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Abstract

There have been multiple works that try to ascertain explanations for decisions
of black box models on particular inputs by perturbing the input or by sampling
around it, creating a neighborhood and then fitting a sparse (linear) model (e.g.
LIME). Many of these methods are unstable and so more recent work tries to
find stable or robust alternatives. However, stable solutions may not accurately
represent the behavior of the model around the input. Thus, the question we ask in
this paper is are we approximating the local boundary around the input accurately?
In particular, are we sampling the right neighborhood so that a linear approximation
of the black box is faithful to its true behavior around that input given that the black
box can be highly non-linear (viz. deep relu network with many linear pieces).
It is difficult to know the correct neighborhood width (or radius) as too small
a width can lead to a bad condition number of the inverse covariance matrix of
function fitting procedures resulting in unstable predictions, while too large a width
may lead to accounting for multiple linear pieces and consequently a poor local
approximation. In this paper, we propose a simple approach that is robust across
neighborhood widths in recovering faithful local explanations. In addition to a
naive implementation of our approach which can still be accurate, we propose
a novel adaptive neighborhood sampling scheme (ANS) that we formally show
can be much more sample and query efficient. We then empirically evaluate our
approach on real data where our explanations are significantly more sample and
query efficient than the competitors, while also being faithful and stable across
different widths.

1 Introduction

Explainable artificial intelligence (XAI) has come to prominence in recent years with the proliferation
of deep learning technologies, which are inherently black box, across various facets of society [13].
Regulations such as the General Data Protection Regulation (GDPR) [31] in Europe demand explana-
tions to be provided for automatic decision making systems that affect humans. The explanations
demanded are typically local in the sense that we want explanations for individual decisions rather
than for the entire system, which could also be much more challenging. Given this need many local

* Author’s current affiliation is Google Research India. Work was done while at IBM Research.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



explanation methods have been developed [26, 21, 6, 24, 33] that can be used to explain arbitrary
models, i.e. are model agnostic. Even though a plethora of these methods exist it is not clear if they
are truly faithful to the underlying black box model. Most of these methods employ some type of
sampling or perturbation scheme to estimate a simple interpretable model (viz. a sparse linear model),
which can then be read off to ascertain explanations. Because of the inherent randomness of such
procedures the most important question is are we learning the right (local) interpretable model? This
essentially boils down to are we using the right samples for the estimation?

In this paper, we argue that sampling a neighbor-

hood just based on the input values and using it for 0.22
estimation can lead to a poor local approximation ’

of the black box function. This also applies when 0-201
samples are generated from an underlying data man- _ %-#]
ifold [2], which is oblivious to the black box’s be- E 0.161
havior. As such, we propose a novel neighborhood = 0.141
sampling scheme called Adaptive Neighborhood Sam- 0.121
pling (ANS) which generates a neighborhood taking 0.10
into account the local behavior of the black box. Our 0.081
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main idea is to estimate the region where the black
box model is (approximately) linear around the input

we want to explain followed by adaptively sampling ANS-Basic ~ —#— S-LIME
in this region still respecting the original sampling ANS —— MelIME
—@— LIME

process/distribution. The estimate of the relevant lin-
ear region will be done using much fewer black box

queries than say a total budget of N. As it will turn  Figure 1: We show the variation of Infidelity

out our sampling process will result in many more
samples in the desired region hence minimizing guery
wastage compared with simply querying the black
box N times, finding the relevant region and then
fitting a sparse linear model. Query efficiency is im-
portant as it has been argued in recent works [5, 18]
that in todays multi-cloud environments each query
can have an associated monetary cost not to mention
factors such as inference time, power consumption
and network latency in a distributed system need to

(INFD) measure over various kernel width
multiplier values for the proposed methods
(ANS and ANS-Basic) with CIFAR10 dataset.
Lower values of this measure are better. At
very small kernel widths, INFD actually goes
up indicating instability. Hence in lieu of
choosing arbitrarily low kernel widths, we
need explanations that are accurate over many
kernel widths, which is provided by our meth-
ods. More details are in the experiments sec-
tion.

be taken into account.

