

UNRAVELING THE COMPLEXITY OF MEMORY IN RL AGENTS: AN APPROACH FOR CLASSIFICATION AND EVALUATION

Anonymous authors

Paper under double-blind review

ABSTRACT

The incorporation of memory into agents is essential for numerous tasks within the domain of Reinforcement Learning (RL). In particular, memory is paramount for tasks that require the use of past information, adaptation to novel environments, and improved sample efficiency. However, the term “memory” encompasses a wide range of concepts, which, coupled with the lack of a unified methodology for validating an agent’s memory, leads to erroneous judgments about agents’ memory capabilities and prevents objective comparison with other memory-enhanced agents. This paper aims to streamline the concept of memory in RL by providing practical precise definitions of agent memory types, such as long-term vs. short-term memory and declarative vs. procedural memory, inspired by cognitive science. Using these definitions, we categorize different classes of agent memory, propose a robust experimental methodology for evaluating the memory capabilities of RL agents, and standardize evaluations. Furthermore, we empirically demonstrate the importance of adhering to the proposed methodology when evaluating different types of agent memory by conducting experiments with different RL agents and what its violation leads to.

1 INTRODUCTION

Reinforcement Learning (RL) effectively addresses problems within the Markov Decision Process (MDP) framework. However, applying RL to tasks with partial observability remains challenging, requiring agents to efficiently process their interaction history (Essligner et al., 2022; Hausknecht & Stone, 2015; Ni et al., 2021).

In complex environments with noisy observations and long episodes, storing and retrieving important information becomes crucial (Goyal et al., 2022; Graves et al., 2016). Yet, the concept of “*memory*” in RL literature lacks unified definition. Some works define it as the ability to **handle dependencies within a fixed context** (Esslinger et al., 2022; Ni et al., 2023), others as the ability to **use out-of-context information** (Parisotto et al., 2020), and in Meta-RL, as the ability to **adapt to new environments** (Team et al., 2023).

However, in the absence of clear definitions and standardized evaluation protocols, claims about memory capacity in RL agents remain vague and often misleading. Memory is frequently attributed to architectural features like recurrence or attention, yet without proper isolation of memory effects, such assumptions can be incorrect. For instance, an agent might appear to exhibit long-term memory simply due to task configurations that allow shortcuts or overlap with short-term context. As a result, many empirical evaluations risk conflating different memory mechanisms or failing to detect architectural limitations. This hinders progress in developing truly memory-capable agents and comparing models in a fair and reproducible manner.

In this work, we attempt to unify and clarify the concept of memory in RL agents by treating memory as an intrinsic attribute of memory-enhanced agents, directly linking memory type classification to the agent's internal mechanisms. These specific memory types - short-term vs. long-term and declarative vs. procedural - can be rigorously assessed through experiments in memory-intensive environments. Our classification, based on temporal dependencies and the nature of the recalled infor-

054 mation, provides a structured framework for distinguishing memory types, enabling fair comparisons,
 055 diagnosing architectural limitations, and guiding principled improvements.
 056

057 It is important to clarify that our goal is not to replicate the full complexity of human memory. Rather,
 058 we selectively adapt well-established memory concepts from neuroscience - such as short-term,
 059 long-term, declarative, and procedural memory - that are already informally used in RL, but lack
 060 precise definitions and formal grounding (Fortunato et al., 2020; Kang et al., 2024b; Ni et al., 2023).
 061

In summary, our main contributions are as follows:

- 062 1. We provide formal definitions of key memory types in RL – specifically, *short-term (STM)*
 063 vs. *long-term (LTM)* and *declarative* vs. *procedural* memory – grounded in neuroscience and
 064 formalized for RL settings – [Section 4](#).
- 065 2. We introduce a task-level decoupling of *Memory Decision-Making (Memory DM)* and *Meta-RL*,
 066 clarifying the behavioral role of memory in each category – [Section 4](#).
- 067 3. We propose a principled experimental methodology for evaluating STM and LTM in Memory
 068 DM tasks, including precise criteria for identifying memory boundaries – [Section 4.2](#).
- 069 4. We show that neglecting the proposed methodology can mislead conclusions about agent memory
 070 capabilities, highlighting the importance of proper experimental configuration – [Section 5](#).
 071

073 2 BACKGROUND

074 2.1 MEMORY OF HUMANS AND AGENTS

075 Many RL studies reference memory types from cognitive science, such as long-term (Lampinen
 076 et al., 2021; Ni et al., 2023), working (Graves et al., 2014), associative (Polson, 1975), and episodic
 077 memory (Pritzel et al., 2017), but often reduce them to vague temporal categories (e.g., short vs.
 078 long-term), with short-term spanning a few steps and long-term hundreds. This oversimplification,
 079 ignoring the relative nature of memory, complicates meaningful evaluation. To resolve this, we
 080 formalize agent memory types and introduce a principled evaluation framework.
 081

082 2.1.1 MEMORY IN COGNITIVE SCIENCE

083 Human adaptive behavior depends heavily on memory, which governs how knowledge and skills
 084 are acquired, retained, and reused (Parr et al., 2020; 2022). Memory exists in many forms, each of
 085 which relies on different neural mechanisms. Neuroscience and cognitive psychology distinguish
 086 memory by the temporal scales at which information is stored and accessed, and by the type of
 087 information that is stored. Abstracting from this distinction, a high-level definition of human memory
 088 is as follows: “**memory – is the ability to retain information and recall it at a later time**”.

089 This definition aligns with how memory is typically understood in RL, and we adopt it to define types
 090 of RL agent memory. In neuroscience, memory is classified by timescale and behavioral function,
 091 distinguishing *short-term* memory, lasting seconds, from *long-term* memory, which can persist for a
 092 lifetime (Davis & Squire, 1984). It is also divided into *declarative* (explicit) and *procedural* (implicit)
 093 forms (Graf & Schacter, 1985): the former involves consciously recalled facts and events, while
 094 the latter relates to unconscious skills like riding a bike or skiing. Though these distinctions are
 095 well-established in neuroscience, RL requires precise, testable definitions. In what follows, we adapt
 096 these cognitive categories into a formal framework suitable for RL agents.
 097

098 2.1.2 MEMORY IN RL

099 Memory in RL encompasses diverse agent capabilities, but its definition varies across studies. In many POMDPs, agents must retain key information to act effectively later within the
 100 same environment. This typically involves two kinds of temporal dependencies: 1) within a
 101 bounded time window (e.g., transformer context (Esslinger et al., 2022; Ni et al., 2023; Yue
 102 et al., 2024)); 2) beyond the current context, requiring persistent storage or recall (Parisotto
 103 et al., 2020; Sorokin et al., 2022). As noted in [Section 2.1.1](#), STM and LTM correspond
 104 to different temporal scopes of declarative memory (see [Figure 1](#)). In contrast, Meta-RL

108 involves procedural memory, enabling agents to reuse
 109 skills across tasks (Team et al., 2023) (see Figure 2).
 110 However, many works conflate these types, evaluating
 111 “long-term memory” solely in Meta-RL settings
 112 based on MDPs (Kang et al., 2024a), without isolating
 113 decision-making from past information. To resolve this, we formalize RL memory types by task
 114 structure and temporal dependencies. In this work,
 115 we focus on **declarative memory**, guiding decisions
 116 from past observations in the same environment, em-
 117 phasizing its short- and long-term forms.
 118

2.1.3 MEMORY AND CREDIT ASSIGNMENT

Papers on agent memory, especially declarative memory, often distinguish between two forms of temporal reasoning: *memory* and *credit assignment* (Mesnard et al., 2020; Ni et al., 2023; Osband et al., 2019). In Ni et al. (2023), *memory* is defined as recalling a past event at the current time, while *credit assignment* is identifying when reward-relevant actions occurred. Though distinct, both concepts describe temporal dependencies between events. Here, we focus on the agent’s ability to form such dependencies, treating memory and credit assignment as one. We adopt the general definition from Section 2.1.1, which applies to both, as it captures their shared temporal nature.

3 RELATED WORKS

Interest in memory-enhanced RL has led to numerous architectures (Oh et al., 2016; Lampinen et al., 2021; Fortunato et al., 2020) and benchmarks (Morad et al., 2023a; Cherepanov et al., 2025; Osband et al., 2019; Pleines et al., 2023), yet the term “memory” remains inconsistently defined and often misaligned with what experiments actually test. Some works define memory as retaining recent observations within the same episode – either via recurrent states (Hausknecht & Stone, 2015), transformer contexts (Esslinger et al., 2022; Grigsby et al., 2024), or external stores (Lampinen et al., 2021; Le et al., 2024). Others expand it to long-range dependencies through learned state compression (Morad et al., 2023b), key-value recurrent updates (Pramanik et al., 2023; Cherepanov et al., 2024), or spatial memory maps (Parisotto & Salakhutdinov, 2017b). A separate line views memory as cross-episode knowledge transfer, e.g., in Meta-RL (Kang et al., 2024a; Bauer et al., 2023). This variety – from within-episode recall to multi-task adaptation – reflects the lack of a shared definition. Our work addresses this gap by introducing a unified taxonomy grounded in temporal dependencies and task structure.

Among concrete instantiations, Esslinger et al. (2022) introduced Deep Transformer Q-Networks (DTQN), which leverage transformer context for partially observable RL. Ni et al. (2023) extended this line with GPT-2 based agents, including DQN-GPT-2 and SAC-GPT-2, which apply attention-based memory to online RL control. In the offline setting, Decision Transformer (DT) (Chen et al., 2021) uses a sequence model trained on trajectories for return-conditioned planning, while recurrent baselines such as BC-LSTM provide a contrast between attention-based and recurrent memory mechanisms. These models constitute the baselines we evaluate in our experiments.

