These methods perform data selection and model training separately. As a result,
the validation performance of the model cannot be used to guide data selection. Ren et al.
(2018) propose a meta learning method to learn the weights of training examples by per-
forming a meta gradient descent step on the weights of the current mini-batch of examples.

Table 1: Statistics of the PathVQA dataset
Max Avg Min

# questions per image 14 6.6 1
# words per question 28 9.5 3
# words per answer 10 2.5 1

Shu et al. (2019) propose a method which can
adaptively learn an explicit weighting function
directly from data. Different from these works,
our learning-by-ignoring method is based on
a bi-level optimization framework which can
flexibly select data elements with various gran-
ularity, such as pixels, images, bags of in-
stances, etc., in a unified way.

3 THE PATHVQA DATASET

The PathVQA dataset consists of 32,795 question-answer pairs generated from
1,670 pathology images collected from two pathology textbooks: “Textbook
of Pathology” (Muir et al., 1941) and “Basic Pathology” (Robbins et al.,
1981), and 3,328 pathology images collected from the PEIR1 digital library.

Table 2: Frequency of questions in dif-
ferent categories

Question type Total number
and percentage

Yes/No 16,329 (49.8%)
What 13,401 (40.9%)
Where 2,157 (6.6%)
How 595 (1.8%)
How much/many 139 (0.4%)
Why 114 (0.3%)
When 51 (0.2%)
Whose 9 (0.1%)

Figure 1 shows some examples. On average, each image
has 6.6 questions. The maximum and minimum num-
ber of questions for a single image is 14 and 1 respec-
tively. The average number of words per question and
per answer is 9.5 and 2.5 respectively. Table 1 summa-
rizes these statistics. There are eight different categories
of questions: what, where, when, whose, how, why, how
much/how many, and yes/no. Table 2 shows the number
of questions and percentage of each category. The ques-
tions in the first 7 categories are open-ended: 16,466 in
total and accounting for 50.2% of all questions. The rest
are close-ended “yes/no” questions. The questions cover
various aspects of visual contents, including color, location, appearance, shape, etc. Such clinical
diversity poses great challenges for AI models to solve this pathology VQA problem.

4 METHODS

In this section, we propose a learning-by-ignoring approach for automatically identifying and re-
moving problematic training examples to avoid distorting the model by these bad-quality examples.
We also propose several cross-modal self-supervised learning methods to learn effective visual and
textual representations. These proposed methods can be applied to any VQA method. In this work,
we choose two well-established and state-of-the-art VQA methods to perform the study while noting
that other VQA methods are applicable as well.
4.1 LEARNING TO IGNORE

To automatically identify and remove bad-quality examples from the training data to avoid distorting
the model by them, we propose a learning-by-ignoring (LBI) approach, where a data example is
taken as the input and a corresponding ignoring variable a ∈ [0, 1] is learned to indicate how likely
this example should be ignored. For the loss L defined on each training example, we multiply it
with the ignoring variable. If a is close to zero, then L is close to zero and this data example does
not contribute to model training. We learn these ignoring variables using the following formulation:

minA

∑N(val)

i=1 L(d
(val)
i ;W ∗(A))

s.t. W ∗(A) = argminW
∑N(tr)

i=1 aiL(d
(tr)
i ;W )

(1)

1http://peir.path.uab.edu/library/index.php?/category/2
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where A = {ai}N
(tr)

i=1 . W denotes the weights of the VQA model. L(d(tr)i ;W ) is the training loss
defined on the training example d(tr)i . ai ∈ [0, 1] is an ignoring variable indicating how likely d(tr)i

should be ignored. Given the weighted training loss
∑N(tr)

i=1 aiL(d
(tr)
i ;W ), we learn the VQA model

weights W by minimizing this loss and get the optimal weights W ∗. Note that W ∗ is a function of
A. WhenA changes, the ignoring variables changes and the weighted training loss changes. The op-
timal model trained by minimizing the weighted training loss changes accordingly. Given the trained
VQA model W ∗(A), we measure its loss on the validation dataset

∑N(val)

i=1 L(d
(val)
i ;W ∗(A)).

