
Diffusion Domain Expansion: Learning to Coordinate
Pre-Trained Diffusion Models

Egor Lifar * 1 Semyon Savkin * 1 Timur Garipov 1 Shangyuan Tong 1 Tommi Jaakkola 1

Abstract
In this paper, we propose Diffusion Domain Ex-
pansion (DDE), a method that efficiently extends
pre-trained diffusion models to generate larger
objects and handle more complex conditioning
beyond their original capabilities. Our method
employs a compact trainable network designed
to coordinate the denoised outputs of pre-trained
diffusion models. We demonstrate that the co-
ordinator can be universally simple while being
capable of generalizing to domains larger than
those observed during its training time. We eval-
uate DDE on long audio track generation and
conditional image generation, demonstrating its
applicability across domains. DDE outperforms
other approaches to coordinated generation with
diffusion models in qualitative and quantitative
evaluations.

1. Introduction
Diffusion models have delivered state-of-the-art results in
generating images (Betker et al., 2023), music (Evans et al.,
2024), robot control trajectories (Chi et al., 2023), and
molecular structures (Abramson et al., 2024). As training
at scale incurs significant costs, research on the control and
re-use of pre-trained models has gained substantial attention.
Post-training tasks include conditional generation (Sohl-
Dickstein et al., 2015; Zhang et al., 2023a), in-painting
(Choi et al., 2021), editing (Meng et al., 2022), and compo-
sition of models (Du et al., 2023; Garipov et al., 2023)1.

A recent line of work (Bar-Tal et al., 2023; Lee et al., 2023;
Zhang et al., 2023b; Wu et al., 2024) focuses on expand-
ing the generative domain of diffusion models to generate
data samples with multiple parts (e.g., panoramic images)
by coordinating pre-trained diffusion processes. These ap-

*Equal contribution 1MIT CSAIL, Cambridge, USA. Corre-
spondence to: Egor Lifar <egor.lifar@gmail.com>.

Accepted by the Structured Probabilistic Inference & Generative
Modeling workshop of ICML 2024, Vienna, Austria. Copyright
2024 by the author(s).

1See Appendix A for a detailed review of related work.

proaches prescribe fixed algorithmic coordination mecha-
nisms, which do not require any additional training and
can be applied off-the-shelf. They are, however, limited to
specific tasks they are designed for. Huang et al. (2023) pro-
posed to train a dynamic diffuser module to fuse unimodal
diffusion models for multimodal conditioning. This method
expands the generative domain by increasing the number of
conditioning inputs but requires the modalities to be fixed
at training time.

In this paper, we propose Diffusion Domain Expansion
(DDE), a method for efficiently training small coordinators
that extend the generative domain of pre-trained models
along two axes: the size of the generated object (e.g., larger
images) and the size of the conditioning object (e.g., mul-
tiple labels). We demonstrate the ability of coordinators to
generalize to domains larger than those seen during train-
ing. We evaluate DDE on music and conditional image
generation tasks, including CLEVR scene generation and
satellite image generation. We show that our ViT-based
coordinator delivers high-quality results by learning long-
range dependencies while enforcing local consistency via
MultiDiffusion-like updates.

2. Background
Given a training data distribution pdata(x) over Rd, a diffu-
sion process p(x; t) is a time-indexed collection of distribu-
tions such that p(x; t) =

∫
N (x;x0, σ

2(t))pdata(x0) dx0 is
constructed by adding Gaussian noise with standard devia-
tion σ(t) to the “clean” samples from the data distribution
(x(t) = x0 + ε; ε ∼ N (0, σ2(t))). In the following, we set
σ(t) = t and consider t ∈ [tmin, tmax]. We refer the reader
to (Karras et al., 2022) for the discussion of other possible
specifications of diffusion processes.

A diffusion model learns a denoising function D : Rd ×
[tmin, tmax] → Rd which estimates the “clean” object given
its noisy observation at time t. This function is trained by
minimizing the denoising error

E
t∼p(t)

E
x∼pdata(x)

E
ε∼N (0,t2)

[
λ(t)

∥∥D(x+ ε, t)− x
∥∥2
2

]
, (1)

where p(t) is a distribution over [tmin, tmax] and λ(t) > 0.

1

Diffusion Domain Expansion: Learning to Coordinate Pre-trained Diffusion Models

The denoising function that minimizes (1) is connected to
the score ∇x log p(x, t) of the diffusion process:

∇x log p(x, t) =
(
D(x, t)− x

)
/ t2. (2)

It can be shown (Anderson, 1982; Song et al., 2021; Karras
et al., 2022) that, given access to the score ∇x log p(x, t),
the distributions p(x, t) can be recovered via the probability
flow induced by the backward ODE

dx = −t∇x log p(x, t) dt, (3)

which is initialized with x(tmax) ∼ p(x, tmax) and runs back-
wards in time from t = tmax to t = tmin.

If tmax is large enough p(x, tmax) can be accurately approx-
imated by a Gaussian prior pprior(x) = N (0, t2max). After
D(·, ·) is trained with the objective (1), the samples can
be generated by sampling x(tmax) ∼ pprior and numerically
integrating the backward ODE (3) with the score (2).

3. Method
3.1. General formulation

Consider a pre-trained conditional diffusion model p(x|y)
with the denoising network D(x, y, t). We are interested
in expanding the generative domain, i.e., solving the con-
ditional generation p(X[L]|Y[L]), where X[L] and Y[L] are
the expanded generated object (e.g., a larger image) and
the expanded conditioning input (e.g., a larger conditioning
image). Naturally, we want to re-use the pre-trained model
p(x|y) and realize the generation in the expanded domain
by employing the knowledge captured by D(x, y, t). We
utilize the assumption that the expanded output-input pair
(X[L], Y[L]) can be decomposed into a collection of smaller
parts ([x1, . . . , xL], [y1, . . . , yL]) = F (X[L], Y[L]), where
all xi ∈ X and yi ∈ Y are in the respective base domains
and L denotes the number of smaller parts. The mapping
F (·, ·) defines the decomposition process. For instance, in
image generation X[L] corresponds to a larger image from
which we can extract a set of L smaller same-sized patches
[x1, . . . , xL] that cover the large image completely. In our
framework, the patches are allowed to have overlaps.

Each of the smaller objects xi can be generated using
p(xi|yi). However, to generate a coherent large object X[L],
the generative processes need to be coordinated. The idea of
our approach is to train a coordinator network C[·] that learns
to coordinate diffusion processes by operating on the out-
puts of the pre-trained denoising networks [D(xi, yi, t)]

L
i=1.

We use a parameter-efficient architecture for the coordi-
nator network C[·] and we train it on a dataset of larger
objects DN

Ltrain
= {(X(i)

[Ltrain]
, Y

(i)
[Ltrain]

)}Ni=1 of size Ltrain. Cru-
cially, we demonstrate that after being trained on examples
of size Ltrain, the coordinated diffusion p(X[·]|Y[·]) induced

by C[·] can generalize and generate objects of larger sizes
Ltest ≥ Ltrain. We describe the general formulation and
the training objective of DDE below, and we describe the
coordinator architecture in Section 3.2.