An illustration of our approach is shown in Figure 1.

While it can be argued that very small kernel widths,

which corresponds to considering only extremely close samples in the sparse linear estimation, can
be chosen to circumvent the problem of choosing the right neighborhood, we show that this can lead
to instability (high infidelity). Hence it is important to find methods that work well across multiple
kernel widths. This is achieved by our methods (ANS, ANS-Basic). In addition, choosing the right
neighborhood also leads to high sample and query efficiency for ANS.

In the rest of the paper, we repeatedly use the terms faithful and stable with respect to the explanations.
What we mean by faithful is that simple models (viz. sparse linear) built using these explanations
should closely replicate the behavior of the black box model on the corresponding examples. This
corresponds to low infidelity (INFD). By stability (unless mentioned otherwise) we mean for different
kernel widths we should recover similar quality explanations. This corresponds to lesser variation in
INFD and coefficient inconsistency (CI), both of which are defined in Section 4, across kernel widths.

2 Related Work

There have been many works trying to uncover local explanations in model agnostic settings [26,
33, 6, 21, 25]. Local explanations also do not have to be feature based and could also be exemplar
based [14]. There are also methods that provide both forms of explanations [24]. Some methods in
a sense stitch together local explanations and create global ones [25, 23]. Although there are many
methods there is still a need to design explanation methods that are faithful and stable [12]. This is



particularly true for LIME like neighborhood sampling methods where stability and faithfulness w.r.t.
neighborhood width is highly desired [32] as it is difficult to predefine an optimal width.

Some recent works try to accomplish improved stability for certain modalities such as tabular [15]
through adversarial training. This notion of stability however is across examples sampled from linear
shifts in the distribution. Others assume access to a partial causal graph [10, 17] and build on top of
SHAP to create stable feature attributions. Stability here is achieved by trying to obtain attributions
that are as consistent as possible with respect to the provided partial graph. Another popular strategy
is to learn the data manifold and then sample from it [2, 29] or project onto it [1] creating more
faithful explanations. The premise here is that the realistic sampled neighbors will give rise to better
explanations. There are other works that aim for stability and unidirectionality [6] in the explanations,
by proposing a new algorithm for fitting rather than modifying the sampling scheme. Hence the
methodology in [6] is complimentary in a sense to our contribution and could potentially benefit from
the neighborhood sampling scheme proposed in our current work.

The conceptual contribution of our work is to realize that manifold or not, examples sampled in
a neighborhood could belong to different linear parts in a non-linear function such as a deep relu
network and hence using them to obtain a local explanation through sparse linear or some other
simple model fitting can be misleading.

Algorithm 1: Adaptive neighborhood sampling (ANS). Estimation of a and b can also be

performed not just once but multiple times and the latest estimates can be used for future

sampling. For realistic perturbations sampling can be done in the latent space. More details in

section 3.1.

Input: Example to explain p, black-box predictor f(.), maximum number of neighbors
generated N, standard deviation o and number top features to output k

Set Q@ = ¢ # Examples to query

Sample n (<< N) examples from N (g, 02I) and query f(.)

Find region [a,,, b,,] that corresponds to g using MPLSR methods [9, 7] on the n samples
Add to Q samples that lie in [@y,, by,

Estimate uncertainty o  # Could be set o< \/iﬁ or based on stability of the region (i.e. 1 — p)

Sample N — n examples from NV (ap + (1 — Q)%, o?I)
Add to @ samples that lie in [@,, by, ]

Query f(.) on these additional samples added to @
Fit interpretable model (viz. sparse linear) I(.) to (x, f(x)) where € Q

Output: Top k coefficients of I(.)