Ni et al. (2023) further distinguish between memory – the ability to recall past events – and credit assignment – identifying when reward-relevant actions occurred. Kang et al. (2024b) build on reconstructive memory (Bartlett & Kintsch, 1995), emphasizing reflection grounded in interaction.

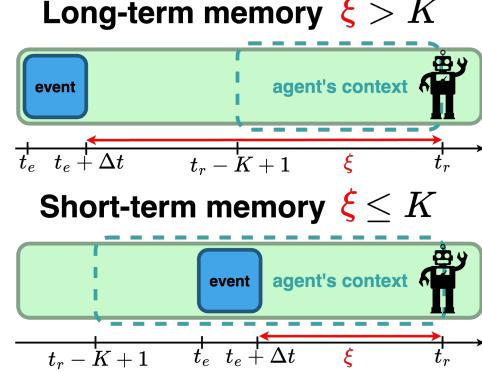


Figure 1: STM vs. LTM. t_e - event start, t_r - recall time; K - context length, ξ – correlation horizon. If the event lies beyond K , LTM is needed; if within, STM is enough.

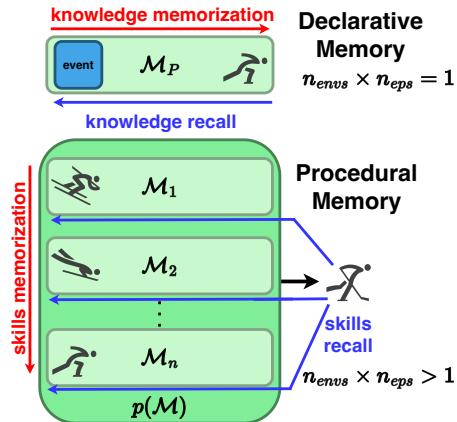


Figure 2: Illustration of declarative and procedural memory. Red arrows represent memorization steps, blue arrows indicate the recall of task-relevant information.

These varied interpretations underscore the need for a unified definition of memory in RL. We address this by formalizing memory types via temporal dependencies and task structure, and proposing a framework for empirical evaluation. Concurrently with our study, [Yue et al. \(2024\)](#) introduced memory dependency pairs (p, q) to model recall in demonstrations. While insightful for imitation learning, their approach lacks a theoretical treatment of RL memory and does not address the broader taxonomy of agent memory types.

4 MEMORY IN RL

POMDP tasks involving memory fall into two categories: *Meta-RL*, focused on skill transfer across tasks, and *Memory DM*, where agents recall past information for future decisions. This distinction matters: Meta-RL relies on procedural memory for rapid adaptation, while Memory DM uses declarative memory to guide decisions within a single environment. Yet many works reduce memory to temporal range, ignoring the behavioral roles that distinguish these types. To formalize Memory DM tasks, we first define the agent’s context length:

Definition 4.1. Agent context length ($K \in \mathbb{N}$) – is the maximum number of previous steps (triplets of (o, a, r)) that the agent can process at time t .

For example, an MLP-based agent processes one step at a time ($K = 1$), while a transformer-based agent can process a sequence of up to $K = K_{attn}$ triplets, where K_{attn} is determined by attention. Looking ahead, RNNs also have a $K = 1$, but using hidden states allows longer dependencies to be handled. Using the introduced **Definition 4.1** for agent context length, we can introduce a formal definition for the Memory DM framework we focus on in this paper:

Definition 4.2. Memory Decision-Making (Memory DM) – is a class of POMDPs in which the agents decision-making process at time t is based on the history $h_{0:t-1} = \{(o_i, a_i, r_i)\}_{i=0}^{t-1}$ if $t > 0$ otherwise $h = \emptyset$. The objective is to determine an optimal policy $\pi^*(a_t | o_t, h_{0:t-1})$ that maps the current observation o_t and history $h_{0:t-1}$ of length t to an action a_t , maximizing the expected cumulative reward within a single POMDP environment \mathcal{M}_P : $J^\pi = \mathbb{E}_\pi \left[\sum_{t=0}^{T-1} \gamma^t r_t \right]$, where T – episode duration, $\gamma \in [0, 1]$ – discount factor.

In the Memory DM framework (**Definition 4.2**), memory refers to the agent's ability to recall information from the past within a single environment and episode. In contrast, in the Meta-RL framework (**Definition 4.3**), memory involves recalling information about the agent's behavior from other environments or previous episodes:

Definition 4.3. Meta-RL – is a class of POMDPs where the agent learns to learn from its past experiences across multiple tasks and memorize the common patterns and structures to facilitate efficient adaptation to new tasks. Let $\mathcal{D} = \{\tau_j^{\mathcal{M}_i}\}_{j=0}^{H-1}$ is all of the data of H episodes of length T collected in the MDP $\mathcal{M}_i \sim p(\mathcal{M})$. A Meta-RL algorithm is a function f_θ that maps the data \mathcal{D} to a policy π_ϕ , where $\phi = f_\theta(\mathcal{D})$. The objective to determine an optimal f_θ : $J^\theta = \mathbb{E}_{\mathcal{M}_i \sim p(\mathcal{M})} \left[\mathbb{E}_{\mathcal{D}} \left[\sum_{\tau \in \mathcal{D}_{I:H}} G_i(\tau) \middle| f_\theta, \mathcal{M}_i \right] \right]$, where $G_i(\tau)$ – discounted return in the MDP \mathcal{M}_i , I – index of the first episode during the trial in which return counts towards the objective (Beck et al., 2024).

To operationalize the distinction between memory types in RL, we translate the neuroscience concepts of declarative and procedural memory (Section 2.1.1) into measurable task-level criteria:

Definition 4.4 (Declarative and Procedural memory in RL). Let n_{envs} be the number of training environments and n_{eps} the number of episodes per environment. Then,

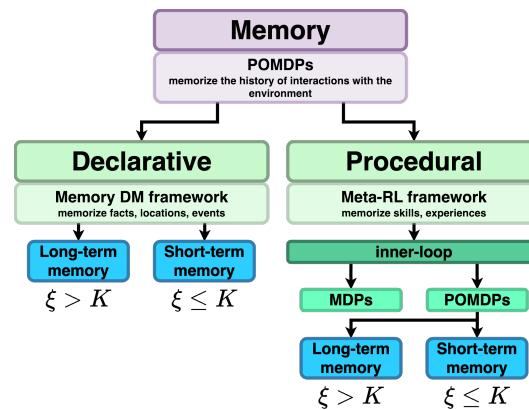


Figure 3: Classification of memory types of RL agents. While the Memory DM framework contrasts with Meta-RL, its formalism can also describe inner-loop tasks when they are POMDPs.

216 1. **Declarative Memory** – a type of agent memory when an agent transfers its knowledge within
 217 a single environment and across a single episode within that environment:

218
$$\text{Declarative Memory} \iff n_{envs} \times n_{eps} = 1. \quad (1)$$

220 2. **Procedural Memory** – a type of agent memory when an agent transfers its skills across
 221 multiple environments or multiple episodes within a single environment:

223
$$\text{Procedural Memory} \iff n_{envs} \times n_{eps} > 1. \quad (2)$$

225 In this formulation, *knowledge* refers to observable, environment-specific information – such as object
 226 locations or facts – used within a single episode. *Skills*, in contrast, are policies reused across tasks or
 227 trials. Accordingly, Memory DM primarily evaluates declarative memory, while Meta-RL settings
 228 test procedural memory (see Figure 3).

229 Having distinguished declarative and procedural memory, we now examine the temporal structure of
 230 memory in the Memory DM framework, focusing on its division into short-term and long-term forms.

231 **Definition 4.5 (Memory DM types of memory).** Let K be the agent context length, $\alpha_{t_e}^{\Delta t} =$
 232 $\{o_i, a_i, r_i\}_{i=t_e}^{t_e + \Delta t}$ – an event of duration Δt that begins at $t = t_e$ and ends at $t = t_e + \Delta t$, and
 233 $\beta_{t_r}(\alpha_{t_e}^{\Delta t}) = a_t \mid (o_t, \alpha_{t_e}^{\Delta t})$ – a decision-making point (recall) at time $t = t_r$ based on the current
 234 observation o_t and information about the event $\alpha_{t_e}^{\Delta t}$. Let also $\xi = t_r - t_e - \Delta t + 1$ be the **correlation**
 235 **horizon**, i.e. the minimal time delay between the event $\alpha_{t_e}^{\Delta t}$ that supports the decision-making and
 236 the moment of recall of this event β_{t_r} . Then,

238 1. **Short-term memory (STM)** - an agent’s ability to use information about local correlations
 239 from the past within the context of length K at decision time:

241
$$\beta_{t_r}(\alpha_{t_e}^{\Delta t}) = a_t \mid (o_t, \alpha_{t_e}^{\Delta t}) \forall \xi = t_r - t_e - \Delta t + 1 \leq K.$$

243 2. **Long-term memory (LTM)** - an agent ability to utilize information about global correlations
 244 from the past outside of the agent context of length K , during decision-making:

245
$$\beta_{t_r}(\alpha_{t_e}^{\Delta t}) = a_t \mid (o_t, \alpha_{t_e}^{\Delta t}) \forall \xi = t_r - t_e - \Delta t + 1 > K.$$

247 An illustration for the definitions of classifying Memory DM tasks into LTM and STM from Definition 4.5 is shown in Figure 1.

249 The two definitions of declarative memory encompass all work related to Memory DM tasks, where
 250 decisions are based on past information. Meta-RL consists of an inner-loop, where the agent interacts
 251 with the environment $\mathcal{M} \sim p(\mathcal{M})$, and an outer-loop for transferring knowledge between tasks.
 252 Typically, \mathcal{M} is an MDP that doesn’t require memory, serving only the outer-loop, which is what
 253 “memory” refers to in Meta-RL studies.

