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ABSTRACT

The incorporation of memory into agents is essential for numerous tasks within the
domain of Reinforcement Learning (RL). In particular, memory is paramount for
tasks that require the use of past information, adaptation to novel environments,
and improved sample efficiency. However, the term “memory” encompasses a
wide range of concepts, which, coupled with the lack of a unified methodology for
validating an agent’s memory, leads to erroneous judgments about agents’ memory
capabilities and prevents objective comparison with other memory-enhanced agents.
This paper aims to streamline the concept of memory in RL by providing practical
precise definitions of agent memory types, such as long-term vs. short-term
memory and declarative vs. procedural memory, inspired by cognitive science.
Using these definitions, we categorize different classes of agent memory, propose
a robust experimental methodology for evaluating the memory capabilities of RL
agents, and standardize evaluations. Furthermore, we empirically demonstrate the
importance of adhering to the proposed methodology when evaluating different
types of agent memory by conducting experiments with different RL agents and
what its violation leads to.

1 INTRODUCTION

Reinforcement Learning (RL) effectively addresses problems within the Markov Decision Process
(MDP) framework. However, applying RL to tasks with partial observability remains challenging,
requiring agents to efficiently process their interaction history (Esslinger et al., 2022; Hausknecht &
Stone, 2015; Ni et al., 2021).

In complex environments with noisy observations and long episodes, storing and retrieving important
information becomes crucial (Goyal et al., 2022; Graves et al., 2016). Yet, the concept of “memory”
in RL literature lacks unified definition. Some works define it as the ability to handle dependencies
within a fixed context (Esslinger et al., 2022; Ni et al., 2023), others as the ability to use out-
of-context information (Parisotto et al., 2020), and in Meta-RL, as the ability to adapt to new
environments (Team et al., 2023).

However, in the absence of clear definitions and standardized evaluation protocols, claims about
memory capacity in RL agents remain vague and often misleading. Memory is frequently attributed
to architectural features like recurrence or attention, yet without proper isolation of memory effects,
such assumptions can be incorrect. For instance, an agent might appear to exhibit long-term memory
simply due to task configurations that allow shortcuts or overlap with short-term context. As a
result, many empirical evaluations risk conflating different memory mechanisms or failing to detect
architectural limitations. This hinders progress in developing truly memory-capable agents and
comparing models in a fair and reproducible manner.

In this work, we attempt to unify and clarify the concept of memory in RL agents by treating memory
as an intrinsic attribute of memory-enhanced agents, directly linking memory type classification
to the agent’s internal mechanisms. These specific memory types - short-term vs. long-term and
declarative vs. procedural - can be rigorously assessed through experiments in memory-intensive
environments. Our classification, based on temporal dependencies and the nature of the recalled infor-
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mation, provides a structured framework for distinguishing memory types, enabling fair comparisons,
diagnosing architectural limitations, and guiding principled improvements.

It is important to clarify that our goal is not to replicate the full complexity of human memory. Rather,
we selectively adapt well-established memory concepts from neuroscience - such as short-term,
long-term, declarative, and procedural memory - that are already informally used in RL, but lack
precise definitions and formal grounding (Fortunato et al., 2020; Kang et al., 2024b; Ni et al., 2023).

In summary, our main contributions are as follows:

1. We provide formal definitions of key memory types in RL — specifically, short-term (STM)
vs. long-term (LTM) and declarative vs. procedural memory — grounded in neuroscience and
formalized for RL settings — Section 4.

2. We introduce a task-level decoupling of Memory Decision-Making (Memory DM) and Meta-RL,
clarifying the behavioral role of memory in each category — Section 4.

3. We propose a principled experimental methodology for evaluating STM and LTM in Memory
DM tasks, including precise criteria for identifying memory boundaries — Section 4.2.

4. We show that neglecting the proposed methodology can mislead conclusions about agent memory
capabilities, highlighting the importance of proper experimental configuration — Section 5.

2 BACKGROUND

2.1 MEMORY OF HUMANS AND AGENTS

Many RL studies reference memory types from cognitive science, such as long-term (Lampinen
etal., 2021; Ni et al., 2023), working (Graves et al., 2014), associative (Polson, 1975), and episodic
memory (Pritzel et al., 2017), but often reduce them to vague temporal categories (e.g., short vs.
long-term), with short-term spanning a few steps and long-term hundreds. This oversimplification,
ignoring the relative nature of memory, complicates meaningful evaluation. To resolve this, we
formalize agent memory types and introduce a principled evaluation framework.

2.1.1 MEMORY IN COGNITIVE SCIENCE

Human adaptive behavior depends heavily on memory, which governs how knowledge and skills
are acquired, retained, and reused (Parr et al., 2020; 2022). Memory exists in many forms, each of
which relies on different neural mechanisms. Neuroscience and cognitive psychology distinguish
memory by the temporal scales at which information is stored and accessed, and by the type of
information that is stored. Abstracting from this distinction, a high-level definition of human memory
is as follows: “memory — is the ability to retain information and recall it at a later time”.

This definition aligns with how memory is typically understood in RL, and we adopt it to define types
of RL agent memory. In neuroscience, memory is classified by timescale and behavioral function,
distinguishing short-term memory, lasting seconds, from long-term memory, which can persist for a
lifetime (Davis & Squire, 1984). It is also divided into declarative (explicit) and procedural (implicit)
forms (Graf & Schacter, 1985): the former involves consciously recalled facts and events, while
the latter relates to unconscious skills like riding a bike or skiing. Though these distinctions are
well-established in neuroscience, RL requires precise, testable definitions. In what follows, we adapt
these cognitive categories into a formal framework suitable for RL agents.