3 Method

We now describe our approach. In terms of notation vectors are bolded. Matrices are also bolded and
in capital letters. Inequalities and assignments indicated for vectors and matrices are element wise.

3.1 Description

As mentioned before, if you consider the black box function to be piecewise linear (viz. deep relu
network) our main idea is to sample a neighborhood around an input g such that the neighbors belong
to the linear piece corresponding to it. Since any continuous black box function can be arbitrarily
well-approximated by a piecewise linear function [20] and hence our setup is quite general.

Typical neighborhood sampling schemes such as those for LIME and its variants [2, 33, 6] (i.e.
ambient or latent space) can be seen to sample from an independent Gaussian distribution (g, 021 ),
where o is the standard deviation for each feature (or kernel width) and g is a d dimensional example
we want to explain. It is difficult to find the correct o as too small a o can lead to numeric instabilities
during function fitting because of a bad condition number of the inverse covariance matrix, while too
large a o will not accurately capture the local information [32]. So a pertinent question is, can we



devise a neighborhood sampling procedure that captures local information and is (largely) robust
across different values of o?

Main Idea: Our idea is to leverage multidimensional piecewise linear segmented regression (MPLSR)
schemes [9, 7] to assist in this endeavor. These methods will learn a piecewise linear function
identifying boundaries of each linear piece. One simple (or naive) solution for our problem using
these methods would be to i) sample N neighbors using NV (g, 02I), i) run MPLSR on these samples
to find the boundaries of the linear piece corresponding to pu, iii) select only samples that belong to
this region and iv) train a sparse linear or some other interpretable model only on the selected samples
followed by outputting the important features. Although this approach captures our general idea, it
has two sources of inefficiency; i) Low sample efficiency: If p is close to the boundary of the range
[a, b] in which it lies, then the naive sampling scheme will have many samples lying outside the
range leaving much fewer valid samples to train an interpretable model. ii) Low query efficiency: The
naive scheme requires us to query the black box N times, but only a small fraction of these samples
may lie within the desired range, as previously mentioned.

Algorithm 1: Given this, in algorithm 1 we propose an adaptive neighborhood sampling (ANS)
scheme which aims to enhance both these efficiencies. A detailed analysis is given in Section
3.2. Our idea is to sample a small set of examples n similar to the naive scheme. However, we
then run MPLSR and find an estimate of the true range [a, b] given by [an, by,]. Depending on
our uncertainty in the estimate denoted by o € [0,1] we sample from an updated distribution
N (ap, +(1-a) %, oI ) The intuition behind the updated distribution is that if we are highly
uncertain (i.e. o ~ 1) about the range then we want to be conservative and sample close to .
However, if we are confident o = 0, then we want to sample close to the middle of the range so that
we get (many) valid samples belonging to the correct linear piece that corresponds to pt.

For realistic perturbations using autoencoders one can sample in the latent space, find the (linear)
region in the input space by decoding the current neighboring samples followed by updating the mean
of the sampling distribution as indicated in algorithm 1 and then passing it through the autoencoder
to find its corresponding latent to sample around.

Estimating a: o could be estimated in at least a couple of ways: i) Since the error of MPLSR [7]
schemes in terms of n scales as \/Lﬁ, we could set o \/Lﬁ ii) One could also perform subsampling or

bootstrap sampling on the n samples?, run MPLSR on each such sample and compute a (normalized)
metric indicative of the variability in estimating the range [a, b]. For instance, one could use the
overlap coefficient [30] p as an indicator of the stability of the range. Given m bootstrap samples
with corresponding estimated ranges using MPSLR being [as), bs)], s [a%m), b%m)] and their
corresponding volumes being 1, ..., ¥, respectively, if ¥ denotes the volume of the intersection of

™, 6]

these ranges (i.e. volume of [a%l), bs)] N...N| ), then the overlap coefficient would be

Un

min{dy, ..., 9, } M

p:

The coefficient would be indicative of how stably we can estimate the range, where if we get the
exact same ranges for the m bootstraps, p will be 1, while if the ranges had little overlap, p would be
close to 0. Our uncertainty « can then be set to 1 — p.

