
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FLASHBACK: UNDERSTANDING AND MITIGATING FOR-
GETTING IN FEDERATED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

In Federated Learning (FL), forgetting, or the loss of knowledge across rounds,
hampers algorithm convergence, especially in the presence of severe data hetero-
geneity among clients. This study explores the nuances of this issue, emphasizing
the critical role of forgetting leading to FL’s inefficient learning within hetero-
geneous data contexts. Knowledge loss occurs in both client-local updates and
server-side aggregation steps; addressing one without the other fails to mitigate
forgetting. We introduce a metric to measure forgetting granularly, ensuring distinct
recognition amid new knowledge acquisition. Based on this, we propose Flashback,
a novel FL algorithm with a dynamic distillation approach that regularizes the local
models and effectively aggregates their knowledge. The results from extensive ex-
perimentation across different benchmarks show that Flashback mitigates forgetting
and outperforms other state-of-the-art methods, achieving faster round-to-target
accuracy by converging in 6 to 16 rounds, being up to 27× faster.

1 INTRODUCTION

Federated Learning (FL) is a distributed learning paradigm that allows training over decentralized
private data. These datasets belong to different clients that participate in training a global model.
Federated Averaging (FedAvg) (McMahan et al., 2017) is a prominent training algorithm that uses a
centralized server to orchestrate the process. At every round, the server samples a proportion of the
available clients. Starting from the current version of the global model, each sampled client performs
E epochs of local training using their private data and sends its updated model to the server. Then,
the server aggregates the models by averaging them to obtain the new global model. This process is
typically repeated for many rounds until a desired model performance is obtained.

A main challenge in FL is the data heterogeneity in distribution between the clients’ private datasets,
which are unbalanced and non-IID (Kairouz et al., 2021). Data heterogeneity causes local model
updates to drift – the local optima might not be consistent with the global optima – and can lead to
slow convergence of the global model – where more rounds of communication and local computation
are needed – or worse, the desired performance may not be reached. Addressing data heterogeneity
in FL has been the focus of several prior studies. For instance, FedProx (Li et al., 2020) proposes a
proximal term to limit the distance between the global model and the local model updates, mitigating
the drift in the local updates. MOON (Li et al., 2021b) mitigates the local drift using a contrastive
loss to minimize the distance between the feature representation of the global model and the local
model updates while maximizing the distance between the current model updates and the previous
model updates. FedDF (Lin et al., 2020) addresses heterogeneity in local models by using ensemble
distillation during the aggregation step (instead of averaging the model updates). Nonetheless, we
experimentally observe that under severe data heterogeneity, these proposals provide little or even no
advantage over FedAvg. Figure 1a illustrates the test accuracy of FedAvg and other baselines while
training a DNN over the CIFAR10 dataset (Krizhevsky, 2009) (more details are in § 5).

This motivates us to understand better how data heterogeneity poses a challenge for FL and devise a
new approach to handling non-IID datasets. We investigate the evolution of the global model accuracy
broken down by its per-class accuracy. Figure 1b shows a heatmap of the per-class accuracy for
FedAvg; each rectangle represents the accuracy of the global model on a class at a round. Other
baseline methods show similar results. Our key observation is that there is a significant presence of
forgetting: i.e., cases where some knowledge obtained by the global model at round t is forgotten

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0 25 50 75 100 125 150 175 200
Number of Rounds

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

FedAvg
FedDF

FedProx
MOON

(a) Global model accuracy of FedAvg and baselines. (b) Per-class accuracy of FedAvg’s global model.

Figure 1: Performance of FedAvg and other methods over training rounds with CIFAR10.

at round t+ 1, causing the accuracy to decline (as shown by the prominent number of light-shaded
rectangles at the right side of darker ones in the figure; we highlight some cases in red in Fig. 1b).

A similar phenomenon is known as catastrophic forgetting in Continual Learning (CL) litera-
ture (Parisi et al., 2019). CL addresses the challenge of sequentially training a model on a series of
tasks, denoted as {T1, T2, . . . , Tn}, without revisiting data from prior tasks. Formally, given a model
with parameters θ and task-specific loss functions Lt(θ) for each task Tt, the objective in CL is to
update θ such that performance on the current task is optimized without significantly degrading the
model’s performance on previously learned tasks. This is non-trivial, as naı̈ve sequential training
often leads to catastrophic forgetting, where knowledge from prior tasks is overridden when learning
a new task. An inherent assumption in this paradigm is that once the model transitions from task Ti

to task Ti+1, data from Ti becomes inaccessible, amplifying the importance of knowledge retention
strategies (De Lange et al., 2021).

While the premises and assumptions of FL differ from those of traditional machine learning and
continual learning, forgetting remains an issue. This can be viewed as a side effect of data heterogene-
ity, a commonality FL shares with CL. In FL, the global model evolves based on a fluctuating data
distribution. Specifically, a diverse set of sampled clients with distinct data distributions contribute a
model update in each communication round. Furthermore, these model updates must be aggregated
to obtain a global model. This situation presents dual-levels of data heterogeneity. Firstly, at the
intra-round level, heterogeneity arises from the participation of clients with varied data distributions
within the same round. This diversity can inadvertently lead to “forgetting” specific data patterns or
insights from certain clients. Secondly, at the inter-round level, the participating clients generally
change from one round to the next. As a result, the global model may “forget” or dilute insights
gained from clients in previous rounds.

To remedy this issue, we propose Flashback, a FL algorithm that employs a dynamic distillation
approach to mitigate the effects of data heterogeneity. Flashback’s dynamic distillation ensures that
the local models learn new knowledge while retaining knowledge from the global model during
the client updates by adaptively adjusting the distillation loss. Moreover, during the server update,
Flashback uses a very small public dataset as a medium to integrate the knowledge from the local
models to the global model using the same dynamic distillation. Flashback performs these adaptations
by estimating the knowledge in each model using label counts as a proxy of the model knowledge.
Overall, Flashback results in a more stable and faster convergence compared to existing methods.

Our contributions are the following:

• We systematically investigate the forgetting problem in FL. We show that under severe data
heterogeneity, FL sufferers from forgetting. We dissect how and where forgetting happens
(§ 3).

