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ABSTRACT

The incorporation of memory into agents is essential for numerous tasks within the
domain of Reinforcement Learning (RL). In particular, memory is paramount for
tasks that require the use of past information, adaptation to novel environments,
and improved sample efficiency. However, the term “memory” encompasses a
wide range of concepts, which, coupled with the lack of a unified methodology for
validating an agent’s memory, leads to erroneous judgments about agents’ memory
capabilities and prevents objective comparison with other memory-enhanced agents.
This paper aims to streamline the concept of memory in RL by providing practical
precise definitions of agent memory types, such as long-term vs. short-term
memory and declarative vs. procedural memory, inspired by cognitive science.
Using these definitions, we categorize different classes of agent memory, propose
a robust experimental methodology for evaluating the memory capabilities of RL
agents, and standardize evaluations. Furthermore, we empirically demonstrate the
importance of adhering to the proposed methodology when evaluating different
types of agent memory by conducting experiments with different RL agents and
what its violation leads to.

1 INTRODUCTION

Reinforcement Learning (RL) effectively addresses problems within the Markov Decision Process
(MDP) framework. However, applying RL to tasks with partial observability remains challenging,
requiring agents to efficiently process their interaction history (Esslinger et al., 2022; Hausknecht &
Stone, 2015; Ni et al., 2021).

In complex environments with noisy observations and long episodes, storing and retrieving important
information becomes crucial (Goyal et al., 2022; Graves et al., 2016). Yet, the concept of “memory”
in RL literature lacks unified definition. Some works define it as the ability to handle dependencies
within a fixed context (Esslinger et al., 2022; Ni et al., 2023), others as the ability to use out-
of-context information (Parisotto et al., 2020), and in Meta-RL, as the ability to adapt to new
environments (Team et al., 2023).

However, in the absence of clear definitions and standardized evaluation protocols, claims about
memory capacity in RL agents remain vague and often misleading. Memory is frequently attributed
to architectural features like recurrence or attention, yet without proper isolation of memory effects,
such assumptions can be incorrect. For instance, an agent might appear to exhibit long-term memory
simply due to task configurations that allow shortcuts or overlap with short-term context. As a
result, many empirical evaluations risk conflating different memory mechanisms or failing to detect
architectural limitations. This hinders progress in developing truly memory-capable agents and
comparing models in a fair and reproducible manner.

In this work, we attempt to unify and clarify the concept of memory in RL agents by treating memory
as an intrinsic attribute of memory-enhanced agents, directly linking memory type classification
to the agent’s internal mechanisms. These specific memory types - short-term vs. long-term and
declarative vs. procedural - can be rigorously assessed through experiments in memory-intensive
environments. Our classification, based on temporal dependencies and the nature of the recalled infor-
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mation, provides a structured framework for distinguishing memory types, enabling fair comparisons,
diagnosing architectural limitations, and guiding principled improvements.

It is important to clarify that our goal is not to replicate the full complexity of human memory. Rather,
we selectively adapt well-established memory concepts from neuroscience - such as short-term,
long-term, declarative, and procedural memory - that are already informally used in RL, but lack
precise definitions and formal grounding (Fortunato et al., 2020; Kang et al., 2024b; Ni et al., 2023).

In summary, our main contributions are as follows:

1. We provide formal definitions of key memory types in RL – specifically, short-term (STM)
vs. long-term (LTM) and declarative vs. procedural memory – grounded in neuroscience and
formalized for RL settings – Section 4.

2. We introduce a task-level decoupling of Memory Decision-Making (Memory DM) and Meta-RL,
clarifying the behavioral role of memory in each category – Section 4.

3. We propose a principled experimental methodology for evaluating STM and LTM in Memory
DM tasks, including precise criteria for identifying memory boundaries – Subsection 4.2.

4. We show that neglecting the proposed methodology can mislead conclusions about agent memory
capabilities, highlighting the importance of proper experimental configuration – Section 5.

2 BACKGROUND

2.1 MEMORY OF HUMANS AND AGENTS

Many RL studies reference memory types from cognitive science, such as long-term (Lampinen
et al., 2021; Ni et al., 2023), working (Graves et al., 2014), associative (Polson, 1975), and episodic
memory (Pritzel et al., 2017), but often reduce them to vague temporal categories (e.g., short vs.
long-term), with short-term spanning a few steps and long-term hundreds. This oversimplification,
ignoring the relative nature of memory, complicates meaningful evaluation. To resolve this, we
formalize agent memory types and introduce a principled evaluation framework.

2.1.1 MEMORY IN COGNITIVE SCIENCE

Human adaptive behavior depends heavily on memory, which governs how knowledge and skills
are acquired, retained, and reused (Parr et al., 2020; 2022). Memory exists in many forms, each of
which relies on different neural mechanisms. Neuroscience and cognitive psychology distinguish
memory by the temporal scales at which information is stored and accessed, and by the type of
information that is stored. Abstracting from this distinction, a high-level definition of human memory
is as follows: “memory – is the ability to retain information and recall it at a later time”.

This definition aligns with how memory is typically understood in RL, and we adopt it to define types
of RL agent memory. In neuroscience, memory is classified by timescale and behavioral function,
distinguishing short-term memory, lasting seconds, from long-term memory, which can persist for a
lifetime (Davis & Squire, 1984). It is also divided into declarative (explicit) and procedural (implicit)
forms (Graf & Schacter, 1985): the former involves consciously recalled facts and events, while
the latter relates to unconscious skills like riding a bike or skiing. Though these distinctions are
well-established in neuroscience, RL requires precise, testable definitions. In what follows, we adapt
these cognitive categories into a formal framework suitable for RL agents.

2.1.2 MEMORY IN RL

Memory in RL encompasses diverse agent capabilities, but its definition varies across studies. In many
POMDPs, agents must retain key information to act effectively later within the same environment.
This typically involves two kinds of temporal dependencies: 1) within a bounded time window (e.g.,
transformer context (Esslinger et al., 2022; Ni et al., 2023; Yue et al., 2024)); 2) beyond the current
context, requiring persistent storage or recall (Parisotto et al., 2020; Sorokin et al., 2022).