3.2 Analysis

We now analyze our approach in terms of sampling efficiency, query efficiency and time complexity.

3.2.1 Sampling Inefficiency

The sampling inefficiency or the expected number of iterations to get a valid sample in the range [a, b]
based on a naive implementation of our idea which is described in the previous subsection (lets call it
ANS-Basic) that involves sampling from the original distribution A/ (u, 02I) would be m.
If we sample n examples based on the original distribution then the sample efficiency will be the

*Note this will not require additional queries to the black box.



same for these examples. However, for N — n examples if we sample using the proposed distribution

nt+bn . : : : 1 Py (x€[an,bn —
N (ap+ (1 — a)2atln 52T1) the sampling inefficiency will be Paelasm]) P(;Ez[ea[ayb])]) =

m, where P, (.) denotes the (cumulative) probability w.r.t. the proposed distribution. Thus,

the relative sampling inefficiency s; will be as follows:

~ Inefficiency of ANS
~ TInefficiency of ANS-Basic

n 1 N—n 1
 NP@ead) T N Pu@elad)

S

1
P(xE€[a,b])

-~ n  N-—n P(x€[a,b))
“NTTN Pu@elab) &

When « = 1 (i.e. high uncertainty of range) P,(x € [a,b]) = P(x € [a,b]) and hence our
efficiency is the same as sampling from the original distribution. However, for smaller «, P,(.)
should significantly increase making our procedure much more sample efficient especially when the
range is large and p is far away from the center of the range. Hence,

Peciat)y -0
1H<Pa($€[a,b])) o2 16— all

a+b

—HH (€)

Ideally, we would want to choose an n where equation 2 is minimized. Finding the optimal n in
closed form is difficult. Note that there is a tradeoff for different values of n. Too large a n will lead
us to sample very few points from our proposed distribution thus mitigating its benefit. Too small a n
might lead to high uncertainty (i.e. « close to 1) in estimation of the range [a, b] which will again
increase s;. However one could in practice choose a reasonable n depending on the dimension of the
data. One could also evaluate the quality by looking at (random) subsets or bootstrapped samples
of the queried n instances, fitting the linear piecewise methods and evaluating the stability of the
obtained partitions, which is similar to one of the methods proposed to estimate .

Further, one does not only have to perform the estimation of the ranges once but can do so periodically
updating the estimates for a and b. The relative inefficiency analysis in this case also should naturally
extend. For instance, if we estimate the ranges r times producing the corresponding «; during the i
estimation at intervals of n; respectively with n, 41 = N — Y., n; and Py, (x € [a,b]) = P(x €

[a, b]), then the relative inefficiency S(IT) would be,

r+1
o _ 1§, Pleelab)
TN ;" Po.(z € [a, b)) @

where, sgl) can be denoted as simply s;. We expect that we would get better estimates of the range for

later iterations i.e. c; < «; Vj > 4 and hence P, (x € [a,b]) > P,,(x € [a, b]) leading to higher
efficiency for examples sampled at later stages. Of course the larger the r, more the computational
complexity, as we have to run the piecewise linear routine r times.

3.2.2 Query Efficiency

What we saw up until now was the efficiency in sampling examples within the range. Interestingly
however, the (relative) black box guery efficiency is likely to be much higher. The reason for this
is that with ANS we need only query those examples that are accepted by our sampling scheme as
opposed to querying all the examples as in the naive sampling case. The efficiency of naive sampling
is thus still P(x € [a, b]), while for us the accepted examples after sampling N — n times which
in expectation will be (N — n)P,(x € [an, b,]) will definitely lic within [a,,, b, ] and hence the
probability they will lie in [a, ] is given by 5 = 227 Note that the region [a, b] will not be
underestimated based on finite samples i.e. [a, b] C [a,, by,] given a good piecewise linear method,
and hence the ratio of probabilities meaningfully represents the probability of accepted samples lying



in [a, b]. The reason for this is that our sampling can never add not existent non-linearities as this is
just a function of the black box model, but may miss regions where the linear piece corresponding to
1 ends. Hence, the total relative query efficiency gz of ANS is,

n — 7 [e4 7b
#P(@ € [a,b]) + Vg prazgledl

P(x € [a,b])
N —n P.(x € [a,b])

