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Abstract
Scaling laws have shaped recent advances in ma-
chine learning by predicting model performance
based on model size, computation, and data. Con-
currently, the rise in computational cost for AI has
motivated model compression techniques, notably
quantization and sparsification, have become es-
sential for large-scale training and inference. This
paper investigates the interplay between scaling
laws and compression formats, exploring whether
a unified scaling framework can accurately predict
model performance when training occurs over var-
ious compressed representations, such as sparse,
scalar-quantized, or sparse-quantized. We vali-
date a general scaling law formulation and show
that it is applicable both individually but also com-
posably across compression types. Our main re-
sult is demonstrating that there exists a simple “ca-
pacity” metric—based on to fitting random Gaus-
sian data—which can robustly predict parameter
efficiency across multiple representations.

1. Introduction
The idea of predictable scaling of learning performance
with respect to model, computation and data sizes, encom-
passed by scaling laws [9], allows to predict the values of
these three parameters required to reach a certain model
performance. A parallel direction has been model compres-
sion, which proposes a series of techniques to reduce the
computational and memory footprint of model inference
and training, via techniques such as sparsification [7] and
quantization [5]. Here, we focus on the interplay between
scaling laws and the degree of compression of the represen-
tation over which learning occurs. While there is significant
emerging work in this direction, e.g. [3; 10; 16; 15], cur-
rent scaling laws are specialized to single representations
(e.g., quantization or sparsity) and/or formats (e.g., integer
quantization), and cannot yet address the question of pre-
dicting model scaling behavior when training over general
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compressed representations.

Contributions. This paper is structured two main questions:

Q1: Is there a unified compression scaling law? First,
we wish to find a single general law that not only applies
to sparse [3] or quantized [10] representations in isolation,
but that also provides a good fit for hybrid formats, such as
sparse-and-quantized weights, or compound compression,
i.e. sparse weights and activations. Through extensive
experimentation, we identify this law to be of the form

Loss(N,D) ∼ A · (N · ρ(R))−α +B ·D−β + E, (1)

where N is the number of model parameters, D is the dataset
size, E is the irreducible error, A, B, α and β are constants,
and ρ is a parametric function of the representation R.

Crucially, we find that, even for very complex
representations—e.g. 3-bit quantization with group size
32 and 1% outliers in full-precision—the parametric func-
tion ρ can still predict the scaling of model performance
w.r.t. the parameter count N . We call ρ(R) the representa-
tion capacity of R. Consequently, there is always a “dense
equivalent” parameter count N ′ = N · ρ(R) which would
yield the same loss during training.

Q2: Is capacity an “intrinsic” property of the represen-
tation? While related forms of the above law have been
proposed in prior work [4; 10], we are the first show that
capacity is an intrinsic property of the representation, in-
dependent of the model and task for which the scaling law
is obtained, but relatable to standard information-theoretic
measures. Moreover, we establish the applicability of the
law across hybrid (e.g. sparse-quantized weights) or com-
posite (e.g. quantized weights-and-activations) representa-
tions.

Our main finding is that capacity is tightly-correlated
with the representation’s ability to fit random Gaussian
data, measured in terms of minimal mean-squared error
(MSE). Concretely, ρ(R) is a simple parametric function of
the MSE of the representation R when fitting random Gaus-
sian data, i.e. ρ(R) = ρ̃(MSE (R)), where instances of the
same representation R, e.g. 3 and 4-bit integer quantiza-
tion, share the same parametric form ρ̃. This finding, which
we validate across quantized, sparse, quantized-sparse, and
even vector-quantized representations, provides a simple
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metric to “rank” different formats implementing the same
representation. In addition, this also allows us to determine
the “optimal” capacity at a certain bit-width, which is given
by theoretical bounds on Gaussian fitting for a given support,
which can be easily estimated via Monte Carlo algorithms.

Our second finding is that, except for pathological cases,
capacity factorizes across composite representations: con-
cretely, the capacity of a 4-bit and 2:4 sparse model is the
product between the capacity of the 4-bit dense model, and
that of a 2:4-sparse but unquantized model. Factorization al-
lows us to evaluate the capacity of complex representations
based on simple ones, and also holds when compressing
different model representations.