255 The tasks in which the agent makes decisions based on interaction histories in the inner-loop are not
 256 named separately, since the classification of Meta-RL task types (multi-task, multi-task zero-shot,
 257 and single-task) is based solely on outer-loop parameters (n_{envs} and n_{eps}) and does not consider
 258 inner-loop task types. However, we can classify the agent’s memory for these tasks as declarative
 259 STM or LTM (Figure 3).

260 We introduce an additional decoupling of Meta-RL task types into **green** (with POMDP inner-loop
 261 tasks) and **blue** (with MDP inner-loop tasks). In the **green** case, the agent’s memory is required for
 262 both skill transfer in the outer-loop and decision-making from interaction histories in the inner-loop,
 263 and within the inner-loop can be considered a Memory DM. In the **blue** case, memory is needed
 264 only for skill transfer. While this paper focuses on Memory DM tasks, the terminology enables
 265 further classification of Meta-RL tasks, with POMDP sub-classes highlighted in **green**. The proposed
 266 classification of tasks requiring agent memory is shown in Table 1.

267 4.1 MEMORY-INTENSIVE ENVIRONMENTS

269 To effectively test a Memory DM agent’s use of short-term and long-term memory, it is crucial to
 270 design appropriate experiments. Not all environments are suitable for assessing agent memory; for

example, omnipresent Atari games (Bellemare et al., 2013) with frame stacking or MuJoCo control tasks (Fu et al., 2021) may yield unrepresentative results. To facilitate the evaluation of agent memory capabilities, we formalize the definition of memory-intensive environments:

Definition 4.6 (Memory-Intensive Environments). Let \mathcal{M}_P be a POMDP, and let $\Xi = \{\xi_n\}_n = \{(t_r - t_e - \Delta t + 1)_n\}_n$ denote the set of correlation horizons for all event-recall pairs $(\alpha_{t_e}^{\Delta t}, \beta_{t_r})$. Then \mathcal{M}_P is a memory-intensive environment, denoted $\tilde{\mathcal{M}}_P$, if and only if: $\min_n \xi_n > 1$.

Corollary 1. A task corresponds to an MDP (i.e., is Markovian) if and only if all correlation horizons are trivial: $\max_n \Xi = 1$.

Proof. In an MDP, the optimal action depends only on the current state (or observation), i.e., no past information is needed. This implies $\xi_n = 1$ for all event-recall pairs, hence $\max_n \xi_n = 1$. Conversely, if $\max_n \xi_n = 1$, then no decision depends on events beyond the current step, satisfying the Markov property. ■

Using the definitions of memory-intensive environments (Definition 4.6) and agent memory types (Definition 4.5), we can configure experiments to test short-term and long-term memory in the Memory DM framework. Notably, the same memory-intensive environment can validate both types of memory, as outlined in Theorem 2:

Theorem 2 (On the context memory border). Let $\tilde{\mathcal{M}}_P$ be a memory-intensive environment and K be an agent’s context length. Then there exists context memory border $\bar{K} \geq 1$ such that if $K \leq \bar{K}$ then the environment $\tilde{\mathcal{M}}_P$ is used to validate exclusively long-term memory in Memory DM framework:

$$\exists \bar{K} \geq 1 : \forall K \in [1, \bar{K}] : K < \min_n \Xi. \quad (3)$$

Proof. Let $\bar{K} = \min_n \Xi - 1$. Then $\forall K \leq \bar{K}$ is guaranteed that no correlation horizon ξ is in the agent history $h_{t-K+1:t}$, hence the context length $K \leq \min_n \Xi - 1$ generates the LTM problem exclusively. Since context length cannot be negative or zero, it turns out that $1 \leq K \leq \bar{K} = \min_n \Xi - 1$, which was required to prove. ■

The following result, though intuitive, formalizes a practical criterion for isolating long-term memory evaluation by constraining the agent’s context window. It serves as the foundation for configuring experiments in the Memory DM framework. According to Theorem 2, in a memory-intensive environment $\tilde{\mathcal{M}}_P$, the value of the context memory border \bar{K} can be found as

$$\bar{K} = \min_n \Xi - 1 = \min_n \left\{ (t_r - t_e - \Delta t + 1)_n \right\}_n - 1. \quad (4)$$

Using Theorem 2, we can establish the necessary conditions for validating short-term memory: 1) **Weak condition to validate short-term memory:** if $\bar{K} < K < \max_n \Xi$, then the memory-intensive

Table 1: Classification of tasks requiring agent memory based on our definitions: green indicates tasks described by the proposed definitions of LTM and STM, while blue indicates those that are not. Meta-RL tasks with a POMDP inner-loop are marked green as they can be classified as Memory DM tasks. POMDP[†] indicates a Memory DM task considered as an inner-loop task without an outer-loop.

n_{envs}	n_{eps}	POMDP	Inner-loop task	Memory	Tasks that require agent memory				
					Memory DM				
						LTM	STM		
						$\xi > K$	$\xi \leq K$		
1	1	Memory DM	POMDP [†]	Dec.	Long-term memory task	Short-term memory task			
						Meta-RL: Outer-loop and inner-loop memory			
						LTM	STM		
						$\xi > K$	$\xi \leq K$		
1	>1	Meta-RL	POMDP	Proc.	Single-task	Single-task			
>1	1	Meta-RL	POMDP	Proc.	Multi-task	Multi-task			
>1	>1	Meta-RL	POMDP	Proc.	zero-shot	zero-shot			
						Multi-task	Multi-task		
						Meta-RL: Outer-loop memory only			
						No memory	No memory		
						$\xi = 1$	$\xi = 1$		
1	>1	Meta-RL	MDP	Proc.	Single-task	Single-task			
>1	1	Meta-RL	MDP	Proc.	Multi-task	Multi-task			
>1	>1	Meta-RL	MDP	Proc.	zero-shot	zero-shot			
						Multi-task	Multi-task		

324 **Algorithm 1** Algorithm for setting up an experiment to test long-term and short-term memory in
 325 Memory DM framework.
 326

327 **Require:** $\tilde{\mathcal{M}}_P$ – memory-intensive environment; $\mu(K)$ – memory mechanism.
 328 **1. Estimate the number of n event-recall pairs in the environment (Definition 4.6).**
 329 1. $n = 0 \rightarrow$ Environment is not suitable for testing long-term and short-term memory.
 330 2. $n \geq 1 \rightarrow$ Environment is suitable for testing long-term and short-term memory.
 331 **2. Estimate context memory border \bar{K} (4).**
 332 1. \forall event-recall pair $(\beta(\alpha), \alpha)_i$ find corresponding $\xi_i, i \in [1..n]$.
 333 2. Determine \bar{K} as $\bar{K} = \min \Xi - 1 = \min_n \{\xi_n\}_n - 1 = \min_n \{(t_r - t_e - \Delta t + 1)_n\}_n - 1$
 334 **3. Conduct an appropriate experiment (Definition 4.5).**
 335 1. To test short-term memory set $K > \bar{K}$.
 336 2. To test long-term memory set $K \leq \bar{K} \leq K_{eff} = \mu(K)$.
 337 **4. Analyze the results.**

340 environment $\tilde{\mathcal{M}}_P$ is used to validate both short-term and long-term memory. **2) Strong condition to**
 341 **validate short-term memory:** if $\max_n \Xi < K$, then the memory-intensive environment $\tilde{\mathcal{M}}_P$ is used
 342 to validate exclusively short-term memory.
 343

344 According to [Theorem 2](#), if $K \in [1, \bar{K}]$, none of the correlation horizons ξ will be in the agent's
 345 context, validating only long-term memory. When $\bar{K} < K < \max_n \Xi \leq T - 1$, long-term memory
 346 can still be tested, but some correlation horizons ξ will fall within the agent's context and won't
 347 be used for long-term memory validation. In such a case it is not possible to estimate long-term
 348 memory explicitly. When $K \geq \max_n \Xi$, all correlation horizons ξ are within the agent's context,
 349 validating only short-term memory. Summarizing the obtained results, the final division of the
 350 required agent context lengths for short-term memory and long-term memory validation is as follows:
 351 (i) $K \in [1, \bar{K}] \Rightarrow$ **validating LTM only**; (ii) $K \in (\bar{K}, \max_n \Xi) \Rightarrow$ **validating both STM and LTM**;
 352 (iii) $K \in [\max_n \Xi, \infty) \Rightarrow$ **validating STM only**.
 353

355 4.2 LONG-TERM MEMORY IN MEMORY DM

356 As defined in [Definition 4.5](#), short-term Memory DM tasks arise when event-recall pairs in $\tilde{\mathcal{M}}_P$
 357 fall within the agent's context ($\xi \leq K$), allowing decisions based on local correlations. This holds
 358 regardless of how large K is. Examples include ([Esslinger et al., 2022](#); [Grigsby et al., 2024](#); [Ni et al.,](#)
 359 [2023](#)). Validating STM is simple: increase K . In contrast, testing long-term memory requires more
 360 care and is typically more informative.
 361

362 Memory DM tasks requiring long-term memory occur when event-recall pairs in the memory-
 363 intensive environment $\tilde{\mathcal{M}}_P$ are outside the agent's context ($\xi > K$). In this case, memory involves
 364 the agent's ability to connect information beyond its context, necessitating memory mechanisms
 365 ([Definition 4.7](#)) that can manage interaction histories h longer than the agent's base model can handle.
 366

367 **Definition 4.7 (Memory mechanisms).** *Let the agent process histories $h_{t-K+1:t}$ of length K at the*
 368 *current time t , where $K \in \mathbb{N}$ is agents context length. Then, a **memory mechanism** $\mu(K) : \mathbb{N} \rightarrow \mathbb{N}$ is*
 369 *defined as a function that, for a fixed K , allows the agent to process sequences of length $K_{eff} \geq K$,*
i.e., to establish global correlations out of context, where K_{eff} is the effective context.

$$\mu(K) = K_{eff} \geq K. \quad (5)$$

370 *Memory mechanisms are key to LTM tasks by recalling out-of-context information in Memory DM.*
 371

372 **Example of memory mechanism.** Consider an agent based on an RNN architecture that can
 373 process $K = 1$ triplets of tokens (o_t, a_t, r_t) at all times t . By using memory mechanisms $\mu(K)$ (e.g.,
 374 as in [Hausknecht & Stone \(2015\)](#)), the agent can increase the number of tokens processed in a single
 375 step without expanding the context size of its RNN architecture. Therefore, if initially in a memory-
 376 intensive environment $\tilde{\mathcal{M}}_P : \xi > K = 1$, it can now be represented as $\tilde{\mathcal{M}}_P : \xi \leq K_{eff} = \mu(K)$.
 377 Here, the memory mechanism $\mu(K)$ refers to the RNNs recurrent updates to its hidden state.