We assume all validation examples are double-checked by humans and have good quality.

Data ignoring
Train model

Measure validation
performance

Train model

Measure validation
performance

Validation
performance

Validation
performance

Figure 2: Learning by ignoring.

The validation loss is a function of A. We learn
A by minimizing this validation loss, i.e., find-
ing the optimal ignoring variables to remove
bad-quality training examples so that the model
trained on the remaining good-quality exam-
ples achieves the best performance on the vali-
dation set. Figure 2 illustrates the idea. In our
PathVQA dataset, the number of training data
examples is not very large (tens of thousands),
we can directly learn an ignoring variable for
each data example. In other applications, if
there are millions of training examples, learn-
ing millions of ignoring variables may not be a
good choice. Under such circumstances, we can use a neural network (called ignoring network) to
parameterize the ignoring variable, where the input of the network is a feature representation of the
data example and the output of the network is an ignoring variable. The ignoring network and the
VQA model can share the same encoder used for representation learning.

Algorithm 1 Algorithm for learning-by-ignoring

while not converged do
1. Update ignoring variables A by descending∇ALval (W − ξ∇WLtrain(W,A))
2. Update weights W by descending∇WLtrain(W,A)

end while

The algorithm of learning-by-ignoring is shown in Algorithm 1. Similar to Liu et al. (2018),
we approximate W ∗(A) using one step of gradient descent update of W : W ∗(A) = W −
ξ∇WLtrain(W,A) where Ltrain(W,A) =

∑N(tr)

i=1 aiL(d
(tr)
i ;W ). Then we plug this approxima-

tion into the validation loss: Lval (W − ξ∇WLtrain(W,A)), and update A by performing gradient
descent on the approximated validation loss. The update of W and A are performed alternatively
until convergence.

4.2 SELF-SUPERVISED LEARNING ON PATHVQA

What is slightly 
depressed on
the surface?

Not match Match Not match Match

Wedge-shaped 
infarct

What is slightly 
depressed on
the surface?

Wedge-shaped 
infarct

Not match Match

What is pale 
while the margin 
is hemorrhagic?

CMSSL on image-question pairs CMSSL on image-answer pairs CMSSL on question-answer pairs

Figure 3: Cross-modal self-supervised learning.

To learn powerful visual and textual representations on limited data, we develop cross-modal self-
supervised learning (CMSSL) approaches. Given a pair of data (x, y), where x and y are from
different modalities and could be an image, a question, or an answer, we define a CMSSL task
on (x, y) which judges whether x and y are from the same training example. We learn the image
encoder and text encoder by solving this task. Figure 3 illustrates the idea. We define this task on
two types of pairs: image-question and image-answer. For image-question CMSSL, given an image
and a question, if the question is asked based on the content of the image, then they are labeled as
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a match. Otherwise, they are labeled as not a match. The image encoder and question encoder are
learned jointly to predict whether an image and a question match with each other. Such a task can
help to learn the correspondence between image regions and words in the question. The encoders
learned in CMSSL are used to initialize the encoders in VQA models, which are then finetuned on
the PathVQA dataset. We also perform CMSSL on image-answer pairs: given an image and an
answer, judge whether this answer is relevant to the image. We use the question encoder to encode
the answer. In addition, we perform single modal SSL on question-answer pairs (SSL-QA), to
capture the semantic correspondence between words in questions and answers. In SSL-QA, we first
pretrain the question encoder by predicting answers solely based on questions themselves without
using image information, then finetune the question encoder together with other modules in the full
VQA task involving images. Given CMSSL on image-question pairs, CMSSL on image-answer
pairs, and SSL-QA, we perform them simultaneously in a multi-task learning framework which
minimizes the weighted sum of losses of the three SSL tasks.