As noted in Subsubsection 2.1.1, STM and LTM correspond to different temporal scopes of declarative
memory. In contrast, Meta-RL involves procedural memory, enabling agents to reuse skills across
tasks Team et al. (2023). However, many works conflate these types, evaluating “long-term memory”
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Figure 1: Illustration of declarative
and procedural memory. Red ar-
rows represent memorization steps,
blue arrows indicate the recall of
task-relevant information.

solely in Meta-RL settings based on MDPs (Kang et al., 2024a),
without isolating decision-making from past information. To
resolve this, we formalize RL memory types by task structure
and temporal dependencies. In this work, we focus on declar-
ative memory, guiding decisions from past observations in the
same environment, emphasizing its short- and long-term forms.

2.1.3 MEMORY AND CREDIT ASSIGNMENT

Papers on agent memory, especially declarative memory, often
distinguish between two forms of temporal reasoning: memory
and credit assignment (Mesnard et al., 2020; Ni et al., 2023;
Osband et al., 2019). In Ni et al. (2023), memory is defined
as recalling a past event at the current time, while credit as-
signment is identifying when reward-relevant actions occurred.
Though distinct, both concepts describe temporal dependencies
between events. Here, we focus on the agent’s ability to form such dependencies, treating memory
and credit assignment as one. We adopt the general definition from Subsubsection 2.1.1, which
applies to both, as it captures their shared temporal nature.

3 RELATED WORKS

Figure 2: STM vs. LTM. te - event start,
tr - recall time; K - context length, ξ
– correlation horizon. If the event lies
beyond K, LTM is needed; if within,
STM is enough.

Interest in memory-enhanced RL has led to numerous
architectures (Oh et al., 2016; Lampinen et al., 2021; For-
tunato et al., 2020) and benchmarks (Morad et al., 2023a;
Cherepanov et al., 2025; Osband et al., 2019; Pleines et al.,
2023), yet the term “memory” remains inconsistently de-
fined and often misaligned with what experiments actu-
ally test. Some works define memory as retaining recent
observations within the same episode – either via recur-
rent states (Hausknecht & Stone, 2015), transformer con-
texts (Esslinger et al., 2022; Grigsby et al., 2024), or exter-
nal stores (Lampinen et al., 2021; Le et al., 2024). Others
expand it to long-range dependencies through learned state
compression (Morad et al., 2023b), key-value recurrent
updates (Pramanik et al., 2023; Cherepanov et al., 2024), or spatial memory maps (Parisotto &
Salakhutdinov, 2017b). A separate line views memory as cross-episode knowledge transfer – e.g.,
in Meta-RL (Kang et al., 2024a; Bauer et al., 2023). This variety – from within-episode recall to
multi-task adaptation – reflects the lack of a shared definition. Our work addresses this gap by
introducing a unified taxonomy grounded in temporal dependencies and task structure.

Among concrete instantiations, Esslinger et al. (2022) introduced Deep Transformer Q-Networks
(DTQN), which leverage transformer context for partially observable RL. Ni et al. (2023) extended
this line with GPT-2 based agents, including DQN-GPT-2 and SAC-GPT-2, which apply attention-
based memory to online RL control. In the offline setting, Decision Transformer (DT) (Chen et al.,
2021) uses a sequence model trained on trajectories for return-conditioned planning, while recurrent
baselines such as BC-LSTM provide a contrast between attention-based and recurrent memory
mechanisms. These models constitute the baselines we evaluate in our experiments.

Ni et al. (2023) further distinguish between memory – the ability to recall past events – and credit
assignment – identifying when reward-relevant actions occurred. Kang et al. (2024b) build on
reconstructive memory (Bartlett & Kintsch, 1995), emphasizing reflection grounded in interaction.
These varied interpretations underscore the need for a unified definition of memory in RL. We address
this by formalizing memory types via temporal dependencies and task structure, and proposing
a framework for empirical evaluation. Concurrently with our study, Yue et al. (2024) introduced
memory dependency pairs (p, q) to model recall in demonstrations. While insightful for imitation
learning, their approach lacks a theoretical treatment of RL memory and does not address the broader
taxonomy of agent memory types.
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4 MEMORY IN RL

POMDP tasks involving memory fall into two categories: Meta-RL, focused on skill transfer across
tasks, and Memory DM, where agents recall past information for future decisions. This distinction
matters: Meta-RL relies on procedural memory for rapid adaptation, while Memory DM uses
declarative memory to guide decisions within a single environment. Yet many works reduce memory
to temporal range, ignoring the behavioral roles that distinguish these types. To formalize Memory
DM tasks, we first define the agent’s context length:
Definition 4.1. Agent context length (K ∈ N) – is the maximum number of previous steps (triplets
of (o, a, r)) that the agent can process at time t.

Figure 3: Classification of memory types
of RL agents. While the Memory DM
framework contrasts with Meta-RL, its
formalism can also describe inner-loop
tasks when they are POMDPs.

For example, an MLP-based agent processes one step at
a time (K = 1), while a transformer-based agent can
process a sequence of up to K = Kattn triplets, where
Kattn is determined by attention. Looking ahead, RNNs
also have a K = 1, but using hidden states allows longer
dependencies to be handled. Using the introduced Def-
inition 4.1 for agent context length, we can introduce a
formal definition for the Memory DM framework we focus
on in this paper:
Definition 4.2. Memory Decision-Making (Memory DM)
– is a class of POMDPs in which the agents decision-
making process at time t is based on the history h0:t−1 =
{(oi, ai, ri)}t−1

i=0 if t > 0 otherwise h = ∅. The objective
is to determine an optimal policy π∗(at | ot, h0:t−1) that
maps the current observation ot and history h0:t−1 of
length t to an action at, maximizing the expected cumulative reward within a single POMDP

environment MP : Jπ = Eπ

[
T−1∑
t=0

γtrt

]
, where T – episode duration, γ ∈ [0, 1] – discount factor.