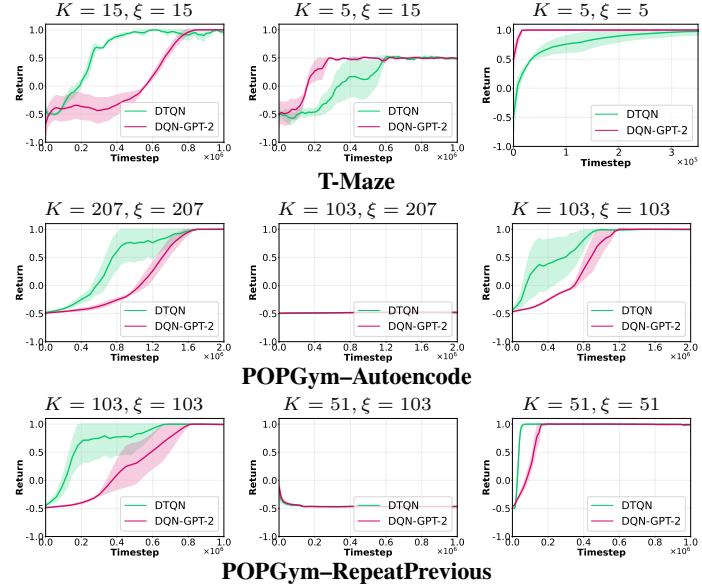
378 Thus, validating an agent’s ability to solve long-term memory problems in the Memory DM framework
 379 reduces to validating the agent’s memory mechanisms $\mu(K)$. **To design correct experiments in**
 380 **such a case, the following condition must be met:**

$$\tilde{\mathcal{M}}_P : K \leq \bar{K} < \xi \leq K_{eff} = \mu(K) \quad (6)$$

384 According to our definitions, agents with memory mechanisms in the Memory DM framework
 385 that solve LTM tasks can also handle STM tasks, but not vice versa. The algorithm for setting up
 386 experiments to test an agent’s STM or LTM is outlined in [Algorithm 1](#).

387 4.3 EXAMPLE OF Ξ AND ξ ESTIMATES

389 Following the proposed methodology ([Algorithm 1](#)), we
 390 estimated the sets of correlation horizons Ξ and minimal
 391 recall distances ξ for a range
 392 of popular memory-intensive
 393 tasks (Table [Table 2](#)), including
 394 *Passive T-Maze* ([Ni et al., 2023](#)),
 395 *Minigrid-Memory* ([Chevalier-Boisvert et al., 2023](#)), *ViZDoom-Two-Colors* ([Sorokin et al., 2022](#)), *Memory Maze* ([Paskonis et al., 2022](#)), *Memory Cards* ([Esslenger et al., 2022](#)), *Mortar Mayhem* and *Mystery Path* ([Pleines et al., 2025](#)), *POPGym-Autoencode* and *POPGym-RepeatPrevious* ([Morad et al., 2023a](#)).



408 **Example: Testing Memory in**
 409 **Passive T-Maze** In Passive T-
 410 Maze, the agent sees a cue at the
 411 start of a corridor and must turn
 412 correctly at the junction. The
 413 episode lasts $T = L + 1$, where L
 414 is the corridor length. Using [Al-
 gorithm 1](#): **1)** There’s one event-
 415 recall pair ($n = 1$), so the task suits both STM and LTM. **2)** The event lasts one step ($\Delta t = 0$), so
 416 $\xi = T$, and $\bar{K} = T - 1$. **3)** Varying T or context size K lets us test STM (if $K > \bar{K}$) or LTM (if
 417 $K \leq \bar{K} \leq \mu(K)$). While $K = \bar{K}$ is enough in theory, choosing smaller K better reveals memory
 418 mechanism effects.

420 5 EXPERIMENTS

422 We evaluate memory-enhanced RL agents using the Memory DM framework to distinguish short- vs.
 423 long-term memory. Our experiments stress the need for proper methodology ([Algorithm 1](#)) and show
 424 how poor setups can misrepresent memory use. We test four memory-intensive tasks: Passive T-Maze and Minigrid-Memory (cue recall), and POPGym-Autoencode and RepeatPrevious (observation
 425 reconstruction and action repeat), all requiring recall over time. In the online setting, we evaluate
 426 DTQN ([Esslenger et al., 2022](#)), DQN-GPT-2, and SAC-GPT-2 ([Ni et al., 2023](#)) with attention-based
 427 memory. Offline, we test DT ([Chen et al., 2021](#)) and BC-LSTM to compare attention vs. recurrence.
 428 In all cases, we vary agent context K and task horizon ξ to isolate memory types and reveal model
 429 limitations.

432 5.1 PITFALLS OF NAIIVE MEMORY TESTS
433

434 Proper evaluation of memory in RL agents re-
435 quires distinguishing STM from LTM by ac-
436 counting for correlation horizons ξ . Without
437 this, STM and LTM effects blur, misrepresent-
438 ing agent capacity. We illustrate this with SAC-
439 GPT-2 in Minigrid-Memory under two setups:
440 (i) fixed $L = 21$ ($\xi = 22$), and (ii) variable L
441 ($\xi \in [7, 22]$), testing STM ($K = 22$) and LTM
442 ($K = 14$) settings. As shown in [Figure 5](#), the
443 *variable* setup gives high success for both set-
444 tings, implying good memory.

445 But in the *fixed* case, LTM fails, revealing the
446 agent’s true limit. Mixed-horizon tasks can hide
447 LTM deficits - only fixed $\xi > K$ setups expose
448 them. Proper LTM evaluation requires control-
449 ling the correlation horizon ξ relative to the agent’s context K . Without this, STM effects may
450 dominate and misrepresent the agent’s memory type. Our methodology provides a principled way to
451 avoid this confusion.

452 5.2 THE RELATIVE NATURE OF AN AGENT’S MEMORY
453

454 According to [Algorithm 1](#), the experimental setup for testing agent memory types (LTM and STM)
455 depends on two parameters: the agent’s context length K and the context memory border \bar{K} , which
456 in turn is determined by the environment’s correlation horizon ξ . Verifying LTM or STM requires
457 adjusting K or ξ while keeping the other fixed. This section outlines how these parameters interact
458 in memory testing. An agent’s memory cannot be defined in isolation – it arises from the interplay
459 between its context K and the environment’s horizons ξ . Thus, the same agent may exhibit either
460 STM or LTM behavior depending on the task setup.

461 We test DTQN and DQN-GPT-2 in three memory-intensive tasks: Passive T-Maze, POPGym Autoen-
462 code, and RepeatPrevious – by varying K and ξ to simulate STM ($\xi \leq K$) and LTM ($\xi > K$); as
463 shown in [Figure 4](#), performance is high when $\xi \leq K$ but drops sharply for $\xi > K$, confirming that
464 long-range dependencies require explicit memory mechanisms. These results confirm memory is
465 relative: LTM depends on both temporal distance and agent design. Without controlling K and ξ ,
466 memory claims are unreliable. Our K - ξ framework ensures consistent, interpretable evaluation.

467 5.3 GENERALIZATION ACROSS SEQUENCE LENGTHS
468

469 Evaluating memory in RL agents requires dis-
470 tinguishing true long-term memory (LTM) from
471 memorization within fixed context. To demon-
472 strate this, we test DT and BC-LSTM on T-
473 Maze: both are trained on specific corridor
474 lengths and evaluated on both seen and longer,
475 unseen ones. This setup tests whether agents can
476 recall cue information beyond training range
477 - an LTM indicator. [Figure 6](#) shows success
478 heatmaps across training and validation lengths.
479 The diagonal indicates in-distribution perfor-
480 mance; extrapolation lies to the right.

481 While both models process sequences and are
482 labeled as memory-enhanced, our framework
483 reveals key differences. DT relies on a fixed
484 attention window and operates with short-term
485 memory, while LSTM uses a recurrent state,
enabling true LTM. T-Maze results expose this gap: DT performs well when validation lengths

Table 2: Correlation horizons ξ and LTM thresh-
olds K for popular memory-intensive tasks. L is
corridor length, T is episode length. (f) and (v)
denote fixed and variable setups. POPGym entries
show values for the easy setting; for easy / medium
/ hard, Ξ becomes $\{2, 4, \dots, 104/208/312\}$ for
Autoencode and $\{5/33/65\}$ for RepeatPrevious.