2.1.2 MEMORY IN RL

Memory in RL encompasses diverse agent capabilities, but its definition varies across stud-
ies. In many POMDPs, agents must retain key information to act effectively later within the
same environment. This typically involves two kinds of temporal dependencies: 1) within a
bounded time window (e.g., transformer context (Esslinger et al., 2022; Ni et al., 2023; Yue
et al., 2024)); 2) beyond the current context, requiring persistent storage or recall (Parisotto
et al., 2020; Sorokin et al., 2022). As noted in Section 2.1.1, STM and LTM correspond
to different temporal scopes of declarative memory (see Figure 1). In contrast, Meta-RL
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involves procedural memory, enabling agents to reuse Long-term memory é > K

skills across tasks (Team et al., 2023) (see Figure 2). — =

However, many works conflate these types, evaluat- [. ! agent's context ﬁ’ ]
ing “long-term memory” solely in Meta-RL settings '
based on MDPs (Kang et al., 2024a), without iso- : , :
lating decision-making from past information. To te te + At -K+1 3 tr

resolve this, we formalize RL memory types by task Short-term memory g < K
structure and temporal dependencies. In this work,

we focus on declarative memory, guiding decisions :

from past observations in the same environment, em- - agent's context

phasizing its short- and long-term forms. Vo= =—=====
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2.1.3 MEMORY AND CREDIT ASSIGNMENT Figure 1: STM vs. LTM. ¢, - event start, £, -

. . recall time; K - context length, & — correlation
Papers on agent memory, especially declarative mem-

o horizon. If the event lies beyond K, LTM is

ory, often distinguish between two forms of temporal TS )
. . . needed; if within, STM is enough.

reasoning: memory and credit assignment (Mesnard
et al., 2020; Ni et al., 2023; Osband et al., 2019). In Ni et al. (2023), memory is defined as recalling a
past event at the current time, while credit assignment is identifying when reward-relevant actions
occurred. Though distinct, both concepts describe temporal dependencies between events. Here, we
focus on the agent’s ability to form such dependencies, treating memory and credit assignment as
one. We adopt the general definition from Section 2.1.1, which applies to both, as it captures their
shared temporal nature.

knowledge memorization Declarative
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Interest in memory-enhanced RL has led to numer-
ous architectures (Oh et al., 2016; Lampinen et al.,
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works define memory as retaining recent observa- E i

tions within the same episode — either via recurrent % : ) rs: (':!ﬁ

states (Hausknecht & Stone, 2015), transformer con- [f; : M, e X > 1
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or external stores (Lampinen et al., 2021; Le et al.,
2024). Others expand it to long-range dependen- Figure 2: Illustration of declarative and pro-
cies through learned state compression (Morad et al., cedural memory. Red arrows represent mem-
2023b), key-value recurrent updates (Pramanik et al., orization steps, blue arrows indicate the recall
2023; Cherepanov et al., 2024), or spatial memory of task-relevant information.

maps (Parisotto & Salakhutdinov, 2017b). A separate

line views memory as cross-episode knowledge transfer, e.g., in Meta-RL (Kang et al., 2024a; Bauer
et al., 2023). This variety — from within-episode recall to multi-task adaptation — reflects the lack
of a shared definition. Our work addresses this gap by introducing a unified taxonomy grounded in
temporal dependencies and task structure.

Among concrete instantiations, Esslinger et al. (2022) introduced Deep Transformer Q-Networks
(DTQN), which leverage transformer context for partially observable RL. Ni et al. (2023) extended
this line with GPT-2 based agents, including DQN-GPT-2 and SAC-GPT-2, which apply attention-
based memory to online RL control. In the offline setting, Decision Transformer (DT) (Chen et al.,
2021) uses a sequence model trained on trajectories for return-conditioned planning, while recurrent
baselines such as BC-LSTM provide a contrast between attention-based and recurrent memory
mechanisms. These models constitute the baselines we evaluate in our experiments.

Ni et al. (2023) further distinguish between memory — the ability to recall past events — and credit
assignment — identifying when reward-relevant actions occurred. Kang et al. (2024b) build on
reconstructive memory (Bartlett & Kintsch, 1995), emphasizing reflection grounded in interaction.
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These varied interpretations underscore the need for a unified definition of memory in RL. We address
this by formalizing memory types via temporal dependencies and task structure, and proposing
a framework for empirical evaluation. Concurrently with our study, Yue et al. (2024) introduced
memory dependency pairs (p, ¢) to model recall in demonstrations. While insightful for imitation
learning, their approach lacks a theoretical treatment of RL memory and does not address the broader
taxonomy of agent memory types.

4 MEMORY IN RL

POMDP tasks involving memory fall into two categories: Meta-RL, focused on skill transfer across
tasks, and Memory DM, where agents recall past information for future decisions. This distinction
matters: Meta-RL relies on procedural memory for rapid adaptation, while Memory DM uses
declarative memory to guide decisions within a single environment. Yet many works reduce memory
to temporal range, ignoring the behavioral roles that distinguish these types. To formalize Memory
DM tasks, we first define the agent’s context length:

Definition 4.1. Agent context length (K € N) — is the maximum number of previous steps (triplets
of (0, a,r)) that the agent can process at time t.

| Memory |

POMDPs

For example, an MLP-based agent processes

one step at a time (K = 1), while a transformer- mamorizsthe history o ntsractons with the
based agent can process a sequence of up to | |
K = K4, triplets, where K 444, is determined -
by attention. Looking ahead, RNNs also have a Declarative Procedural
K =1, but using hidden states allows longer de- Memory DM framework Meta-RL framework
. . . memorize facts, locations, events memorize skills, experiences
pendencies to be handled. Using the introduced ¥ ¥ ¥
Definition 4.1 for agent context length, we can ['-°"9"°"“ ] F’“""“"“ ( nnerEioop) )
. .. memory memory
introduce a formal definition for the Memory
. E>K (<K MDPs POMDPs
DM framework we focus on in this paper: —
iti 2. ision- } Long-term Short-term
Definition 4.2. Memory Decision-Making | ong-s I | hort i |

(Memory DM) — is a class of POMDPs in which £>K E<K
the agents decision-making process at time t is ) ) -
based on the history ho.,—1 = {(0s, as,7:)}.23 Figure 3: Classification of memory types of RL

ift > 0 otherwise h = @. The objective is to Agents. While the Memory DM framework con-
determine an optimal policy 7 (ay | 04, hoy—q) trasts with Meta-RL, its formalism can also de-

that maps the current observation o, and history ~Scribe inner-loop tasks when they are POMDPs.

ho.t—1 of length t to an action a;, maximizing the expected cumulative reward within a single POMDP
T—1

environment Mp: J* =E, [ > 'ytrt} where T — episode duration, ~ € [0, 1] — discount factor.
t=0