In the Memory DM framework (Definition 4.2), memory refers to the agent’s ability to recall
information from the past within a single environment and episode. In contrast, in the Meta-RL
framework (Definition 4.3), memory involves recalling information about the agent’s behavior from
other environments or previous episodes:
Definition 4.3. Meta-RL – is a class of POMDPs where the agent learns to learn from its past
experiences across multiple tasks and memorize the common patterns and structures to facilitate
efficient adaptation to new tasks. Let D = {τMi

j }H−1
j=0 is all of the data of H episodes of length

T collected in the MDP Mi ∼ p(M). A Meta-RL algorithm is a function fθ that maps the
data D to a policy πϕ, where ϕ = fθ(D). The objective to determine an optimal fθ: Jθ =

EMi∼p(M)

[
ED

[ ∑
τ∈DI:H

Gi(τ)

∣∣∣∣fθ,Mi

]]
, where Gi(τ) – discounted return in the MDP Mi, I –

index of the first episode during the trial in which return counts towards the objective (Beck et al.,
2024).

To operationalize the distinction between memory types in RL, we translate the neuroscience concepts
of declarative and procedural memory (Subsubsection 2.1.1) into measurable task-level criteria:
Definition 4.4 (Declarative and Procedural memory in RL). Let nenvs be the number of training
environments and neps the number of episodes per environment. Then,

1. Declarative Memory – a type of agent memory when an agent transfers its knowledge within
a single environment and across a single episode within that environment:

Declarative Memory ⇐⇒ nenvs × neps = 1. (1)

2. Procedural Memory – a type of agent memory when an agent transfers its skills across
multiple environments or multiple episodes within a single environment:

Procedural Memory ⇐⇒ nenvs × neps > 1. (2)

4
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In this formulation, knowledge refers to observable, environment-specific information – such as object
locations or facts – used within a single episode. Skills, in contrast, are policies reused across tasks or
trials. Accordingly, Memory DM primarily evaluates declarative memory, while Meta-RL settings
test procedural memory (Figure 3).

Having distinguished declarative and procedural memory, we now examine the temporal structure of
memory in the Memory DM framework, focusing on its division into short-term and long-term forms.

Definition 4.5 (Memory DM types of memory). Let K be the agent context length, α∆t
te =

{oi, ai, ri}te+∆t
i=te

– an event of duration ∆t that begins at t = te and ends at t = te + ∆t, and
βtr (α

∆t
te ) = at | (ot, α∆t

te ) – a decision-making point (recall) at time t = tr based on the current
observation ot and information about the event α∆t

te . Let also ξ = tr − te−∆t+1 be the correlation
horizon, i.e. the minimal time delay between the event α∆t

te that supports the decision-making and
the moment of recall of this event βtr . Then,

1. Short-term memory (STM) - an agent’s ability to use information about local correlations
from the past within the context of length K at decision time:

βtr (α
∆t
te ) = at | (ot, α∆t

te ) ∀ ξ = tr − te −∆t+ 1 ≤ K.

2. Long-term memory (LTM) - an agent ability to utilize information about global correlations
from the past outside of the agent context of length K, during decision-making:

βtr (α
∆t
te ) = at | (ot, α∆t

te ) ∀ ξ = tr − te −∆t+ 1 > K.

An illustration for the definitions of classifying Memory DM tasks into LTM and STM from Defini-
tion 4.5 is shown in Figure 2.

Figure 4: Classification of tasks requiring agent
memory based on our definitions: green indicates
tasks described by the proposed definitions of
LTM and STM, while blue indicates those that
are not. Meta-RL tasks with a POMDP inner-loop
are marked green as they can be classified as Mem-
ory DM tasks. POMDP† indicates a Memory DM
task considered as an inner-loop task without an
outer-loop.

nenvs neps POMDP Inner-loop
task

Memory Tasks that
require agent memory

Memory DM

LTM
ξ > K

STM
ξ ≤ K

1 1 Memory
DM POMDP† Dec. Long-term

memory task
Short-term
memory task

Meta-RL: Outer-loop
and inner-loop memory

LTM
ξ > K

STM
ξ ≤ K

1 >1 Meta-RL POMDP Proc. Single-task Single-task

>1 1 Meta-RL POMDP Proc. Multi-task 0-
shot

Multi-task 0-
shot

>1 >1 Meta-RL POMDP Proc. Multi-task Multi-task
Meta-RL: Outer-loop

memory only

No memory
ξ = 1

No memory
ξ = 1

1 >1 Meta-RL MDP Proc. Single-task Single-task

>1 1 Meta-RL MDP Proc. Multi-task 0-
shot

Multi-task 0-
shot

>1 >1 Meta-RL MDP Proc. Multi-task Multi-task

The two definitions of declarative memory en-
compass all work related to Memory DM tasks,
where decisions are based on past information.
Meta-RL consists of an inner-loop, where the
agent interacts with the environment M ∼
p(M), and an outer-loop for transferring knowl-
edge between tasks. Typically, M is an MDP
that doesn’t require memory, serving only the
outer-loop, which is what “memory” refers to in
Meta-RL studies.

The tasks in which the agent makes decisions
based on interaction histories in the inner-loop
are not named separately, since the classification
of Meta-RL task types (multi-task, multi-task
0-shot, and single-task) is based solely on outer-
loop parameters (nenvs and neps) and does not
consider inner-loop task types. However, we can
classify the agent’s memory for these tasks as
declarative STM or LTM (Figure 3).

We introduce an additional decoupling of Meta-
RL task types into green (with POMDP inner-
loop tasks) and blue (with MDP inner-loop
tasks). In the green case, the agent’s memory is
required for both skill transfer in the outer-loop and decision-making from interaction histories in the
inner-loop, and within the inner-loop can be considered a Memory DM. In the blue case, memory
is needed only for skill transfer. While this paper focuses on Memory DM tasks, the terminology
enables further classification of Meta-RL tasks, with POMDP sub-classes highlighted in green. The
proposed classification of tasks requiring agent memory is shown in Figure 4.
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4.1 MEMORY-INTENSIVE ENVIRONMENTS

To effectively test a Memory DM agent’s use of short-term and long-term memory, it is crucial to
design appropriate experiments. Not all environments are suitable for assessing agent memory; for
example, omnipresent Atari games (Bellemare et al., 2013) with frame stacking or MuJoCo control
tasks (Fu et al., 2021) may yield unrepresentative results. To facilitate the evaluation of agent memory
capabilities, we formalize the definition of memory-intensive environments:

Definition 4.6 (Memory-Intensive Environments). Let MP be a POMDP, and let Ξ = {ξn}n =
{(tr − te −∆t+ 1)n}n denote the set of correlation horizons for all event-recall pairs (α∆t

te , βtr ).
Then MP is a memory-intensive environment, denoted M̃P , if and only if: minn ξn > 1.