• We propose a new metric for measuring forgetting over the communication rounds (§ 3).

• We introduce Flashback, a FL algorithm that employs a dynamic distillation during the local
updates and the server update (§ 4). By addressing the forgetting issue, Flashback mitigates
its detrimental effects and converges to the desired accuracy faster than existing methods
(§ 5)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 BACKGROUND

We consider a standard cross-device FL setup in which there are N clients. Each client i has a unique
dataset Di = {(xj , yj)}ni

j=1 where xj represents the input features and yj is the ground-truth label
for j-th data point and ni represent the size of the local dataset of client i. The goal is to train a single
global model that minimizes the objective:

min
w∈Rd

N∑
i=1

|Di|
| ∪i∈[N] Di|

Li(w) =
1

|Di|

|Di|∑
j=1

l(w; (xj , yj))

 ,

where Li(w) represents the local loss for client i, and l(w; (xj , yj)) = LCE(Fw(x), y) is the cross-
entropy loss for a single data point, where Fw denotes the model parameterized by learnable weights
w.

FedAvg provides a structured approach to address this distributed problem efficiently. At each
communication round t, the server randomly selects K clients from the total available N clients.
These clients (denoted with St) receive the previous global model, wt−1. Then, they update this
model based on their local data using their local loss function Li. After updating, each client sends
their modified model wk,t back to the server that updates the global model using a weighted average
of local models, i.e., wt =

∑
k∈St

|Dk|wk,t

|∪k∈[K]Dk| . Various FL algorithms introduce modifications at the
local update level or during the global aggregation to accommodate the intrinsic heterogeneity in
client data. The nuances of these variations are further explored in § 6.

Among these, Knowledge Distillation (KD) is a training method wherein a smaller model, referred
to as the student, is trained to reproduce the behavior of a more complex model or ensemble called
the teacher. Let Fws denote the student model with weights ws and Fwt represent the teacher model
with weights wt. For a given input x, the student aims to minimize the following distillation loss:

LKD((x, y);ws, wt) = LCE(Fws(x), y)(1− α)

+LKL(Fwt
(x), Fws

(x))α
(1)

Here, LCE is the standard cross-entropy loss with true label y, and LKL represents the Kullback-
Leibler (KL) divergence between the teacher’s and the student’s output probabilities. It is defined as
LKL(p, q) =

∑C
c=1 p

c log
(

pc

qc

)
, where C is the number of classes, p is the target output probability

vector, and q is the predicted output probability vector. The hyperparameter α ∈ [0, 1] balances the
importance between the learning from the true labels and the teacher’s outputs.

While distillation originally emerged as a method for model compression Hinton et al. (2015); Buciluǎ
et al. (2006); Schmidhuber (1991), its utility extends to FL. In the federated context, distillation can
combat challenges like data heterogeneity Lin et al. (2020); Lee et al. (2021) and communication
efficiency Jeong et al. (2018).

3 FORGETTING IN FL

We now investigate where forgetting happens and devise a metric to quantify this phenomenon. Recall
that in FL, the models are updated in two distinct phases: 1) during local training – when each client
k starts from global model wt−1 and locally trains wk,t – and 2) during the aggregation step – when
the server combines the client models to update the new global model wt.

Intuitively, forgetting in FL is when knowledge contained in the global model will be lost after the
completion of communication round wt−1 → wt. We observe that forgetting may occur in the two
phases of FL. We refer to the former case as local forgetting, where some knowledge in the global
model will be lost during the local training wt−1 → wk,t. This is due to optimizing for the clients’
local objectives, which depend on their datasets. Local forgetting is akin to the form of forgetting seen
in CL, where tasks change over time (as with clients in FL) and, consequently, the data distribution.
We refer to the latter case as aggregation forgetting, where some knowledge contained in the clients’
model updates will be lost during aggregation

∑
{wk,t | k ∈ St} → wt. This might be due to the

coordinate-wise aggregation of weights as opposed to matched averaging in the parameter space of
DNNs (Wang et al., 2020a).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: Local (client) & aggregation forgetting in some of the baselines using CIFAR10. The
first row represents the global model per-class test accuracy at round t − 1; then, the rows in the
middle are all the clients that participated in round t, and finally, in the last row, the global model
at the end of round t. Local forgetting happens when clients at round t lose the knowledge that the
global model had at round t− 1 (example highlighted in brown). The aggregation forgetting happens
when the global model at round t loses the knowledge that in the clients’ models at round t (example
highlighted in red).

We illustrate forgetting in Fig. 2 based on actual experiments with several baseline methods. Given
round t, the figure shows the per-class accuracy of the global model wt−1, all local models wk,t, and
the new global model wt for four different methods. The local forgetting is evident in the drop in
accuracy (lighter shade of blue) of the local models wk,t compared to the global model wt−1. The
aggregation forgetting is evident in the drop in accuracy of the global model wt compared to the
local models wk,t. The figure also previews a result of our method, Flashback, which significantly
mitigates forgetting. In summary, local and aggregation forgetting lead to the main forgetting problem
in FL, which we term both as round forgetting, affecting wt−1 → wt.

In CL, forgetting is often quantified using Backward Transfer (BwT) (Chaudhry et al., 2018). FedNTD
(Lee et al., 2021) adapted this metric, i.e., the forgetting score F , for FL as follows:

F = 1
C

∑C
c=1 argmaxt∈1,T−1(A

c
t −Ac

T), (2)
where C is the number of classes and Ac

t is the global model accuracy on class c at round t.

However, F is a coarse-grain score that evaluates forgetting in aggregate across all rounds. We
seek a finer-grain metric that measures forgetting round-by-round. Furthermore, we wish to account
for knowledge replacement scenarios, such as when a decline in accuracy for one class might be
accompanied by an increase in another, essentially masking the negative impact of forgetting in
aggregate measures. Thus, for our evaluation results (§ 5), we propose to measure round forgetting
by focusing only on drops in accuracy using the following metric:

Ft = − 1
C

∑C
c=1 min(0, (Ac

t −Ac
t−1))

where t > 1 is the round at which forgetting is measured.