In the Memory DM framework (Definition 4.2), memory refers to the agent’s ability to recall
information from the past within a single environment and episode. In contrast, in the Meta-RL
framework (Definition 4.3), memory involves recalling information about the agent’s behavior from
other environments or previous episodes:

Definition 4.3. Meta-RL — is a class of POMDPs where the agent learns to learn from its past
experiences across multiple tasks and memorize the common patterns and structures to facilitate
efficient adaptation to new tasks. Let D = {TJM ;1:—01 is all of the data of H episodes of length
T collected in the MDP M; ~ p(M). A Meta-RL algorithm is a function fg that maps the

data D to a policy 7y, where ¢ = fo(D). The objective to determine an optimal fg: J 0 =

E s ~p(m) lED >, Gi(r)

T7€D1.H
index of the first episode during the trial in which return counts towards the objective (Beck et al.,
2024).

fo, ./\/11] ] , where G;(1) — discounted return in the MDP M, I —

To operationalize the distinction between memory types in RL, we translate the neuroscience concepts
of declarative and procedural memory (Section 2.1.1) into measurable task-level criteria:
Definition 4.4 (Declarative and Procedural memory in RL). Let ng,.s be the number of training
environments and Neps the number of episodes per environment. Then,
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1. Declarative Memory — a type of agent memory when an agent transfers its knowledge within
a single environment and across a single episode within that environment:

Declarative Memory <> Nepys X Neps = 1. (1)

2. Procedural Memory — a type of agent memory when an agent transfers its skills across
multiple environments or multiple episodes within a single environment:

Procedural Memory <= Nepys X Neps > 1. )

In this formulation, knowledge refers to observable, environment-specific information — such as object
locations or facts — used within a single episode. Skills, in contrast, are policies reused across tasks or
trials. Accordingly, Memory DM primarily evaluates declarative memory, while Meta-RL settings
test procedural memory (see Figure 3).

Having distinguished declarative and procedural memory, we now examine the temporal structure of
memory in the Memory DM framework, focusing on its division into short-term and long-term forms.

Definition 4.5 (Memory DM types of memory). Let K be the agent context length, ozfcjt =

{0i,a;, m}ge:tft — an event of duration At that begins at t = t. and ends at t = t, + At, and

Bi, (aft) = ay | (o1, ) — a decision-making point (recall) at time t = t, based on the current
observation o, and information about the event ozfe‘t. Let also € = t, —t. — At + 1 be the correlation

horizon, i.e. the minimal time delay between the event aét that supports the decision-making and
the moment of recall of this event [3;,.. Then,

1. Short-term memory (STM) - an agent’s ability to use information about local correlations
from the past within the context of length K at decision time:

Btr(aét) =ay | (ot,aét) Vé=t, —t,— At+1< K.

2. Long-term memory (LTM) - an agent ability to utilize information about global correlations
from the past outside of the agent context of length K, during decision-making:

ﬁtr(aét) = ay | (ot,aﬁt) VéE=t, —te—At+1> K.

An illustration for the definitions of classifying Memory DM tasks into LTM and STM from Defini-
tion 4.5 is shown in Figure 1.

The two definitions of declarative memory encompass all work related to Memory DM tasks, where
decisions are based on past information. Meta-RL consists of an inner-loop, where the agent interacts
with the environment M ~ p(M), and an outer-loop for transferring knowledge between tasks.
Typically, M is an MDP that doesn’t require memory, serving only the outer-loop, which is what
“memory” refers to in Meta-RL studies.

The tasks in which the agent makes decisions based on interaction histories in the inner-loop are not
named separately, since the classification of Meta-RL task types (multi-task, multi-task zero-shot,
and single-task) is based solely on outer-loop parameters (n¢nys and neps) and does not consider
inner-loop task types. However, we can classify the agent’s memory for these tasks as declarative
STM or LTM (Figure 3).

We introduce an additional decoupling of Meta-RL task types into green (with POMDP inner-loop
tasks) and blue (with MDP inner-loop tasks). In the green case, the agent’s memory is required for
both skill transfer in the outer-loop and decision-making from interaction histories in the inner-loop,
and within the inner-loop can be considered a Memory DM. In the blue case, memory is needed
only for skill transfer. While this paper focuses on Memory DM tasks, the terminology enables
further classification of Meta-RL tasks, with POMDP sub-classes highlighted in green. The proposed
classification of tasks requiring agent memory is shown in Table 1.

4.1 MEMORY-INTENSIVE ENVIRONMENTS

To effectively test a Memory DM agent’s use of short-term and long-term memory, it is crucial to
design appropriate experiments. Not all environments are suitable for assessing agent memory; for
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example, omnipresent Atari Table 1: Classification of tasks requiring agent memory based
games (Bellemare et al., 2013) on our definitions: green indicates tasks described by the
with frame stacking or MuJoCo proposed definitions of LTM and STM, while blue indicates
control tasks (Fu et al., 2021) may those that are not. Meta-RL tasks with a POMDP inner-loop
yield unrepresentative results. To are marked green as they can be classified as Memory DM
facilitate the evaluation of agent tasks. POMDP' indicates a Memory DM task considered as
memory capabilities, we formalize an inner-loop task without an outer-loop.

the definition of memory-intensive

environments: Tenvs eps POMDP  1M0€r-100p  nporop,  Tasks that
task require agent memory

Definition 4.6 (Memory-Intensive

. Memory DM
Environments). Let Mp be a oy ST
{(tT —te 7'At + 1)n}n denote the set 1 1 Memory POMDP'  Dec Long-term Short-term
of correlation horizons for all event- DM : memory task  memory task
recall pairs (a2, B;, ). Then Mp is Meta-RL: Outer-loop

. e, o, and inner-loop memory
a memory-intensive environment, de-

T ] . LTM STM
noted M p, if and only if: min, &, > E>K E<K
1. 1 >1 Meta-RL POMDP Proc. Single-task Single-task