Corollary 1. A task corresponds to an MDP (i.e., is Markovian) if and only if all correlation horizons
are trivial: max

n
Ξ = 1.

Proof. In an MDP, the optimal action depends only on the current state (or observation), i.e., no
past information is needed. This implies ξn = 1 for all event-recall pairs, hence maxn ξn = 1.
Conversely, if maxn ξn = 1, then no decision depends on events beyond the current step, satisfying
the Markov property. ■

Using the definitions of memory-intensive environments (Definition 4.6) and agent memory types
(Definition 4.5), we can configure experiments to test short-term and long-term memory in the
Memory DM framework. Notably, the same memory-intensive environment can validate both types
of memory, as outlined in Theorem 2:

Theorem 2 (On the context memory border). Let M̃P be a memory-intensive environment and
K be an agent’s context length. Then there exists context memory border K ≥ 1 such that if
K ≤ K then the environment M̃P is used to validate exclusively long-term memory in Memory DM
framework:

∃ K ≥ 1 : ∀ K ∈ [1,K] : K < min
n

Ξ. (3)

Proof. Let K = minΞ−1. Then ∀K ≤ K is guaranteed that no correlation horizon ξ is in the agent
history ht−K+1:t, hence the context length K ≤ minΞ− 1 generates the LTM problem exclusively.
Since context length cannot be negative or zero, it turns out that 1 ≤ K ≤ K = minΞ− 1, which
was required to prove. ■

The following result, though intuitive, formalizes a practical criterion for isolating long-term memory
evaluation by constraining the agent’s context window. It serves as the foundation for configuring
experiments in the Memory DM framework. According to Theorem Theorem 2, in a memory-
intensive environment M̃P , the value of the context memory border K can be found as

K = minΞ− 1 = min
n

{
(tr − te −∆t+ 1)n

}
n
− 1. (4)

Using Theorem Theorem 2, we can establish the necessary conditions for validating short-term
memory: 1) Weak condition to validate short-term memory: if K < K < maxΞ, then the
memory-intensive environment M̃P is used to validate both short-term and long-term memory. 2)
Strong condition to validate short-term memory: if maxΞ < K, then the memory-intensive
environment M̃P is used to validate exclusively short-term memory.

According to Theorem Theorem 2, if K ∈ [1,K], none of the correlation horizons ξ will be in the
agent’s context, validating only long-term memory. When K < K < maxΞ ≤ T − 1, long-term
memory can still be tested, but some correlation horizons ξ will fall within the agent’s context
and won’t be used for long-term memory validation. In such a case it is not possible to estimate
long-term memory explicitly. When K ≥ maxΞ, all correlation horizons ξ are within the agent’s
context, validating only short-term memory. Summarizing the obtained results, the final division of
the required agent context lengths for short-term memory and long-term memory validation is as
follows: (i) K ∈ [1,K] ⇒ validating LTM only; (ii) K ∈ (K,maxΞ) ⇒ validating both STM
and LTM; (iii) K ∈ [maxΞ,∞) ⇒ validating STM only.
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Algorithm 1 Algorithm for setting up an experiment to test long-term and short-term memory in
Memory DM framework.

Require: M̃P – memory-intensive environment; µ(K) – memory mechanism.
1. Estimate the number of n event-recall pairs in the environment (Definition 4.6).

1. n = 0 → Environment is not suitable for testing long-term and short-term memory.

2. n ≥ 1 → Environment is suitable for testing long-term and short-term memory.

2. Estimate context memory border K (4).
1. ∀ event-recall pair (β(α), α)i find corresponding ξi, i ∈ [1..n].

2. Determine K as K = minΞ− 1 = min
n

{ξn}n − 1 = min
n

{
(tr − te −∆t+ 1)n

}
n
− 1

3. Conduct an appropriate experiment (Definition 4.5).
1. To test short-term memory set K > K.

2. To test long-term memory set K ≤ K ≤ Keff = µ(K).

4. Analyze the results.

4.2 LONG-TERM MEMORY IN MEMORY DM

As defined in Definition 4.5, short-term Memory DM tasks arise when event-recall pairs in M̃P

fall within the agent’s context (ξ ≤ K), allowing decisions based on local correlations. This holds
regardless of how large K is. Examples include Esslinger et al. (2022); Grigsby et al. (2024); Ni et al.
(2023). Validating STM is simple: increase K. In contrast, testing long-term memory requires more
care and is typically more informative.

Memory DM tasks requiring long-term memory occur when event-recall pairs in the memory-
intensive environment M̃P are outside the agent’s context (ξ > K). In this case, memory involves
the agent’s ability to connect information beyond its context, necessitating memory mechanisms
(Definition 4.7) that can manage interaction histories h longer than the agent’s base model can handle.
Definition 4.7 (Memory mechanisms). Let the agent process histories ht−K+1:t of length K at the
current time t, where K ∈ N is agents context length. Then, a memory mechanism µ(K) : N → N is
defined as a function that, for a fixed K, allows the agent to process sequences of length Keff ≥ K,
i.e., to establish global correlations out of context, where Keff is the effective context.

µ(K) = Keff ≥ K. (5)
Memory mechanisms are key to LTM tasks by recalling out-of-context information in Memory DM.

Example of memory mechanism. Consider an agent based on an RNN architecture that can
process K = 1 triplets of tokens (ot, at, rt) at all times t. By using memory mechanisms µ(K) (e.g.,
as in Hausknecht & Stone (2015)), the agent can increase the number of tokens processed in a single
step without expanding the context size of its RNN architecture. Therefore, if initially in a memory-
intensive environment M̃P : ξ > K = 1, it can now be represented as M̃P : ξ ≤ Keff = µ(K).
Here, the memory mechanism µ(K) refers to the RNNs recurrent updates to its hidden state.