Our metric accounts for the pitfalls of the previously proposed forgetting metric. It discounts
knowledge replacement scenarios that can happen between rounds by only focusing on the negative
changes in accuracy. Furthermore, it provides a granular view of forgetting because it measures round
forgetting (whereas Eq. (2) measures the global model forgetting at the end of training).

4 FLASHBACK: FORGETTING ROBUST FL

Our key idea to mitigate round forgetting is to leverage a dynamic form of knowledge distillation,
which is fine-tuned in response to the evolving knowledge captured by the different models in the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Flashback algorithm.

input Initial global model w0, number of rounds T , fraction of clients R, minibatch size B, number
of local epochs E, number of server epochs Es, learning rate η

output global model wT

1: π = 0 ∈ RC // Global model’s label count vector
2: for t = 1 to T do
3: St ← Randomly select ⌈R ·N⌉ clients
4: for each client k ∈ St do
5: wk,t ← wt−1 // Initialize local model with current global model
6: Compute α with ν as the local label count and a single teacher µ← π
7: Update wk,t using dKD loss LdKD for E epochs
8: end for
9: mt ←

∑
k∈St nk // Total data points in this round

10: wt ←
∑

k∈St
nk

mt
wk,t // Average to obtain the new global model

11: T← {wk,t | k ∈ St} ∪ {wt−1}
12: Compute α with ν ← π and µi as the label count ∀wi ∈ T
13: Update wt using dKD loss LdKD for Es epochs
14: rk ← (Increment rk for every client k ∈ St)
15: for each client k ∈ St do
16: if γrk ≤ 1 then
17: π ← π + γµk // Update participation count for client k ∈ St
18: end if
19: end for
20: end for

training process. During local training, distillation ensures that each local model learns from the
client’s local dataset while retaining knowledge from the current global model. On the server side,
after the clients’ updates, Flashback begins by aggregating the locally updated models—much in the
vein of FedAvg. Then, Flashback distills the knowledge of the freshly updated global model using
our dynamic distillation approach, learning from both its immediate predecessor—the global model
obtained at the previous round—and the ensemble of locally updated models, which all play the
role of teachers. The Flashback algorithm is detailed in Algorithm 1. The remainder of this section
discusses our distillation approach in more detail.

4.1 DYNAMIC DISTILLATION

As established in § 3, a client’s local model can forget and override model knowledge with what is
present in its private data. Moreover, the global model can be imperfect for two reasons: i) As we
established before, the global model is susceptible to forgetting in the aggregation step. ii) Assuming
no forgetting in the aggregation step, the knowledge contained in the clients who participated so far
might not represent all the available knowledge, especially in the early rounds. Overall, both local
models and the global model can be imperfect. Therefore, the logits of all the different classes cannot
be treated equally (as in Eq. (1)), and the distillation loss has to adapt to the model’s knowledge.

We propose using the label count to approximate the knowledge within a model. Here, the label
count refers to the occurrences of each class in the training data that the model saw during training.
In machine learning, a model’s knowledge is fundamentally tied to the data it has been exposed
to. If certain classes have higher representation (or label counts) in the training data, it’s intuitive
that the model would have more opportunities to learn the distinguishing features of such classes.
Conversely, underrepresented classes might not offer the model sufficient exposure to learn their
nuances effectively.

Our experimental results suggest that per-class performance on the test set correlates highly with
the label counts in the training data. In scenarios where certain classes were more abundant, the
model demonstrated higher proficiency in predicting those classes on the test set. As an example,
Fig. 8 in the appendix illustrates for a randomly chosen client that the client’s model performance on
the test set well reflects the label count distribution of its private data. We conclude from this and
many similar observations that the label count can indicate a model’s knowledge. Furthermore, in

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Appendix B we discuss a possible alternative to label count, which may be useful when label count
can not be shared.

In standard knowledge distillation (Eq. (1)), all logits are treated equally since it is assumed that the
teacher model has been trained on a balanced dataset. Owing to the heterogeneity of data distribution
in local datasets, this assumption does not hold in FL. As a result, we cannot directly treat the current
global model nor the local model updates as equally reliable teachers across all classes. Instead, we
propose weighting the logits using the label count to approximate the per-class knowledge within a
model.

We now revisit the distillation loss in Eq. (1) and transform the scalar α to a matrix form that is
automatically tuned according to the label count of both the student and the teachers and used directly
within the KL divergence loss. Namely, the dynamic α parameter (defined below) will change during
the training as the label counts change. Flashback maintains the global model counts over the rounds;
this mechanism is detailed in the next section.

We consider a single student model Fws
with weights ws and a set T of K teacher models; the i-th

teacher model is denoted as Fwi with weights wi. Let ν ∈ RC be the relative label count vector
of the student model, where νc is the relative occurrences of class c in the dataset. Similarly, let
µi ∈ RC be the relative label count vector of the i-th teacher model.

The dynamic α ∈ [0, 1]K×C is defined as [α⊺
1 , . . . ,α

⊺
K], with αc

i =
µc
i

νc+
∑

k µc
k

.

Then, we embed α directly in the KL divergence loss (LKL in Eq. (1)) as follows:

LdKL(p, q;αi) =

C∑
c=1

αc
i · pc log

(
pc

qc

)
Similar to standard distillation, to account for the student model knowledge with respect to the
ground-truth class y, we define αc

s =
νc

νc+
∑

k µc
k

. Thus, αc
s +

∑K
k=1 α

c
k = 1 for all classes c ∈ [C].

Finally, the dynamic knowledge distillation loss (LdKD) is:

LdKD((x, y);ws,T,α) = αy
sLCE(Fws(x), y)

+
∑
wi∈T

LdKL(Fwi
(x), Fws

(x);αi) (3)

The dynamic α will weigh the divergence between the logits of different classes, making the student
model focus more on learning from the teacher’s strengths while being cautious of its weaknesses.
This is important in FL because of the data heterogeneity problem. For instance, the global model
may not encounter certain classes in the initial training rounds. Our distillation approach assigns a
zero weight to the divergence of these classes, shielding the client model from adopting unreliable
knowledge from the global model. Similarly, if a client possesses significantly larger data for a
specific class than the global model has encountered, the weight assigned to that class’s divergence
will be small. This implies that the client’s model remains more grounded in classes where it has
more comprehensive data.