Practical Implications. The analytical metrics suggested
by representation capacity also have non-trivial practical
applications. First, the fact that we are able to relate the
predictive parameter ρ to intrinsic properties of the underly-
ing representation gives us the ability to analytically predict
the representational power of different compressed numer-
ical formats. This way, we can accurately compare and
predict the efficacy of various formats such as Floating-
Point, Integer (INT with and without grouping), or sparse-
quantized formats (2:4 + INT) at different compression
budgets. Second, this framework inspires an improved ap-
proach for sparse training, which we show provides signifi-
cant improvements (above 20% in some sparsity regimes)
in capacity at the same number of parameters.

Overall, our results provide a new lens to view the scaling
properties of compressed models, with respect to intrinsic
properties of the representation over which training is per-
formed. Thus, we believe that capacity-aware scaling has
the potential to become a practical design principle for the
next generation of efficient foundation models.

2. Preliminaries
Scaling Laws. We start from the “Chinchilla” scaling law
formulation [8] that proposed to model loss scaling as a
function of the number of parameters in the model N and
the number of data points D the model was trained on, in
the form the parametric function:

Loss(N,D) = AN−α +BD−β + E, (2)

where A, B, E, α, and β are the scaling law parameters that
can be fit empirically. It is important to note that such scal-
ing laws assume an ideal, well-tuned training setup, and that
the parameter may vary slightly depending on architecture,
optimizer, and hyper-parameters.

Compressed Representations. For sparsity, we assume
that a specific fraction, within each parameter group of a
certain size G, is set to zero. Sparsity is unstructured if
the group is the whole tensor, whereas it is semi-structured
(N:M) if N parameters out of every M are set to zero. For

quantization, unless otherwise stated, we assume that pa-
rameters are mapped onto a scalar, symmetric grid corre-
sponding to the number of bits available for quantization, as
is standard [5]. (We will also consider vector quantization
in Section 3.1.) For sparse-quantized representations, we
follow [6] by first applying sparsification, and then quanti-
zation, to map continuous parameters onto this format.

Scaling Law Validation. For our scaling law investiga-
tions, we pretrained decoder-only Transformers following
the Llama architecture [17] for 30M, 50M, 100M and 200M
non-embedding parameters. Models were trained on the C4
dataset [14], using the Llama-2 tokenizer [17]. To ensure we
operate in a data-rich regime, we use 100 training tokens per
model parameter, and train on fixed-length context windows
of 512 tokens. We used AdamW [11] with a 0.1 ratio of
warm-up epochs with cosine scheduler. This is similar to
the setups of Kumar et al. [10]; Frantar et al. [4].

We follow standard quantization-aware training (QAT) meth-
ods, combined with various levels of unstructured weight
sparsity. For quantization we employ the gradient estimator
of Panferov et al. [13], a per-layer uniform quantizer with
static scaling factors and gradient masking. Quantization
levels range from 1-bit to 8-bit precision. We consider con-
figurations with quantized weights only, activations only,
and both simultaneously. For sparsity, we apply unstruc-
tured magnitude pruning via top-k thresholding on a per-
layer basis. The sparsity mask is recomputed dynamically
at each optimization step. For Vector Quantization (VQ),
we follow QuEST scalar quantization and apply it to 2- and
4-dimensional HIGGS grids [12].

3. Findings
3.1. Gaussian RMSE Predicts Representation Capacity

Table 1 presents a number of scaling laws that model the
same functions via different parametrizations. One can no-
tice, that both the Sparsity form of Frantar et al. [3] and the
Quantization form of Kumar et al. [10] can be reduced to the
Decoupled form of Frantar et al. [4] in the third row, by im-
posing additional constraints (e.g. effP = 1− e−Pw/γw for
quantization). Naturally, the Decoupled form can achieve
lower fit error, but it does not provide any information about
the interpretation of the capacity term, which we call ρ(R),
across different representations R. The Sparsity form and
the Quantization form, on the other hand, feature intertwin-
ing and interpretable parameters. For simplicity, we first
focus on the Quantization form for now.

The Functional Form. Kumar et al. [10] choose the func-
tional form ρ(Pw) = 1 − e−Pw/γw to model quantization
efficiency. By contrast, we propose a different form to
model ρ(R):

ρ̃(GMSE (R)) = L · tanh(F · log1/4(GMSE (R)))C , (3)
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Table 1. Representation scaling laws (rows) versus the quantities of interest (columns). For all laws, N represents the number of
parameters, D is the data, and E is the irreducible error. For the sparsity scaling law of Frantar et al. [2], S is the sparsity and the
lowercase parameters are learnable constants. For the precision scaling law of Kumar et al. [10], Pw is the weight precision, and γP is a
learnable weight sensitivity parameter. For the law of Frantar et al. [4], effC is the “effective parameter multiplier,” that is explicitly fitted
for every instance of compression C. By contrast, our formulation postulates that the parameter efficiency is a simple parametric function
of the representation’s capacity to fit random Gaussian data (GMSE(R)).