4.3 VQA MODELS

We evaluate the effectiveness of learning-by-ignoring and cross-modal self-supervised learning on
two VQA models.
• Method 1: In Tan & Bansal (2019), a large-scale Transformer (Vaswani et al., 2017) model is

built that consists of three encoders: an object relationship encoder, a language encoder, and
a cross-modal encoder. The three encoders are built mostly based on two kinds of attention
layers — self-attention layers and cross-attention layers. The object relationship encoder and the
language encoder are both single-modality encoders. Each layer of them contains a self-attention
sub-layer and a feed-forward sub-layer, where the feed-forward sub-layer is composed of two
fully-connected sub-layers. A cross-modal encoder is proposed to learn the connections between
vision and language. Each layer of it consists of two self-attention sub-layers, one bi-directional
cross-attention sub-layer, and two feed-forward sub-layers.

• Method 2: The method proposed in Kim et al. (2018) uses a Gated Recurrent Unit (GRU) (Cho
et al., 2014) recurrent network and a Faster R-CNN (Ren et al., 2015b) network to embed the
question and the image. It extends the idea of co-attention into bilinear attention which consid-
ers every pair of multimodal channels. It learns bilinear attention distributions using the bilinear
attention networks (BAN) and uses low rank approximation techniques to approximate the bilin-
ear interaction between question embeddings and image embeddings. It also proposes residual
learning of attention which keeps the size of intermediate features constant.

5 EXPERIMENT
5.1 EXPERIMENTAL SETTINGS

Table 3: Statistics of the data split
Training set Validation set Test set

# images 3,021 987 990
# QA pairs 19,755 6,279 6,761

Data split We partition the images in the
PathVQA dataset along with the associated
questions into a training set, validation set, and
testing set with a ratio of about 3:1:1. In the
PathVQA dataset, the frequencies of question
categories are imbalanced. Because of this, during the partition process, we perform sampling to
ensure the frequencies of these categories in each set to be consistent. There are 19,755 question-
answer pairs in the training set, 6,279 in the validation set, and 6,761 in the testing set. For all the
data examples in the validation set and test set, senior radiologists helped to carefully examine them
to ensure they are clinically correct. The training set was not examined by senior radiologists. The
statistics are summarized in Table 3.
Implementation details We basically follow the original model configurations used in Tan &
Bansal (2019), Kim et al. (2018), and Yang et al. (2016). Data augmentation is applied to the im-
ages, including shifting, scaling, and shearing. From questions and answers in the PathVQA dataset,
we create a vocabulary of 4,631 words that have the highest frequencies. In Method 1, we use the
default hyperparameter settings in Tan & Bansal (2019). For the text encoder, the hidden size was
set to 768. The image features were extracted from the outputs of the Faster-RCNN network, which
is pretrained on BCCD2 – a medical dataset containing blood cells photos, as well as on Visual
Genome (Krishna et al., 2017). The initial learning rate was set to 5e-5 with the Adam (Kingma &
Ba, 2014a) optimizer used. The batch size was set to 256. The model was trained for 200 epochs. In
the cross-modal SSL pretraining on Method 1, we train a linear classifier with a dimension of 1,280

2https://public.roboflow.ai/object-detection/bccd
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Table 4: Accuracy (%), BLEU-n (%), and F1 (%) achieved by different methods. We denote cross-
modal SSL on image-question pairs and image-answer pairs as CMSSL-IQ, CMSSL-IA, and denote
single-modal SSL on question-answer pairs as SSL-QA

Method Accuracy BLEU-1 BLEU-2 BLEU-3 F1
Method 1 without image 49.2 50.2 2.8 1.2 9.5
Method 1 57.6 57.4 3.1 1.3 9.9
Method 1 with ignoring 58.5 58.9 3.5 2.0 10.2
Method 1 with CMSSL-IQ 58.7 59.0 3.5 2.1 11.0
Method 1 with CMSSL-IA 58.6 58.9 3.4 2.0 10.3
Method 1 with SSL-QA 58.7 59.0 3.5 2.1 11.2
Method 1 with joint pretraining 59.3 59.2 4.7 2.8 11.6
Method 1 with joint pretraining+ignoring 60.1 59.9 5.1 3.2 12.2
Method 2 without image 46.2 46.5 1.0 0.0 0.8
Method 2 55.1 56.2 3.2 1.2 8.4
Method 2 with ignoring 56.3 57.4 3.5 1.8 9.6
Method 2 with CMSSL-IQ 55.9 57.1 3.4 1.4 9.2
Method 2 with CMSSL-IA 55.9 57.1 3.5 1.5 9.2
Method 2 with SSL-QA 57.6 58.8 4.1 1.5 10.8
Method 2 with joint pretraining 57.7 59.1 4.2 2.2 10.9
Method 2 with joint pretraining+ignoring 58.4 59.5 4.4 2.6 11.2