Multi-task Multi-task
>1 1 Meta-RL ~ POMDP Proc.
Corollary 1. A task corresponds to an zero-shot zero-shot
MDP (i is Markovi . d I >1 >1 Meta-RL POMDP Proc. Multi-task Multi-task
! (ie., is 3 arl ov.zan) lfai’l .0’.1 y Meta-RL: Outer-loop
if all correlation horizons are trivial: memory only
max= = 1. No memory No memory
n c=1 £=1
1 >1 Meta-RL MDP Proc. Single-task Single-task
. . Multi-task Multi-task
Proof. In an MDP, the optimal action ~ >1 1  Meta-RL MDP Proc. Jero-shot
depends only on the current state (or ~ >1 >1 Meta-RL MDP Proc.  Multi-task Multi-task

observation), i.e., no past information
is needed. This implies &, = 1 for all event-recall pairs, hence max &, = 1. Conversely, if
n

max &, = 1, then no decision depends on events beyond the current step, satisfying the Markov
n
property. ]

Using the definitions of memory-intensive environments (Definition 4.6) and agent memory types
(Definition 4.5), we can configure experiments to test short-term and long-term memory in the
Memory DM framework. Notably, the same memory-intensive environment can validate both types
of memory, as outlined in Theorem 2:

Theorem 2 (On the context memory border). Let M p be a memory-intensive environment and
K be an agent’s context length. Then there exists context memory border K > 1 such that if
K < K then the environment M p is used to validate exclusively long-term memory in Memory DM

framework: - _
IK>1:VKe[l,K]: K <minZ. 3)

Proof. Let K = minZ—1. ThenV K < K is guaranteed that no correlation horizon ¢ is in the agent
history h;— i +1.1, hence the context length X' < min = — 1 generates the LTM problem exclusively.

Since context length cannot be negative or zero, it turns out that 1 < K < K = min= — 1, which
n

was required to prove. |

The following result, though intuitive, formalizes a practical criterion for isolating long-term memory
evaluation by constraining the agent’s context window. It serves as the foundation for configuring
experiments in the Memory DM framework. According to Theorem 2, in a memory-intensive
environment M p, the value of the context memory border K can be found as

F:minE—l:min{(tr—te—At—kl)n} —1. (4)

Using Theorem 2, we can establish the necessary conditions for validating short-term memory: 1)

Weak condition to validate short-term memory: if K < K < max =, then the memory-intensive
n
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Algorithm 1 Algorithm for setting up an experiment to test long-term and short-term memory in
Memory DM framework.

Require: Mp — memory-intensive environment; p(K) — memory mechanism.
1. Estimate the number of n event-recall pairs in the environment (Definition 4.6).

1. n = 0 — Environment is not suitable for testing long-term and short-term memory.
2. n > 1 — Environment is suitable for testing long-term and short-term memory.
2. Estimate context memory border K (4).

1. V event-recall pair (8(a), ); find corresponding &;,4 € [1..n].
2. Determine K as K = min= — 1 = min{&, }» — 1 = min {(t,« —te — At + 1)n} -1

n

3. Conduct an appropriate experiment (Definition 4.5).

1. To test short-term memory set X > K.

2. To test long-term memory set K < K < K.pp = pu(K).
4. Analyze the results.

environment Mp is used to validate both short-term and long-term memory. 2) Strong condition to
validate short-term memory: if max = < K, then the memory-intensive environment M p is used
n

to validate exclusively short-term memory.

According to Theorem 2, if K € [1, K], none of the correlation horizons { will be in the agent’s
context, validating only long-term memory. When K < K < maxZ < T' — 1, long-term memory

n
can still be tested, but some correlation horizons £ will fall within the agent’s context and won’t
be used for long-term memory validation. In such a case it is not possible to estimate long-term
memory explicitly. When K > max =, all correlation horizons £ are within the agent’s context,
n

validating only short-term memory. Summarizing the obtained results, the final division of the

required agent context lengths for short-term memory and long-term memory validation is as follows:

(i) K € [1, K| = validating LTM only; (ii)) K € (K, max =) = validating both STM and LTM;
n

(iii) K € [max E, 0co) = validating STM only.

4.2 LONG-TERM MEMORY IN MEMORY DM

As defined in Definition 4.5, short-term Memory DM tasks arise when event-recall pairs in M p
fall within the agent’s context (¢ < K), allowing decisions based on local correlations. This holds
regardless of how large K is. Examples include (Esslinger et al., 2022; Grigsby et al., 2024; Ni et al.,
2023). Validating STM is simple: increase K. In contrast, testing long-term memory requires more
care and is typically more informative.

Memory DM tasks requiring long-term memory occur when event-recall pairs in the memory-
intensive environment M p are outside the agent’s context (£ > K). In this case, memory involves
the agent’s ability to connect information beyond its context, necessitating memory mechanisms
(Definition 4.7) that can manage interaction histories / longer than the agent’s base model can handle.

Definition 4.7 (Memory mechanisms). Let the agent process histories hy_ 1.4 of length K at the
current time t, where K € N is agents context length. Then, a memory mechanism ;(K) : N — Nis
defined as a function that, for a fixed K, allows the agent to process sequences of length K.yy > K,
i.e., to establish global correlations out of context, where K.y is the effective context.

WEK) = Kepp > K. (5)
Memory mechanisms are key to LTM tasks by recalling out-of-context information in Memory DM.

Example of memory mechanism. Consider an agent based on an RNN architecture that can
process K = 1 triplets of tokens (o, as, r¢) at all times ¢. By using memory mechanisms pu(K) (e.g.,
as in Hausknecht & Stone (2015)), the agent can increase the number of tokens processed in a single
step without expanding the context size of its RNN architecture. Therefore, if initially in a memory-
intensive environment Mp : £ > K = 1, it can now be represented as Mp : { < Kepp = pu(K).
Here, the memory mechanism p( K) refers to the RNNs recurrent updates to its hidden state.
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Thus, validating an agent’s ability to solve long-term memory problems in the Memory DM framework
reduces to validating the agent’s memory mechanisms ;(K). To design correct experiments in
such a case, the following condition must be met:

Mp: K <K <&<Kepp=p(K) (6)

According to our definitions, agents with memory mechanisms in the Memory DM framework
that solve LTM tasks can also handle STM tasks, but not vice versa. The algorithm for setting up
experiments to test an agent’s STM or LTM is outlined in Algorithm 1.