"N TN Pu(@€ an.bn) P € [a,8]) )

qg =

3

The gain can thus be large when we are quite certain of the range (i.e. small o) for not too large a n and

the black box model is highly non-linear since, % will be close to 1 and P(x € [a, b]) will
in all likelihood be small. Similar to equation 4, here too the above analysis can be straightforwardly
extended to multiple estimations of the range where the o would be replaced by the corresponding «;

for the i™ estimate.

3.2.3 Time Complexity

The additional time complexity for ANS over LIME comes from having to run MPLSR methods
[9, 7] which have complexities such as O(ndlogn) or O(nd?). However, this time could be reduced
across examples through embarrassing parallelism [16]. Moreover, efficient heuristics maybe used to
speed up such partitioning schemes [11]. Interestingly though, with deeper models where inference
time is not insignificant the lower query complexity of ANS can more than compensate for the
additional time it requires running the MPLSR schemes. We see evidence of this in the experiments.

If we use p to estimate a we may not have to estimate it per example, but we could estimate it for
a few examples and then the maximum of those values (if we want to be conservative) could be
used for other examples we want to explain for a given n. This will save on time as the amortized
complexity over many examples will be similar to running MPSLR schemes just once per example to
find the range [a,, by, ], rather than multiple times.

4 Experiments

We now empirically evaluate our approach. We compare ANS with ANS-Basic, LIME and Smoothed-
Lime (S-Lime) on two commonly used tabular datasets IRIS [4] and HELOC [8], where the latter was
the dataset used in the FICO explainability challenge. We also experiment on CIFAR10 [19] where
an additional baseline Melime [2] is compared with. The black box models for the tabular datasets
are random forest classifiers consisting of 100 trees that have an accuracy of ~ 100% and ~ 78%
on IRIS and HELOC respectively, which is state-of-the-art. The black box model for CIFAR10 is
a ResNet-18 which has an accuracy of ~ 95%. Except CIFAR10 which comes with its own test
we randomly split the other two datasets into 80% train and 20% test. For 10 randomly selected
examples in each test set we performed bootstrap sampling 20 times for the respective n, estimated
[@n, by] and calculated « based on the overlap coefficient p as defined in equation 1. The maximum
of those values was the o used for all the examples.

Given our goal of showcasing that the ANS (and ANS-Basic) neighborhood generation procedures
elevate a given proxy model explanation scheme with generated neighborhoods we believe LIME,
S-LIME and Melime to be good baselines which validate our idea on random as well as realistic
neighborhoods. Methods such as SHAP [21] and MAPLE [24] do not really fit in here as they do not
perform proxy model fitting on generated neighborhoods. Moreover, saliency based methods such as
gradcam, saliency maps, layerwise relevance propagation also do not fit in our framework since they
are white-box explanation methods.

Metrics: We now define evaluation metrics that we use to evaluate methods in this paper. The five
metrics we use are Infidelity (INFD) [26], Generalized Infidelity (GI) [25], Coefficient Inconsistency
(CI) [15], accepted sampling complexity (ASC) and query complexity (QC). INFD and GI evaluate
fidelity of the explanations. CI evaluates stability. ASC and QC evaluate the sample and query
efficiency respectively.
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Figure 2: Various metrics vs. kernel width multiplier (kwm) for Iris (left), HELOC (middle),
and CIFAR (right) datasets. The metrics are (from top to bottom - each row): Infidelity (INFD),
Generalized Infidelity (GI), Coefficient Inconsistency (CI), Accepted Sample Complexity (ASC), and
Query Complexity (QC). For all metrics lower values are better. The method legend is at the bottom.