to judge whether one modality of data (image, question, answer) matches with another. In Method
2, words in questions and answers are represented using GloVe (Pennington et al., 2014) vectors
pretrained on general-domain corpora such as Wikipedia, Twitter, etc. The image features are ex-
tracted from the outputs of the Faster-RCNN network pretrained on BCCD and Visual Genome.
Given an image and a question, the model outputs an answer from a predefined set of answers. The
dropout (Krizhevsky et al., 2012) rate for the linear mapping was set to 0.2 while for the classifier
it was set to 0.5. The initial learning rate was set to 0.005 with the Adamax optimizer (Kingma &
Ba, 2014b) used. The batch size was set to 512. The model was trained for 200 epochs. In the
cross-modal SSL pretraining on Method 2, similar to that on Method 1, we train a linear classifier
with a dimension of 1,280 to predict whether two modalities of data match or not. For learning-
by-ignoring, we update ignoring variables using the Adam optimizer, with an initial learning rate of
0.01. We perform training for 120 epochs in Method 1 with ignoring and for 180 epochs in Method
2 with ignoring.
Evaluation metrics We perform evaluation using three metrics: 1) accuracy (Malinowski & Fritz,
2014) which measures the percentage of inferred answers that match exactly with the ground-truth
using string matching; only exact matches are considered as correct; 2) macro-averaged F1 (Goutte
& Gaussier, 2005), which measures the average overlap between the predicted answers and ground-
truth, where the answers are treated as bag of tokens; 3) BLEU (Papineni et al., 2002), which mea-
sures the similarity of predicted answers and ground-truth by matching n-grams.

5.2 RESULTS

Table 4 shows the VQA performance achieved by different methods. From this table, we make the
following observations. First, for both Method 1 and Method 2, applying learning-by-ignoring
(LBI) improves the performance. This demonstrates the effectiveness of LBI in improving the
generalization ability of trained VQA models. LBI learns to identify and remove noisy and er-
roneous training data examples, which can avoid the model to be distorted by such bad-quality
examples. Second, for both Method 1 and 2, applying cross-modal SSL (CMSSL) methods includ-
ing CMSSL-IQ and CMSSL-IA improves the performance, which demonstrates the effectiveness of
CMSSL. CMSSL uses auxiliary tasks, including judging whether an image matches with a question
and judging whether an image matches with an answer, to learn semantic correspondence between
image regions and words in questions/answers, which can improve the effectiveness of visual and
textual representations for accurate VQA. Third, using SSL-QA improves VQA performance of
Method 1 and 2. SSL-QA learns the correspondence between words in questions and words in an-
swers, which can better extract semantic representations of questions and answers. Fourth, joint
pretraining which performs CMSSL-IQ, CMSSL-IA, and SSL-QA jointly achieves better perfor-
mance than performing the three SSL tasks individually, for both Method 1 and 2. This is because
letting the model solve several SSL tasks simultaneously is more challenging, which encourages
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Table 5: Accuracy (%) on open-ended questions of different types