4.3 EXAMPLE OF = AND £ ESTIMATES

K =15, =15 K=5¢=15 K=5¢=5
Following the proposed method-  *° 1o 10
ology (Algorithm 1), we .°° . o
estimated the sets of correla- £°° goo / ; o9
tion horizons = and minimal °° e ooomeera |0 — oo
recall distances & for a range 8o oz gr_weos go  Mbowzoa Cwerom g 4 T o
of popular memory-intensive T-Maze
tasks (Table Table 2), including K = 207,¢ = 207 K =103,¢ = 207 K =103,¢ = 103
Passive T-Maze (Ni et al., 2023), ** o 1o
Minigrid-Memory (Chevalier- ;0'5/ £ £ /// ;
Boisvert et al., 2023), ViZDoom- 2°° g0 20
Two-Colors (Sorokin et al., =~ = [oon-irr2 o Ry R 4y
2022), Memory Maze (Pa- 8 ™ Googz g0 CHoor gormme go Mooor gromwe g
sukonis et al., 2022), Memory POPGym-Autoencode
Cards (Esslinger et al., 2022), K =103,6=103 B =51,6=103 L =se =51
Mortar Mayhem and Mystery 057 N N 7
Path (Pleines et al., 2025), POP- £, £oo I
Gym—Autoencode and POPGym- ~,, S T R =] R o
RepeatPrevious (Morad et al., == —— PonPR — DoN-GPr2

18502 04 06 08 10 18002 04 06 08 10 18502 04 06 08 10
10° 0° x10°

2023a). POPGym-RepeatPrevious

Figure 4: Performance of Online RL agents “with memory” across
different memory configurations. Each row shows a specific
environment: T-Maze, POPGym-Autoencode, and POPGym-
start of a corridor and must turn  RepeatPrevious, with varying agent context length K and cor-
correctly at the junction. The relat'ion horizons ¢. T hg STM < LTM transitions. reflect the
episode lasts T = L+1, where L relative nature of the settings to test memory, depending on both
agent and environment parameters.

Example: Testing Memory in
Passive T-Maze In Passive T-
Maze, the agent sees a cue at the

is the corridor length. Using Al-
gorithm 1: 1) There’s one event-
recall pair (n = 1), so the task suits both STM and LTM. 2) The event lasts one step (At = 0), so
&=T,and K =T — 1. 3) Varying T or context size K lets us test STM (if K > K) or LTM (if
K < K < pu(K)). While K = K is enough in theory, choosing smaller K better reveals memory
mechanism effects.

5 EXPERIMENTS

We evaluate memory-enhanced RL agents using the Memory DM framework to distinguish short- vs.
long-term memory. Our experiments stress the need for proper methodology (Algorithm 1) and show
how poor setups can misrepresent memory use. We test four memory-intensive tasks: Passive T-Maze
and Minigrid-Memory (cue recall), and POPGym-Autoencode and RepeatPrevious (observation
reconstruction and action repeat), all requiring recall over time. In the online setting, we evaluate
DTQN (Esslinger et al., 2022), DQN-GPT-2, and SAC-GPT-2 (Ni et al., 2023) with attention-based
memory. Offline, we test DT (Chen et al., 2021) and BC-LSTM to compare attention vs. recurrence.
In all cases, we vary agent context /' and task horizon ¢ to isolate memory types and reveal model
limitations.
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5.1 PITFALLS OF NAIVE MEMORY TESTS

Proper evaluation of memory in RL agents re-
quires distinguishing STM from LTM by ac-
counting for correlation horizons £. Without
this, STM and LTM effects blur, misrepresent-
ing agent capacity. We illustrate this with SAC-

Table 2: Correlation horizons £ and LTM thresh-
olds K for popular memory-intensive tasks. L is
corridor length, 7" is episode length. (f) and (v)
denote fixed and variable setups. POPGym entries
show values for the easy setting; for easy / medium
/ hard, = becomes {2,4,...,104/208/312} for
Autoencode and {5/33/65} for RepeatPrevious.

GPT-2 in Minigrid-Memory under two setups:

. .. . Task = LTMif K <
(1) fixed L = 21 (£ = 22), and (ii) variable L Pas_ o T i T 11
(€ € [7,22)), t?Sting STM (K = 22) and LTM lva[lfrfgng;;eory () }L i 1% Lil L i 1
(K = 14) settings. As shown in Figure 5, the  Minigrid-Memory (v) (7,L+1] 7 7
variable setup gives high success for both set-  ViZDoom-Two-Colors [2,2055] 2 2

. mplvi d Memory Maze 9x9 [28,1000] 28 28
tings, implying good memory. Memory Maze 15x15 [45,4000] 45 45

. . . M ds 2,T 2 2
But in the fixed case, LTM fails, revealing the Miﬁ“ffiﬁiie} (finite) %378,2]18] 38 38
agent’s true limit. Mixed-horizon tasks can hide = Mystery Path (finite) 8, 26] 8 3
LTM deficits - only fixed £ > K setups expose ~ POPGym-Autoencode 2,104] 2 2

POPGym-RepeatPrevious {5} 5 5

them. Proper LTM evaluation requires control-
ling the correlation horizon ¢ relative to the agent’s context K. Without this, STM effects may
dominate and misrepresent the agent’s memory type. Our methodology provides a principled way to
avoid this confusion.

5.2 THE RELATIVE NATURE OF AN AGENT’S MEMORY

According to Algorithm 1, the experimental setup for testing agent memory types (LTM and STM)
depends on two parameters: the agent’s context length K and the context memory border K, which
in turn is determined by the environment’s correlation horizon &. Verifying LTM or STM requires
adjusting K or £ while keeping the other fixed. This section outlines how these parameters interact
in memory testing. An agent’s memory cannot be defined in isolation — it arises from the interplay
between its context K and the environment’s horizons £. Thus, the same agent may exhibit either
STM or LTM behavior depending on the task setup.

We test DTQN and DQN-GPT-2 in three memory-intensive tasks: Passive T-Maze, POPGym Autoen-
code, and RepeatPrevious — by varying K and ¢ to simulate STM (§ < K) and LTM (§ > K); as
shown in Figure 4, performance is high when ¢ < K but drops sharply for £ > K, confirming that
long-range dependencies require explicit memory mechanisms. These results confirm memory is
relative: LTM depends on both temporal distance and agent design. Without controlling K and &,
memory claims are unreliable. Our K-£ framework ensures consistent, interpretable evaluation.

