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Abstract

Since the proposal of transformers (Vaswani et al., 2017), these models have
been limited to bounded input lengths, because of their need to attend to every
token in the input. In this work, we propose Unlimiformer: a general approach
that wraps any existing pretrained encoder-decoder transformer, and offloads the
cross-attention computation to a single k-nearest-neighbor (kNN) index, while the
returned KNN distances are the attention dot-product scores. This kNN index can
be kept on either the GPU or CPU memory and queried in sub-linear time; this
way, we can index practically unlimited input sequences, while every attention
head in every decoder layer retrieves its top-k keys, instead of attending to every
key. We evaluate Unlimiformer on several long-document and book-summarization
benchmarks, showing that it can process even 500k token-long inputs from the
BookSum dataset, without any input truncation at test time. We demonstrate that
Unlimiformer improves pretrained models such as BART (Lewis et al., [2020a) and
Longformer (Beltagy et al.| 2020) by extending them to unlimited inputs without
additional learned weights and without modifying their code. Our code and models
are publicly available, and support LLaMA-2 as Welﬂ

1 Introduction

Transformers (Vaswani et al., [2017) have risen as the dominant sequence-to-sequence architecture.
Pretrained transformers generally have a context window of 512 (e.g. BERT (Devlin et al., 2019), T5
(Raffel et al.l|2020)) or 1024 tokens (e.g. BART (Lewis et al.,[2020b))), which are sufficient lengths
for many current conditional generation datasets (XSum; [Narayan et al.,[2018) (CNN/DM; |Nallapati
et al.;|2016). To address inputs between 1024 and 16,384 tokens, specialized long-context models
sparsify or approximate attention (e.g. Longformer (Beltagy et al.,[2020), Performers (Choromanski
et al., 2020)), allowing the maximum input length to quadruple while remaining computationally
feasible. Most long-document summarization and question-answering datasets, such as SCROLLS
(Shaham et al.|[2022), are included in this range.

Yet tasks that involve long narratives, such as book summarization (Kryscinski et al., 2021, can con-
tain inputs exceeding 500k tokens. Figure|l|shows the input lengths of several popular summarization
and question-answering datasets, plotted against common context window lengths; the longest inputs
are more than 34 times longer than Longformer’s context window.

In these extremely-long-input cases, vanilla transformers cannot be simply scaled, as naive self-
attention has quadratic complexity. Long-input transformers usually modify the base architecture,
and thus necessitate re-pre-training the model from scratch, which requires significant computational
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Figure 2: In this example, a given LM’s encoder’s maximum input length is 2 tokens. A 6-token
input is encoded in chunks and indexed in an index. We inject Unlimiformer into each decoder layer
prior to cross-attention. In Unlimiformer, we perform kNN search to select a 2-token context for
each attention head from the index. This makes cross-attention attend to tokens from the entire input
sequence, without adding parameters and without changing the given LM’s architecture.

resources. Other architectures such as Longformer-Encoder-Decoder (LED; [Beltagy et al.,[2020)
can leverage pretrained models, but they still need to further train new position embeddings or global
attention weights, which is computationally and environmentally costly.

We introduce Unlimiformer, a retrieval-based
approach to augment pretrained language mod-

els to accept inputs of unbounded length at test T ioaa tokens
time. Given a long input sequence, Unlimi- --= 1024 tokens
former constructs a k-nearest-neighbor (kKNN)
index over the hidden states of all input tokens.
Then, every standard cross-attention head in ev-
ery decoder layer queries the kNN index, such
that the kNN distances are the attention dot-
product scores, and attends only to the top-% SR I
input tokens. In preliminary experiments, we
found that the top-k attention keys cover more
than 99% of the attention mass, and thus attend-
ing only to the top-k keys is an accurate approx-
imation of the full, exact, attention. Unlimi-
former can be injected into any existing encoder-
decoder transformer to permit unbounded inputs.
The index can be stored in either GPU or CPU
memory, needs to hold only a single vector per
input token, and can be queried in sublinear time.
Unlimiformer is illustrated in Figure 2}
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Figure 1: Long-range transformers can avoid input
truncation in some datasets; however, there are
datasets with inputs many times longer than these
Unlimiformer is a generic approach: it can be models’ maximum input length. The dotted lines
applied to trained models and improve existing represent three common maximum input lengths
checkpoints without adding weights and without  for models; the bars are the average or maximum
further training. When finetuning Unlimiformer, input length in each dataset, as indicated. Averages
performance is even further improved: across for datasets from [Koh et al. (2022).

a variety of long-range datasets, not only that

Unlimiformer performs better than strong long-range transformers such as LED (Beltagy et al.} 2020),

PRIMERA 2022), SLED [2022)) and Memorizing Transformers (Wu et al.,
2022), but Unlimiformer can be applied on fop of such models to further improve them.