If (x,y) denote examples in a test set D;. Let y; () be the black box models prediction on an input

x and y*' (x) be the prediction on « applying the explanation model at ’. Also let ¢® and N
denote the feature attributions and the test/real neighborhood of @ with |.|.,;q denoting cardinality.
With we have the following definitions.

Infidelity (INFD): We define infidelity as the mean absolute error (MAE) between the explanation
and black box model over the test set. INFD = ﬁ > (@yen, (@) — Y2 (@)].

Generalized Infidelity (GI): Based on previous works we define GI as: GI =
D o (wy)eDy TNl 2o N, [96(T) — ¥ ()]
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Figure 3: Qualitative explanations for an image from the CIFAR dataset for three different kernel
width multiplier (kwm) values. The feature attributions of our proposed method ANS (and even
ANS-Basic) are much more stable and accurate over different kwm values compared to other methods
as the face of the horse is highlighted for different kwms. This is not the case for the other methods.
More examples in the supplement.

Coefficient Inconsistency (CI): CI can be defined as the MAE between the attributions of the test
points and their neighbors: CI = m 2 (@w)eD, m D wren, lce = i

ASC: This is just the total number of samples used to train the local sparse linear models. For ANS
and ANS-Basic they are the accepted samples. While for other baselines it is just V.

QC: This is the total number of queries made by the methods to the black box model.

We report the results in Figure 2. The results show the behavior of the different metrics for dif-
ferent kernel width multiplier (kwm) used to weight the random or real neighbors i.e. kwm =
{0.05,0.1,0.25,0.5,0.75,1,1.5,2}. n = 0.2N, where N = 5000 which is the typical neighborhood
size for LIME. a was found for 10 random examples and the maximum of those values was used
across other examples in the dataset. Real test neighborhoods are not natural to find for random
perturbation based neighborhoods for CIFAR10 as superpixels may vary between neighbors. Hence,
GI and CI for CIFARI10 are only reported for realistic neighborhoods generated by Melime. In
this case our procedures are also run on these real neighborhoods. More details about explanation
generation are in the supplement. We used 56 core and 242 GB RAM LINUX machines to run the
experiments.
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Figure 4: For two examples in the Iris test set corresponding to the two rows of figures above, we
provide feature attributions for sepal length (sl), sepal width (sw), petal length and petal width (pw)
for three different kernel widths (0.1, 0.75, 2.0). Each row is a separate example and each column
corresponds to the method indicated in the title of the subfigure. We can see that across different
kernel widths ANS-Basic and ANS feature attributions are much more similar than those seen for
LIME or S-LIME. As such, LIME and S-LIME feature attributions even seem to change signs in
some cases, while ours do not.

Observations:

We see from Figure 2 that ANS and ANS-Basic in general are significantly more accurate than the
competitors across kernel widths. ANS while being similar in accuracy and even sample efficiency
to ANS-Basic is significantly better in query complexity. The sample efficiency can possibly be
improved by considering a larger n. The only places where we seem to be worse than the competitors
are on GI and CI for the HELOC dataset. We believe the reason for this is that the classification task
is much harder for this dataset (state-of-the-art accuracy only 78%) as compared with the others (>
95%) possibly resulting in a highly non-linear decision boundary. This makes the explanations even
for neighbors different than the original example, resulting in higher GI and CI values even if the
explanation for the particular example is correct. The correctness of the local explanation is reflected
by us having a lower INFD value, although GI and CI maybe higher.