Thus, validating an agent’s ability to solve long-term memory problems in the Memory DM framework
reduces to validating the agent’s memory mechanisms µ(K). To design correct experiments in
such a case, the following condition must be met:

M̃P : K ≤ K < ξ ≤ Keff = µ(K) (6)

According to our definitions, agents with memory mechanisms in the Memory DM framework
that solve LTM tasks can also handle STM tasks, but not vice versa. The algorithm for setting up
experiments to test an agent’s STM or LTM is outlined in Algorithm Algorithm 1.

4.3 EXAMPLE OF Ξ AND ξ ESTIMATES

Following the proposed methodology (Algorithm Algorithm 1), we estimated the sets of corre-
lation horizons Ξ and minimal recall distances ξ for a range of popular memory-intensive tasks
(Table Table 1), including Passive T-Maze (Ni et al., 2023), Minigrid-Memory (Chevalier-Boisvert
et al., 2023), ViZDoom-Two-Colors (Sorokin et al., 2022), Memory Maze (Pasukonis et al., 2022),
Memory Cards (Esslinger et al., 2022), Mortar Mayhem and Mystery Path (Pleines et al., 2025),
POPGym–Autoencode and POPGym-RepeatPrevious (Morad et al., 2023a).
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Figure 5: Performance of Online RL agents
“with memory” across different memory config-
urations. Each row shows a specific environment:
T-Maze, POPGym-Autoencode, and POPGym-
RepeatPrevious, with varying agent context length
K and correlation horizons ξ. The STM ⇆ LTM
transitions reflect the relative nature of the settings
to test memory, depending on both agent and envi-
ronment parameters.

Example: Testing Memory in Passive T-Maze
In Passive T-Maze, the agent sees a cue at the
start of a corridor and must turn correctly at the
junction. The episode lasts T = L + 1. Using
Algorithm Algorithm 1: 1) There’s one event-
recall pair (n = 1), so the task suits both STM
and LTM. 2) The event lasts one step (∆t = 0),
so ξ = T , and K = T − 1. 3) Varying T or
context size K lets us test STM (if K > K)
or LTM (if K ≤ K ≤ µ(K)). While K = K
is enough in theory, choosing smaller K better
reveals memory mechanism effects.

5 EXPERIMENTS

We evaluate memory-enhanced RL agents us-
ing the Memory DM framework to distinguish
short- vs. long-term memory. Our experiments
stress the need for proper methodology (Al-
gorithm Algorithm 1) and show how poor se-
tups can misrepresent memory use. We test
four memory-intensive tasks: Passive T-Maze
and Minigrid-Memory (cue recall), and POP-
Gym–Autoencode and RepeatPrevious (obser-
vation reconstruction and action repeat), all requiring recall over time. In the online setting, we
evaluate DTQN (Esslinger et al., 2022), DQN-GPT-2, and SAC-GPT-2 (Ni et al., 2023) with attention-
based memory. Offline, we test DT (Chen et al., 2021) and BC-LSTM to compare attention vs.
recurrence. In all cases, we vary agent context K and task horizon ξ to isolate memory types and
reveal model limitations.

5.1 PITFALLS OF NAIVE MEMORY TESTS

Table 1: Correlation horizons ξ and LTM thresh-
olds K for popular memory-intensive tasks. L is
corridor length, T is episode length. (f) and (v)
denote fixed and variable setups. POPGym entries
show values for the easy setting; for easy / medium
/ hard, Ξ becomes {2, 4, . . . , 104/208/312} for
Autoencode and {5/33/65} for RepeatPrevious.

Task Ξ ξ LTM if K <

Passive T-Maze {L+ 1} L+1 L+ 1
Minigrid-Memory (f) {L+ 1} L+1 L+ 1
Minigrid-Memory (v) [7, L+1] 7 7
ViZDoom-Two-Colors [2, 2055] 2 2
Memory Maze 9x9 [28, 1000] 28 28
Memory Maze 15x15 [45, 4000] 45 45
Memory Cards [2, T ] 2 2
Mortar Mayhem (finite) [38, 218] 38 38
Mystery Path (finite) [8, 26] 8 8
POPGym–Autoencode [2, 104] 2 2
POPGym–RepeatPrevious {5} 5 5

Proper evaluation of memory in RL agents re-
quires distinguishing STM from LTM by ac-
counting for correlation horizons ξ. Without
this, STM and LTM effects blur, misrepresent-
ing agent capacity. We illustrate this with SAC-
GPT-2 in Minigrid-Memory under two setups:
(i) fixed L = 21 (ξ = 22), and (ii) variable L
(ξ ∈ [7, 22]), testing STM (K = 22) and LTM
(K = 14) settings. As shown in Figure 6, the
variable setup gives high success for both set-
tings, implying good memory.

But in the fixed case, LTM fails, revealing the
agent’s true limit. Mixed-horizon tasks can hide
LTM deficits - only fixed ξ > K setups expose
them. Proper LTM evaluation requires controlling the correlation horizon ξ relative to the agent’s
context K. Without this, STM effects may dominate and misrepresent the agent’s memory type. Our
methodology provides a principled way to avoid this confusion.

5.2 THE RELATIVE NATURE OF AN AGENT’S MEMORY

According to Algorithm Algorithm 1, the experimental setup for testing agent memory types (LTM
and STM) depends on two parameters: the agent’s context length K and the context memory border
K, which in turn is determined by the environment’s correlation horizon ξ. Verifying LTM or STM
requires adjusting K or ξ while keeping the other fixed. This section outlines how these parameters
interact in memory testing. An agent’s memory cannot be defined in isolation – it arises from the
interplay between its context K and the environment’s horizons ξ. Thus, the same agent may exhibit
either STM or LTM behavior depending on the task setup.
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We test DTQN and DQN-GPT-2 in three memory-intensive tasks: Passive T-Maze, POPGym Autoen-
code, and RepeatPrevious – by varying K and ξ to simulate STM (ξ ≤ K) and LTM (ξ > K); as
shown in Figure 5, performance is high when ξ ≤ K but drops sharply for ξ > K, confirming that
long-range dependencies require explicit memory mechanisms. These results confirm memory is
relative: LTM depends on both temporal distance and agent design. Without controlling K and ξ,
memory claims are unreliable. Our K-ξ framework ensures consistent, interpretable evaluation.