2  Unlimiformer

Given a trained encoder-decoder transformer, Unlimiformer allows each cross-attention head to
choose separate keys to attend to from the full-length input, at each decoding step. We inject a kNN



search into each decoder layer: prior to cross-attention, the model performs a nearest-neighbor search
in a kNN index to choose a set of per-decoder-layer per-attention-head tokens to attend to.

2.1 Encoding

To encode an input sequence that is longer than the model’s context window, we use the given model’s
encoder to encode overlapping chunks of the input, following Ivgi et al.|(2022)). We keep only the
middle half of the encoded vectors from each chunk, to ensure that the encodings have sufficient
context on both sides. Finally, we index the encoded inputs in a kNN index, using a library such as
Faiss (Johnson et al.,|2019), using dot-product as the index’s nearest-neighbor similarity metric.

2.2 Retrieval-augmented Cross-Attention

In standard cross-attention, a transformer decoder attends to the encoder’s top-layer hidden states,
where the encoder usually truncates the input and encodes only the & first tokens in the input sequence.

Instead of attending only to this k-token prefix of the input, we retrieve the top-k hidden states from
the kNN index for each cross-attention head, and attend only fo these top-k. This allows retrieval
from the entire input sequence instead of truncating. Our approach is also cheaper, in computation
and GPU-memory, than attending to all input tokens; and because softmax is dominated by the largest
values, retrieving the most-attended tokens preserves the vast majority of attention mass.

Figure [2)illustrates our generic changes to any sequence-to-sequence transformer’s architecture. The
full input is encoded using the encoder in chunks and indexed in a kNN index; then, the index of
encoded hidden states is queried at each decoding step. The kNN search step is non-parametric and
can be injected into any pretrained seq2seq transformer. The search step reformulates attention for
space efficiency, as detailed below.

2.3 Attention reformulation

Let hy be the decoder hidden state and h. be an encoder’s last layer hidden state. The standard
cross-attention computation for a single head in a transformer is:

T
Attn(Q, K, V) = softmax <?/[§>k ) \% )

where () = hgqW, is the product of the decoder states h, and the query weight matrix Wy; the keys
K = h W}, are the product of the last encoder hidden states h. with the key weight matrix Wy; and
V = h.W, is similarly the product of h. with the value weight matrix W,,. Our goal is to retrieve
a set of keys Kpes; that maximize QK ,}’;St, with the size of Kj.s; fixed to the size of the model’s
context window, and then compute the standard attention over Kjs; only.

Note that the linear layers W,, Wy, and W, are layer-specific and head-specific. Thus, naively
creating an index from the keys K = h.W), and querying this index using the query vectors will
require constructing separate indexes for the keys and values at each layer and each head, for a total
of 2 x L x H indexes, where L is the number of decoder layers and H is the number of attention
heads. In fact, this exact naive approach was taken by Memorizing Transformers (Wu et al.||2022),
who pioneered the use of a kNN index for previously encoded inputsE] A separate index for each
attention head in each decoder layer is both time-intensive to create and space-intensive to store. So,
not surprisingly, Wu et al.| (2022) apply their memory layer to only a single decoder layer.

Instead, we present a different order of computing the well-known transformer attention formula,
which allows us to store a single index across all attention heads and all decoder layers, without
changing the mathematical definition of the transformer’s standard dot-product attention. The

3See Memorizing Transformers’ official implementation at https:/github.com/google-research/meliad/
blob/main/transformer/memory_factory.py#L.78-L79 and https://github.com/google-research/meliad/blob/main/
transformer/memory_layer.py#L.334-1.339
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dot-product part of the transformer’s attention computation can be rewritten as followsﬂ

QKT = (haW,) (heWy)" @)
= (deq) WkTheT
= (haW,W,[ ) h."