The DDE generative process is the reverse of the noising
process X[L](t) ∼ N (X[L](0), t

2) over expanded data X[L].
For this expanded process, we build a composite denoiser
D[·] which utilizes the decomposition function F , the pre-
trained base domain denoiser network D, and a trainable
small-scale coordinator network C[·]. Specifically, for an
extended domain output-input pair (X[L], Y[L]) of size L,
we define the composite denoiser D[L] as

D[L](X[L](t), Y[L], t) =

C[L]

(
[D(xi(t), yi, t)]

L
i=1, [yi]

L
i=1, t

)
, (4)

where ([xi(t)]
L
i=1, [yi]

L
i=1) = F (X[L](t), Y[L]). The coor-

dinator network C[·] takes two sequences as inputs: 1) the
outputs [D(xi(t), yi, t)]

L
i=1 of the pre-trained denoiser D

evaluated on the smaller objects; 2) the conditioning infor-
mation [yi]

L
i=1, and produces an estimate of X[L](0).

We train the coordinator by minimizing the denoising er-
ror (1) of the composite denoiser (4) on a training dataset
DN

[Ltrain]
of objects of size Ltrain.

L[Ltrain] = E
t∼p(t)

E
(X[Ltrain],Y[Ltrain])∼DN

[Ltrain]

E
ε∼N (0;t2)

[
λ(t)

∥∥D[Ltrain](X[Ltrain] + ε, Y[Ltrain], t)−X[Ltrain]

∥∥2
2

]
. (5)

After the coordinator C[·] has been trained, we use it to
generate objects of sizes Ltest ≥ Ltrain to evaluate the gener-
alization to the generation of larger objects.

3.2. Coordinator Architecture

For each of our experimental domains, we show that a visual
transformer is a suitable choice for the architecture of the
coordinator C, allowing for better generalization, faster
training, and a lower number of parameters compared to the
base model. We choose to use the architecture from (Peebles
& Xie, 2023), adapting it to the particular domains. For
positional encodings of tokens for larger object generation,
we used Rotary Position Embedding (Su et al., 2023).

To generate larger objects, we cover them with overlapping
patches of a size equal to the generation capability of the
base model and pass down the predicted denoised versions
of the patches during training into the ViT. Our transformer
architecture encodes the positional encoding of the resulting
tokens relative to the larger object, and during the forward
process, we reconcile the predicted overlapped patches with
their mean value for each position, inspired by the sampling

2

Diffusion Domain Expansion: Learning to Coordinate Pre-trained Diffusion Models

method from MultiDiffusion (Bar-Tal et al., 2023). The
architecture of the coordinator can be seen in Figure 1.

Table 1: FAD values for long music track generation on
Slakh2100 task for different architectures. The base model
was trained for 80 epochs and has 405M parameters.

Method Size FAD for 4l FAD for 10l

Concat - 4.623 4.596
MultiDiffusion - 4.732 4.796
RNN 16M 4.223 4.081
RNN with overlaps 50M 4.447 4.424
DDE (ours) 66M 2.112 2.142

Table 2: Accuracy on the 256 generated samples for various
methods and numbers of conditionings on CLEVER condi-
tional image generation.

Model Sampler Coordination
1 2 3 4 5

RRR Euler 98.0 93.8 72.3 48.0 23.0
Heun 98.0 94.5 83.2 63.3 33.6

MultiDiffusion Euler 96.9 94.1 76.2 43.0 25.0
Heun 97.7 93.4 80.5 58.6 36.3

DDE (ours) Heun 96.5 94.1 86.3 66.8 44.5

Table 3: Evaluation results for satellite image generation.

Method FID, N = 96 FID, N = 128

MultiDiffusion 37.815 35.016
DDE (ours) 31.753 27.373

4. Experiments
We set up the experiments to highlight the ability of a coor-
dinator model trained on the denoised outputs to perform
diverse tasks. In music generation, we pretrain models that
can generate short tracks and then generate larger tracks
by coordinating these models. In the CLEVR dataset, we
perform conditioned sampling with multiple conditionings
by coordinating several models that are capable of handling
only one conditioning. Finally, in the satellite image gen-
eration domain, we combine both the idea of generating a
larger object and applying conditionings.

4.1. Music Generation

First, we pre-trained a base model with UNet architecture
on Slakh2100 (Manilow et al., 2019) capable of generating
music tracks of length l, which translates into 12 seconds
of music. In this experiment, we chose Ltrain = 5 and
Ltest = 13. We evaluate the method by computing FAD
(Kilgour et al., 2019) between the generated long tracks and
the sampled tracks of the same length from the dataset.

Our baselines are concatenation and MultiDiffusion (Bar-
Tal et al., 2023). The concatenation method applies a pre-
trained model on parts of the large track independently and
concatenates the results during inference. The MultiDiffu-
sion method decomposes a large track into a sequence of
overlapping patches. In each step of the diffusion process,
the pre-trained model is run on each of the patches, and the
score at each position is the mean of all scores from the
patches that contain this position.

We report the FAD metric based on 128 generated samples
for various architectures, and 48 and 120 seconds of music
generation (Table 1). We describe all the architectures we
trained in detail in Appendix B.2. To train and test RNN
with overlaps and DDE, for lengths of 4l and 10l, we select 5
and 13 patches of length l accordingly, so that the overlap of
two adjacent patches has a length of l

4 . We note that, despite
not having access to tracks of length 10l during training,
the coordinator architectures were able to generalize and
generate coherent long tracks while performing better than
both concatenation and MultiDiffusion. One property we
observe is that the coordinator models are much smaller
than the base model, and their training converges faster.
ViT, which we used in DDE, performs significantly better in
terms of the metric on the tracks of both lengths, compared
to other methods.

4.2. CLEVR Image Generation

To test the ability of DDE to expand the number of condition-
ing inputs, we conducted experiments with the conditional
generation problem used in (Du et al., 2023) on the CLEVR
dataset (Johnson et al., 2016). In this problem, the pre-
trained model is a UNet-based conditional diffusion model
p(x|c), where x is a 64 × 64 image and c is conditioning
information consisting of a pair of Euclidean coordinates
(cx, cy). The condition corresponds to the constraint of the
image having an object centered at position (cx, cy), in addi-
tion to possibly having other objects located elsewhere. The
goal of the problem is to generate images x ∼ p(x|[ci]Li=1)
conditioned on objects being present at positions [ci]Li=1. In
the notation of Section 3.1, the expanded generative domain
in this problem is Y[L] = [c1, . . . , cL], X[L] = [x, . . . , x]:
generating one image x conditioned on multiple positions
[ci]

L
i=1. We evaluate the generated samples x using a clas-

sifier CLS(x, c), which, given an image x and a position c,
outputs a probability of an object being present in the image
at position c. Following Du et al. (2023), we trained base
diffusion models that realize conditional, unconditional, and
classifier-free guided sampling (Ho & Salimans, 2021) with
a shared parameterization. We trained a ViT-based coordi-
nator C[·]. We provide the details about base model training
in Appendix B.2.2, and about the coordinator architecture
and training in Appendix B.2.4.