5.3 GENERALIZATION ACROSS SEQUENCE LENGTHS

Evaluating memory in RL agents requires dis- 10
tinguishing true long-term memory (LTM) from R T
memorization within fixed context. To demon- o8
strate this, we test DT and BC-LSTM on T- &
. : . L A

Maze: both are trained on specific corridor w06l g __--=TTT
lengths and evaluated on both seen and longer, ¢ K = 22 variable mode
unseen ones. This setup tests whether agents can 504 _ '

. . .. w | L K = 14 variable mode
recall cue information beyond training range 02 K = 22 fixed mode
- an LTM indicator. Figure 6 shows success B K = 14 fixed mode
heatmaps across training and validation lengths. 0g

: i dictrhut 0.0 02 0.4 0.6 0.8 1.0

The diagonal indicates in-distribution perfor- Timestep X106

mance; extrapolation lies to the right. Figure 5: SAC-GPT-2 in Minigrid-Memory (L =

21) with short- (K = 22) and long-term (K =

While both models process sequences and are
14) memory setups. Variable mode (green) masks

labeled as memory-enhanced, our framework

reveals key differences. DT relies on a fixed
attention window and operates with short-term
memory, while LSTM uses a recurrent state,

memory limits; fixed mode (red) reveals failure at
K = 14, demonstrating lack of long-term memory
— made evident by our evaluation method.

enabling true LTM. T-Maze results expose this gap: DT performs well when validation lengths
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stay within context but fails for L > 90, whereas BC-LSTM generalizes to much longer sequences,
demonstrating effective LTM. If evaluated only on shorter validation lengths, DT may appear stronger,
masking memory limitations. Both perform well for lengths < 150, but at training length 300, DT
scores 100%, while BC-LSTM drops to 0.87. For longer training (600, 900), BC-LSTM collapses,

DT remains high — misleadingly favoring STM.

DT succeeds only when the correla-
tion horizon satisfies & < K, but fails
whenever ¢ > K, which demonstrates
that DT lacks LTM. In contrast, BC-
LSTM, on the horizons where it trains
reliably, can exploit dependencies be-
yond the training range and therefore
exhibits LTM within those regimes.
Our framework makes this distinc-
tion precise by separating architec-
tural limits from memory function, en-

DT Model Success Rate in Passive T-Maze (mean+sem)
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(a) DT agent heatmap
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suring that DT is correctly identified
as an STM agent, while BC-LSTM is
capable of LTM on the ranges where
it learns effectively (i.e. without van-
ishing gradients problem (Trinh et al.,
2018)).

Training Sequence Length

900 600 300 150 90 30 9

(b) BC-LSTM agent heatmap

Figure 6: Generalization on Passive T-Maze. Each heatmap
shows success rates for (a) DT and (b) BC-LSTM across
training (vertical) and validation (horizontal) sequence
lengths. DT succeeds only when validation < training, show-
ing short-term memory limits. BC-LSTM generalizes beyond
training, indicating strong long-term memory.

6 CONCLUSION

We propose a unified framework for
classifying and evaluating memory in
RL agents, grounded in neuroscience-
inspired definitions of short- and long-term declarative memory. By introducing the concept of
correlation horizon and formalizing memory-intensive environments, we enable precise evaluation
of agent memory. Our methodology reveals key differences between architectures: transformers
like DTQN or DT rely mainly on short-term memory, while recurrent models such as BC-LSTM
exhibit long-term memory. Experiments on T-Maze, MiniGrid, and POPGym confirm the need for
proper setups to avoid misleading conclusions. The framework clarifies how memory mechanisms
shape behavior and could be extended to include additional systems from cognitive science, such as
working or episodic memory, and to explore whether new types emerge in complex RL tasks. As
a direction for future work, it would be valuable to study adaptive dynamic updating of memory
representations, since most existing work focuses primarily on memorization and retention rather
than on how agents revise stored information over time.

REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our results. Model details: The
formalization of our framework — covering Memory DM, STM/LTM, and the correlation horizon — is
provided in Section 4, with precise definitions in Definition 4.1, Definition 4.2, and Definition 4.5,
and the experimental configuration procedure in Algorithm 1. Theoretical results: Assumptions
and complete statements (including the definition of memory-intensive environments) are given
in Definition 4.6, and key results with proofs appear in Theorem 2 and its accompanying discussion.
Experimental setup: Tasks, training procedures, and evaluation protocols are reported in Section 5,
with validation protocol details in Section F.1, hyperparameters in Section F.1, and environment
descriptions in Appendix F. Baselines: Baseline selections and configurations are documented
in Section 5, with their hyperparameters listed in Section F.1. Code and data: An anonymous
repository containing source code, training scripts, and configuration files submitted as supplementary
material. Together, these resources allow for full replication of our theoretical analyses and empirical
results.
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A APPENDIX — GLOSSARY

In this section, we provide a comprehensive glossary of key terms and concepts used throughout this
paper. The definitions are intended to clarify the terminology proposed in our research and to ensure
that readers have a clear understanding of the main elements underpinning our work.

M — MDP environment

M p — POMDP environment

Mp - memory-intensive environment

hot—1 = {(0i, ai, rz-)}f;é — agent history of interactions with environment

K — agent base model context length

K — context memory border of the agent, such that K € [1, K| < strictly LTM problem
p(K) — memory mechanism that increases number of steps available to the agent to process

K.r5 = p(K) — the agent effective context after applying the memory mechanism

D A A o

aft = {(0;, a;, 7'i)}§;‘¥ft — an event starting at time ¢, and lasting A¢, which the agent
should recall when making a decision in the future

,_.
e

Bi, = B, (a?) = a; | (o4, a!) — the moment of decision making at time ¢, according to
the event o’

11. £ =t,. —t, — At + 1 —an event’s correlation horizon

B APPENDIX — ADDITIONAL NOTES ON THE MOTIVATION FOR THE ARTICLE

B.1 WHY USE DEFINITIONS FROM NEUROSCIENCE?

Definitions from neuroscience and cognitive science, such as short-term and long-term memory, as
well as declarative and procedural memory, are already well-established in the RL. community, but
do not have common meanings and are interpreted in different ways. We strictly formalize these
definitions to avoid possible confusion that may arise when introducing new concepts and redefine
them with clear, quantitative meanings to specify the type of agent memory, since the performance of
many algorithms depends on their type of memory.