Parametrization Formulation for Loss(N,D)
Sparsity fit Quantization fit

(Error) (Error)

Sparsity S aS(1− S)bS + cS
NbN

+
(aD

D

)bD
+ E 5.7 · 10−4 N/A

Frantar et al. [3]
Quantization to Pw

A
[
N(1− e−Pw/γw )

]−α
+BD−β + E N/A 4.5 · 10−3

Kumar et al. [10]
Compression C A

(N · effC)α
+

B

Dβ
+ E 4.2 · 10−4 1.9 · 10−3

Frantar et al. [4]
Representation R A

(N · ρ̃(GMSE(R)))α
+

B

Dβ
+ E 4.7 · 10−4 2.1 · 10−3
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Figure 1. Comparison of ρ fits for scaling law forms from Table 1: (a, left) shows quantizations scaling laws, (b, middle) and (c, right)
demonstrate the match between noise injection and QuEST quantization for weight-only and weights+activations quantization.

which depends only on the representation R’s Gaussian-
MSE fit, denoted by GMSE (R), and on the scalars L, F ,
and C, detailed below. The GMSE (R) is easily computable
for any representation, and allows us to bypass the depen-
dency on representation-specific parametrization, such as
bit-width or sparsity. Specifically, we fit the scalar parame-
ters for each compression type, e.g. scalar quantization, and
then re-use these parameters while varying GMSE (R) w.r.t.
compression parameters, e.g. bit-width. The scalar param-
eters L, F , and C allow us to accurately model observed
effects such as:

• Imperfect convergence in high-precision: While mod-
ern QAT algorithms such as QuEST reach efficiency
ρ = 1 for low quantization error, older algorithms such
as LSQ (Figure 1 (a)), have an efficiency limit strictly
below 1, since for instance its gradient estimator in-
troduces consistent bias. The factor L, defaulting to 1
for saturating representations, allows us to model this
imperfection.

• Various low-precision curvature: As seen in Figures 1
(b) and (c), different representations behave differently
around GMSE = 1, with some have noticeably higher
curvature (“breakdown”). From Figure 1 (a), one can
see how that region disproportionally affects the law of

Kumar et al. [10], leading to a very poor fit at higher
bitwidths. The factor C, closer to 1 for representations
“more linear” around GMSE = 1, allows us to more
accurately model ρ(R).

Quality of Fit. Table 1 shows that our approach leads sim-
ilar or better quality-of-fit relative to prior laws, covering
both scalar quantization and sparsity, while Figure 1 shows
ρ(R) alignment between scaling law forms, compared to Ku-
mar et al. [10], for the QuEST and LSQ quantizers. Again,
our approach provides significantly better fit. In Figure 4(a),
we show that our method can also provide a good fit for
models trained with vector-quantized (VQ) weights, using
the projection method of [12], for lattice dimensions 2 and
4. This shows both the versatility of our approach, and the
necessity of the L term, since higher-dimensional VQ ap-
pears to have clear sub-unit saturation due to higher bias.
We provide further examples in Section 3.4.

This result allows for low-cost comparison across compres-
sion comparison. Moreover, it facilitates compression hy-
perparameter tuning and thus predictable model training in
a compressed regime.
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Figure 3. Representation capacity ρ(R) versus MSE for (a) group-
wise quantization, with markers indicate group counts (color en-
codes quantization bitwidth), and (b) outlier-aware quantization.

3.2. Comparing Compressed Numerical Formats

Practical Formats. The scaling law enables systematic
comparison of numerical formats such as INT8, INT4, FP4,
or custom low-precision representations, based just on their
GMSE , which can be determined via fast Monte Carlo
algorithms. Figure 2 illustrates this for a number of floating-
point and integer data-types. Specifically, we observe a di-
rect correlation between the ranking of GMSE values (top)
and the C4 validation loss obtained in actual experiments
(bottom). This suggests that our GMSE metric is an accu-
rate predictor of compressed pre-training performance. For
instance, it suggests that switching to FP4 (E2M1) will not
bring gains relative to INT4 training, and that both formats
are close to the theoretical lower bound at 4 bits.