An interesting property of our distillation is that it will ignore the global model as a teacher in the
first communication round. Since the initial global model label counts are all zeros, Eq. (3) reduces
to just the cross-entropy: LdKD = LCE.

4.2 ESTIMATING THE GLOBAL MODEL KNOWLEDGE

Note that to apply the dynamic distillation loss Eq. (3), we must obtain the student’s and teachers’
label count vectors. While the label count of local models can be easily obtained (from the class
frequency of local datasets), the label count of the global model is not readily available. We construct
π, the global model’s relative label count, as follows. Let rk denote the number of rounds in which
client k participated in the training. For every client k that participates at round t, Flashback adds a
fraction γ ∈ (0, 1] of client k’s label count (µk) to π, unless γrk > 1, in which case π is not updated
based on k’s label count. The latter case means that client k has participated enough times that its
label count is fully accounted for in π.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

FedAvg
FedDF

FedNTD
FedReg

FedProx
MOON

Flashback
Central

0 10 20 30 40 50
Number of Rounds

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

(a) CIFAR10.

0 10 20 30 40 50
Number of Rounds

0.1

0.2

0.3

0.4

Te
st

 A
cc

ur
ac

y

(b) CINIC10.

0 10 20 30 40 50
Number of Rounds

0.0

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

(c) FEMNIST.

Figure 3: Round-to-accuracy performance of Flashback and other baselines over training rounds.

Intuitively, the parameter γ indicates the rate at which we rely on the global model. When γ is set to 1,
it implies complete trust in the global model’s ability to incorporate the clients’ knowledge after just
one round of participation. However, expecting such immediate and full assimilation is unrealistic, so
we typically set γ < 1. The gradual build-up of the global label count plays a vital role in maintaining
a balanced distillation in Eq. (3) during local updates. This progressive approach mirrors our growing
trust in the global model’s capabilities. It prevents the risk of assigning excessively high weights too
soon, which could otherwise hurt the learning process.

5 EXPERIMENTS & RESULTS

We outline and analyze our experimental findings to investigate whether mitigating round forgetting
successfully addresses the slow and unstable convergence issues due to forgetting problems as laid out
in § 1. The experimental results stem from three settings: CIFAR10 (Krizhevsky, 2009) and CINIC10
(Darlow et al., 2018), where heterogeneous data partitions are created using Dirichlet distribution with
β = 0.1 and FEMNIST (Caldas et al., 2019) with 3,432 clients, following the natural heterogeneity of
the dataset. Furthermore, we do an ablation study on the different components of the algorithm. We
use the same neural network architecture used in (Lee et al., 2021; McMahan et al., 2017), a 2-layer
Convolutional Neural Network (CNN). Summaries of the datasets, partitions, and more details on the
experimental setup are reported in Appendix D.

We compare Flashback against several baseline methods, namely: 1) FedAvg (McMahan et al., 2017),
2) FedDF (Lin et al., 2020), 3) FedNTD (Lee et al., 2021), 4) FedProx (Li et al., 2020), 5) FedReg (Xu
et al., 2022), 6) MOON (Li et al., 2021b). It is noteworthy that both FedNTD and FedReg target
forgetting in FL (discussed further in Appendix F). Flashback’s server-side distillation is performed
until early stopping is triggered on the public validation set (details in Appendix D). Moreover,
Flashback only introduces one additional hyperparameter γ, representing how fast trust is built in the
global model. We analyze the effect of γ in Appendix E. We first evaluate Flashback performance by
showing round-to-accuracy, round forgetting, and the local-global loss over the rounds. Moreover,
we show additional results that explores various aspects of Flashback and show its soundness in
Appendix E.

Table 1: Number of rounds to accuracy Ax = A · x where A is the target accuracy and x is a fraction.

CIFAR10, A = 48.2% CINIC10, A = 43.5% FEMNIST, A = 69.5%
A0.5 A0.75 A0.95 A0.5 A0.75 A0.95 A0.5 A0.75 A0.95

FedAvg 12 82 - 13 - - 49 75 138
FedDF 7 40 112 2 30 - - - -
FedNTD 12 41 112 13 46 - - - -
FedProx 35 93 - 13 - - 142 - -
FedReg 35 108 - 16 - - - - -
MOON 82 - - 124 - - - - -

Flashback 2 4 10 4 5 6 3 5 16

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

FedAvg
FedDF

FedNTD
FedReg

FedProx
MOON

Flashback

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Round Forgetting

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

(a) CIFAR10.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Round Forgetting

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

(b) CINIC10.

Figure 4: Distribution of round forgetting of Flashback compared to other baselines.

FedAvg
FedDF

FedNTD
Flashback

Local Models Global Model

0 5 10 15 20 25
Rounds

2

4

6

Lo
ss

(a) CIFAR10.

0 5 10 15 20 25
Rounds

2

4

6

Lo
ss

(b) CINIC10.

Figure 5: Transition of local models loss to the global model loss over the rounds.

Improved round-to-accuracy. We evaluate the learning efficiency of Flashback and other baselines
by showing the accuracy over rounds in Fig. 3; we include the result of central training on the public
dataset. Flashback consistently shows faster convergence and high accuracy. Furthermore, we show
the number of rounds it takes to reach a target accuracy and fractions of that target accuracy in
Table 1. This indicates that addressing local forgetting and aggregation forgetting does provide
training stability and, indeed, a faster convergence.

Reduced round forgetting. We show the empirical cumulative distribution function (ECDF) of
the round forgetting in Fig. 4. We see that Flashback successfully reduces round forgetting. Also,
FedNTD has less round forgetting than the remaining baselines. In the appendix, we show the round
forgetting over the rounds (Fig. 14).

Minimizing local models’ divergence. To further understand the effect of Flashback on the training
behavior, we show the transition of the mean loss of the local models to the loss of the global model
over the rounds in Fig. 5. This gives us an insight into the effect of the regularization made by our
dynamic distillation. We see that the mean loss of the local models of the other baselines always
spikes, signifying a divergence of these models from the global training objective, while Flashback
has a much more stable loss. This shows that Eq. (3) regularizes the local models well such that they
do not diverge too much from the global training objective.