Task	Ξ	ξ	LTM if $K <$
Passive T-Maze	$\{L + 1\}$	$L + 1$	$L + 1$
Minigrid-Memory (f)	$\{L + 1\}$	$L + 1$	$L + 1$
Minigrid-Memory (v)	$[7, L + 1]$	7	7
ViZDoom-Two-Colors	$[2, 2055]$	2	2
Memory Maze 9x9	$[28, 1000]$	28	28
Memory Maze 15x15	$[45, 4000]$	45	45
Memory Cards	$[2, T]$	2	2
Mortar Mayhem (finite)	$[38, 218]$	38	38
Mystery Path (finite)	$[8, 26]$	8	8
POPGym-Autoencode	$[2, 104]$	2	2
POPGym-RepeatPrevious	$\{5\}$	5	5

452 But in the *fixed* case, LTM fails, revealing the
453 agent’s true limit. Mixed-horizon tasks can hide
454 LTM deficits - only fixed $\xi > K$ setups expose
455 them. Proper LTM evaluation requires control-
456 ling the correlation horizon ξ relative to the agent’s context K . Without this, STM effects may
457 dominate and misrepresent the agent’s memory type. Our methodology provides a principled way to
458 avoid this confusion.

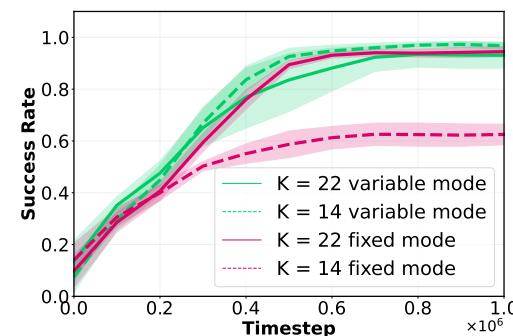


Figure 5: SAC-GPT-2 in Minigrid-Memory ($L = 21$) with short- ($K = 22$) and long-term ($K = 14$) memory setups. Variable mode (green) masks memory limits; fixed mode (red) reveals failure at $K = 14$, demonstrating lack of long-term memory – made evident by our evaluation method.

486 stay within context but fails for $L > 90$, whereas BC-LSTM generalizes to much longer sequences,
 487 demonstrating effective LTM. If evaluated only on shorter validation lengths, DT may appear stronger,
 488 masking memory limitations. Both perform well for lengths ≤ 150 , but at training length 300, DT
 489 scores 100%, while BC-LSTM drops to 0.87. For longer training (600, 900), BC-LSTM collapses,
 490 DT remains high – misleadingly favoring STM.

491 **DT succeeds only when the correlation**
 492 **horizon satisfies $\xi \leq K$, but fails**
 493 **whenever $\xi > K$, which demonstrates**
 494 **that DT lacks LTM. In contrast, BC-**
 495 **LSTM, on the horizons where it trains**
 496 **reliably, can exploit dependencies be-**
 497 **yond the training range and therefore**
 498 **exhibits LTM within those regimes.**
 499 **Our framework makes this distinc-**
 500 **tion precise by separating architec-**
 501 **tural limits from memory function, en-**
 502 **suring that DT is correctly identified**
 503 **as an STM agent, while BC-LSTM is**
 504 **capable of LTM on the ranges where**
 505 **it learns effectively (i.e. without van-**
 506 **ishing gradients problem (Trinh et al.,**
 507 **2018)).**

6 CONCLUSION

511 We propose a unified framework for
 512 classifying and evaluating memory in
 513 RL agents, grounded in neuroscience-
 514 inspired definitions of short- and long-term declarative memory. By introducing the concept of
 515 correlation horizon and formalizing memory-intensive environments, we enable precise evaluation
 516 of agent memory. Our methodology reveals key differences between architectures: transformers
 517 like DTQN or DT rely mainly on short-term memory, while recurrent models such as BC-LSTM
 518 exhibit long-term memory. Experiments on T-Maze, MiniGrid, and POPGym confirm the need for
 519 proper setups to avoid misleading conclusions. The framework clarifies how memory mechanisms
 520 shape behavior and could be extended to include additional systems from cognitive science, such as
 521 working or episodic memory, and to explore whether new types emerge in complex RL tasks. **As**
 522 **a direction for future work, it would be valuable to study adaptive dynamic updating of memory**
 523 **representations, since most existing work focuses primarily on memorization and retention rather**
 524 **than on how agents revise stored information over time.**

REPRODUCIBILITY STATEMENT

529 We have taken several measures to ensure the reproducibility of our results. **Model details:** The
 530 formalization of our framework – covering Memory DM, STM/LTM, and the correlation horizon – is
 531 provided in [Section 4](#), with precise definitions in [Definition 4.1](#), [Definition 4.2](#), and [Definition 4.5](#),
 532 and the experimental configuration procedure in [Algorithm 1](#). **Theoretical results:** Assumptions
 533 and complete statements (including the definition of memory-intensive environments) are given
 534 in [Definition 4.6](#), and key results with proofs appear in [Theorem 2](#) and its accompanying discussion.
Experimental setup: Tasks, training procedures, and evaluation protocols are reported in [Section 5](#),
 535 with validation protocol details in [Section F.1](#), hyperparameters in [Section F.1](#), and environment
 536 descriptions in [Appendix F](#). **Baselines:** Baseline selections and configurations are documented
 537 in [Section 5](#), with their hyperparameters listed in [Section F.1](#). **Code and data:** An anonymous
 538 repository containing source code, training scripts, and configuration files submitted as supplementary
 539 material. Together, these resources allow for full replication of our theoretical analyses and empirical
 results.

540 REFERENCES

541

542 Frederic C. Bartlett and Walter Kintsch. *Remembering: A Study in Experimental and Social Psychology*. Cambridge University Press, 2 edition, 1995.

543

544 Jakob Bauer, Kate Baumli, Feryal Behbahani, Avishkar Bhoopchand, Nathalie Bradley-Schmieg,
545 Michael Chang, Natalie Clay, Adrian Collister, Vibhavari Dasagi, Lucy Gonzalez, Karol Gregor,
546 Edward Hughes, Sheleem Kashem, Maria Loks-Thompson, Hannah Openshaw, Jack Parker-
547 Holder, Shreya Pathak, Nicolas Perez-Nieves, Nemanja Rakicevic, Tim Rocktäschel, Yannick
548 Schroecker, Satinder Singh, Jakub Sygnowski, Karl Tuyls, Sarah York, Alexander Zacherl, and
549 Lei M Zhang. Human-timescale adaptation in an open-ended task space. In Andreas Krause,
550 Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
551 (eds.), *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of
552 *Proceedings of Machine Learning Research*, pp. 1887–1935. PMLR, 23–29 Jul 2023. URL
553 <https://proceedings.mlr.press/v202/bauer23a.html>.

554

555 Jacob Beck, Risto Vuorio, Evan Zheran Liu, Zheng Xiong, Luisa Zintgraf, Chelsea Finn, and Shimon
556 Whiteson. A survey of meta-reinforcement learning, 2024. URL <https://arxiv.org/abs/2301.08028>.

557

558 Philipp Becker, Niklas Freymuth, and Gerhard Neumann. Kalmamba: Towards efficient probabilistic
559 state space models for rl under uncertainty, 2024. URL <https://arxiv.org/abs/2406.15131>.

560

561 Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environment:
562 An evaluation platform for general agents. *Journal of Artificial Intelligence Research*, 47:253–279, 2013.

563

564 Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
565 Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
566 modeling. *Advances in neural information processing systems*, 34:15084–15097, 2021.

567

568 Egor Cherepanov, Alexey Staroverov, Dmitry Yudin, Alexey K. Kovalev, and Aleksandr I. Panov.
569 Recurrent action transformer with memory. *arXiv preprint arXiv:2306.09459*, 2024. URL
570 <https://arxiv.org/abs/2306.09459>.

571

572 Egor Cherepanov, Nikita Kachaev, Alexey Kovalev, and Aleksandr Panov. Memory, benchmark
573 & robots: A benchmark for solving complex tasks with reinforcement learning. In *7th Robot
Learning Workshop: Towards Robots with Human-Level Abilities*, 2025.

574

575 Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems, Salem
576 Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Modular &
577 customizable reinforcement learning environments for goal-oriented tasks. *CoRR*, abs/2306.13831,
578 2023.

579

580 Hasker Davis and Larry Squire. Davis hp, squire lr. protein synthesis and memory: a review. *psychol
bull* 96: 518–559. *Psychological bulletin*, 96:518–59, 11 1984. doi: 10.1037/0033-2909.96.3.518.

581

582 Ben Deverett, Ryan Faulkner, Meire Fortunato, Gregory Wayne, and Joel Z Leibo. Interval timing
583 in deep reinforcement learning agents. *Advances in Neural Information Processing Systems*, 32,
584 2019.

585

586 Yan Duan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl²: Fast
587 reinforcement learning via slow reinforcement learning, 2016. URL <https://arxiv.org/abs/1611.02779>.

588

589 Kevin Esslinger, Robert Platt, and Christopher Amato. Deep transformer q-networks for partially
590 observable reinforcement learning. *arXiv preprint arXiv:2206.01078*, 2022.

591

592 Meire Fortunato, Melissa Tan, Ryan Faulkner, Steven Hansen, Adrià Puigdomènech Badia, Gavin
593 Buttimore, Charlie Deck, Joel Z Leibo, and Charles Blundell. Generalization of reinforcement
594 learners with working and episodic memory, 2020. URL <https://arxiv.org/abs/1910.13406>.

594 Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
595 data-driven reinforcement learning, 2021.

596

597 Anirudh Goyal, Abram L. Friesen, Andrea Banino, Theophane Weber, Nan Rosemary Ke, Adria Puig-
598 domenech Badia, Arthur Guez, Mehdi Mirza, Peter C. Humphreys, Ksenia Konyushkova, Laurent
599 Sifre, Michal Valko, Simon Osindero, Timothy Lillicrap, Nicolas Heess, and Charles Blundell.
600 Retrieval-augmented reinforcement learning, 2022. URL <https://arxiv.org/abs/2202.08417>.