3.3. Noise Injection is a Scaling Law Predictor

Next, we ask: what if we plug the optimal achievable
GMSE for a certain bit-width into the scaling law? Then,
the scaling law should allow us to compute a lower bound
on the achievable parameter efficiency. In turn, we can find
out how close existing training techniques or numerical for-
mats, are to the information-theoretic lower bound for that
specific representation.

Figure 1 (b) illustrates the “optimality gap” for the QuEST
algorithm for scalar weight-only quantization across bit-
widths, suggesting that this approach is fairly close to opti-
mal. In Figure 1 (c), we compare the fit between actual runs
of this QAT algorithm across bit-widths, and the predicted
values via noise injection [1] (plugging in the equivalent
GMSE ) into the scaling law, showing a near-perfect fit.

3.4. Representation Capacity Is Multiplicative Across
Compression Types

In prior work, Kumar et al. [10] have claimed that, for
their formulation of the law, the representation capacity
factorizes independently for quantization of weights and
activations. Our experimental findings extend this result,
showing that representation capacity, ρ(R), also factorizes
naturally across a wide range of compression approaches,
whether for the same tensor (sparse-and-quantized weights)
or for different state tensors (sparse weights and sparse
activations). We fit a scaling law in the 100 toks/param
regime, and show that representation capacity factorizes for:

1. Sparse weights and activations: For sparsity, indepen-
dently applied to weight and activations,

ρ(Rsw,sa) = ρ(Rsw) · ρ(Rsa). (4)

We summarize the fitted values of ρ(R) levels in a ma-
trix M (Figure 4(b)), where each entry corresponds to
the fitted efficiency for a model trained with a specific
sparsity configuration. Remarkably, the matrix can be
accurately approximated by a rank-1 outer product of the
first column M0,: (weight-only) and the top row M :, 0
(activations-only) elements, i.e. M ≈ M0,: ⊗M0,:. The
resulting parameter efficiencies closely match the prod-
uct of efficiencies obtained for runs with weight-only
and activations-only configurations.

2. Sparse and quantized weights: Given a weight spar-
sity level s combined with q-bit quantization, we claim
that the representation capacity can be represented as
the product: ρ(Rq,s) = ρ(Rq) · ρ(Rs). We report the
results for different sparsity levels and bit width in Fig-
ure 8. Similarly, the matrix ρ(R) factorizes into the
outer product of marginal vectors for quantization-only
and sparsity-only representation.

3. Sparse and quantized weights, and quantized acti-
vations: Finally, we observe that factorization extends
to quantization of activations as well. In supplemen-
tary experiments, we apply quantization to activation
tensors alongside with weight sparsity and quantiza-
tion. Our results indicate that the representation capac-
ity with weight sparsity sw and quantization bitwidth
qw, and activation sparsity qa follows ρ(Rqw,sw,qa) =
ρ(Rqw) · ρ(Rsw) · ρ(Rqa).

The Impact of Parameter Grouping and Outlier Preser-
vation. A related question regarding formats is whether
more complex approaches, such as group-wise quantization,
or outlier preservation in higher precision, can disrupt the
scaling law. We examine this in Figure 3, which it shows
that preserving no outliers (0 %) lies on the Pareto-optimal
boundary: higher outlier ratios achieve a worse trade-off be-
tween the MSE and the representation capacity ρ(R). This
suggests that, for pre-training it is more effective to allocate
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Figure 4. (a) Scaling law for 2- and 4-dimensional vector quanti-
zation. (b) Representation capacity across weight and activation
sparsity levels: baseline, factorized prediction, and relative errors.
Note the low errors for the factorized predictions, with slight in-
creases at the larger sparsity levels.

bits to encoding the values distribution rather than outlier
preservation or careful grouping. This further demonstrates
that the proposed RMSE dependency is a general property
and remains valid even under diverse structured compres-
sion techniques.

Compositionality. An immediate practical application of
the multiplicative behavior of the law (Section 3.4) is the
ability to estimate the model’s performance in advance for
arbitrary compression configuration. Given the individual
efficiencies of different compression methods, such as quan-
tization or sparsity, applied to weights or activations, one
can predict the combined effect without spending additional
compute for training.