In the following, we delve deeper into Flashback to understand its behavior and validate its perfor-
mance gains.

Training on the public dataset. We conduct experiments to answer the following question: does
the performance improvement of Flashback come from the fact that we train the global model on a
labeled public dataset? To answer this question, we create a naı̈ve baseline, where we extend FedAvg

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 25 50 75 100 125 150 175 200
Number of Rounds

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

Flashback FedAvg & Finetuning after aggregation
0 5 10 15 20 25

Rounds

2

4

6

8

10

12

Lo
ss

Figure 6: Comparing Flashback to FedAvg with fine-tuning: (left) test accuracy over 3 runs on
CIFAR10; (right) the transition of the local models’ loss to the global model loss over the rounds.

to fine-tune the global model using the labeled public dataset after the aggregation step at every
communication round. From Fig. 6, we see that FedAvg with fine-tuning quickly reaches a stale
model and eventually collapses. We believe this collapse happens due to the local models diverging
too much after the local update such that the aggregation of those models would fail. This is evident
by the spike of the local model’s loss in the round-loss plot on the left.

6 RELATED WORK

Federated learning. FL is commonly viewed as an ML paradigm wherein a server distributes the
training process on a set of decentralized participants that train a shared global model using local
datasets that are never shared (Konečnỳ et al., 2015; Shokri & Shmatikov, 2015; Konečnỳ et al., 2016;
Li et al., 2020; McMahan et al., 2017; Kairouz et al., 2021). FL has been used to enhance prediction
quality for virtual keyboards among other applications (Bonawitz et al., 2019; Yang et al., 2018). A
number of FL frameworks have facilitated research in this area (Caldas et al., 2019; OpenMined,
2020; tensorflow.org, 2020; Abdelmoniem et al., 2023).
Heterogeneity in FL. A key challenge in FL systems is uncertainties stemming from learner, system,
and data heterogeneity. The non-IID distributions of Learners’ data can significantly slow down
convergence (McMahan et al., 2017; Kairouz et al., 2021) and several algorithms are proposed as
means of mitigation (Fourati et al., 2023; Wang et al., 2020b; Karimireddy et al., 2020; Li et al., 2020;
2021a).

Forgetting in FL. Forgetting in FL has been explored in several studies, though many have limitations
in addressing the full scope of the issue. We discuss in detail the main baselines that tackle forgetting
in Appendix F. Luo, Kangyang, et al. (Luo et al., 2023) discuss forgetting due to local updates.
Similarly, (Liu et al., 2022) tackles the problem of learning personalized models without forgetting
what the global model has learned by using knowledge distillation. However, these approaches focus
on the local update without addressing forgetting at the aggregation step. On the other hand, (Huang
et al., 2022) focuses on domain shifts and clients with different data domains, aiming for personalized
models rather than a global model. (Qu et al., 2022) investigate the convergence behavior and
forgetting of Transformers compared to other architectures used in FL. Their experiments show that
Transformers are robust to data heterogeneity. While these works address client heterogeneity, they
do not delve into the forgetting issue in FL.

Overall, there is no investigation or exploration of what forgetting in FL entails. In Flashback,
we provide a detailed analysis of forgetting in FL, demonstrating where and why it happens, and
propose a metric to measure forgetting. Unlike previous works, which focus on client-side forgetting,
Flashback addresses forgetting as a compound problem that occurs both at the local update and the
aggregation step, suggesting it must be tackled at both levels.

7 CONCLUSION

We explored the phenomenon of forgetting in FL. Our investigation revealed that forgetting occurs
during both the local update and the aggregation step of FL algorithms. We presented Flashback,
a novel FL algorithm explicitly designed to counteract round forgetting by employing dynamic
knowledge distillation. Our approach leverages data label counts as a proxy for knowledge, ensuring

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

a more targeted and effective forgetting mitigation. Our empirical results showed Flashback’s efficacy
in mitigating round forgetting, thereby supporting the hypothesis that the observed slow and unstable
convergence in FL algorithms is closely linked to forgetting. This result underlines the importance of
addressing forgetting, paving the way for advancing more robust and efficient FL algorithms.

Flashback Limitation. In this work, we focused on forgetting caused by data heterogeneity man-
ifested by heterogeneity in the class distribution of clients. In the future, we look to investigate
forgetting under other types of heterogeneity. Moreover, Flashback mainly uses label count to approx-
imate knowledge, which could pose privacy challenges in certain scenarios. We discuss a possible
alternative in Appendix B. As for computational overhead, Flashback adds 1 additional forward pass
per iteration similar to FedNTD (Lee et al., 2021) and less than MOON (Li et al., 2021b), which adds
2 forward passes.

REFERENCES

Ahmed M. Abdelmoniem, Atal Narayan Sahu, Marco Canini, and Suhaib A. Fahmy. REFL: Resource-
Efficient Federated Learning. In ACM EuroSys, 2023.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir
Ivanov, Chloé Kiddon, Jakub Konečný, Stefano Mazzocchi, Brendan McMahan, Timon
Van Overveldt, David Petrou, Daniel Ramage, and Jason Roselander. Towards Federated Learning
at Scale: System Design. In MLSys, 2019.

Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In KDD, 2006.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečný, H. Brendan
McMahan, Virginia Smith, and Ameet Talwalkar. LEAF: A Benchmark for Federated Settings. In
Workshop on Federated Learning for Data Privacy and Confidentiality, 2019.

Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian
walk for incremental learning: Understanding forgetting and intransigence. In Proceedings of the
European conference on computer vision (ECCV), 2018.

Luke N Darlow, Elliot J Crowley, Antreas Antoniou, and Amos J Storkey. Cinic-10 is not imagenet
or cifar-10. arXiv preprint arXiv:1810.03505, 2018.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
tasks. IEEE transactions on pattern analysis and machine intelligence, 2021.

Fares Fourati, Salma Kharrat, Vaneet Aggarwal, Mohamed-Slim Alouini, and Marco Canini. FilFL:
Accelerating Federated Learning via Client Filtering, 2023. URL https://arxiv.org/abs/
2302.06599.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.