601

602 P. Graf and D.L. Schacter. Implicit and explicit memory for new associations in normal and amnesic
603 subjects. *Journal of Experimental Psychology: Learning, Memory, & Cognition*, 11:501–518,
604 1985.

605

606 Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines, 2014. URL <https://arxiv.org/abs/1410.5401>.

607

608 Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
609 Barwińska, Sergio Gómez, Edward Grefenstette, Tiago Ramalho, John Agapiou, Adrià Badia, Karl
610 Hermann, Yori Zwols, Georg Ostrovski, Adam Cain, Helen King, Christopher Summerfield, Phil
611 Blunsom, Koray Kavukcuoglu, and Demis Hassabis. Hybrid computing using a neural network
612 with dynamic external memory. *Nature*, 538, 10 2016. doi: 10.1038/nature20101.

613

614 Jake Grigsby, Linxi Fan, and Yuke Zhu. Amago: Scalable in-context reinforcement learning for
615 adaptive agents, 2024. URL <https://arxiv.org/abs/2310.09971>.

616

617 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv*
618 preprint [arXiv:2312.00752](https://arxiv.org/abs/2312.00752), 2023.

619

620 Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
621 state spaces. *arXiv preprint arXiv:2111.00396*, 2021.

622

623 David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution, 2018. URL
624 <https://arxiv.org/abs/1809.01999>.

625

626 Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
627 Davidson. Learning latent dynamics for planning from pixels. In Kamalika Chaudhuri and Ruslan
628 Salakhutdinov (eds.), *Proceedings of the 36th International Conference on Machine Learning*,
629 volume 97 of *Proceedings of Machine Learning Research*, pp. 2555–2565. PMLR, 09–15 Jun
630 2019. URL <https://proceedings.mlr.press/v97/hafner19a.html>.

631

632 Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable mdps, 2015.

633

634 Jikun Kang, Romain Laroche, Xingdi Yuan, Adam Trischler, Xue Liu, and Jie Fu. Think before you
635 act: Decision transformers with working memory, 2024a. URL <https://arxiv.org/abs/2305.16338>.

636

637 Yongxin Kang, Enmin Zhao, Yifan Zang, Lijuan Li, Kai Li, Pin Tao, and Junliang Xing. Sample
638 efficient reinforcement learning using graph-based memory reconstruction. *IEEE Transactions on*
639 *Artificial Intelligence*, 5(2):751–762, 2024b. doi: 10.1109/TAI.2023.3268612.

640

641 Andrew Lampinen, Stephanie Chan, Andrea Banino, and Felix Hill. Towards mental time travel: a
642 hierarchical memory for reinforcement learning agents. *Advances in Neural Information Processing*
643 *Systems*, 34:28182–28195, 2021.

644

645 Hung Le, Kien Do, Dung Nguyen, Sunil Gupta, and Svetha Venkatesh. Stable hadamard memory: Re-
646 vitalizing memory-augmented agents for reinforcement learning. *arXiv preprint arXiv:2410.10132*,
647 2024.

648

649 Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob Foerster, Satinder Singh, and
650 Feryal Behbahani. Structured state space models for in-context reinforcement learning, 2023. URL
651 <https://arxiv.org/abs/2303.03982>.

652

653 Luckeciano C. Melo. Transformers are meta-reinforcement learners, 2022. URL <https://arxiv.org/abs/2206.06614>.

648 Thomas Mesnard, Théophane Weber, Fabio Viola, Shantanu Thakoor, Alaa Saade, Anna Harutyunyan,
 649 Will Dabney, Tom Stepleton, Nicolas Heess, Arthur Guez, et al. Counterfactual credit assignment
 650 in model-free reinforcement learning. *arXiv preprint arXiv:2011.09464*, 2020.

651

652 Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-
 653 learner, 2018. URL <https://arxiv.org/abs/1707.03141>.

654 Steven Morad, Ryan Kortvelesy, Matteo Bettini, Stephan Liwicki, and Amanda Prorok. Popgym:
 655 Benchmarking partially observable reinforcement learning, 2023a. URL <https://arxiv.org/abs/2303.01859>.

656

657 Steven Morad, Ryan Kortvelesy, Stephan Liwicki, and Amanda Prorok. Reinforcement learning with
 658 fast and forgetful memory. *Advances in Neural Information Processing Systems*, 36:72008–72029,
 659 2023b.

660

661 Steven D. Morad, Stephan Liwicki, Ryan Kortvelesy, Roberto Mecca, and Amanda Prorok. Graph
 662 convolutional memory using topological priors, 2021. URL <https://arxiv.org/abs/2106.14117>.

663

664 Tianwei Ni, Benjamin Eysenbach, and Ruslan Salakhutdinov. Recurrent model-free rl can be a strong
 665 baseline for many pomdps. *arXiv preprint arXiv:2110.05038*, 2021.

666

667 Tianwei Ni, Michel Ma, Benjamin Eysenbach, and Pierre-Luc Bacon. When do transformers shine
 668 in RL? decoupling memory from credit assignment. In *Thirty-seventh Conference on Neural
 669 Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=APGXBNkt6h>.

670

671 Junhyuk Oh, Valliappa Chockalingam, Satinder Singh, and Honglak Lee. Control of memory, active
 672 perception, and action in minecraft, 2016. URL <https://arxiv.org/abs/1605.09128>.

673

674 Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva, Katrina
 675 McKinney, Tor Lattimore, Csaba Szepesvari, Satinder Singh, et al. Behaviour suite for reinforce-
 676 ment learning. *arXiv preprint arXiv:1908.03568*, 2019.

677

678 Emilio Parisotto and Ruslan Salakhutdinov. Neural map: Structured memory for deep reinforcement
 679 learning, 2017a. URL <https://arxiv.org/abs/1702.08360>.

680

681 Emilio Parisotto and Ruslan Salakhutdinov. Neural map: Structured memory for deep reinforcement
 682 learning. *arXiv preprint arXiv:1702.08360*, 2017b.

683

684 Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar Gulcehre, Siddhant Jayakumar,
 685 Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb Noury, et al. Stabilizing transformers
 686 for reinforcement learning. In *International conference on machine learning*, pp. 7487–7498.
 687 PMLR, 2020.

688

689 Thomas Parr, Rajeev Vijay Rikhye, Michael M Halassa, and Karl J Friston. Prefrontal computation
 690 as active inference. *Cerebral Cortex*, 30(2):682–695, 2020.

691

692 Thomas Parr, Giovanni Pezzulo, and Karl J Friston. *Active inference: the free energy principle in
 693 mind, brain, and behavior*. MIT Press, 2022.

694

695 Jurgis Pasukonis, Timothy Lillicrap, and Danijar Hafner. Evaluating long-term memory in 3d mazes,
 696 2022. URL <https://arxiv.org/abs/2210.13383>.

697

698 Marco Pleines, Matthias Pallasch, Frank Zimmer, and Mike Preuss. Memory gym: Partially observ-
 699 able challenges to memory-based agents in endless episodes. *arXiv preprint arXiv:2309.17207*,
 700 2023.

701

702 Marco Pleines, Matthias Pallasch, Frank Zimmer, and Mike Preuss. Memory gym: Towards endless
 703 tasks to benchmark memory capabilities of agents. *Journal of Machine Learning Research*, 26(6):
 704 1–40, 2025.

705

706 Peter G. Polson. *The American Journal of Psychology*, 88(1):131–140, 1975. ISSN 00029556. URL
 707 <http://www.jstor.org/stable/1421672>.

702 Subhojeet Pramanik, Esraa Elelimy, Marlos C Machado, and Adam White. Recurrent linear trans-
 703 formers. *arXiv preprint arXiv:2310.15719*, 2023.

704

705 Alexander Pritzel, Benigno Uria, Sriram Srinivasan, Adrià Puigdomènech, Oriol Vinyals, Demis
 706 Hassabis, Daan Wierstra, and Charles Blundell. Neural episodic control, 2017. URL <https://arxiv.org/abs/1703.01988>.

707

708 Jan Robine, Marc Höftmann, Tobias Uelwer, and Stefan Harmeling. Transformer-based world
 709 models are happy with 100k interactions. In *The Eleventh International Conference on Learning
 710 Representations*, 2023. URL <https://openreview.net/forum?id=TdBaDGcpjly>.

711

712 David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by back-
 713 propagating errors. *Nature*, 323:533–536, 1986. URL <https://api.semanticscholar.org/CorpusID:205001834>.

714

715 Mohammad Reza Samsami, Artem Zholus, Janarthanan Rajendran, and Sarath Chandar. Mastering
 716 memory tasks with world models, 2024. URL <https://arxiv.org/abs/2403.04253>.

717

718 Gresa Shala, André Biedenkapp, and Josif Grabocka. Hierarchical transformers are efficient meta-
 719 reinforcement learners, 2024. URL <https://arxiv.org/abs/2402.06402>.

720

721 Jimmy T. H. Smith, Andrew Warrington, and Scott W. Linderman. Simplified state space layers for
 722 sequence modeling, 2023. URL <https://arxiv.org/abs/2208.04933>.

723

724 Doo Re Song, Chuanyu Yang, Christopher McGreavy, and Zhibin Li. Recurrent deterministic
 725 policy gradient method for bipedal locomotion on rough terrain challenge, November 2018. URL
<http://dx.doi.org/10.1109/ICARCV.2018.8581309>.

726

727 Artyom Sorokin, Nazar Buzun, Leonid Pugachev, and Mikhail Burtsev. Explain my surprise: Learning
 728 efficient long-term memory by predicting uncertain outcomes. *Advances in Neural Information
 729 Processing Systems*, 35:36875–36888, 2022.