Thus, the retrieval step can be formulated as choosing the encoder hidden states h that maximize
(dequT ) h.'. This rewriting has two major advantages: first, there is no need to index the keys
for each head and layer separately: we can create a single index of the hidden states h. only, and
just project the queries to hyW,W,| using head-specific and layer-specific W, and W; second, the
values can be calculated trivially given h., so there is no need to store the values in a separate index
from the keys before decoding. Thus, instead of constructing 2 x L x H indexes and retrieving from
all indexes during each decoding step, we construct a single index from h. and retrieve from it by
just projecting the decoder hidden states to per-head per-layer hyW, W,;r .

Using our reformulation, the index stores only a single vector per input token. Using 16-bit floats
and hidden states of size 1024, this requires only 2GB of memory for 1,000,000 input tokens. Since
indexes can be offloaded to the CPU memory, Unlimiformer’s input length is practically unlimited.

3 Training Unlimiformer

Unlimiformer can be used, at test time, with an already-trained model, and lead to gains without
further training, as we show later in Table[3] Next, we turn our focus to training approaches to further
improve the performance of Unlimiformer. Table [I|summarizes and contrasts the training approaches
described below, and Appendix [A]contains further implementation details.

total # tokens in Validation input

Method name Training input  example seen at . Test input

training time (early stopping)

Baseline 1024 1024 1024 1024
+test Unlimiformer 1024 1024 1024 unlimited
+early stop w/ Unlimiformer 1024 1024 unlimited unlimited

Train chunked +test Unlimiformer 1024 all unlimited unlimited

" SLED (Ivgietal.l2022) 16k 16k ] 16k 6k

Longformer (Beltagy et al.|[2020) 16k 16k 16k 16k

Random-encoded training 8-16k 8-16k unlimited unlimited

Retrieval training 8-16k 8-16k unlimited unlimited

Alternating training 8-16k 8-16k unlimited unlimited

Table 1: A comparison of the training approaches using BART (context window size 1024) as a
running example. The dashed line separates methods that are approximately the same training-time
cost as the baseline, from those that require significant additional compute.

3.1 Low (additional-) Cost Training Methods: Applying Unlimiformer at validation or
test-time only

We first consider training approaches that do not require significant additional compute as compared
to the standard finetuning regime.

+test Unlimiformer: As the simplest case, we use a standard fine-tuning regime, where the input is
truncated during training. At inference time only, we inject Unlimiformer into the trained
model to process full-length inputs.

+early stop w/ Unlimiformer: We train without Unlimiformer, but when we evaluate the model for
early stopping, we use Unlimiformer for generation on the validation set. This results in
choosing a slightly different checkpoint to stop training at; the additional computational cost
here is minor, and comes only from the application of Unlimiformer over the validation set.

“For brevity, we omit the linear layers’ bias term, as softmax is invariant to constants added to all inputs.



Train chunked +test Unlimiformer: As a data augmentation approach, we split each training ex-
ample into non-overlapping chunks of the context-window size, and treat each chunk as
its own training example. Then, we finetune the model as normal, with this augmented
set of examples as the training data. This is orthogonal to the Unlimiformer model, but
has the advantage that all tokens from the full-length training example are observed during
training instead of truncated—albeit across several examples. We apply early stopping with
Unlimiformer on the validation set; when validating, we do not chunk inputs.

3.2 Long-range Training Methods: Applying Unlimiformer at training time

We also consider training Unlimiformer directly, which introduces additional computational cost.

Random-encoded training: At each training step, the full (longer-than-context-window) training
example is encoded in chunks; then, the keys for each decoder layer are chosen randomly
from the encoded hidden states. This weakly simulates a nearest-neighbors search, but is
computationally cheaper.

Retrieval training: At each training step, the keys for each decoder head and layer are selected using
a kNN search. When inputs are longer than 16k tokens, we truncated the input to 16k tokens
at training time due to GPU memory requirements. This training approach is the closest to
the test-time computation.

Alternating training: In this approach we alternate batches of Random-encoded training and Re-
trieval training. Retrieval training is identical to the test-time setting, while Random-
encoded introduces regularization that makes the model attend to non-top-k keys as well.

4 Experimental Settings

4.1 Datasets

Avg # tokens
Dataset Domain # examples Input  Output Input length distribution
GovReport Government 19,402 9,616 597 74 =Nl 303192
SummScreen | TV shows 4,348 8,987 137 2365 o 22635
BookSum Literature 436 143,301 1294 388 _Hmin 642376

Table 2: Dataset statistics. The last column is a visualization of the distribution of input example
lengths in each dataset; the histogram is binned by powers of 2, with the minimum and maximum
input size displayed on either end. The dotted line indicates the mean length.