3

Diffusion Domain Expansion: Learning to Coordinate Pre-trained Diffusion Models

x1

x2

xn

...

pretrained

s1

s2

sn

...

patchify +
pos embed

ViT

s′1

s′2

s′n

...

overlap
averaging

Figure 1: Overview of the architecture. A large image is decomposed into a set of overlapping patches; each patch is
processed by a separate pre-trained denoising network. The denoised outputs of pre-trained models are patchified and
augmented with global positional encoding. The coordinator processes all patches and produces a new coordinated set of
output patches. The final expanded denoised output is constructed from coordinator outputs by averaging the values in the
overlaps.

During training, the coordinator observed conditioning ob-
jects of size up to Ltrain = 2. For evaluation, we tested
conditional generation with conditioning objects of sizes up
to Ltest = 5, and calculated the overall accuracy for each
number of conditionings; see Appendix B.2.6 for details.

We considered two baseline methods. For the first baseline,
we considered the approach developed in (Du et al., 2023)
(denoted “RRR”), which combines conditioned and uncon-
ditioned scores of the pre-trained model on several condi-
tionings. We provide the concrete formula in Appendix
B.2.6. As another baseline, we evaluated how the method
from MultiDiffusion works by simply averaging the outputs
of the pre-trained model over all conditionings. Figure 2
shows samples from the RRR model and our Coordinator
model.

Table 2 shows the conditional generation accuracy of our
method and the baselines with various sampling methods.
Our coordinator outperforms the baselines significantly, es-
pecially when conditioned on 4 or 5 labels. The results
demonstrate that the transformer architecture can general-
ize more conditioning inputs than observed during training.
Our architecture also uses slightly fewer parameters than
the base model (38M versus 42M) and uses significantly
fewer epochs of training (20 versus 1050).

4.3. Map Image Generation

Our final experimental domain is conditional image gen-
eration. We chose the task of generating satellite images
conditioned on schematic maps. We collected a new dataset
for this task using the Google Maps API.

We pretrain a model that can sample patches of size B ×B
where B = 64. Our decomposition function selects B ×B-
size patches from a larger image with a stride s = 32. We
train the coordinator on size N ×N , where N = 96, and
perform evaluation for out-of-distribution sampling with
N = 128. We use FID between the generated conditional
samples and the set of all ground truth satellite images as
the evaluation metric. The baseline with which we are
comparing our method is MultiDiffusion.

The base model is trained for 200 epochs and has 270M
parameters. The coordinator has 26M parameters and is
trained for 20 epochs. Table 3 displays the value of the FID
metric for both the training image size (N = 96) and the
out-of-distribution sampling size (N = 128). Our method
outperforms MultiDiffusion by FID.

In Figure 3, we present samples from DDE and multidif-
fusion. We note that top-right part of the multidiffusion
sample that lies within only one patch is visually separable
from the rest of the image. In Appendix B.3.8, we show
more DDE samples.

4

Diffusion Domain Expansion: Learning to Coordinate Pre-trained Diffusion Models

Figure 2: Generated sample from the RRR model (left) and
Coordinator model (right). Red crosses correspond to the
conditionings.

Figure 3: Satellite image generation example: DDE sample
on the left and MultiDiffusion sample on the right.

5. Conclusion
In this paper, we proposed Diffusion Domain Expansion
(DDE), a method that utilizes a ViT network as a coordina-
tor of outputs from pre-trained diffusion models to expand
the generative domain. We demonstrated that our method
allows for the generation of larger objects and the combi-
nation of multiple conditioning inputs simultaneously. Our
experiments indicate that DDE enables the coordinator to
generalize to larger instances unseen during training. Lastly,
our model requires less training time and fewer parame-
ters to converge to the optimal state compared to the base
pre-trained models.

Limitations. The main limitation of our method is the need
for additional data and time to train the coordinator model.

Future work. We plan to explore the application of our
method in other domains. Potential areas include generat-
ing long coherent protein sequences and creating videos
from short clips. In addition, we are interested in exploring
alternative ways of supervision for the coordinator model.

References
Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T.,

Pritzel, A., Ronneberger, O., Willmore, L., Ballard, A. J.,
Bambrick, J., et al. Accurate structure prediction of
biomolecular interactions with alphafold 3. Nature, pp.
1–3, 2024.

Anderson, B. D. Reverse-time diffusion equation models.
Stochastic Processes and their Applications, 12(3):313–
326, 1982.

Bar-Tal, O., Yariv, L., Lipman, Y., and Dekel, T. Multidiffu-
sion: Fusing diffusion paths for controlled image genera-
tion. In International Conference on Machine Learning,
pp. 1737–1752. PMLR, 2023.

Ben-Hamu, H., Puny, O., Gat, I., Karrer, B., Singer, U., and
Lipman, Y. D-flow: Differentiating through flows for
controlled generation. arXiv preprint arXiv:2402.14017,
2024.

Bengio, E., Jain, M., Korablyov, M., Precup, D., and Ben-
gio, Y. Flow network based generative models for non-
iterative diverse candidate generation. Advances in Neu-
ral Information Processing Systems, 34:27381–27394,
2021.

Betker, J., Goh, G., Jing, L., Brooks, T., Wang, J.,
Li, L., Ouyang, L., Zhuang, J., Lee, J., Guo, Y.,
et al. Improving image generation with better captions.
2023. URL https://cdn.openai.com/papers/
dall-e-3.pdf.

Black, K., Janner, M., Du, Y., Kostrikov, I., and Levine, S.
Training diffusion models with reinforcement learning.
In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.
net/forum?id=YCWjhGrJFD.

Chi, C., Feng, S., Du, Y., Xu, Z., Cousineau, E., Burchfiel,
B., and Song, S. Diffusion policy: Visuomotor policy
learning via action diffusion. In Proceedings of Robotics:
Science and Systems (RSS), 2023.

Choi, J., Kim, S., Jeong, Y., Gwon, Y., and Yoon, S. Ilvr:
Conditioning method for denoising diffusion probabilis-
tic models. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pp. 14367–
14376, October 2021.

Chung, H., Sim, B., Ryu, D., and Ye, J. C. Improving
diffusion models for inverse problems using manifold
constraints. Advances in Neural Information Processing
Systems, 35:25683–25696, 2022.

Clark, K., Vicol, P., Swersky, K., and Fleet, D. J. Directly
fine-tuning diffusion models on differentiable rewards.
In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.
net/forum?id=1vmSEVL19f.

Corso, G., Xu, Y., Bortoli, V. D., Barzilay, R., and Jaakkola,
T. S. Particle guidance: non-i.i.d. diverse sampling with
diffusion models. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https:
//openreview.net/forum?id=KqbCvIFBY7.