4. Discussion and Limitations
Our study introduces representation capacity—roughly de-
fined as a simple monotone transform of the Gaussian MSE—
as a unified metric when training compressed models across
various representations. Capacity enables format compar-
isons without retraining or exhaustive grid searches, so that
future hardware designers can expose any format whose
capacity ρ dominates the Pareto frontier, confident that soft-
ware will exploit it optimally. Moreover, our law factorizes,
further simplifying the search for the “optimal” training
format.

A few caveats remain. First, in line with prior work in this
area, our experiments are limited to decoder-only Llama-
style architectures trained on C4 in the data-rich regime (100
toks/param); we plan to extend this at larger scale. Second,

the law may need specific fits for ultra-low precision (e.g.
2-bit or ternary formats) and for vector-quantization code-
books below 8 entries, suggesting second-order effects may
need to be taken into account. Third, while our theoretical
evidence uses standard assumptions, it could be extended to
more complex representation types.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Appendix Roadmap
This appendix provides supporting material organized as follows:

• Experimental Setup (Appendix B): Model architectures, hyperparameters, and training configurations.

• Factorization of Representation Capacity (Appendix C): Detailed analysis showing how representation capacity
matrices can be factorized for various compression techniques including quantization, sparsity, and their combinations.

• Ablation Studies on Law Formulation (Appendix D): Investigation of different noise distributions (Gaussian, Logistic,
Student’s t, Laplace) and functional forms (tanh, logistic) for the scaling law formulation.

• Scaling Laws for Vector Quantization (Appendix E): Implementation details and algorithms for vector quantization
approaches, including forward and backward pass descriptions for HIGGS-based training.

• Breaking the Scaling Law (Appendix F): Demonstration of how training-time overparameterization with learnable
block diagonal matrices can exceed FP16 performance (ρ > 1).

B. Experimental setup
Hyperparameters. Table 2 summarizes the architectural and training hyperparameters for each model size.

Model size # Layers # Heads # Embeddings Learning rate

30 M 6 5 640 1.2 · 10−3

50 M 7 6 768 1.2 · 10−3

100 M 8 8 1024 6 · 10−4

200 M 10 10 1280 3 · 10−4

Table 2. Key training hyperparameters for each model size.

We use 8x80GB H100 machines for efficient training, and training one model takes on average 1 hour. To produce the full
set of results we ran in total approximately 250 such training runs for various compression configurations.

C. Factorization of Representation Capacity
Figures 5-8 show factorization of the representation capacity matrix for various in-training compression techniques:

1. Quantized weights and activations (Fig. 5).

2. Sparsity + QuEST quantizer (Fig. 6).

3. Joint sparse & quantized weights + activations (Fig. 7), for all combinations (sa, qa, qb) for sparsity sa ∈
[0.25, 0.5, 0.75] and bit widths qa, qb ∈ [2, 4, 6].

4. Sparsity + uniform quantizer with maximum absolute value as a scale (Fig. 8).

From the factorized representation-capacity matrices we observe the following:

1. The element-wise error of the fitted coefficients ρ (from our scaling law) is of order 10−3–10−2.

2. A rank-1 row-column outer product accurately approximates the matrix, confirming the multiplicative property of
representation capacity ρ in various scenarios.

3. Approximation error remains of the order 10−2, except for the cases of extreme 2-bit quantization, where ρ ≲ 0.1. We
explain this gap due to the poorer performance of the optimizer in these extreme compression regimes, which is not
taken into account currently by our model (as it uses the same coefficients for both 16 and 2 bits).
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Figure 5. Representation capacity coefficients for independent quantization of weights and activations. Element-wise ρ fitting error is not
greater than 5 · 10−3.
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Figure 6. Representation capacity coefficients with fit errors in case of sparsity combined with the QuEST quantization.
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Figure 7. Representation capacity fit errors for sparse+quantized weights and quantized activations. Error bars denote ±1 standard
deviation from the mean.

D. Ablation studies on Law Formulation
D.1. Evaluating RMSE across Different Distributions

We investigate how the choice of noise distribution used in our law formulation from Sec. 3.1 affects the predicted
representation capacity. In Figure 9a we plot the mapping ρ(MSE) for different bit widths using Logistic, Student’s t, and
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Figure 8. Representation capacity coefficients matrix for sparsity applied with uniform quantization. Element-wise ρ fitting error is not
greater than 2 · 10−3.
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Laplace noise distributions. Each distribution is rescaled to have zero mean and unit variance.