We experiment with two long-document- and one book-summarization datasets from varying domains.
Table [2| summarizes statistics for each dataset. GovReport and SummScreen were taken from the
SCROLLS benchmark (Shaham et al.| [2022). GovReport (Huang et al.,[2021) is a long-document
summarization dataset where the task is to write the executive summary of a US government report.
SummScreen (Chen et al., [2022) is a long-document summarization dataset where the task is to
write the recap of a TV show episode (such as “Friends”), given the transcript of the entire episode.
BookSum (Kryscinski et al.}[2021) is a book-summarization dataset of entire books. BookSum has
paragraph, chapter, and book-level settings; we consider the hardest BOOKSUM-Book setting, where
the task is to generate a book-level summary given the full text of the novel as input.

Metrics We report ROUGE 1/2/L (Lin, [2004) and BERTScore F1 (Zhang et al., 2019). Following
Zhang et al.[(2021), in BookSum we also used Entity Mention Recall (“EntMent”) as a proxy for
the informativeness of the candidate summaries. EntMent measured the fraction of gold entities
mentioned in the candidate summary. Additional evaluation details are provided in Appendix

4.2 Baselines

BART (base) (Lewis et al., 2020b) is a pretrained seq2seq model (139M parameters), commonly
used for summarization tasks. Its maximum input sequence length is 1024 tokens.



Base model  Training method ROUGE 1/2/L/BERTScore
GovReport SummScreen

BARTpase Standard finetuning 48.7/19.2/22.8/643 29.7/6.2/17.7/56.3
BARTpase +test SLED (Ivgi et al.|[2022) 45.8/16.1/20.2/62.7 27.5/5.5/16.7/55.9
BARTp4se +test Unlimiformer 49.7/19.6/22.0/64.8 309/6.5/18.2/57.5
BARTp.6e +early stop w/ Unlimiformer  51.0/20.5/21.5/65.1 32.1/6.8/18.6/57.6
BARTpase Train chunked 46.2/17.8/21.7/63.3 28.1/5.6/17.0/55.6
BARTp.se +test Unlimiformer 53.4/225/225/660 29.3/6.6/17.6/57.0
PRIMERA Standard finetuning 55.1/23.9/259/67.0 323/7.1/18.3/57.1
PRIMERA +test Unlimiformer 56.5/24.8/26.3/67.7 33.3/7.7/19.1/57.6

Table 3: Results on long-document summarization, low-cost training methods: the training costs are
no higher than standard finetuning that truncates the inputs to the model’s max input size. The best
metric in every training category is marked in bold. PRIMERA (Xiao et al.,|2022) is a Longformer-
Encoder-Decoder (Beltagy et al., 2020) with additional summarization-specific pretraining.

PRIMERA (Xiao et al.}|2022) is a Longformer-Encoder-Decoder (LED ,.4c; [Beltagy et al.,{2020)
(447M parameters), pretrained specifically for multi-document summarization, with maximum input
length of 4096 tokens.

SLED (Ivgi et al.| 2022) extends encoder-decoder models for longer contexts by applying fusion
in-decoder (Izacard and Gravel [2021): the long input is encoded in chunks, and the decoder then
attends to all input tokens. This allows the use of pretrained models, albeit with expensive fine-tuning.
The input sequence length is eventually memory bounded.

Memorizing Transformers (Wu et al.,[2022) is the most similar work to ours; they propose extending
a transformer with a trainable attention gate that moderates between the standard cross-attention and
attention over retrieved keys from a datastore. Since their public implementatimf]is “not officially
supported” and is not fully reproducible, we approximated it by using attention over the index in only
a single decoder layer; this is equivalent to their setting with the learned interpolation parameter g set
to 1J°| Our work differs from Memorizing Transformers in several key ways: [Wu et al.|(2022) added
additional weights, and thus cannot easily leverage pretrained LMs, while Unlimiformer is fully
non-parametric and can improve performance without fine-tuning; further,|Wu et al.|(2022) applies
retrieval attention to only a single layer because of computational constraints, while our attention
reformulation enables the use of Unlimiformer in every decoder layer with individualized retrieval
per-head, while still being more efficient than Memorizing Transformers, as we detail in Section[2.3]

5 Results

5.1 Long Document Summarization

Low-cost training Table E] shows the results in the long-document summarization datasets. First,
we can see that applying Unlimiformer on an existing checkpoint without any training (+test Unlimi-
former) improves BART}, by, for example, 1.8 ROUGE-1 points on both datasets, and improves
PRIMERA by 1-1.4 ROUGE-1 points. In contrast, without additional training, SLED decreases
performance. Thus, Unlimiformer is the only model that can provide benefits without further training.