In focusing exclusively on memory within RL, we do not attempt to exhaustively replicate the
full spectrum of human memory. Instead, our goal is to leverage the intuitive understanding of
neuroscience concepts already familiar to RL researchers. This approach avoids the unnecessary
introduction of new terminology into the already complex Memory RL domain. By refining and
aligning existing definitions, we create a robust framework that facilitates clear communication,
rigorous evaluation, and practical application in RL research.

B.2 ON PRACTICAL APPLICATIONS OF OUR FRAMEWORK

The primary goal of our framework is to address practical challenges in RL by providing a robust
classification of memory types based on temporal dependencies and the nature of memorized infor-
mation. This classification is essential for standardizing memory testing and ensuring that RL agents
are evaluated under conditions that accurately reflect their capabilities.

In RL, memory is interpreted in various ways, such as transformers with large context windows,
recurrent networks, or models capable of skill transfer across tasks. However, these approaches
often vary fundamentally in design, making comparisons unreliable and leading to inconsistencies in
testing. Our framework resolves this by providing a clear structure to evaluate memory mechanisms
under uniform and practical conditions.

The proposed definitions of declarative and procedural memory use two straightforward numerical
parameters: the number of environments (n¢y,s) and episodes (n¢ps). These parameters allow
researchers to reliably determine the type of memory required for a task. This simplicity and
alignment with numerical parameters make the framework practical and widely applicable across
diverse RL problems.
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Moreover, the division of declarative memory into long-term and short-term memory, as well as
the need to use a balance between the agent’s context length K and the correlation horizons of the
environment ¢ when conducting the experiment, allows us to unambiguously determine which type
of memory is present in the agent. This clarity ensures fair comparisons between agents with similar
memory mechanisms and highlights specific limitations in an agent’s design. By aligning memory
definitions with practical testing requirements, the framework provides actionable insights to guide
the development of memory-enhanced RL agents.

C APPENDIX — MEMORY MECHANISMS

In RL, memory has several meanings, each of which is related to a specific class of different tasks. To
solve these tasks, the authors use various memory mechanisms. The most prevalent approach to incor-
porating memory into an agent is through the use of Recurrent Neural Networks (RNNs) (Rumelhart
et al., 1986), which are capable of handling sequential dependencies by maintaining a hidden state
that captures information about previous time steps (Wierstra et al., 2010; Hausknecht & Stone, 2015;
Sorokin et al., 2015; Duan et al., 2016; Song et al., 2018; Zintgraf et al., 2020) (pure LTM, according
to our taxonomy). Another popular way to implement memory is to use Transformers (Vaswani
et al., 2017), which use self-attention mechanisms to capture dependencies inside the context win-
dow (Parisotto et al., 2020; Lampinen et al., 2021; Esslinger et al., 2022; Melo, 2022; Team et al.,
2023; Pramanik et al., 2023; Robine et al., 2023; Ni et al., 2023; Grigsby et al., 2024; Shala et al.,
2024) (STM in case of classical transformers without additional memory mechanisms or LTM if we
use recurrent memory, activation caching, etc.). State-space models (SSMs) (Gu et al., 2021; Smith
et al., 2023; Gu & Dao, 2023) combine the strengths of RNNs and Transformers and can also serve to
implement memory through preservation of system state (Hafner et al., 2019; Lu et al., 2023; Becker
et al., 2024; Samsami et al., 2024) (LTM, according to our taxonomy). Temporal convolutions may
be regarded as an effective memory mechanism, whereby information is stored implicitly through
the application of learnable filters across the time axis (YuXuan Liu & Hsieh, 2016; Mishra et al.,
2018) (STM, since memory is represented as a fixed-size temporal convolution, analogous to an
attention window). A world model (Ha & Schmidhuber, 2018) which builds an internal environ-
ment representation can also be considered as a form of memory. One method for organizing this
internal representation is through the use of a graph, where nodes represent observations within the
environment and edges represent actions (Morad et al., 2021; Zhu et al., 2023; Kang et al., 2024b).

A distinct natural realization of memory is the utilization of an external memory buffer, which enables
the agent to retrieve pertinent information. This approach can be classified into two categories: read-
only (writeless) (Oh et al., 2016; Lampinen et al., 2021; Goyal et al., 2022; Cherepanov et al., 2024)
and read/write access (Graves et al., 2016; Zaremba & Sutskever, 2016; Parisotto & Salakhutdinov,
2017a).

Memory can also be implemented without architectural mechanisms, relying instead on agent policy.
For instance, in the work of Deverett et al. (2019), the agent learns to encode temporal intervals by
generating specific action patterns. This approach allows the agent to implicitly represent timing
information within its behavior, showcasing that memory can emerge as a result of policy adaptations
rather than being explicitly embedded in the underlying neural architecture.

Using these memory mechanisms, both decision-making tasks based on information from the past
within a single episode and tasks of fast adaptation to new tasks are solved. However, even in works
using the same underlying base architectures to solve the same class of problems, the concepts of
memory may differ.

D APPENDIX — POMDP

D.1 POMDP

The Partially Observable Markov Decision Process (POMDP) is a generalization of the Markov
Decision Process (MDP) that models sequential decision-making problems where the agent has
incomplete information about the environment’s state. POMDP can be represented as a tuple
Mp =(S,A,0,P, R, Z), where S denotes the set of states, .4 is the set of actions, O is the set of
observations and Z = P(o41 | $¢+1,a¢) is an observation function such that 0,11 ~ Z(s¢11, at).
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An agent takes an action a; € A based on the observed history ho.s—1 = {(0;,a;,r;) f;é and
receives a reward 7, = R(s¢, a;). It is important to note that state s; is not available to the agent at
time ¢. In the case of POMDPs, a policy is a function 7 (a; | o¢, ho.t—1) that uses the agent history
hg.t—1 to obtain the probability of the action a;. Thus, in order to operate effectively in a POMDPs,
an agent must have memory mechanisms to retrieve a history hg.;—1. Partial observability arises in a
variety of real-world situations, including robotic navigation and manipulation tasks, autonomous
vehicle tasks, and complex decision-making problems.