We observe that, no matter which noise distribution we choose, the mapping ρ(MSE) always remains strictly monotonically
decreasing. In principle, one could use heavy-tailed distributions (for example, Student-t or Laplace) to give more weight to
extreme outlier errors. However, this leads to a smaller range of MSE values. By contrast, assuming Gaussian noise—which
we propose—produces the widest spread of MSE, which in turn allows for a better fit for the scaling law. In short, although
monotonicity is preserved under various distributions, the Gaussian MSE delivers the best overall representation capacity
prediction, so we adopt it as our default formulation.

Throughout this work, unless specified otherwise, MSE is computed over standard Gaussian input.

D.2. Functional form of the Law

The behavior of ρ(GMSE ) observed in our experiments can be captured by fitting multiple smooth, monotonically decreasing
functions, with no more than 2 additional parameters. In principle, a wide range of such functions can be used to model this
relationship, depending on the desired fit properties.

For lower overall fitting error, we found it beneficial to constrain the function to satisfy boundary conditions f(0) = 1
and f(∞) = 0. For instance, the logistic form 1

1+exp(a·log(MSE+b) =
1

1+B·MSEA provides a good empirical fit, as shown in
Figure 9b for weight quantization across 1-8 bit widths.

In cases where it is important to constrain MSE below 1, one may instead prefer the condition f(1) = 0. Although this
typically results in a worse overall fit, it enforces the correct behavior in the high-error region MSE ≲ 1, which is critical
for stable predictions in the extreme compression cases. The corresponding fits, including those constrained at f(1) = 0, are

9



Unified Scaling Laws for Compressed Representations

summarized in Table 3 and visualized in Figure 9b.

Functional form Fitting error (MSE)

Tanh tanh(F · log1/4 MSE)C 1 · 10−3

Logistic (1 +B · MSEA)−1 1 · 10−4

Logistic (1, 0)
1− MSEA

1 +B · MSEA
1 · 10−3

Table 3. Functional form choices and associated fitting error.
The choice of functional form reflects the trade-off between global fit quality and targeted accuracy for larger MSE values.
Throughout this work, we adopt the constraint f(1) = 0 and functional form of hyperbolic tangent. As for the exact
functional form, under the stated constraints, we find that the the specific choice between tanh and logistic sigmoid has little
effect on overall fit quality.

E. Scaling Laws for Vector Quantization
In this section, we provide detailed information about the Vector Quantization approach used to produce the results in
Figure 4(a). Algorithms 1 and 2 describe the forward and backward passes over a linear layer actively quantized with
HIGGS for row-major weights. As was described earlier, our method is combines ideas from Panferov et al. [13] for the
gradient estimator, and Malinovskii et al. [12] for the lattice representation. We use the trust estimation method that zeros
out gradients for any point lying outside a hypersphere of radius R: ∥x∥22 > R2. Our experiments were conducted on 30M
and 50M models using the same set of hyperparameters as in Sec. 2.

Algorithm 1 VQ Training Forward

1: Input: Input activations x, row-major weight w
2: wh = HT(w)
3: ŵh = projgrid wh

4: y = xŵT
h

5: Return: y, x, ŵh, Mgrid(wh; ŵh)

Algorithm 2 VQ Training Backward

1: Input: ∂L
∂y , x, ŵh, Mgrid(wh; ŵh)

2: ∂L
∂x = ∂L

∂y ŵh

3: ∂L
∂ŵh

= xT ∂L
∂y

4: ∂L
∂w = IHT

(
Mgrid(wh; ŵh)⊙ ∂L

∂ŵh

)
5: Return: ∂L

∂x , ∂L
∂w

F. “Breaking” the Scaling Law by Training-Time Overparametrization
One observation stemming from our law is that it is possible to overparameterize the model during training while keeping
the number of inference-time parameters the same. This can be achieved by multiplying the weight matrix W by a learnable
block diagonal matrix R, which is then “folded” into the model at inference time. The forward pass takes the form of
X(RW )T during training and XWT at inference. While R is omitted during evaluation, maintaining the original model
size, additional parameters add flexibility during training and improve the representation quality.

For each weight matrix, we initialize our rotation matrix with a block-diagonal Hadamard, with the block sizes equal to 128,
and learn it alongside W using our loss function. We train the 30M and 50M models using the same experimental setup as in
Sec. 2 with rotation matrices, calculate the effective representation capacity, and compare it to baseline.

We observed that it results in a representation capacity ρ = (1.07 ± 0.04), indicating that model trained with such
overparameterization outperforms the bf16 baseline (ρ = 1), even though their inference costs are identical.
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