Early stop w/ Unlimiformer further improves the base model without any special training: it provides,
for example, 3.3 ROUGE-1 points gain on GovReport, while the training computational cost is
identical to standard finetuning. Train chunked does not provide benefits on its own; however
injecting Unlimiformer applied at test time results in the most significant gains: 7.2 ROUGE-1 and 3
BERTScore points improvements, while training is as computationally cheap as standard finetuning.

>https://github.com/google-research/meliad
SWau et al.|(2022) note that in their experiments that most heads learned a value for g such that they attended
“almost exclusively” to the external memory.
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Base model

Training method

ROUGE 1/2/L /BERTScore

GovReport SummScreen
BARTp e Standard finetuning 48.7/19.2/22.8/643 29.7/62/17.7/56.3
BARTp s SLED (Ivgietall}2022)  54.7/24.4/254/67.0 32.7/7.9/19.1/58.4
BARTy 5e Memorizing transformers  55.2/25.1/26.4/67.5 32.7/7.4/19.2/57.4
BARTp,sc Unlimiformer (this work) 56.6/26.3/27.6/68.2 34.7/8.5/19.9/58.5
PRIMERA  Standard finetuning 55.1/239/259/67.0 323/7.1/18.3/57.1
PRIMERA Memorizing transformers 57.0/25.3/26.5/67.7 33.0/7.3/18.4/57.3
PRIMERA  Unlimiformer (this work) 57.4/26.2/28.0/68.1 33.3/7.6/18.9/57.7

Table 4: Test results on long-document datasets, when allowing compute-costly, long-range training
methods, using different base models. The best metric in every dataset and every training category
is marked in bold. The Unlimiformer results in this table are from using the alternating training
strategy.

Base model Training method ROUGE 1/2/L EntMent
BARTL,se Hierarchical (Kryscinski et al.,[2021) 30.0/6.0/11.0 -
BARThase Standard finetuning 364/7.6/15.3 10.0
BARTp ;s +test Unlimiformer 355/7.7/154 219
BARTp .5 +early stop w/ Unlimiformer 3557777154 219
BART},se Memorizing Transformers 35.6/6.4/14.6 10.1
BARTse Unlimiformer (retrieval training) 36.8/8.3/15.7 20.3
BARThase Unlimiformer (random-encoded training) 37.3/6.7/15.2 20.8
BARTpase Unlimiformer (alternating training) 36.7/7.3/15.5 20.3
PRIMERA Standard finetuning 38.6/7.2/15.6 11.6
PRIMERA +test Unlimiformer 38.3/7.5/15.9 18.9
PRIMERA +early stop w/ Unlimiformer 395/7.3/158 222
PRIMERA  Unlimiformer (retrieval training) 379/82/16.3 255
PRIMERA  Unlimiformer (random-encoded training) 39.5/7.1/15.9 19.7
PRIMERA  Unlimiformer (alternating training) 38.2/7.1/16.0 234

Table 5: Results on BookSum (average input length ~ 143k tokens). EntMent is entity recall. Hierar-
chical summarization is a baseline reported by Kryscinski et al. (2021), where chapter summaries are
condensed to form a book summary. The best metric in every dataset is marked in bold.

Long-range training Table 4 shows results when allowing computationally expensive training
approaches. As shown, in almost all metrics and datasets, Unlimiformer outperforms the SLED and
Memorizing Transformers baselines when using the same base model.

The PRIMERA experiments in Table @] highlight two important points: first, Unlimiformer+BARTpqse
performs better than the base PRIMERA across all metrics and datasets, even though PRIMERA is
larger and was pretrained on much more data, using a pretraining objective that was designed for
summarization; second, not only can Unlimiformer outperform Longformer-based models such as
PRIMERA, Unlimiformer can also be applied on top of existing long-range transformers and further
improve them: Unlimiformer+PRIMERA improves over PRIMERA across all metrics and datasets.
Additional results on the validation set are provided in Appendix [E]

5.2 Book Summarization

TableE] shows the result on BookSum. As shown, Unlimiformer improves both base models BART5¢
and PRIMERA, in both low-cost training approaches such as Early stop w/ Unlimiformer, as well as
in the long-range training approaches. Random-encoded-, Retrieval-, and Alternating- training show
competitive performance, with the best method varying across datasets and models.