5

https://cdn.openai.com/papers/dall-e-3.pdf
https://cdn.openai.com/papers/dall-e-3.pdf
https://openreview.net/forum?id=YCWjhGrJFD
https://openreview.net/forum?id=YCWjhGrJFD
https://openreview.net/forum?id=1vmSEVL19f
https://openreview.net/forum?id=1vmSEVL19f
https://openreview.net/forum?id=KqbCvIFBY7
https://openreview.net/forum?id=KqbCvIFBY7

Diffusion Domain Expansion: Learning to Coordinate Pre-trained Diffusion Models

Couairon, G., Verbeek, J., Schwenk, H., and Cord, M.
Diffedit: Diffusion-based semantic image editing with
mask guidance. In The Eleventh International Conference
on Learning Representations, 2023. URL https://
openreview.net/forum?id=3lge0p5o-M-.

Dhariwal, P. and Nichol, A. Diffusion models beat gans
on image synthesis. Advances in Neural Information
Processing Systems, 34:8780–8794, 2021.

Du, Y., Li, S., and Mordatch, I. Compositional visual gen-
eration with energy based models. Advances in Neural
Information Processing Systems, 33:6637–6647, 2020.

Du, Y., Durkan, C., Strudel, R., Tenenbaum, J. B., Diele-
man, S., Fergus, R., Sohl-Dickstein, J., Doucet, A., and
Grathwohl, W. S. Reduce, reuse, recycle: Compositional
generation with energy-based diffusion models and mcmc.
In International Conference on Machine Learning, pp.
8489–8510. PMLR, 2023.

Evans, Z., Carr, C., Taylor, J., Hawley, S. H., and Pons,
J. Fast timing-conditioned latent audio diffusion. arXiv
preprint arXiv:2402.04825, 2024.

Gal, R., Alaluf, Y., Atzmon, Y., Patashnik, O., Bermano,
A. H., Chechik, G., and Cohen-or, D. An image is worth
one word: Personalizing text-to-image generation using
textual inversion. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=NAQvF08TcyG.

Garipov, T., Peuter, S. D., Yang, G., Garg, V., Kaski, S., and
Jaakkola, T. S. Compositional sculpting of iterative gener-
ative processes. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=w79RtqIyoM.

Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch,
Y., and Cohen-or, D. Prompt-to-prompt image edit-
ing with cross-attention control. In The Eleventh In-
ternational Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=_CDixzkzeyb.

Ho, J. and Salimans, T. Classifier-free diffusion guidance.
In NeurIPS 2021 Workshop on Deep Generative Models
and Downstream Applications, 2021. URL https://
openreview.net/forum?id=qw8AKxfYbI.

Ho, J., Salimans, T., Gritsenko, A., Chan, W., Norouzi, M.,
and Fleet, D. J. Video diffusion models. Advances in
Neural Information Processing Systems, 35:8633–8646,
2022.

Huang, Z., Chan, K. C., Jiang, Y., and Liu, Z. Collaborative
diffusion for multi-modal face generation and editing. In
Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 6080–6090,
June 2023.

Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., and
Wilson, A. G. Averaging weights leads to wider optima
and better generalization. 2019.

Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L.,
Zitnick, C. L., and Girshick, R. Clevr: A diagnostic
dataset for compositional language and elementary visual
reasoning, 2016.

Karras, T., Aittala, M., Aila, T., and Laine, S. Elucidating
the design space of diffusion-based generative models.
Advances in Neural Information Processing Systems, 35:
26565–26577, 2022.

Kawar, B., Elad, M., Ermon, S., and Song, J. Denoising
diffusion restoration models. Advances in Neural Infor-
mation Processing Systems, 35:23593–23606, 2022.

Kawar, B., Zada, S., Lang, O., Tov, O., Chang, H., Dekel,
T., Mosseri, I., and Irani, M. Imagic: Text-based real
image editing with diffusion models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 6007–6017, 2023.

Kilgour, K., Zuluaga, M., Roblek, D., and Sharifi, M.
Fréchet audio distance: A metric for evaluating music
enhancement algorithms, 2019.

Lee, Y., Kim, K., Kim, H., and Sung, M. Syncdiffusion:
Coherent montage via synchronized joint diffusions. Ad-
vances in Neural Information Processing Systems, 36:
50648–50660, 2023.

Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte,
R., and Van Gool, L. Repaint: Inpainting using denoising
diffusion probabilistic models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 11461–11471, June 2022.

Manilow, E., Wichern, G., Seetharaman, P., and Roux, J. L.
Cutting music source separation some slakh: A dataset
to study the impact of training data quality and quantity,
2019.

Mariani, G., Tallini, I., Postolache, E., Mancusi, M., Cosmo,
L., and Rodolà, E. Multi-source diffusion models for
simultaneous music generation and separation. In The
Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/
forum?id=h922Qhkmx1.

Meng, C., He, Y., Song, Y., Song, J., Wu, J., Zhu, J.-
Y., and Ermon, S. SDEdit: Guided image synthesis
and editing with stochastic differential equations. In
International Conference on Learning Representations,

6

https://openreview.net/forum?id=3lge0p5o-M-
https://openreview.net/forum?id=3lge0p5o-M-
https://openreview.net/forum?id=NAQvF08TcyG
https://openreview.net/forum?id=NAQvF08TcyG
https://openreview.net/forum?id=w79RtqIyoM
https://openreview.net/forum?id=w79RtqIyoM
https://openreview.net/forum?id=_CDixzkzeyb
https://openreview.net/forum?id=_CDixzkzeyb
https://openreview.net/forum?id=qw8AKxfYbI
https://openreview.net/forum?id=qw8AKxfYbI
https://openreview.net/forum?id=h922Qhkmx1
https://openreview.net/forum?id=h922Qhkmx1

Diffusion Domain Expansion: Learning to Coordinate Pre-trained Diffusion Models

2022. URL https://openreview.net/forum?
id=aBsCjcPu_tE.

Parmar, G., Zhang, R., and Zhu, J.-Y. On aliased resizing
and surprising subtleties in gan evaluation. In CVPR,
2022.

Peebles, W. and Xie, S. Scalable diffusion models with
transformers, 2023.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D.,
Ermon, S., and Finn, C. Direct preference optimization:
Your language model is secretly a reward model. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/
forum?id=HPuSIXJaa9.

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Rad-
ford, A., Chen, M., and Sutskever, I. Zero-shot text-
to-image generation. In International Conference on
Machine Learning, pp. 8821–8831. PMLR, 2021.

Ren, M., Delbracio, M., Talebi, H., Gerig, G., and Milanfar,
P. Multiscale structure guided diffusion for image deblur-
ring. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (ICCV), pp. 10721–10733,
October 2023.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
10684–10695, 2022.

Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., and
Aberman, K. Dreambooth: Fine tuning text-to-image dif-
fusion models for subject-driven generation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 22500–22510, 2023.

Saharia, C., Chan, W., Chang, H., Lee, C., Ho, J., Salimans,
T., Fleet, D., and Norouzi, M. Palette: Image-to-image
diffusion models. In ACM SIGGRAPH 2022 conference
proceedings, pp. 1–10, 2022a.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton,
E. L., Ghasemipour, K., Gontijo Lopes, R., Karagol Ayan,
B., Salimans, T., et al. Photorealistic text-to-image dif-
fusion models with deep language understanding. Ad-
vances in Neural Information Processing Systems, 35:
36479–36494, 2022b.