Wenke Huang, Mang Ye, and Bo Du. Learn from others and be yourself in heterogeneous federated
learning. In Conference on Computer Vision and Pattern Recognition, 2022.

Eunjeong Jeong, Seungeun Oh, Hyesung Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun Kim.
Communication-Efficient On-Device machine learning: Federated distillation and augmentation
under Non-IID private data. 2018.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and trends® in machine learning,
14(1–2):1–210, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International conference on machine learning, pp. 5132–5143, 2020.

10

https://arxiv.org/abs/2302.06599
https://arxiv.org/abs/2302.06599

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Jakub Konečnỳ, Brendan McMahan, and Daniel Ramage. Federated optimization: Distributed
optimization beyond the datacenter. arXiv preprint arXiv:1511.03575, 2015.

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009.

Gihun Lee, Minchan Jeong, Yongjin Shin, Sangmin Bae, and Se-Young Yun. Preservation of the
global knowledge by Not-True distillation in federated learning. 2021.

Li Li, Moming Duan, Duo Liu, Yu Zhang, Ao Ren, Xianzhang Chen, Yujuan Tan, and Chengliang
Wang. FedSAE: A Novel Self-Adaptive Federated Learning Framework in Heterogeneous Systems.
In IJCNN, 2021a.

Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In Conference on
computer vision and pattern recognition, 2021b.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine learning and systems,
2020.

Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust model
fusion in federated learning. Advances in Neural Information Processing Systems, 2020.

Shunjian Liu, Xinxin Feng, and Haifeng Zheng. Overcoming forgetting in local adaptation of
federated learning model. In Pacific-Asia Conference on Knowledge Discovery and Data Mining,
pp. 613–625. Springer, 2022.

Kangyang Luo, Xiang Li, Yunshi Lan, and Ming Gao. Gradma: A gradient-memory-based accelerated
federated learning with alleviated catastrophic forgetting. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 3708–3717, 2023.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-Efficient Learning of Deep Networks from Decentralized Data. In Aarti Singh
and Jerry Zhu (eds.), AISTATS, 2017.

OpenMined. Syft + grid provides secure and private deep learning in python, 2020. URL https:
//github.com/OpenMined/PySyft.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural networks, 2019.

Liangqiong Qu, Yuyin Zhou, Paul Pu Liang, Yingda Xia, Feifei Wang, Ehsan Adeli, Li Fei-Fei,
and Daniel Rubin. Rethinking architecture design for tackling data heterogeneity in federated
learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 10061–10071, 2022.

Jürgen Schmidhuber. Neural sequence chunkers. Inst. für Informatik, 1991.

Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In Proceedings of the 22nd
ACM SIGSAC conference on computer and communications security, pp. 1310–1321, 2015.

tensorflow.org. Tensorflow federated: Machine learning on decentralized data, 2020. URL https:
//www.tensorflow.org/federated.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni.
Federated learning with matched averaging. arXiv preprint arXiv:2002.06440, 2020a.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent Poor. Tackling the objective
inconsistency problem in heterogeneous federated optimization. In NeurIPS, 2020b.

11

https://github.com/OpenMined/PySyft
https://github.com/OpenMined/PySyft
https://www.tensorflow.org/federated
https://www.tensorflow.org/federated

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Chencheng Xu, Zhiwei Hong, Minlie Huang, and Tao Jiang. Acceleration of federated learning with
alleviated forgetting in local training. arXiv preprint arXiv:2203.02645, 2022.

Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas Kong, Daniel
Ramage, and Françoise Beaufays. Applied Federated Learning: Improving Google Keyboard
Query Suggestions, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Clients

0
1
2
3
4
5
6
7
8
9

La
be

ls

(a) CIFAR10, Dir(β = 0.1)

0 25 50 75 100 125 150 175 200
Clients

0
1
2
3
4
5
6
7
8
9

La
be

ls

(b) CINIC10, Dir(β = 0.1)

Clients

La
be

ls

0

10

20

30

(c) FEMNIST with 3432 clients

Figure 7: Clients data distribution. The x-axis is the clients and the y-axis is the labels.

A LABEL COUNT MOTIVATION

Fig. 8 shows, on the left, the per-class accuracy of a randomly-chosen example client from a FedAvg
training experiment. On the right, the figure shows the corresponding label count at the client. This
example suggests that label count can be representative of the model performance.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7 8 9
Per-class Accuracy

0
13
73

127
156Ro

un
ds

Client model per-class accuracy over rounds

0.0

0.5

1.0

0 1 2 3 4 5 6 7 8 9
Classes

Client label count

0

200

400

Figure 8: (left) Per-class accuracy of a client model on all the rounds where it participated. (right)
Data distribution of that client.

0.0 0.2 0.4 0.6 0.8 1.0
Label Count

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Pr
ob

ab
ilit

y

Label Count vs Average Probability by Class
Class 0
Class 1
Class 2
Class 3
Class 4
Class 5

Class 6
Class 7
Class 8
Class 9
x=y
Fit Line

Figure 9: Label count of a class normalized by the maximum count of the given class, versus the
average probability of a class obtained via a client model after a local update.

B KNOWLEDGE APPROXIMATION

Flashback uses the label count of clients as a simple way to approximate the knowledge of the client’s
models. However, using the label count may raise privacy concerns. In this section, we discuss
another possible way of approximating knowledge.

Similar to the label count, intuitively the average output probability (logits) of a model can be used
to approximate its learned knowledge. To validate this conjecture, we conduct a simple experiment
to look at how similar the average probabilities of the client’s models –obtained via FedAvg– to
their respective label count. Specifically, we computed the logits of all the models obtained after
each client update in the first 30 rounds on the public training set. In Fig. 9 we observe a correlation
between the average probability of the classes and their count. However, the intensity of weights
given by average probabilities will be different than the label count. As a result, the γ parameter of
Flashback needs to be tweaked accordingly.