E APPENDIX — META REINFORCEMENT LEARNING

In this section, we explore the concept of Meta-Reinforcement Learning (Meta-RL), a specialized
domain within POMDPs that focuses on equipping agents with the ability to learn from their past
experiences across multiple tasks. This capability is particularly crucial in dynamic environments
where agents must adapt quickly to new challenges. By recognizing and memorizing common patterns
and structures from previous interactions, agents can enhance their efficiency and effectiveness when
facing unseen tasks.

Meta-RL is characterized by the principle of “learning to learn”, where agents are trained not only to
excel at specific tasks but also to generalize their knowledge and rapidly adjust to new tasks with
minimal additional training. This adaptability is achieved through a structured approach that involves
mapping data collected from various tasks to policies that guide the agent’s behavior.

Meta-RL algorithm is a function fy parameterized with meta-parameters that maps the data D,
obtained during the process of training of RL agent in MDPs (tasks) M; ~ p(M), to a policy
7y + @ = fg(D). The process of learning the function f is typically referred to as the outer-loop,
while the resulting function f is called the inner-loop. In this context, the parameters 6 are associated
with the outer-loop, while the parameters ¢ are associated with the inner-loop. Meta-training proceeds
by sampling a task from the task distribution, running the inner-loop on it, and optimizing the inner-
loop to improve the policies it produces. The interaction of the inner-loop with the task, during which
the adaptation happens, is called a lifetime or a trial. In Meta-RL, it is common for S and A to
be shared between all of the tasks and the tasks to only differ in the reward R (s, a) function, the

dynamics P(s | s,a), and initial state distributions Py (so) (Beck et al., 2024).

F APPENDIX — EXPERIMENT DETAILS
This section provides an extended description of the environments used in this work.

Passive-T-Maze (Ni et al., 2023). In this T-shaped maze environment, the agent’s goal is to move
from the starting point to the junction and make the correct turn based on an initial signal. The
agent can select from four possible actions: a € left, up, right, down. The signal, denoted by the
variable clue, is provided only at the beginning of the trajectory and indicates whether the agent
should turn up (clue = 1) or down (clue = —1). The episode duration is constrained to 7' = L + 1,
where L is the length of the corridor leading to the junction, which adds complexity to the task.
To facilitate navigation, a binary variable called flag is included in the observation vector. This
variable equals 1 one step before reaching the junction and 0 at all other times, indicating the agent’s
proximity to the junction. Additionally, a noise channel introduces random integer values from the
set —1, 0, 41 into the observation vector, further complicating the task. The observation vector is
defined as o = [y, clue, flag, noise], where y represents the vertical coordinate.

The agent receives a reward only at the end of the episode, which depends on whether it makes a
correct turn at the junction. A correct turn yields a reward of 1, while an incorrect turn results in a
reward of 0. This configuration differs from the conventional Passive T-Maze environment (Ni et al.,
2023) by featuring distinct observations and reward structures, thereby presenting a more intricate set
of conditions for the agent to navigate and learn within a defined time constraint. To transition from a
sparse reward function to a dense reward function, the environment is parameterized using a penalty
defined as penalty = —ﬁ, which imposes a penalty on the agent for each step taken within the
environment. Thus, this environment has a 1D vector space of observations, a discrete action space,
and sparse and dense configurations of the reward function.
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Minigrid-Memory (Chevalier-Boisvert et al., 2023). Minigrid-Memory is a two-dimensional
grid-based environment specifically crafted to evaluate an agent’s long-term memory and credit
assignment capabilities. The layout consists of a T-shaped maze featuring a small room at the
corridor’s outset, which contains an object. The agent is instantiated at a random position within the
corridor. Its objective is to navigate to the chamber, observe and memorize the object, then proceed to
the junction at the maze’s terminus and turn towards the direction where the object, identical to that
in the initial chamber, is situated. A reward function defined asr =1 — 0.9 x % is awarded upon
successful completion, while failure results in a reward of zero. The episode concludes when the
agent either makes a turn at a junction or exhausts a predefined time limit of 95 steps. To implement
partial observability, observational constraints are imposed on the agent, limiting its view toa 3 X 3
frame size. Thus, this environment has a 2D space of image observations, a discrete action space, and
sparse reward function.

F.1 EXPERIMENTAL PROTOCOL

For each experiment, we conducted three runs of the agents with different initializations and performed
validation during training using 100 random seeds ranging from 0 to 99. The results are presented as
the mean success rate (or reward) + the standard error of the mean (SEM).

Table 3: Online RL baselines hyperparameters used in the Minigrid-Memory and Passive T-Maze

experiments.

Table 4: SAC-GPT-2

Table 5: DQN-GPT-2

Hyperparameter Value Hyperparameter Value
Number of layers 2 Number of layers 2
Number of attention heads 2 Number of attention heads 2
Hidden dimension 256 Hidden dimension 256
Batch size 64 Batch size 64
Optimizer Adam Optimizer Adam
Learning rate 3e-4 Learning rate 3e-4
Dropout 0.1 Dropout 0.1
Replay buffer size le6 Replay buffer size le6
Discount () 0.99 Discount (v) 0.99
Entropy temperature 0.1
Table 6: DTQN

Hyperparameter Value

Number of layers 4

Number of attention heads 8

Hidden dimension 128

Batch size 32

Optimizer Adam

Learning rate 3e-4

Dropout 0.1

Replay buffer size 5e5

Discount (v) 0.99
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Table 7: Offline RL baselines hyperparameters used for Decision Transformer and BC-LSTM in

T-Maze experiments.

Table 8: Decision Transformer (DT)

Table 9: BC-LSTM

Hyperparameter Value Hyperparameter Value
Number of layers 8 Number of layers 1
Number of attention heads 4 Hidden dimension (dioder) 64
Hidden dimension (dmodel) 128 Bidirectional False
Feedforward dimension (djnner) 128 Effective Context length (Kcys) 3T
Head dimension (dpeaq) 128 Dropout 0.0
Context length (K) 3T Optimizer AdamW
Dropout 0.0 Learning rate 3e-4
DropAttention 0.0 Weight decay 0.01
Optimizer AdamW Adam betas (0.9, 0.999)
Learning rate le-4 Batch size 64
Weight decay 0.1 Warmup steps 100
Adam betas (0.9, 0.999) Epochs 100
Batch size 64

Warmup steps 1000

Epochs 200
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