Sarukkai, V., Li, L., Ma, A., Ré, C., and Fatahalian, K.
Collage diffusion. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision, pp.
4208–4217, 2024.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In International Conference on
Machine Learning, pp. 2256–2265. PMLR, 2015.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A.,
Ermon, S., and Poole, B. Score-based generative mod-
eling through stochastic differential equations. In In-
ternational Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=PxTIG12RRHS.

Su, J., Lu, Y., Pan, S., Murtadha, A., Wen, B., and Liu,
Y. Roformer: Enhanced transformer with rotary position
embedding, 2023.

Trippe, B. L., Yim, J., Tischer, D., Baker, D., Broder-
ick, T., Barzilay, R., and Jaakkola, T. S. Diffusion
probabilistic modeling of protein backbones in 3d for
the motif-scaffolding problem. In The Eleventh In-
ternational Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=6TxBxqNME1Y.

Wallace, B., Dang, M., Rafailov, R., Zhou, L., Lou, A., Pu-
rushwalkam, S., Ermon, S., Xiong, C., Joty, S., and Naik,
N. Diffusion model alignment using direct preference
optimization. arXiv preprint arXiv:2311.12908, 2023.

Whang, J., Delbracio, M., Talebi, H., Saharia, C., Dimakis,
A. G., and Milanfar, P. Deblurring via stochastic refine-
ment. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
16293–16303, June 2022.

Wu, T., Maruyama, T., Wei, L., Zhang, T., Du, Y., Iac-
carino, G., and Leskovec, J. Compositional generative
inverse design. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https:
//openreview.net/forum?id=wmX0CqFSd7.

Zhang, L., Rao, A., and Agrawala, M. Adding conditional
control to text-to-image diffusion models, 2023a.

Zhang, Q., Song, J., Huang, X., Chen, Y., and Liu, M.-
Y. Diffcollage: Parallel generation of large content with
diffusion models. In 2023 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
10188–10198. IEEE, 2023b.

7

https://openreview.net/forum?id=aBsCjcPu_tE
https://openreview.net/forum?id=aBsCjcPu_tE
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=6TxBxqNME1Y
https://openreview.net/forum?id=6TxBxqNME1Y
https://openreview.net/forum?id=wmX0CqFSd7
https://openreview.net/forum?id=wmX0CqFSd7

Diffusion Domain Expansion: Learning to Coordinate Pre-trained Diffusion Models

A. Related Work
Controllable generation. Generation control and guidance of diffusion models is an active area of research. One way
to formalize controllable generation is to cast it as sampling from a conditional distribution p(x|y). Popular types of
conditioning annotations y include class labels (Dhariwal & Nichol, 2021), text prompts (Ramesh et al., 2021; Rombach
et al., 2022; Saharia et al., 2022b), and semantic maps (Rombach et al., 2022; Huang et al., 2023). Method-wise, a
straightforward way to achieve conditional generation p(x|y) is to train a conditional denoising network D(x, y, t) on pairs
(x, y) of generation target x and conditioning information y available at training time. Classifier-free guidance (Ho &
Salimans, 2021) enhances image fidelity by combining conditional and unconditional score functions.

Another family of methods enables generation conditioned on information that was not specified at model training time.
Classifier guidance (Sohl-Dickstein et al., 2015; Dhariwal & Nichol, 2021; Song et al., 2021) generates samples by
combining the learned score function and the gradient of the log-probabilities of a separately trained classifier p(y|x, t).
Zhang et al. (2023a) developed ControlNet, a method that employs a supplementary trained network to enable a pre-trained
diffusion model to process previously inaccessible conditioning inputs. Collaborative Diffusion (Huang et al., 2023) trains a
lightweight module which combines scores of multiple diffusion models, each supporting different conditioning modalities,
to enable multi-modality conditioning.

Image inpainting is an extensively explored controllable generation task. The goal of inpainting is to restore or reconstruct
missing or corrupted parts of an image, or, formally, sampling xhidden|xobs ∼ p(xhidden|xobs), the unobserved part of the
image xhidden given the observed part xobs. Song et al. (2021); Lugmayr et al. (2022) proposed inpainting techniques based
on the "replacement" of observed pixels with their known values (with noise applied at an appropriate) at each step of
the diffusion denoising process. Chung et al. (2022); Ho et al. (2022) utilized "reconstruction"-based approaches which
introduce an additional guiding term in the denoising update with the goal of bringing the values in the observed part of the
image closer to the known target values. Trippe et al. (2023) developed a method based on particle filtering for inpainting
of protein backbones in 3D. Saharia et al. (2022a) proposed a diffusion model trained specifically for image-to-image
translation tasks including inpainting.

The task of inpainting is a member of the family of inverse problems, which can be cast as conditional generation
x|y(x) ∼ p(x|y(x)), where y(x) is an observation function that extracts a limited information summary from x (e.g., y(x)
might represent a downsampled version of image x). A line of work (Choi et al., 2021; Song et al., 2021; Kawar et al., 2022;
Saharia et al., 2022a; Whang et al., 2022; Ren et al., 2023) is focused on diffusion-based solutions for inverse problems in
the image generation domain. Recently, Mariani et al. (2024) used diffusion models for the inverse problem of audio source
separation. Ben-Hamu et al. (2024) utilized the probability flow interpretation of diffusion models and addressed image and
audio inverse problems and conditional molecular generation via differentiation through ODE sampler.

Image editing is another instance of controllable generation problems. In this case, the goal is to modify specific aspects of
an existing image according to user-specified goals while preserving image coherence and fidelity. To address semantic
image editing, Meng et al. (2022) and Couairon et al. (2023) proposed to first partially noise and then denoise an image
to generate an edited version, possibly conditioned on a segmentation mask (Couairon et al., 2023). Collage diffusion
(Sarukkai et al., 2024) is a diffusion model extension that processes multiple base images accompanied by text prompts and
desired locations and produces a collage by editing the base images and combining layers of edited images. Another line of
work (Ruiz et al., 2023; Gal et al., 2023; Hertz et al., 2023; Kawar et al., 2023) introduced techniques for personalization,
concept learning, prompt manipulation, and direct editing of real images guided by natural language inputs.

Fine-tuning diffusion models with reward functions or human preference data has emerged as a promising form of controllable
generation. Black et al. (2024) interpreted diffusion as a sequential decision process and employed reinforcement learning to
optimize objectives such as image compressibility, prompt-image alignment (based on vision-language model feedback),
and aesthetic quality (derived from human feedback). Clark et al. (2024) used backpropagation through samplers to optimize
differentiable rewards such as scores from human preference models. Wallace et al. (2023) adapted Direct Preference
Optimization (Rafailov et al., 2023) to diffusion models, which enables fine-tuning diffusion models on human preference
data directly without the need for the auxiliary reward model.