C FORGETTING IN FEDERATED LEARNING AND CONTINUAL LEARNING

Forgetting is a prominent problem in CL, where tasks change over time, and consequently, the
data distribution, places models at risk of overriding previously learned knowledge. Looking at FL
with the same perspective, we have the intra-round and inter-round data distribution heterogeneity.
Intra-round clients with different data distributions participate, by updating the current global model
weights wt−1. The server obtains a set of {wk,t | k ∈ St} where St is the set of clients participating

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

in round t. The goal is after the aggregation step, a new global model wt is obtained containing all
the knowledge that was present in {wk,t | k ∈ St}. Inter-round the global model wt has learned
knowledge that over the prior rounds 1 . . . t. At each round, different sets of clients participate. The
goal is to carry this knowledge to the next round t+ 1 even though the new set St+1 most likely is
different with respect to the data distribution than the previous set St. Presenting distinct forgetting
challenges in FL compared to CL.

D EXPERIMENTS DETAILS

D.1 DATASETS

In this section, we provide an overview of the datasets used, the data split, and the specific ex-
perimental setups. For each dataset, we perform two sets of experiments to analyze the effects of
data heterogeneity on the algorithms’ performance. The datasets used are CIFAR10, CINIC10, and
FEMNIST.

CIFAR10 (Krizhevsky, 2009). A famous vision dataset that includes 50k training images and
10k testing images. We emulate a realistic, heterogeneous data distribution by using a Dirichlet
distribution with β = 0.1. A β value of 0.1 is chosen to simulate a more heterogeneous, and
challenging data distribution. A 2.5% random sample of the training set creates a public dataset,
further divided into training and validation sets. This yields a very small public training dataset with
size of 1.88%. The remaining 97.5% is distributed among 100 clients, with each client’s data being
split into training (90%) and validation (10%) subsets.

CINIC10 (Darlow et al., 2018). A drop-in replacement of CIFAR10, this dataset comprises 90k
training, 90k validation, and 90k test images. We merge the training and validation sets and adopt a
similar approach as with CIFAR10, taking out 2.5% of the data to be the public dataset, similar to
the CIFAR10 case this 2.5% is further divided into training set and validation set. Then employing
Dirichlet distribution with β value of 0.1 to split the 97.5% remaining data into 200 clients, with each
client’s data further divided into training (90%) and validation (10%) sets.

FEMNIST (Caldas et al., 2019). This federated learning dataset is based on extended MNIST with
natural heterogeneity, where each writer is considered a client. From the 3597 total writers, those
with less than 50 samples are excluded. We randomly selected 150 writers to form a public dataset.
The remaining 3432 writers’ data is divided into train (approx. 70%), validation (approx. 15%), and
test (approx. 15%) sets. The collective test sets from all writers form the overall test set. At every
round, 32 clients are randomly selected for participation.

For CIFAR10 and CINIC10, we chose β values of 0.1 and client participation value of 10. While for
FEMNIST we have 3432 clients (writers) with client participation vale of 32 In all cases, the training
data distribution among clients is illustrated in Fig. 7.

D.2 BASELINES & HYPERPARAMETERS

We evaluate the following algorithms as baselines: 1. FedAvg (McMahan et al., 2017); 2. FedDF (Lin
et al., 2020); 3. FedNTD (Lee et al., 2021); 4. FedProx (Li et al., 2020); 5. FedReg (Xu et al., 2022);
and 6. MOON (Li et al., 2021b) . Both FedNTD and FedReg target forgetting in FL (discussed
in § 6). We use the same neural network architecture that is used in (Lee et al., 2021; McMahan et al.,
2017), which is a 2-layer CNN. Note that for MOON (Li et al., 2021b), we add an additional layer
to the model as described in their source code for the projection head. Moreover, for the optimizer,
learning rate, and model we follow (Lee et al., 2021; McMahan et al., 2017), and when a baseline
has different hyperparameters we use their proposed values. For example, in FedDF the number of
local epochs is set to 40, while in the other baselines and Flashback, it is set to 5 epochs. As for
Flashback hyperparameters, during the server distillation, we train until early stopping gets triggered
using the validation set; we set the label count fraction γ = 0.025 for CIFAR10, i.e., we add 2.5% of
the client label count each time it participates, while we set γ = 0.1 for CINIC10 and FEMNIST. As
for distillation-specific hyperparameters, we have one fewer hyperparameter since α is computed
automatically, and for temperature, we use the standard T = 3.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Only Local Distillation Only Server Distillation Flashback

0 10 20 30 40 50
Number of Rounds

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

0.00 0.05 0.10 0.15 0.20 0.25
Round Forgetting

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Figure 10: Performing distillation at only one side of the algorithm (client & server) on CIFAR10.

Flashback Flashback / NTD @ Local Update FedNTD

0 10 20 30 40 50
Number of Rounds

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

0 5 10 15 20 25
Rounds

1.0

1.5

2.0

2.5

3.0

3.5
Lo

ss

Figure 11: Using NTD loss instead of Flashback’s dynamic distillation at the local update on
CIFAR10.

E ADDITIONAL RESULTS

Dissecting the distillation. To show the importance of performing dynamic distillation during clients’
updates and at the server’s aggregation step, we conduct an experiment where we run Flashback with
local distillation only and with server distillation only (c.f. Fig. 10). We observe that doing dynamic
distillation at either side of the algorithm – client update and aggregation step – doesn’t address
forgetting or gets a similar performance to Flashback.

To validate the importance of dynamic distillation at client- and server sides towards Flashback’s
performance gains, we create a baseline where we replace the local distillation loss with not-true
distillation (NTD) loss (Lee et al., 2021). From Fig. 11, we observe that this baseline doesn’t
perform as well as Flashback, and performs similarly to FedNTD. This indicates that performing the
distillation at the server needs well-regularized local models (teachers), which is further supported by
our previous experiment contrasting Flashback to single-side distillation (c.f. Fig. 10).