We found that although Unlimiformer outperforms all base models on BookSum (Table [3)), the base
BART (Standard finetuning, which truncates the input to the first 1024 tokens) shows competitive
ROUGE and BERTScore metrics. This is strongly counterintuitive for book summarization, where
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Figure 3: As the maximum datastore size in- Figure 4: As the maximum datastore size in-
creases, the entity recall generally increases. At  creases, the inference cost increases sublinearly.
all datastore sizes, Unlimiformer outperforms  The plot shows total wall-clock inference time
the baseline (BART, in red). per example.

the book’s plot should not be apparent from reading only the first pages. In the outputs from this base
model, we observe limited coherence and a high rate of hallucination (see Appendix [F]for an example
with analysis). However, this is not reflected in n-gram-based overlaps, and BERTScore does not
strongly distinguish between any of the BookSum models.

Nonetheless, the ability to attend to unlimited inputs at test time allows Unlimiformer to achieve
significantly better Entity Mention Recall (EntMent): the Unlimiformer models exhibit far higher
EntMent, and even adding Unlimiformer only at test time without costly training (Early stop w/
Unlimiformer) doubles the entity recall compared to the base model. Further, Unlimiformer improves
EntMent in the base PRIMERA from 11.6 to 25.5 in Unlimiformer+PRIMERA.

6 Analysis

Is the long input really needed? As found in various recent papers (Shaham et al.| 2022} |[Kedzie
et al., [2018)), many text generation datasets do not require long-range modeling, since most of the
needed information is concentrated at the beginning of the input. To evaluate whether Unlimiformer
really utilizes long inputs, we experimented with limiting the input length in BookSum. Figure 3]
shows the performance of Unlimiformer in BookSum: EntMent increases almost monotonically with
input length, suggesting Unlimiformer exploits the longer inputs to generate better outputs.

Other work (Jiang and Bansall |2019) has found that in some datasets, the needed information is
concentrated in only part of the input, which is not necessarily the beginning. We observed this
trend in WikiSum, a multi-document summarization dataset where the inputs are all references of a
Wikipedia article and the output summary is the intro paragraph of the article (Liu* et al., [201 Sﬂ
As a strong baseline, we followed [Liu* et al.|(2018)), and ranked the input paragraphs according to
TF-IDF. Unlimiformer did not improve over a baseline that uses only the first 1024 tokens of this
sorted input, suggesting that the full input is not necessary to produce the summary on this datase

Computational cost  Although Unlimiformer does not introduce additional trained parameters, the
encoding of the full input, index construction, and index search increase the processing time during
both training and inference. We plot the computational cost of inference with respect to the input
length in Figure 4] When all inputs are restricted to 1,024 tokens, Unlimiformer requires a small
additional time overhead relative to the baseline for indexing and search. However, the benefits of

7A full copy of WikiSum is not available online; details of our scraped copy are in Appendix@

81t is also possible that the baseline’s strong performance on this task is due to some contamination from
pretraining data; BART was trained on books and Wikipedia data, which likely includes some articles used in
WikiSum. Any contamination from pretraining here strengthens the baseline performance.



.. QASPER  Contract NLI QMSum Narrative QA
Base model  Training method FI Exact Match ROUGE 1/2/L Fl
BART,...  Standard finetuning  22.0 775 30.8/8.7/20.8 155
BART,...  Unlimiformer 275 777 30.9/8.0/19.9 18.5

Table 6: Results on question answering, query-based summarization, and NLI datasets.

Unlimiformer are clear as input length increases: the total GPU-time required increases sublinearly
with input lengtlﬂ Additional GPU-time measurements are reported in in Appendix

Performance on other tasks We measure the performance of Unlimiformer relative to the base
model on 4 additional datasets: QASPER (Dasigi et al.} 2021)), a question-answering dataset over
NLP papers; Contract NLI (Koreeda and Manning, 2021), a natural language inference dataset
over legal contracts; QMSum (Zhong et al., 2021)), a query-based summarization dataset over
meeting transcripts; and NarrativeQA (Kocisky et al.,[2018)), a reading comprehension dataset over
narrative

Table [6] shows the performance of BART-Unlimiformer (with alternating training) relative to base
BART. On three of the four datasets, applying Unlimiformer improves over the base model.