Method Question types
What Where How How much/many Why

Method 1 without image 0.08 0.39 0.16 0.41 0.50
Method 1 0.22 0.73 0.12 0.45 0.50
Method 1 with ignoring 0.24 0.76 0.15 0.45 0.64
Method 1 with CMSSL-IQ 0.24 0.73 0.13 0.45 0.59
Method 1 with CMSSL-IA 0.24 0.74 0.13 0.45 0.59
Method 1 with SSL-QA 0.26 0.78 0.15 0.50 0.64
Method 1 with joint pretraining 0.29 0.79 0.16 0.50 0.68
Method 1 with joint pretraining+ignoring 0.32 0.81 0.16 0.56 0.68
Method 2 without image 0.05 0.29 0.00 0.00 0.00
Method 2 0.18 0.64 0.11 0.36 0.32
Method 2 with ignoring 0.24 0.72 0.12 0.41 0.41
Method 2 with CMSSL-IQ 0.20 0.71 0.12 0.36 0.50
Method 2 with CMSSL-IA 0.20 0.72 0.11 0.41 0.45
Method 2 with SSL-QA 0.20 0.71 0.11 0.36 0.45
Method 2 with joint pretraining 0.21 0.72 0.12 0.45 0.55
Method 2 with joint pretraining+ignoring 0.24 0.72 0.14 0.45 0.59

the model to learn more powerful textual and visual representations. Fifth, applying both joint pre-
training and learning-by-ignoring achieves the best performance in Method 1 and 2. Table 5 shows
the accuracy scores achieved on open-ended questions belonging to the following categories: what,
where, how, how much/how many, and why respectively by different methods. Table 6 shows the
accuracy on yes/no questions. Similar to the observations made from Table 4, the results in Table 5
and Table 6 also demonstrate that learning-by-ignoring and cross-modal SSL both help to improve
VQA performance. In Table 5, all methods perform the best on “where” questions. This is because
it is relatively easy to recognize image regions of interest for “where” questions, which helps the
model to give the correct answer. In Table 6, all methods perform much better than random guesses
(where the accuracy is 50%). This indicates that our PathVQA dataset is clinically meaningful,
which allows VQA models to be learnable.

Table 6: Accuracy (%) on “yes/no” questions
Method Accuracy
Method 1 without image 85.1
Method 1 86.1
Method 1 with ignoring 86.4
Method 1 with CMSSL-IQ 86.2
Method 1 with CMSSL-IA 86.4
Method 1 with SSL-QA 86.2
Method 1 with joint pretraining 86.8
Method 1 with joint pretraining+ignoring 87.1
Method 2 without image 84.5
Method 2 85.7
Method 2 with ignoring 86.4
Method 2 with CMSSL-IQ 86.4
Method 2 with CMSSL-IA 86.4
Method 2 with SSL-QA 86.8
Method 2 with joint pretraining 86.6
Method 2 with joint pretraining+ignoring 87.2

One may suspect how much information in im-
ages are used during the inference of the answers?
Could it be possible that the models simply learn
the correlations between questions and answers
and ignore the images? In light of these concerns,
we perform studies where the images are not fed
into VQA models and only questions are used as
inputs for inferring answers. Table 4 shows the
results of not using images (“Method 1/2 without
image”). As can be seen, for both Method 1 and
2, ignoring images leads to substantial degradation
of performance. This shows that images in our
dataset provide valuable information for VQA and
PathVQA is a meaningful VQA dataset. The mod-
els trained on our datasets are not degenerated to
simply capture the correlation between questions
and answers.

6 CONCLUSION

In this paper, towards the goal of developing AI systems to pass the board-certificated examinations
of the American Board of Pathology and fostering research in medical visual question answering,
we build a pathology VQA dataset – PathVQA – that contains 32,795 question-answer pairs of 8
categories, generated from 4,998 images. Majority of questions in our dataset are open-ended, pos-
ing great challenges for the medical VQA research. Our dataset is publicly available. To address
the challenges that the training data may contain errors and the effective representations of pathol-
ogy images and questions are difficult to learn on limited data, we propose a learning-by-ignoring
approach to automatically identify and remove problematic training examples and develop cross-
modal self-supervised learning approaches to learn visual and textual representations effectively.
The experiments on our collected PathVQA dataset demonstrate the effectiveness of our proposed
methods.
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A APPENDIX

A.1 EXAMPLE OF ABP TEST QUESTIONS

An example of ABP test questions is shown in Figure 4.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Q: What are these GMS-stained organisms? 
A1: Blastomyces dermatitidis. 
A2: Cryptococcus neoformans. 
A3: Pneumocystis jiroveci. 
A4: trophozoites of Entamoeba histolytica. 
A5: yeasts of Candida species. 
 