Effect of public dataset size. Flashback requires the availability of a public labeled dataset. This
may be a limiting assumption in some cases. To study this limitation, we explore a few scenarios for
the size of the public dataset in Fig. 12: 1) 9000 samples (15% of CIFAR10), 2) 1125 samples (1.88%
of CIFAR10), 3) 1283 samples that have unbalanced class distribution (2.14% of CIFAR10), 4) 450
samples (0.75% of CIFAR10). For all of these scenarios, we train a model centrally on the public
dataset. We find that Flashback can benefit from a large balanced public dataset. Most importantly,
Flashback can work well with a small public dataset (1125 samples is the default in all experiments).
Furthermore, even if the public dataset has a class imbalance Flashback still performs relatively well.
In all of the cases, Flashback always outperforms central training on the public dataset. Overall,
Flashback requires the availability of a public dataset, however, it does not require a huge amount of
data or hard requirements for the class distribution to be very balanced.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Flashback / 1125 / 1.88%
Flashback / 450 / 0.75%
Flashback / 4500 / 7.5%
Flashback / 1283 / 2.14% / Unbalanced Classes

Central / 1504 / 2.51% / Unbalanced Classes
Central / 450 / 0.75%
Central / 4500 / 7.5%
Central / 1125 / 1.88%

0 10 20 30 40 50
Number of Rounds

0.1

0.2

0.3

0.4

0.5

0.6
Te

st
 A

cc
ur

ac
y

Figure 12: Flashback using different public datasets, and the results of central training on public
datasets of different sizes.

 = 0.025
 = 0.001

 = 0.4 = 0.2 = 1.0

0 10 20 30 40 50
Number of Rounds

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

Figure 13: Varying the trust of the global model parameter γ.

The importance of γ. As mentioned, Flashback has a single hyperparameter γ, which dictates
how fast models will trust the global model as a competent teacher. We explore the effect of this
hyperparameter in Fig. 13. We find that setting this parameter to a larger value leads the learning
process to get to a stale solution quickly. This is intuitive since large γ leads the global model label
count to grow faster, therefore, this dominates the loss term in Eq. (3) during both the client- and the
server update. Smaller γ gives the best performance because it gives the local models time to learn
from their own private data by having a small weight to the distillation term in Eq. (3). However,
too small value for γ such as 0.001 slows the training process, since during the local training the
distillation term in Eq. (3) will be very small in the early rounds.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

FedAvg
FedDF

FedNTD
FedReg

FedProx
MOON

Flashback

0 10 20 30 40 50
Number of Rounds

0.0

0.1

0.2

0.3

Ro
un

d
Fo

rg
et

tin
g

(a) CIFAR10.

0 10 20 30 40 50
Number of Rounds

0.0

0.1

0.2

0.3

0.4

Ro
un

d
Fo

rg
et

tin
g

(b) CINIC10.

Figure 14: The round forgetting of Flashback and other baselines over training rounds.

In Fig. 14, we show the round forgetting score computed over the rounds. We see that the baselines
have very flaunting round forgetting score.

In Fig. 15, we show the transition of the average loss of the local models to the global model loss on
the test set. Interestingly, we can see that even though performing local distillation only doesn’t have
the same performance as Flashback, it does mitigate the local forgetting. That is, we do not see a
spike in the loss after the clients perform their local update.

In Fig. 16, we see the ECDF of the round forgetting. The Flashback variant with NTD even shows
worse forgetting than Flashback and FedNTD. Further showing that just performing distillation at
both sides doesn’t address the forgetting problem.

Only Local Distillation
Only Server Distillation

Flashback Local Models Global Model

0 5 10 15 20 25
Rounds

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ss

Figure 15: Performing distillation at only one side of the algorithm (client & server) on CIFAR10.

F EXTENDED RELATED WORK

This section delves deeper into the main forgetting baselines we compare wit FedReg (Xu et al.,
2022) and FedNTD (Lee et al., 2021).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Flashback Flashback / NTD @ Local Update FedNTD

0.00 0.05 0.10 0.15 0.20 0.25
Round Forgetting

0.0

0.2

0.4

0.6

0.8

1.0
Pr

op
or

tio
n

Figure 16: Using Not-True Distillation instead of Flashback’s dynamic distillation at the local update
on CIFAR10.

FedReg (Xu et al., 2022) addresses the issue of slow convergence in FL, asserting it to be a result of
forgetting at the local update phase. They demonstrate this by comparing the loss of the global model
wt−1 on specific client data points with the averaged loss of updated clients’ models {wt,k | k ∈ St}
on the same data points, highlighting a significant increase in the average loss, indicative of forgetting.
However, our work proposes a systematic way of measuring forgetting using a metric designed to
capture it. Furthermore, we show that forgetting doesn’t only occur in the local update and at the
aggregation step (§ 3 and Fig. 2). FedReg proposes to generate fake data that carries the previously
attained knowledge. During the local update, Fast Gradient Sign Method (Goodfellow et al., 2014) is
used to generate these data using the global model wt−1 and the client data. Then, the loss of the
generated data is used to regularize the local update. While FedReg employs regularization using
synthetic data during local updates, our work, Flashback, leverages dynamic distillation to ensure
knowledge retention at both local updates and aggregation steps.

FedNTD (Lee et al., 2021) makes a connection between CL and FL, suggesting that forgetting happens
in FL as well. Similarly to FedReg, their analysis shows that forgetting happens at the local update,
where global knowledge outside of the client’s local distribution is susceptible to forgetting. To address
this, they propose to use a new variant of distillation Eq. (1) named Not-True Distillation (NTD),
that masks the ground-truth class logits in the KL divergence as LKL(p, q) =

∑C
i=c,c ̸=y p

c log(p
c

qc),
where y is the ground-truth class. NTD is used at the local update, while all the other steps in the
algorithm remain the same as FedAvg. FedNTD aims to preserve global knowledge during local
updates.

Both FedReg and FedNTD diagnose the issue of forgetting primarily within the realm of local updates,
asserting that this stage risks losing valuable global knowledge. Consequently, both works present
innovative solutions specifically tailored to counteract this local update forgetting. However, their
perspective overlooks a pivotal aspect of the forgetting problem: the occurrence of forgetting during
the aggregation step. As we delve into in § 3, this oversight in recognizing and addressing forgetting
during aggregation has repercussions on the later local updates. In contrast, Flashback takes a holistic
approach, comprehensively targeting forgetting across the local updates and the aggregation phase,
leading to faster convergence.

19