5.3 GENERALIZATION ACROSS SEQUENCE LENGTHS
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cc

es
s 

Ra
te

K = 22 variable mode
K = 14 variable mode
K = 22 fixed mode
K = 14 fixed mode

Figure 6: SAC-GPT-2 in Minigrid-Memory (L =
21) with short- (K = 22) and long-term (K =
14) memory setups. Variable mode (green) masks
memory limits; fixed mode (red) reveals failure at
K = 14, demonstrating lack of long-term memory
– made evident by our evaluation method.

Evaluating memory in RL agents requires dis-
tinguishing true long-term memory (LTM) from
memorization within fixed context. To demon-
strate this, we test DT and BC-LSTM on T-
Maze: both are trained on specific corridor
lengths and evaluated on both seen and longer,
unseen ones. This setup tests whether agents can
recall cue information beyond training range
- an LTM indicator. Figure 7 shows success
heatmaps across training and validation lengths.
The diagonal indicates in-distribution perfor-
mance; extrapolation lies to the right.

While both models process sequences and are
labeled as memory-enhanced, our framework
reveals key differences. DT relies on a fixed
attention window and operates with short-term
memory, while LSTM uses a recurrent state,
enabling true LTM. T-Maze results expose this gap: DT performs well when validation lengths
stay within context but fails for L > 90, whereas BC-LSTM generalizes to much longer sequences,
demonstrating effective LTM. If evaluated only on shorter validation lengths, DT may appear stronger,
masking memory limitations. Both perform well for lengths ≤ 150, but at training length 300, DT
scores 100%, while BC-LSTM drops to 0.87. For longer training (600, 900), BC-LSTM collapses,
DT remains high – misleadingly favoring STM.
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Figure 7: Generalization on Passive T-Maze. Each
heatmap shows success rates for (a) DT and (b)
BC-LSTM across training (vertical) and validation
(horizontal) sequence lengths. DT succeeds only
when validation ≤ training, showing short-term
memory limits. BC-LSTM generalizes beyond
training, indicating strong long-term memory.

This confirms DT lacks LTM, while BC-LSTM
retains it despite challenges like vanishing gradi-
ents (Trinh et al., 2018). Our framework ensures
accurate memory assessment. These findings
emphasize the need to distinguish architecture
from memory function: DT suits STM tasks
via attention, BC-LSTM handles LTM through
recurrence. Our taxonomy prevents misinterpre-
tation of memory in RL agents.

6 CONCLUSION

We propose a unified framework for classifying
and evaluating memory in RL agents, grounded
in neuroscience-inspired definitions of short-
and long-term declarative memory. By introduc-
ing the concept of correlation horizon and for-
malizing memory-intensive environments, we
enable precise evaluation of agent memory. Our
methodology reveals key differences between
architectures: transformers like DTQN or DT rely mainly on short-term memory, while recurrent
models such as BC-LSTM exhibit long-term memory. Experiments on T-Maze, MiniGrid, and POP-
Gym confirm the need for proper setups to avoid misleading conclusions. The framework clarifies
how memory mechanisms shape behavior and could be extended to include additional systems from
cognitive science, such as working or episodic memory, and to explore whether new types emerge in
complex RL tasks.
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REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our results. Model details: The
formalization of our framework – covering Memory DM, STM/LTM, and the correlation horizon – is
provided in Section 4, with precise definitions in Definition 4.1, Definition 4.2, and Definition 4.5,
and the experimental configuration procedure in Algorithm 1. Theoretical results: Assumptions
and complete statements (including the definition of memory-intensive environments) are given
in Definition 4.6, and key results with proofs appear in Theorem 2 and its accompanying discussion.
Experimental setup: Tasks, training procedures, and evaluation protocols are reported in Section 5,
with validation protocol details in Subsection F.1, hyperparameters in Subsection F.1, and environment
descriptions in Appendix F. Baselines: Baseline selections and configurations are documented
in Section 5, with their hyperparameters listed in Subsection F.1. Code and data: An anonymous
repository containing source code, training scripts, and configuration files submitted as supplementary
material. Together, these resources allow for full replication of our theoretical analyses and empirical
results.
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A APPENDIX – GLOSSARY

In this section, we provide a comprehensive glossary of key terms and concepts used throughout this
paper. The definitions are intended to clarify the terminology proposed in our research and to ensure
that readers have a clear understanding of the main elements underpinning our work.

1. M – MDP environment
2. MP – POMDP environment
3. M̃P – memory-intensive environment
4. h0:t−1 = {(oi, ai, ri)}t−1

i=0 – agent history of interactions with environment
5. K – agent base model context length
6. K – context memory border of the agent, such that K ∈ [1,K] ⇔ strictly LTM problem
7. µ(K) – memory mechanism that increases number of steps available to the agent to process
8. Keff = µ(K) – the agent effective context after applying the memory mechanism

9. α∆t
te = {(oi, ai, ri)}te+∆t

i=te
– an event starting at time te and lasting ∆t, which the agent

should recall when making a decision in the future
10. βtr = βtr (α

∆t
te ) = at | (ot, α∆t

te ) – the moment of decision making at time tr according to
the event α∆t

te

11. ξ = tr − ta −∆t+ 1 – an event’s correlation horizon

B APPENDIX – ADDITIONAL NOTES ON THE MOTIVATION FOR THE ARTICLE

B.1 WHY USE DEFINITIONS FROM NEUROSCIENCE?

Definitions from neuroscience and cognitive science, such as short-term and long-term memory, as
well as declarative and procedural memory, are already well-established in the RL community, but
do not have common meanings and are interpreted in different ways. We strictly formalize these
definitions to avoid possible confusion that may arise when introducing new concepts and redefine
them with clear, quantitative meanings to specify the type of agent memory, since the performance of
many algorithms depends on their type of memory.