730

731 Ivan Sorokin, Alexey Seleznev, Mikhail Pavlov, Aleksandr Fedorov, and Anastasiia Ignateva. Deep
 732 attention recurrent q-network, 2015. URL <https://arxiv.org/abs/1512.01693>.

733

734 Adaptive Agent Team, Jakob Bauer, Kate Baumli, Satinder Baveja, Feryal Behbahani, Avishkar
 735 Bhoopchand, Nathalie Bradley-Schmieg, Michael Chang, Natalie Clay, Adrian Collister, Vibhavari
 736 Dasagi, Lucy Gonzalez, Karol Gregor, Edward Hughes, Sheleem Kashem, Maria Loks-Thompson,
 737 Hannah Openshaw, Jack Parker-Holder, Shreya Pathak, Nicolas Perez-Nieves, Nemanja Rakicevic,
 738 Tim Rocktäschel, Yannick Schroecker, Jakub Sygnowski, Karl Tuyls, Sarah York, Alexander
 739 Zacherl, and Lei Zhang. Human-timescale adaptation in an open-ended task space, 2023. URL
<https://arxiv.org/abs/2301.07608>.

740

741 Trieu Trinh, Andrew Dai, Thang Luong, and Quoc Le. Learning longer-term dependencies in rnns
 742 with auxiliary losses. In *International Conference on Machine Learning*, pp. 4965–4974. PMLR,
 2018.

743

744 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 745 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing
 746 systems*, 30, 2017.

747

748 Daan Wierstra, Alexander Förster, Jan Peters, and Jürgen Schmidhuber. Recurrent policy gradients.
Logic Journal of the IGPL, 18:620–634, 10 2010. doi: 10.1093/jigpal/jzp049.

749

750 William Yue, Bo Liu, and Peter Stone. Learning memory mechanisms for decision making through
 751 demonstrations. *arXiv preprint arXiv:2411.07954*, 2024.

752

753 Tony Duan YuXuan Liu and Wesley Hsieh. Temporal convolutional policy networks, 2016. URL
<https://yuxuanliu.com/files/tcpn.pdf>.

754

755 Wojciech Zaremba and Ilya Sutskever. Reinforcement learning neural turing machines - revised,
 2016. URL <https://arxiv.org/abs/1505.00521>.

756 Deyao Zhu, Li Erran Li, and Mohamed Elhoseiny. Value memory graph: A graph-structured world
757 model for offline reinforcement learning, 2023. URL <https://arxiv.org/abs/2206.04384>.

759 Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann, and
760 Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep rl via meta-learning,
761 2020. URL <https://arxiv.org/abs/1910.08348>.

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810
811
A APPENDIX – GLOSSARY812
813
814
In this section, we provide a comprehensive glossary of key terms and concepts used throughout this
paper. The definitions are intended to clarify the terminology proposed in our research and to ensure
that readers have a clear understanding of the main elements underpinning our work.815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
1. \mathcal{M} – MDP environment
2. \mathcal{M}_P – POMDP environment
3. $\tilde{\mathcal{M}}_P$ – memory-intensive environment
4. $h_{0:t-1} = \{(o_i, a_i, r_i)\}_{i=0}^{t-1}$ – agent history of interactions with environment
5. K – agent base model context length
6. \bar{K} – context memory border of the agent, such that $K \in [1, \bar{K}] \Leftrightarrow$ strictly LTM problem
7. $\mu(K)$ – memory mechanism that increases number of steps available to the agent to process
8. $K_{eff} = \mu(K)$ – the agent effective context after applying the memory mechanism
9. $\alpha_{t_e}^{\Delta t} = \{(o_i, a_i, r_i)\}_{i=t_e}^{t_e+\Delta t}$ – an event starting at time t_e and lasting Δt , which the agent
should recall when making a decision in the future
10. $\beta_{t_r} = \beta_{t_r}(\alpha_{t_e}^{\Delta t}) = a_t \mid (o_t, \alpha_{t_e}^{\Delta t})$ – the moment of decision making at time t_r according to
the event $\alpha_{t_e}^{\Delta t}$
11. $\xi = t_r - t_a - \Delta t + 1$ – an event’s correlation horizon832
833
B APPENDIX – ADDITIONAL NOTES ON THE MOTIVATION FOR THE ARTICLE834
835
B.1 WHY USE DEFINITIONS FROM NEUROSCIENCE?836
837
838
839
840
841
Definitions from neuroscience and cognitive science, such as short-term and long-term memory, as
well as declarative and procedural memory, are already well-established in the RL community, but
do not have common meanings and are interpreted in different ways. We strictly formalize these
definitions to avoid possible confusion that may arise when introducing new concepts and redefine
them with clear, quantitative meanings to specify the type of agent memory, since the performance of
many algorithms depends on their type of memory.842
843
844
845
846
847
In focusing exclusively on memory within RL, we do not attempt to exhaustively replicate the
full spectrum of human memory. Instead, our goal is to leverage the intuitive understanding of
neuroscience concepts already familiar to RL researchers. This approach avoids the unnecessary
introduction of new terminology into the already complex Memory RL domain. By refining and
aligning existing definitions, we create a robust framework that facilitates clear communication,
rigorous evaluation, and practical application in RL research.848
849
B.2 ON PRACTICAL APPLICATIONS OF OUR FRAMEWORK850
851
852
853
854
The primary goal of our framework is to address practical challenges in RL by providing a robust
classification of memory types based on temporal dependencies and the nature of memorized infor-
mation. This classification is essential for standardizing memory testing and ensuring that RL agents
are evaluated under conditions that accurately reflect their capabilities.855
856
857
858
859
In RL, memory is interpreted in various ways, such as transformers with large context windows,
recurrent networks, or models capable of skill transfer across tasks. However, these approaches
often vary fundamentally in design, making comparisons unreliable and leading to inconsistencies in
testing. Our framework resolves this by providing a clear structure to evaluate memory mechanisms
under uniform and practical conditions.860
861
862
863
The proposed definitions of declarative and procedural memory use two straightforward numerical
parameters: the number of environments (n_{envs}) and episodes (n_{eps}). These parameters allow
researchers to reliably determine the type of memory required for a task. This simplicity and
alignment with numerical parameters make the framework practical and widely applicable across
diverse RL problems.

864 Moreover, the division of declarative memory into long-term and short-term memory, as well as
 865 the need to use a balance between the agent’s context length K and the correlation horizons of the
 866 environment ξ when conducting the experiment, allows us to unambiguously determine which type
 867 of memory is present in the agent. This clarity ensures fair comparisons between agents with similar
 868 memory mechanisms and highlights specific limitations in an agent’s design. By aligning memory
 869 definitions with practical testing requirements, the framework provides actionable insights to guide
 870 the development of memory-enhanced RL agents.

872 C APPENDIX – MEMORY MECHANISMS

874 In RL, memory has several meanings, each of which is related to a specific class of different tasks. To
 875 solve these tasks, the authors use various memory mechanisms. The most prevalent approach to incor-
 876 porating memory into an agent is through the use of Recurrent Neural Networks (RNNs) (Rumelhart
 877 et al., 1986), which are capable of handling sequential dependencies by maintaining a hidden state
 878 that captures information about previous time steps (Wierstra et al., 2010; Hausknecht & Stone, 2015;
 879 Sorokin et al., 2015; Duan et al., 2016; Song et al., 2018; Zintgraf et al., 2020) (pure LTM, according
 880 to our taxonomy). Another popular way to implement memory is to use Transformers (Vaswani
 881 et al., 2017), which use self-attention mechanisms to capture dependencies inside the context win-
 882 dow (Parisotto et al., 2020; Lampinen et al., 2021; Esslinger et al., 2022; Melo, 2022; Team et al.,
 883 2023; Pramanik et al., 2023; Robine et al., 2023; Ni et al., 2023; Grigsby et al., 2024; Shala et al.,
 884 2024) (STM in case of classical transformers without additional memory mechanisms or LTM if we
 885 use recurrent memory, activation caching, etc.). State-space models (SSMs) (Gu et al., 2021; Smith
 886 et al., 2023; Gu & Dao, 2023) combine the strengths of RNNs and Transformers and can also serve to
 887 implement memory through preservation of system state (Hafner et al., 2019; Lu et al., 2023; Becker
 888 et al., 2024; Samsami et al., 2024) (LTM, according to our taxonomy). Temporal convolutions may
 889 be regarded as an effective memory mechanism, whereby information is stored implicitly through
 890 the application of learnable filters across the time axis (YuXuan Liu & Hsieh, 2016; Mishra et al.,
 891 2018) (STM, since memory is represented as a fixed-size temporal convolution, analogous to an
 892 attention window). A world model (Ha & Schmidhuber, 2018) which builds an internal environ-
 893 ment representation can also be considered as a form of memory. One method for organizing this
 894 internal representation is through the use of a graph, where nodes represent observations within the
 895 environment and edges represent actions (Morad et al., 2021; Zhu et al., 2023; Kang et al., 2024b).

896 A distinct natural realization of memory is the utilization of an external memory buffer, which enables
 897 the agent to retrieve pertinent information. This approach can be classified into two categories: read-
 898 only (writeless) (Oh et al., 2016; Lampinen et al., 2021; Goyal et al., 2022; Cherepanov et al., 2024)
 899 and read/write access (Graves et al., 2016; Zaremba & Sutskever, 2016; Parisotto & Salakhutdinov,
 2017a).

900 Memory can also be implemented without architectural mechanisms, relying instead on agent policy.
 901 For instance, in the work of Deverett et al. (2019), the agent learns to encode temporal intervals by
 902 generating specific action patterns. This approach allows the agent to implicitly represent timing
 903 information within its behavior, showcasing that memory can emerge as a result of policy adaptations
 904 rather than being explicitly embedded in the underlying neural architecture.