Diffusion composition and coordination. Compositional generation approaches combine multiple diffusion processes to
control sampling distributions, re-use pre-trained models, and extend their capabilities. Existing works on compositional
generation differ in how they approach the composition of diffusion processes. Notable approaches include exact specification
of adjusted distributions (Du et al., 2023; Garipov et al., 2023; Wu et al., 2024), or resolution of individual steps of generation

8

Diffusion Domain Expansion: Learning to Coordinate Pre-trained Diffusion Models

(Bar-Tal et al., 2023; Lee et al., 2023; Huang et al., 2023; Zhang et al., 2023b; Corso et al., 2024).

Garipov et al. (2023) proposed a set of operations on iterative generative processes: diffusion models and GFlowNets
(Bengio et al., 2021). These operations enable one to emphasize or de-emphasize high-likelihood regions of selected base
models. The proposed Compositional Sculpting method employs classifier guidance and mixture processes to compose
models and realize samples from composite distributions.

Wu et al. (2024) built on compositions of energy-based diffusion models (Du et al., 2020; 2023) and developed methods
for the generation of solutions to inverse design problems: multi-body physical simulations and 2D airfoil design. The
compositional generation enables the generation of objects more complex than those seen at training time. In particular,
the authors demonstrate the generation of trajectories with 1) longer simulation horizons (via summation of energies of
short-horizon models), 2) larger number of interacting bodies in physical simulations (via summation of energy functions
for pairwise interactions), and 3) larger spatial simulation domains and the larger number of parts for joint multiple airfoil
design.

MultiDiffusion (Bar-Tal et al., 2023) performs controlled image generation via the fusion of diffusion sampling paths. The
authors address the generation of panoramic images and scenes with complex structures. The complex scene is divided into
several regions, and the desired content of each region is described with a specific text prompt. The generation is performed
via the coordination of multiple prompt-conditioned generation paths. The coordination method maintains a shared global
image for the whole space and reconciles contradicting updates in the intersections of regions by averaging the updates of
individual models whose regions cover the specific intersection.

SyncDiffusion (Lee et al., 2023) is an extension of MultiDiffusion that aims to address the issue of incoherent patches in
large panoramic images. To that end, SyncDiffusion introduces an additional step to the MultiDiffusion update to perform a
local optimization step on the perceptual similarity across patches.

Zhang et al. (2023b) extended panoramic generation to more general scenarios of large image generation supporting arbitrary
graph structure of the overlapping patches comprising the large image (e.g., linear chain, cycle, grid, cubemap). The
proposed method, called DiffCollage, translates a given graph structure into a closed-form formula for the total score
expressed through marginal scores of individual patches. Zhang et al. (2023b) empirically demonstrated that coordinating
multiple diffusion processes run in parallel outperforms inpainting-based panoramic image generation (Lugmayr et al., 2022;
Chung et al., 2022) in terms of image quality and generation speed.

Corso et al. (2024) proposed Particle Guidance, a method for improving sample efficiency in diffusion models by running
multiple diffusion chains with a time-evolving repulsion force that promotes sample diversity.

Mariani et al. (2024) demonstrated that the combination of multiple single-instrument diffusion models outperforms a joint
model in the music source separation problem. The proposed source separation approach is based on the guidance methods
for inverse problems proposed in (Song et al., 2021).

B. Experiment Details
All training for both the base and coordinator models was performed using the EDM framework introduced by (Karras et al.,
2022) on a single A100 GPU. To enhance the quality of the generated samples, we trained the coordinator using EMA for
the model weights. As shown by (Izmailov et al., 2019) and (Karras et al., 2022), this approach improves generalization and
made training more stable in terms of metric values per epoch during evaluation.

For sampling from our coordinator models, we primarily used the Heun sampler with 2nd order correction, which we
imported from the code provided by (Karras et al., 2022).

B.1. Music Generation Experiments

B.1.1. DATASET DESCRIPTION

For the music domain, we used the version of the Slakh2100 dataset released by Mariani et al. (2024) for training both the
base model and coordinator models. This dataset contains 1,500 tracks in the training set, each consisting of four different
stems: Bass, Drums, Guitar, and Piano.

9

Diffusion Domain Expansion: Learning to Coordinate Pre-trained Diffusion Models

B.1.2. BASE MODEL DETAILS

For training the base model, we used the same UNet1d architecture and data loader as in (Mariani et al.,
2024). The hyperparameters were set as follows: channels = 256, patch_factor = 16, patch_blocks = 1,
resnet_groups = 8, kernel_sizes_init = [1, 3, 7], multipliers = [1, 2, 4, 4, 4, 4, 4], factors = [4, 4, 4, 2, 2, 2],
num_blocks = [2, 2, 2, 2, 2, 2], attentions = [False, False, False, T rue, True, True], attention_heads = 8,
attention_features = 128, and attention_multiplier = 2. This architecture takes as input four different stems of
length 218, corresponding to roughly 12 seconds of music at a sampling rate of 22,050 Hz, and produces output of the same
size.

We used the Adam optimizer with a learning rate of 10−4, with betas = (0.9, 0.99), and trained the model for 300 epochs
with a batch size of 8. We sampled the noise level σ from a log-normal distribution with a mean of −3 and a standard
deviation of 1.0, and we did the same for the training of coordinator models.

B.1.3. SAMPLER DETAILS

To sample the tracks for all the methods and architectures, we used the Heun sampler described in Appendix B with
σmax = 20, σmin = 10−4, and Schurn = 20.0. For σt, we used the Karras schedule with ρ = 7 and 150 timesteps.

B.1.4. EVALUATION

To evaluate the performance of all the models, we calculated the FAD (Fréchet Audio Distance) to the training dataset. To
calculate the FAD metric for the sampled tracks of length l, we deterministically cut out the middle parts of the tracks from
the training dataset with the same length, as the FAD metric is track-length dependent. In the implementation of the metric
calculation we used, a pre-trained VGG-like architecture for music was used. Since the sampling rate was different from the
required one, we resampled tracks from 22,050 Hz to 16,000 Hz. We tested how different numbers of sampled tracks affect
the FAD score and found that generating 128 tracks differs from generating 1,024 tracks by a small margin, and the relative
order of the compared models does not change. To decrease GPU usage, we settled on using 128 tracks in our reported
metric values. We reported the saved checkpoint with the smallest FAD value for each of the methods.

B.1.5. RNN AND RNN WITH OVERLAPS DETAILS

We explored different methods of coordinating the denoised tracks via trainable networks. The first method we propose is a
combination of RNN and UNet architectures. We choose a constant h—the number of hidden channels—and train a function
f : Rh×L × RS×L → Rh×L × RS×L that is parametrized as a UNet with h+ S input channels and h+ S output channels.
Then, let the predicted denoised tracks before reconciliation be x0, . . . , xk−1. We set h0 = 0, and (hi+1, x

′
i) = f(hi, xi)

for i = 0, 1, . . . , k − 1. The output of the RNN denoiser is the concatenation of x′
i, i = 0, 1, . . . , k − 1.

What we defined as RNN with overlaps corresponds to training a similar architecture, which takes patches of music
tracks with overlaps of 3 seconds and performs a similar reconciliation by averaging the predicted fixed patches, as in
MultiDiffusion. For both of the architectures, we used h = 16 hidden channels. We noted that a higher number of hidden
channels compared to the number of output channels improved the FAD.