What is attended to?

We plotted the frequency of retrieval for keys
across the full decoding process for the test set

of BookSum, the dataset with the longest in-
puts. The average number of input embeddings
retrieved at least once varied by method, from
43.5% of all tokens for the test-time-only Unlim-
iformer to 64.5% of all tokens for the alternating-
training mode

Figure [5| shows the retrieval locations for the

10.0%

8.0%

6.0%

4.0%

2.0%

alternating-training model. We found no specific
skew or pattern in the retrieved keys, and keys 0.0%
from the entire input were used by the model;
for all models, the median location of a retrieved
key was between 49.73% and 49.87% of the way
through the input document.

% of total retrieval occuring in this region

0.0 0.2 0.4 0.6 0.8 1.0
location in document

Figure 5: Histogram of location of retrieved em-
beddings in the original document (averaged over
the BookSum test set). There is a slight bump at
the beginning (first 10% of the book), but other-
wise no strong trend, with tokens retrieved quite
uniformly from the entire inputs.

7 Related Work

Long-range transformers Previous long-range
transformers change the transformer architecture to reduce its space or time requirements (Tay et al.
2020). Most solutions achieve this reduction through sparsifying the attention mechanism (Chil
et al., 2019} Kitaev et al., [2020; Beltagy et al., [2020; Roy et al., 2020; Ainslie et al.| 2020} Zaheer
et al.}[2020). Other works approximate or replace the attention mechanism entirely (Wang et al.,
Katharopoulos et al.},[2020; [Choromanski et al.} 2020} [Lee-Thorp et al., 2021)). All these approaches
change the standard transformer architecture or its training objective (Zhong et alJ 2022), and thus
require pretraining the model from scratch, which does not allow to leverage existing pretrained
models. In contrast, Unlimiformer is generic, can be injected into any encoder-decoder transformer,
and improve it either without training or with merely fine-tuning. This way, Unlimiformer can
leverage any already-pretrained model.

Comparison to (2022) The closest work to ours is Memorizing Transformers (Wu et al.|

[2022). Memorizing Transformers construct two datastores for each attention head in each layer,

The time to encode the input increases linearly and the time to decode increases sublinearly; because the
encoding is only a small part of the total time during inference, this results in an overall sublinear trend.

We report results on the validation split from SCROLLS |Shaham et al.| (]2022[).

""Note that this is not the percentage of the input that influenced the output; we retrieve encoded, contextualized
hidden states, so even vectors that were not directly retrieved by the decoder impacted the final output.




and due to memory constraints can thus apply their approach only to a single decoder layer. In
contrast, thanks to our attention reformulation (Section @]) Unlimiformer can use a single index for
all decoder layers, and thus allow all cross-attention heads in all decoder layers retrieve from the long
context. As we show in Section[3] this results in significant empirical gains over retrieving only at a
single layer. Further, Memorizing Transformers introduce additional learned weights, thus they must
be trained to incorporate their memory, and thus cannot easily leverage pretrained models; as we
show in Section [5| Unlimiformer can improve existing models without any training, and thus can be
applied to any existing transformer. Additionally, Memorizing Transformers focused on decoder-only
models; while our approach could also be applied to decoder-only models (and would provide a space
efficiency boost there as well), we focus on encoder-decoder models in this work.

Comparison to [Ivgi et al.|(2022) Another related work to ours is SLED (Ivgi et al.,[2022). SLED
encodes long inputs in chunks, similarly to Unlimiformer, but the decoder in SLED attends to all
inputs at the same time. This in practice limits SLED to only about 16k token-long inputs on a
single GPU; in contrast, instead of attending to all input tokens, Unlimiformer attends only to the
top-k input tokens for every attention head, and thus can process unlimited inputs in practice, while
preserving more than 99% of the attention mass. Further, SLED requires computationally costly
training, while Unlimiformer can provide benefits without any training.