 Figure 4: An example of ABP test questions.

A.2 COMPARISON OF EXISTING VQA DATASETS

The comparison of existing VQA datasets is shown in Table 7. Table 7 presents a comparison of
different VQA datasets. The first five datasets are in the general domain while the last three are in
the medical domain. Not surprisingly, the size of general-domain datasets (including the number of
images and question-answer pairs) is much larger than that of medical datasets since general-domain
images are much more available publicly and there are many qualified human annotators to generate
QA pairs on general images. Our dataset is larger than the two medical datasets: VQA-Med and
VQA-RAD, and majority of questions in our dataset are open-ended while majority of questions in
VQA-Med and VQA-RAD are in multiple-choices style.

Table 7: Comparison of VQA datasets
Domain # images # QA pairs Answer type

DAQUAR General 1,449 12,468 Open
VQA General 204K 614K Open/MC

VQA v2 General 204K 1.1M Open/MC
COCO-QA General 123K 118K Open/MC

CLEVR General 100K 999K Open
VQA-Med Medical 4,200 15,292 Open/MC
VQA-RAD Medical 315 3,515 Open/MC

Ours Medical 4,998 32,795 Open

A.3 NUMBER OF QUESTIONS IN DIFFERENT CATEGORIES FOR TRAINING, VALIDATION, AND
TEST SET

For our data split, the number of questions in different categories in each set is shown in Table 8.

Table 8: Number of questions in different categories in each set

Dataset Question types
What Where How How much/many Why Yes/No

Training set 8083 1316 366 62 71 9804
Validation set 2565 409 108 21 21 3135

Testing set 2753 432 121 18 22 3390

A.4 DERIVATION OF GRADIENT IN ALGORITHM 1

In Algorithm 1, there are two steps. In the first step, we update ignoring variables A by descending
∇ALval (W − ξ∇WLtrain(W,A)), where we approximate W ∗ using one step gradient descent
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update of W :
W ∗ ≈W − ξ∇WLtrain(W,A),

where ξ is the learning rate.

We compute∇ALval (W
∗) as follows:

∇ALval (W
∗) (2a)

≈ ∇ALval (W − ξ∇WLtrain(W,A)) (2b)

= −ξ∇2
A,WLtrain (W,A)∇W∗Lval (W

∗) (2c)

≈ −ξ∇ALtrain (W
+, A)−∇ALtrain (W

−, A)

2ε
, (2d)

where ε is a small scalar and
W± =W ± ε∇W∗Lval (W

∗) .

A.5 ADDITIONAL RELATED WORKS

A number of visual question answering datasets have been developed in the general domain.
DAQUAR (Malinowski & Fritz, 2014) is built on top of the NYU-Depth V2 dataset (Silberman
et al., 2012) which contains RGBD images of indoor scenes. DAQUAR consists of (1) synthetic
question-answer pairs that are automatically generated based on textual templates and (2) human-
created question-answer pairs produced by five annotators. The VQA dataset (Antol et al., 2015)
is developed on real images in MS COCO (Lin et al., 2014) and abstract scene images in (Antol
et al., 2014; Zitnick & Parikh, 2013). The question-answer pairs are created by human annotators
who are encouraged to ask “interesting” and “diverse” questions. VQA v2 (Goyal et al., 2017) is
extended from the VQA (Antol et al., 2015) dataset to achieve more balance between visual and tex-
tual information, by collecting complementary images in a way that each question is associated with
a pair of similar images with different answers. In the COCO-QA (Ren et al., 2015a) dataset, the
question-answer pairs are automatically generated from image captions based on syntactic parsing
and linguistic rules. CLEVR (Johnson et al., 2017; Kembhavi et al., 2017) is a dataset developed
on rendered images of spatially related objects (including cube, sphere, and cylinder) with different
sizes, materials, and colors. The locations and attributes of objects are annotated for each image.
The questions are automatically generated from the annotations.
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