We used the Adam optimizer with a learning rate of 10−4, with betas = (0.9, 0.99), and trained the models for 10 epochs
with a batch size of 4. For the training dataset, we used sampled tracks of length 48 seconds from the dataset, which
correspond to 4 non-overlapping or 5 overlapping patches. Despite RNN with overlaps having a slightly worse metric
compared to RNN, using overlaps improved the quality of tracks by removing the slightly noticeable transition between
different patches.

B.1.6. VIT DETAILS

Finally, we tested our ViT architecture. For music, we used the ViT architecture with patch_size = 128, hidden_size =
768, depth = 6, num_heads = 6, and mlp_ratio = 4.0.

We used the Adam optimizer with a learning rate of 3 · 10−5, with betas = (0.9, 0.99), and trained the models for 10 epochs
with a batch size of 4. In addition, for ViT, we obtained the best results using EMA. We tried using EMA for the RNN-like
architectures, but it did not improve the metric values.

We chose these three architectures for comparison with the baseline because they can generalize easily enough for the

10

Diffusion Domain Expansion: Learning to Coordinate Pre-trained Diffusion Models

generation of longer tracks, and we chose RNN to compare with ViT, as it requires fewer parameters for training.

We include generated samples from ViT, MultiDiffusion and Concat for both 48 and 120 seconds music track length in the
supplementary materials.

B.2. CLEVR Image Generation Experiments

B.2.1. DATASET DESCRIPTION

For the training of the base model, we used the CLEVR dataset released by the authors of (Du et al., 2023). This dataset
consists of 30,000 images of size 128 by 128 pixels, which we downsampled to 64 by 64 pixels. For each image in the
dataset, we had one conditioning information available, corresponding to the coordinates of the center of one of the objects
in the image.

B.2.2. BASE MODEL DETAILS

For the training of the base model with one conditioning, we used a UNet with attention architecture from (Du et al., 2023).
We used the following hyperparameters for the UNet: model_channels = 128, num_res_blocks = 2, channel_mult =
(1, 2, 2, 2), num_heads = 4, and num_head_channels = 64. We improved the positional encoding of the conditioning
by using Gaussian Fourier projection, projecting each of the coordinates into the dimension of 2 ·model_channels.

We used the Adam optimizer with a learning rate of 10−4 and trained for 1,050 epochs with a batch size of 32. We used the
original dataset to train the model to satisfy one conditioning and used classifier-free guidance to improve the quality of
generated samples. We sampled the noise level σ from a log-normal distribution with a mean of −1 and a standard deviation
of 1.6, and we did the same for the training of coordinator models.

The base network D(x, c, t) can optionally take a masked-out conditioning input D(x,∅, t) corresponding to unconditional
generation. During coordinator training, we mask out the conditioning information with a probability of 10%. At generation
time, we use classifier-free guidance with weight w:

(1 + w) · C[L]([D(x(t), ci, t)]
L
i=1, [ci]

L
i=1, t)− w · C[L]([D(x(t),∅, t)]Li=1, [∅]Li=1, t). (6)

B.2.3. CLASSIFIER DETAILS

To evaluate the models, we trained a UNet classifier on the original dataset, which outputs the probabilities of each pixel
being the center of an object. We modified the dataset with both positive and negative examples: for the conditioning from
the dataset, the classifier should output a 1 probability on the corresponding pixel, and it should output 0 for a random
conditioning.

We used a UNet architecture from denoising_diffusion_pytorch (url), with dim = 64 and dim_mults =
(1, 2, 4). We added an additional convolution layer and used a sigmoid function on the outputs.

We used the Adam optimizer with a learning rate of 10−5, with betas = (0.9, 0.99) and eps = 10−8. We trained it for 50
epochs with a batch size of 32. Figure B.1 shows an example output of the model and that of the classifier.

B.2.4. COORDINATOR MODEL DETAILS

The inputs to the coordinator are the outputs of the pre-trained diffusion [D(x, ci, t)]
L
i=1 and the positions [ci]Li=1 encoded

as one-hot 2D maps. The one-hot 2D maps are appended as additional channels to each diffusion output. The coordinator
is trained with the denoising loss (5). During training, we sample an image x from the dataset, then sample a number of
conditioning positions L ∼ Uniform[1, Ltrain], and then extract positions [ci]Li=1 of L objects from the image x. Since the
version of the dataset used by Du et al. (2023) had each image annotated with only one object position, we ran the classifier
on each sample from the dataset and outputted the centers of the connected components of pixels where the score of the
classifier is at least 0.5 as the possible conditioning inputs, as they correspond to the centers of the objects in the image.

To train the coordinator model, we used the ViT architecture with patch_size = 4, hidden_size = 384, depth = 12,
num_heads = 6, and mlp_ratio = 4.0.

11

https://github.com/lucidrains/denoising-diffusion-pytorch?tab=readme-ov-file

Diffusion Domain Expansion: Learning to Coordinate Pre-trained Diffusion Models

We used the Adam optimizer with a learning rate of 10−5, and trained for 40 epochs with a batch size of 16. During training,
we randomly sampled 2 random centers of figures as the conditionings to illustrate the effect of generalization.

B.2.5. SAMPLERS DETAILS

To evaluate the methods, we used the Euler sampler, using the ODE equation for the reverse diffusion process with 100
timesteps, and the Heun sampler described in B with σmax = 80, σmin = 10−4, and Schurn = 20.0. For the Heun sampler,
we set schurn = 0, and used σmin = 10−4, σmax = 80. For σt, we used the Karras schedule with ρ = 7 and 100 timesteps. In
each evaluation, we set w = 20 for the classifier-free guidance weight. We tested which w works best in terms of accuracy,
and report results using the same weight. For sampling using the RRR method, we set w = 4, as used in the code released
by Du et al. (2023).

B.2.6. EVALUATION DETAILS

For the RRR baseline, we used formula 7:

RRR[L](x(t), [ci]
L
i=1, t) = D(x(t),∅; t) + w ·

L∑
i=1

(D(x(t), ci; t)−D(x(t),∅; t)) (7)

For each L ∈ {1, . . . , Ltest} we generated 256 random sets of positions [ci]Li=1 and then generated image x|[ci]Li=1 using
the pre-trained model and the coordinator. We report the conditional generation accuracy, i.e. the fraction of the generated
images satisfying the conditioning constraints. We tested the conditional constraints using the classifier CLS(x, c). Given
positions [ci]Li=1, we consider the generated image x to be valid if CLS(x, ci) ≥ 0.5, ∀ 1 ≤ i ≤ L. We provide an example
of the classifier output on a generated sample in B.1.