The average time taken by LIME for each explanation is about 0.5 seconds, while our methods take
about 1 second for the tabular datasets which use random forests. However, for CIFAR10, LIME
using ResNet-18 takes about a minute while ANS takes around 50 seconds showcasing the benefit of
reduced query complexity. With deeper models this is slated to improve even further. In any case,
additional time for our methods in some cases is probably worth it given the higher accuracy and the
fact that local explanations are independent and hence can be parallelized.

Qualitatively too in Figures 3 and 4 we observe that ANS produces much more stable and intuitive
explanations compared with other methods. ANS-Basic is slightly less stable than ANS but still
better than the competitors.

5 Discussion

Rather than piecewise linear regression one could also perform piecewise polynomial regression for
decision boundaries with high curvature, which will be more computationally expensive, but our
rejection sampling method and analysis should be applicable in that context too.

Our proposed approach is distinct from typical rejection sampling schemes [3] where a proposal
distribution is tilted and used to sample from the desired distribution. The reason we do not subscribe
to these standard schemes in our case is that these schemes are mainly used in two settings: i) when
we are not able to sample from the original distribution or ii) when we want to sample from the
tails of the original distribution. Both of these conditions are not met in our case since we sample
in regions which include the mean (i.e. highest probability density) while having access to these
distributions.



There are also motivations for our approach based on causality and practical behavior of neural
networks.

Causal motivation: It is known that given a structural causal model (SCM) [22], the best sparse
model captures the Markov blanket — i.e. parents and children in a causal graph — of the variable
to be estimated. In the post-hoc explanation setting the target variable Y has no children as the
black box model is of the form y = f(z). Hence, if the black box i.e. f(.) is linear lasso it could
recover the causal parents for some regularization parameter. However, in the non-linear setting, one
could have a case where multiple linear pieces explain the causal relationship in different parts of the
domain. If one tries to fit a linear model, gradient for one piece with respect to one feature might
(approximately) cancel the gradient with respect to another piece for the same feature because the
weights are of opposite signs. This could lead the linear model missing some (causal) parents when
explaining the variance in y. However, if we are able to identify the correct (linear) regions, then a
simple lasso-like fit in each such region should be able to uncover the correct causal parents overall.
This work may also motivate a notion of locally causal, which may be useful in practice, beyond the
standard formalisms of causality [22, 27] which are predominantly global.

Simplicity bias motivation: In a recent paper [28], investigating the reasons for neural networks
fitting to spurious correlations in the in-domain data resulting in poor generalization, the authors argue
that this is because of the simplicity bias of neural networks. That is, the networks pick the simplest
boundary to separate classes which could simply be a linear separator on one feature. However, in
the test data, the optimal separator could be based on a more complex decision boundary. Hence,
one would ideally want to capture the true complexity of the decision boundary. The definition
of complexity they use to analyze arbitrarily complex decision boundaries is closely related to
the number of linear pieces that would make up different decision boundaries. This formalization
thus further motivates our ANS and ANS-Basic approaches, which identify the appropriate linear
component based on a piecewise linear decision boundary.

The explanations that we obtain are more accurate in many measures with lower sample and query
complexity than standard baselines as we discuss in the experiments. However, like other black box
posthoc explainability methods it is difficult to say with certainty that the provided explanations are
in fact the “true” explanations. Additionally, the performance gains of our approach are contingent
on the quality of the MPLSR schemes. In case the ranges are incorrect the estimation may reduce
to standard LIME quality explanations. Luckily, this is likely to only happen when the ranges are
overestimated and we include neighbors belonging to different linear pieces, since in the opposite
case of underestimation we should still have neighbors belonging to the correct linear piece. In
general though, the MPLSR implementations seem to be reasonably mature which is reassuring.

In summary, we have proposed a novel neighborhood generation approach that is adaptive and is
robust across different kernel widths, much more so than other methods. We have theoretically
shown the benefit of this scheme compared with naive implementation of our idea where our main
proposal is likely to be sample but more so query efficient. This is further validated through real data
experiments where our approach is more accurate quantitatively as well as qualitatively.
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