905 Using these memory mechanisms, both decision-making tasks based on information from the past
 906 within a single episode and tasks of fast adaptation to new tasks are solved. However, even in works
 907 using the same underlying base architectures to solve the same class of problems, the concepts of
 908 memory may differ.

910 D APPENDIX – POMDP

912 D.1 POMDP

914 The Partially Observable Markov Decision Process (POMDP) is a generalization of the Markov
 915 Decision Process (MDP) that models sequential decision-making problems where the agent has
 916 incomplete information about the environment’s state. POMDP can be represented as a tuple
 917 $\mathcal{M}_P = \langle \mathcal{S}, \mathcal{A}, \mathcal{O}, \mathcal{P}, \mathcal{R}, \mathcal{Z} \rangle$, where \mathcal{S} denotes the set of states, \mathcal{A} is the set of actions, \mathcal{O} is the set of
 918 observations and $\mathcal{Z} = \mathcal{P}(o_{t+1} | s_{t+1}, a_t)$ is an observation function such that $o_{t+1} \sim \mathcal{Z}(s_{t+1}, a_t)$.

918 An agent takes an action $a_t \in \mathcal{A}$ based on the observed history $h_{0:t-1} = \{(o_i, a_i, r_i)\}_{i=0}^{t-1}$ and
 919 receives a reward $r_t = \mathcal{R}(s_t, a_t)$. It is important to note that state s_t is not available to the agent at
 920 time t . In the case of POMDPs, a policy is a function $\pi(a_t | o_t, h_{0:t-1})$ that uses the agent history
 921 $h_{0:t-1}$ to obtain the probability of the action a_t . Thus, in order to operate effectively in a POMDPs,
 922 an agent must have memory mechanisms to retrieve a history $h_{0:t-1}$. Partial observability arises in a
 923 variety of real-world situations, including robotic navigation and manipulation tasks, autonomous
 924 vehicle tasks, and complex decision-making problems.

926 E APPENDIX – META REINFORCEMENT LEARNING

928 In this section, we explore the concept of Meta-Reinforcement Learning (Meta-RL), a specialized
 929 domain within POMDPs that focuses on equipping agents with the ability to learn from their past
 930 experiences across multiple tasks. This capability is particularly crucial in dynamic environments
 931 where agents must adapt quickly to new challenges. By recognizing and memorizing common patterns
 932 and structures from previous interactions, agents can enhance their efficiency and effectiveness when
 933 facing unseen tasks.

934 Meta-RL is characterized by the principle of “*learning to learn*”, where agents are trained not only to
 935 excel at specific tasks but also to generalize their knowledge and rapidly adjust to new tasks with
 936 minimal additional training. This adaptability is achieved through a structured approach that involves
 937 mapping data collected from various tasks to policies that guide the agent’s behavior.

938 Meta-RL algorithm is a function f_θ parameterized with *meta-parameters* that maps the data \mathcal{D} ,
 939 obtained during the process of training of RL agent in MDPs (tasks) $\mathcal{M}_i \sim p(\mathcal{M})$, to a policy
 940 $\pi_\phi : \phi = f_\theta(\mathcal{D})$. The process of learning the function f is typically referred to as the *outer-loop*,
 941 while the resulting function f is called the *inner-loop*. In this context, the parameters θ are associated
 942 with the outer-loop, while the parameters ϕ are associated with the inner-loop. Meta-training proceeds
 943 by sampling a task from the task distribution, running the inner-loop on it, and optimizing the inner-
 944 loop to improve the policies it produces. The interaction of the inner-loop with the task, during which
 945 the adaptation happens, is called a *lifetime* or a *trial*. In Meta-RL, it is common for \mathcal{S} and \mathcal{A} to
 946 be shared between all of the tasks and the tasks to only differ in the reward $\mathcal{R}(s, a)$ function, the
 947 dynamics $\mathcal{P}(s' | s, a)$, and initial state distributions $P_0(s_0)$ (Beck et al., 2024).

949 F APPENDIX – EXPERIMENT DETAILS

951 This section provides an extended description of the environments used in this work.

953 **Passive-T-Maze (Ni et al., 2023).** In this T-shaped maze environment, the agent’s goal is to move
 954 from the starting point to the junction and make the correct turn based on an initial signal. The
 955 agent can select from four possible actions: $a \in \text{left, up, right, down}$. The signal, denoted by the
 956 variable *clue*, is provided only at the beginning of the trajectory and indicates whether the agent
 957 should turn up (*clue* = 1) or down (*clue* = -1). The episode duration is constrained to $T = L + 1$,
 958 where L is the length of the corridor leading to the junction, which adds complexity to the task.
 959 To facilitate navigation, a binary variable called *flag* is included in the observation vector. This
 960 variable equals 1 one step before reaching the junction and 0 at all other times, indicating the agent’s
 961 proximity to the junction. Additionally, a noise channel introduces random integer values from the
 962 set $-1, 0, +1$ into the observation vector, further complicating the task. The observation vector is
 963 defined as $o = [y, \text{clue}, \text{flag}, \text{noise}]$, where y represents the vertical coordinate.

964 The agent receives a reward only at the end of the episode, which depends on whether it makes a
 965 correct turn at the junction. A correct turn yields a reward of 1, while an incorrect turn results in a
 966 reward of 0. This configuration differs from the conventional Passive T-Maze environment (Ni et al.,
 967 2023) by featuring distinct observations and reward structures, thereby presenting a more intricate set
 968 of conditions for the agent to navigate and learn within a defined time constraint. To transition from a
 969 sparse reward function to a dense reward function, the environment is parameterized using a penalty
 970 defined as $\text{penalty} = -\frac{1}{T-1}$, which imposes a penalty on the agent for each step taken within the
 971 environment. Thus, this environment has a 1D vector space of observations, a discrete action space,
 972 and sparse and dense configurations of the reward function.

972 **Minigrid-Memory (Chevalier-Boisvert et al., 2023).** Minigrid-Memory is a two-dimensional
 973 grid-based environment specifically crafted to evaluate an agent’s long-term memory and credit
 974 assignment capabilities. The layout consists of a T-shaped maze featuring a small room at the
 975 corridor’s outset, which contains an object. The agent is instantiated at a random position within the
 976 corridor. Its objective is to navigate to the chamber, observe and memorize the object, then proceed to
 977 the junction at the maze’s terminus and turn towards the direction where the object, identical to that
 978 in the initial chamber, is situated. A reward function defined as $r = 1 - 0.9 \times \frac{t}{T}$ is awarded upon
 979 successful completion, while failure results in a reward of zero. The episode concludes when the
 980 agent either makes a turn at a junction or exhausts a predefined time limit of 95 steps. To implement
 981 partial observability, observational constraints are imposed on the agent, limiting its view to a 3×3
 982 frame size. Thus, this environment has a 2D space of image observations, a discrete action space, and
 983 sparse reward function.
 984

985 F.1 EXPERIMENTAL PROTOCOL

986 For each experiment, we conducted three runs of the agents with different initializations and performed
 987 validation during training using 100 random seeds ranging from 0 to 99. The results are presented as
 988 the mean success rate (or reward) \pm the standard error of the mean (SEM).

990 Table 3: Online RL baselines hyperparameters used in the Minigrid-Memory and Passive T-Maze
 991 experiments.

993 Table 4: SAC-GPT-2

995 Hyperparameter	996 Value
997 Number of layers	998 2
998 Number of attention heads	999 2
999 Hidden dimension	1000 256
1000 Batch size	1001 64
1001 Optimizer	1002 Adam
1002 Learning rate	1003 3e-4
1003 Dropout	1004 0.1
1004 Replay buffer size	1005 1e6
1005 Discount (γ)	1006 0.99
1006 Entropy temperature	1007 0.1

993 Table 5: DQN-GPT-2

995 Hyperparameter	996 Value
997 Number of layers	998 2
998 Number of attention heads	999 2
999 Hidden dimension	1000 256
1000 Batch size	1001 64
1001 Optimizer	1002 Adam
1002 Learning rate	1003 3e-4
1003 Dropout	1004 0.1
1004 Replay buffer size	1005 1e6
1005 Discount (γ)	1006 0.99

1007 Table 6: DTQN

1008 Hyperparameter	1009 Value
1010 Number of layers	1011 4
1011 Number of attention heads	1012 8
1012 Hidden dimension	1013 128
1013 Batch size	1014 32
1014 Optimizer	1015 Adam
1015 Learning rate	1016 3e-4
1016 Dropout	1017 0.1
1017 Replay buffer size	1018 5e5
1018 Discount (γ)	1019 0.99

1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042

1043 Table 7: Offline RL baselines hyperparameters used for Decision Transformer and BC-LSTM in
 1044 T-Maze experiments.

1045

1046 Table 8: Decision Transformer (DT)

1047

Hyperparameter	Value
Number of layers	8
Number of attention heads	4
Hidden dimension (d_{model})	128
Feedforward dimension (d_{inner})	128
Head dimension (d_{head})	128
Context length (K)	$3T$
Dropout	0.0
DropAttention	0.0
Optimizer	AdamW
Learning rate	1e-4
Weight decay	0.1
Adam betas	(0.9, 0.999)
Batch size	64
Warmup steps	1000
Epochs	200

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Table 9: BC-LSTM

Hyperparameter	Value
Number of layers	1
Hidden dimension (d_{model})	64
Bidirectional	False
Effective Context length (K_{eff})	$3T$
Dropout	0.0
Optimizer	AdamW
Learning rate	3e-4
Weight decay	0.01
Adam betas	(0.9, 0.999)
Batch size	64
Warmup steps	100
Epochs	100