For each of the 256 samples generated during evaluation, we generated positions c1, . . . , ck in the conditioning Yk such
that ∀i : 0.3 ≤ cxi , c

y
i ≤ 0.7 and ∀i, j : ||ci, cj ||2 ≥ 0.15. We imposed these additional constraints on the generation of

conditionings to avoid evaluating samples on very close conditioning inputs, as in such cases, a suitable sample could
include objects satisfying multiple conditionings simultaneously. We used the same seed for the generation of all samples
for each combination of sampler and method to make the comparison fairer. We provide some additional samples generated
from our DDE model in B.2. We can see that even when some of the conditionings are not satisfied, our model still tries to
satisfy as many of them as possible.

B.3. Map Image Generation Experiments

B.3.1. DATASET DESCRIPTION

We selected 7,300 uniform samples of size 150× 150 meters from a 20× 20 km square, centered at (35.707◦ N, 139.600◦

E). Each sample contains a pair of a map and the corresponding satellite image and has a resolution of 600 × 600. We
cropped a 512× 512 sub-square from it and downsampled it to 128× 128. Figure B.3 demonstrates a raw dataset example
before cropping and downsampling.

B.3.2. ARCHITECTURE DETAILS

We use decomposition functions that take small patches inside the map. Specifically, we have the following parameters: the
size of the patch B, the stride s, and the number of patches in each dimension k. Then, the large map will be a square with
size B + s(k − 1), and there will be k2 patches, indexed by (i, j), where 0 ≤ i, j < k, such that patch (i, j) spans height
coordinates in [is, is + B) and width coordinates in [js, js + B). We denote patches of the satellite image as Xij and
patches of the map conditioning as Yij . Then, we can note that due to the homogeneity of maps, the distribution p(Xij |Yij)
does not depend on (i, j), so we can utilize the same pretrained conditional model on all the patches.

Our pretrained model for patches utilized the UNet architecture from denoising_diffusion_pytorch (url). We pass the
conditioning as input channels, so the UNet has 6 input channels (current image and conditioning), and 3 output channels.
When training the model, we use the reparametrization of the network output from Karras et al. (2022). The UNet has
5 hidden layers with [128, 256, 512, 1024, 1024] hidden units, respectively. We embed time with learned 32-dimensional

12

https://github.com/lucidrains/denoising-diffusion-pytorch?tab=readme-ov-file

Diffusion Domain Expansion: Learning to Coordinate Pre-trained Diffusion Models

Figure B.1: A batch of generated samples from the model based on 2 conditionings and the heatmaps of the classifier output
for these samples. Red crosses correspond to the conditionings.

sinusoidal embeddings. We use attention on the bottleneck layer, and on the upsampling and downsampling layers that are
closest to it, with 8 attention heads and dimension 64 per head. In total, the base model has 270M parameters.

The coordinator model operates on the outputs of the base model UNets (i.e., we do not apply the reparametrization). We
utilize the ViT architecture for the map coordinator. We split each patch into smaller patches used in ViT with size 2× 2,
and apply positional encodings that encode the position in the large image, and not the relative position in the patch. Since
the B ×B-size patches may overlap, there could be ViT patches with the same positional encodings.

The ViT has depth 6, 6 attention heads, hidden size 384, and MLP ratio 4.0. It has 26M parameters. After all the transformer
blocks, we unpatchify the tokens and extract 3 channels. Since we still have overlapping patches, we reconcile them by
averaging the overlaps. Then, we apply the same reparametrization as the one that would have been applied to the outputs of
the base model.

B.3.3. CONDITIONING

Here, we describe how ViT handles the conditional information (schematic map). We split a large N ×N schematic map
into 4× 4 patches and pass them to ViT together with the patches of the model outputs. The ViT performs self-attention on
all of the tokens; however, when performing MLP, we use different weights for tokens derived from model outputs and
tokens derived from the conditioning.

13

Diffusion Domain Expansion: Learning to Coordinate Pre-trained Diffusion Models

Figure B.2: Generated samples from the coordinator model for 3 and 5 different conditionings. Each red cross on the image
corresponds to a conditioning.

Figure B.3: Example from the map dataset. Image attribution: Google Maps

B.3.4. 2D ROPE

To improve the generalization capabilities of the ViT coordinator, we use rotary positional encodings from Su et al. (2023)
(RoPE). RoPE are defined for the case when tokens have 1-dimensional positions. We do not add positional encodings
explicitly at the beginning of the forward pass. Instead, in each layer of the transformer when we calculate keys or queries,

14

Diffusion Domain Expansion: Learning to Coordinate Pre-trained Diffusion Models

we multiply them by a rotation matrix Rd
Θ,m. Let xm be the m-th token, d be its dimension, Θ be a parameter vector, W{q, k}

be a learnable query/key matrix, respectively, and f the function that computes the query/key of a token. Then, according to
equation 14 from Su et al. (2023):

f{q, k}(xm,m) = Rd
Θ,mW{q, k}xm

We generalize this method to the case when positions of tokens are two-dimensional. We do this by splitting our embeddings
into two halves and applying the transform associated with the vertical coordinate on the first half, and the transform
associated with the horizontal coordinate on the second half. Let xnm be a 2d-dimensional token at position (n,m). Then:

f{q, k}(xnm, n,m) =

(
Rd

Θ,n 0

0 Rd
Θ,m

)
W{q, k}xnm

For 1D positional encodings, we have the property that the attention value between two tokens (i.e., the dot product between
key and value) depends only on their coordinates and the relative position:

(fk(xn, n), fq(xm,m)) = g(xn, xm, n−m)

By decomposing the vectors into two halves, it is easy to show that a similar statement holds for 2D RoPE:

(fk(xab, a, b), fq(xcd, c, d)) = g(xab, xcd, a− c, b− d)

B.3.5. TRAINING PROCEDURE

We train the coordinator for 100 epochs, with a batch size of 16. We sample the noise level σ from a log-normal distribution
with a mean of −1 and a standard deviation of 1.6. We use the Adam optimizer with a learning rate of 3 · 10−5.

B.3.6. SAMPLER DETAILS

We use the Heun sampler described in B with σmax = 20, σmin = 10−4, and Schurn = 20.0. For sigmas, we use the Karras
schedule with ρ = 7 and 150 timesteps.

B.3.7. EVALUATION DETAILS

500 1000 1500 2000 2500 3000
Sample count

30

40

50

60

70

80

FI
D

N = 96
Multidiffusion
DDE

500 1000 1500 2000 2500 3000
Sample count

30

40

50

60

70

FI
D

N = 128
Multidiffusion
DDE

Figure B.4: Change of FID depending on the number of samples

We use the CleanFID implementation of the FID metric (Parmar et al., 2022). When reporting the FID metric for a given
model, we compare the whole satellite dataset, containing 7,300 images, with 3,072 generated samples. In Figure B.4, we
illustrate the dependency between the number of samples and the value of FID, showing that the comparison is consistent
across the sample counts.

15

Diffusion Domain Expansion: Learning to Coordinate Pre-trained Diffusion Models

B.3.8. SAMPLES

In each of the figures below, the columns indicate (from left to right) map conditioning, ground truth satellite image, and
generated satellite image by DDE.

Figure B.5: DDE samples of size 96× 96 Figure B.6: DDE samples of size 128× 128

Figure B.7: DDE samples of size 256× 256

16