In focusing exclusively on memory within RL, we do not attempt to exhaustively replicate the
full spectrum of human memory. Instead, our goal is to leverage the intuitive understanding of
neuroscience concepts already familiar to RL researchers. This approach avoids the unnecessary
introduction of new terminology into the already complex Memory RL domain. By refining and
aligning existing definitions, we create a robust framework that facilitates clear communication,
rigorous evaluation, and practical application in RL research.

B.2 ON PRACTICAL APPLICATIONS OF OUR FRAMEWORK

The primary goal of our framework is to address practical challenges in RL by providing a robust
classification of memory types based on temporal dependencies and the nature of memorized infor-
mation. This classification is essential for standardizing memory testing and ensuring that RL agents
are evaluated under conditions that accurately reflect their capabilities.

In RL, memory is interpreted in various ways, such as transformers with large context windows,
recurrent networks, or models capable of skill transfer across tasks. However, these approaches
often vary fundamentally in design, making comparisons unreliable and leading to inconsistencies in
testing. Our framework resolves this by providing a clear structure to evaluate memory mechanisms
under uniform and practical conditions.

The proposed definitions of declarative and procedural memory use two straightforward numerical
parameters: the number of environments (nenvs) and episodes (neps). These parameters allow
researchers to reliably determine the type of memory required for a task. This simplicity and
alignment with numerical parameters make the framework practical and widely applicable across
diverse RL problems.
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Moreover, the division of declarative memory into long-term and short-term memory, as well as
the need to use a balance between the agent’s context length K and the correlation horizons of the
environment ξ when conducting the experiment, allows us to unambiguously determine which type
of memory is present in the agent. This clarity ensures fair comparisons between agents with similar
memory mechanisms and highlights specific limitations in an agent’s design. By aligning memory
definitions with practical testing requirements, the framework provides actionable insights to guide
the development of memory-enhanced RL agents.

C APPENDIX – MEMORY MECHANISMS

In RL, memory has several meanings, each of which is related to a specific class of different tasks. To
solve these tasks, the authors use various memory mechanisms. The most prevalent approach to incor-
porating memory into an agent is through the use of Recurrent Neural Networks (RNNs) (Rumelhart
et al., 1986), which are capable of handling sequential dependencies by maintaining a hidden state
that captures information about previous time steps (Wierstra et al., 2010; Hausknecht & Stone, 2015;
Sorokin et al., 2015; Duan et al., 2016; Song et al., 2018; Zintgraf et al., 2020). Another popular
way to implement memory is to use Transformers (Vaswani et al., 2017), which use self-attention
mechanisms to capture dependencies inside the context window (Parisotto et al., 2020; Lampinen
et al., 2021; Esslinger et al., 2022; Melo, 2022; Team et al., 2023; Pramanik et al., 2023; Robine et al.,
2023; Ni et al., 2023; Grigsby et al., 2024; Shala et al., 2024). State-space models (SSMs) (Gu et al.,
2021; Smith et al., 2023; Gu & Dao, 2023) combine the strengths of RNNs and Transformers and
can also serve to implement memory through preservation of system state (Hafner et al., 2019; Lu
et al., 2023; Becker et al., 2024; Samsami et al., 2024). Temporal convolutions may be regarded as
an effective memory mechanism, whereby information is stored implicitly through the application
of learnable filters across the time axis (YuXuan Liu & Hsieh, 2016; Mishra et al., 2018). A world
model (Ha & Schmidhuber, 2018) which builds an internal environment representation can also be
considered as a form of memory. One method for organizing this internal representation is through
the use of a graph, where nodes represent observations within the environment and edges represent
actions (Morad et al., 2021; Zhu et al., 2023; Kang et al., 2024b).

A distinct natural realization of memory is the utilization of an external memory buffer, which enables
the agent to retrieve pertinent information. This approach can be classified into two categories: read-
only (writeless) (Oh et al., 2016; Lampinen et al., 2021; Goyal et al., 2022; Cherepanov et al., 2024)
and read/write access (Graves et al., 2016; Zaremba & Sutskever, 2016; Parisotto & Salakhutdinov,
2017a).

Memory can also be implemented without architectural mechanisms, relying instead on agent policy.
For instance, in the work of Deverett et al. (2019), the agent learns to encode temporal intervals by
generating specific action patterns. This approach allows the agent to implicitly represent timing
information within its behavior, showcasing that memory can emerge as a result of policy adaptations
rather than being explicitly embedded in the underlying neural architecture.

Using these memory mechanisms, both decision-making tasks based on information from the past
within a single episode and tasks of fast adaptation to new tasks are solved. However, even in works
using the same underlying base architectures to solve the same class of problems, the concepts of
memory may differ.

D APPENDIX – POMDP

D.1 POMDP

The Partially Observable Markov Decision Process (POMDP) is a generalization of the Markov
Decision Process (MDP) that models sequential decision-making problems where the agent has
incomplete information about the environment’s state. POMDP can be represented as a tuple
MP = ⟨S,A,O,P,R,Z⟩, where S denotes the set of states, A is the set of actions, O is the set of
observations and Z = P(ot+1 | st+1, at) is an observation function such that ot+1 ∼ Z(st+1, at).
An agent takes an action at ∈ A based on the observed history h0:t−1 = {(oi, ai, ri)}t−1

i=0 and
receives a reward rt = R(st, at). It is important to note that state st is not available to the agent at
time t. In the case of POMDPs, a policy is a function π(at | ot, h0:t−1) that uses the agent history
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h0:t−1 to obtain the probability of the action at. Thus, in order to operate effectively in a POMDPs,
an agent must have memory mechanisms to retrieve a history h0:t−1. Partial observability arises in a
variety of real-world situations, including robotic navigation and manipulation tasks, autonomous
vehicle tasks, and complex decision-making problems.

E APPENDIX – META REINFORCEMENT LEARNING

In this section, we explore the concept of Meta-Reinforcement Learning (Meta-RL), a specialized
domain within POMDPs that focuses on equipping agents with the ability to learn from their past
experiences across multiple tasks. This capability is particularly crucial in dynamic environments
where agents must adapt quickly to new challenges. By recognizing and memorizing common patterns
and structures from previous interactions, agents can enhance their efficiency and effectiveness when
facing unseen tasks.

Meta-RL is characterized by the principle of “learning to learn”, where agents are trained not only to
excel at specific tasks but also to generalize their knowledge and rapidly adjust to new tasks with
minimal additional training. This adaptability is achieved through a structured approach that involves
mapping data collected from various tasks to policies that guide the agent’s behavior.

Meta-RL algorithm is a function fθ parameterized with meta-parameters that maps the data D,
obtained during the process of training of RL agent in MDPs (tasks) Mi ∼ p(M), to a policy
πϕ : ϕ = fθ(D). The process of learning the function f is typically referred to as the outer-loop,
while the resulting function f is called the inner-loop. In this context, the parameters θ are associated
with the outer-loop, while the parameters ϕ are associated with the inner-loop. Meta-training proceeds
by sampling a task from the task distribution, running the inner-loop on it, and optimizing the inner-
loop to improve the policies it produces. The interaction of the inner-loop with the task, during which
the adaptation happens, is called a lifetime or a trial. In Meta-RL, it is common for S and A to
be shared between all of the tasks and the tasks to only differ in the reward R(s, a) function, the
dynamics P(s

′ | s, a), and initial state distributions P0(s0) (Beck et al., 2024).

F APPENDIX – EXPERIMENT DETAILS

This section provides an extended description of the environments used in this work.

Passive-T-Maze (Ni et al., 2023). In this T-shaped maze environment, the agent’s goal is to move
from the starting point to the junction and make the correct turn based on an initial signal. The
agent can select from four possible actions: a ∈ left, up, right, down. The signal, denoted by the
variable clue, is provided only at the beginning of the trajectory and indicates whether the agent
should turn up (clue = 1) or down (clue = −1). The episode duration is constrained to T = L+ 1,
where L is the length of the corridor leading to the junction, which adds complexity to the task.
To facilitate navigation, a binary variable called flag is included in the observation vector. This
variable equals 1 one step before reaching the junction and 0 at all other times, indicating the agent’s
proximity to the junction. Additionally, a noise channel introduces random integer values from the
set −1, 0,+1 into the observation vector, further complicating the task. The observation vector is
defined as o = [y, clue, flag, noise], where y represents the vertical coordinate.

The agent receives a reward only at the end of the episode, which depends on whether it makes a
correct turn at the junction. A correct turn yields a reward of 1, while an incorrect turn results in a
reward of 0. This configuration differs from the conventional Passive T-Maze environment (Ni et al.,
2023) by featuring distinct observations and reward structures, thereby presenting a more intricate set
of conditions for the agent to navigate and learn within a defined time constraint. To transition from a
sparse reward function to a dense reward function, the environment is parameterized using a penalty
defined as penalty = − 1

T−1 , which imposes a penalty on the agent for each step taken within the
environment. Thus, this environment has a 1D vector space of observations, a discrete action space,
and sparse and dense configurations of the reward function.

Minigrid-Memory (Chevalier-Boisvert et al., 2023). Minigrid-Memory is a two-dimensional
grid-based environment specifically crafted to evaluate an agent’s long-term memory and credit

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

assignment capabilities. The layout consists of a T-shaped maze featuring a small room at the
corridor’s outset, which contains an object. The agent is instantiated at a random position within the
corridor. Its objective is to navigate to the chamber, observe and memorize the object, then proceed to
the junction at the maze’s terminus and turn towards the direction where the object, identical to that
in the initial chamber, is situated. A reward function defined as r = 1− 0.9× t

T is awarded upon
successful completion, while failure results in a reward of zero. The episode concludes when the
agent either makes a turn at a junction or exhausts a predefined time limit of 95 steps. To implement
partial observability, observational constraints are imposed on the agent, limiting its view to a 3× 3
frame size. Thus, this environment has a 2D space of image observations, a discrete action space, and
sparse reward function.

F.1 EXPERIMENTAL PROTOCOL

For each experiment, we conducted three runs of the agents with different initializations and performed
validation during training using 100 random seeds ranging from 0 to 99. The results are presented as
the mean success rate (or reward) ± the standard error of the mean (SEM).

Table 2: Online RL baselines hyperparameters used in the Minigrid-Memory and Passive T-Maze
experiments.

Table 3: SAC-GPT-2

Hyperparameter Value
Number of layers 2
Number of attention heads 2
Hidden dimension 256
Batch size 64
Optimizer Adam
Learning rate 3e-4
Dropout 0.1
Replay buffer size 1e6
Discount (γ) 0.99
Entropy temperature 0.1

Table 4: DQN-GPT-2

Hyperparameter Value
Number of layers 2
Number of attention heads 2
Hidden dimension 256
Batch size 64
Optimizer Adam
Learning rate 3e-4
Dropout 0.1
Replay buffer size 1e6
Discount (γ) 0.99

Table 5: DTQN

Hyperparameter Value
Number of layers 4
Number of attention heads 8
Hidden dimension 128
Batch size 32
Optimizer Adam
Learning rate 3e-4
Dropout 0.1
Replay buffer size 5e5
Discount (γ) 0.99
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Table 6: Offline RL baselines hyperparameters used for Decision Transformer and BC-LSTM in
T-Maze experiments.

Table 7: Decision Transformer (DT)

Hyperparameter Value
Number of layers 8
Number of attention heads 4
Hidden dimension (dmodel) 128
Feedforward dimension (dinner) 128
Head dimension (dhead) 128
Context length (K) 3T
Dropout 0.0
DropAttention 0.0
Optimizer AdamW
Learning rate 1e-4
Weight decay 0.1
Adam betas (0.9, 0.999)
Batch size 64
Warmup steps 1000
Epochs 200

Table 8: BC-LSTM

Hyperparameter Value
Number of layers 1
Hidden dimension (dmodel) 64
Bidirectional False
Effective Context length (Keff ) 3T
Dropout 0.0
Optimizer AdamW
Learning rate 3e-4
Weight decay 0.01
Adam betas (0.9, 0.999)
Batch size 64
Warmup steps 100
Epochs 100
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