Additional related work is discussed in Appendix [G]

8 Conclusions

We present Unlimiformer, an approach for augmenting pretrained encoder-decoders and offloading
the cross-attention computation to a kNN index, to allow for unlimited length input. Instead of
attending to all keys, this kNN index allows every cross-attention head in every decoder layer to
retrieve and attend only to its top-k keys. We evaluate Unlimiformer on several long-document and
book-summarization benchmarks having inputs of up to 500K tokens, and show that Unlimiformer
improves existing models, even without further training. When training with Unlimiformer, not only
that Unlimiformer makes smaller models such as BART perform better than larger Longformer-based
models, Unlimiformer can be applied on top of Longformer-based models and further improve them.

Many real-world NLP tasks require processing large amounts of data or text. Yet pretraining large
models incurs substantial carbon costs (Strubell et al.l 2019), which increase with the length of
the context window; by choosing instead to modify already-pretrained models to process longer
inputs, we aim to gain the benefits of long contexts with less computational cost. We hope that
our approach will allow the democratization of long-range transformers, especially for researchers
and practitioners with low-compute resources. Toward this end, we release our code at |https:
/lgithub.com/abertsch72/unlimiformer. Our code is based on HuggingFace Transformers (Wolf
et al.l 2020), without changing any individual architecture’s code, and thus can be injected into any
encoder-decoder model, and supports decoder models such as LLaMA-2 as well.

9 Limitations

In our experiments, we have only considered English-language datasets. While we have no reason to
believe the method would suffer from the use of a different high-resourced language, the quality of
the nearest-neighbors search depends on the quality of the indexed keys.

The length of inputs that can be used at training time is limited by the GPU memory, as the embeddings
and their computational graph must be stored for backpropagation. Multi-GPU training would allow
longer inputs at training time.

At inference time, Unlimiformer can process the longest inputs when the index is offloaded to the
CPU memory. In this case, Unlimiformer requires to index only a single vector per input token,
which practically means unlimited inputs for any modern server and even small machines during
inference. However, offloading the index to the CPU results in higher test-time latency compared to
storing the encoded hidden states and the index on the GPU. In our experiments, we were able to use
a GPU index for input examples exceeding 500k tokens (on GPUs no larger than 48 GBs), but this
may be a concern when using smaller GPUs or larger models.
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A Training details

At training time, we must backpropagate through the operations described above. Thus, the input
length is bounded more strictly — the number of tokens in the full input must fit in GPU memory
while the model is loaded. For the computationally expensive methods, we train using batch size 1
and truncate the longest inputs (generally, to 16k tokens). At test time, we use the full input without
truncation. We train one model per setting, using the hyperparameter settings from SLED (Ivgi et al.|
2022) and early stopping.

B WikiSum scraping

We rescraped the dataset, following the same preprocessing steps as the original authors. We observe
that many inputs in the scraped dataset are shorter than reported, likely due to changes in availability
of the data since 2017; as a preprocessing step, we remove all inputs that are less than 1457 words,
which is the 40th percentile of citation size for the original dataset. We trained on 10,000 randomly
selected examples from this version of WikiSum and evaluate on 2,000 randomly sampled examples
(1,000 validation, 1,000 test), maintaining the same sample across all experiments. When sampling,
we respect the original WikiSum train/validation/test split. We release the subset we trained on as
well as our modified version of the scraping code.

C Evaluation details

Vanilla BERTScore is only well-defined up to 512 tokens; for GovReport and ScriptSumm, we
evaluate using facebook/bart-large-mnli instead. This model has context size 1024. For
BookSum, we experimented with using allenai/longformer—large-4096 (context size
4096), as many references are longer than 1024 tokens; however, we found that this approach
had no distinguishing power between model outputs, ranking all models tested within 0.3 points
of each other despite observing significant differences with ROUGE, EntMent, and manual inspection.

For computing Entity Mention Recall (EntMent), we used SpaCy{]ZI to tag all named entities in the
gold summary and collected a set of unique entities. We then tagged each candidate summary and
computed the percentage of entities present in this summary, that is, recall of unique entities. For the
named entity recognition in EntMent, we used SpaCy’s en_core_web_1g model.

D Computational Cost

We estimate the total GPU time for results presented in this paper did not exceed approximately 116
days of time on a single 48-GB A6000. The longest-training models, SLED and retrieval training for
GovReport, took approximately 10 days to train.

GPU-time Table[7]shows the relative cost for each method. The Unlimiformer training methodolo-
gies are higher cost than the base training; however, the largest difference occurs during inference,
where the full input (in Booksum, an average of 112,885 tokens) must be encoded, instead of the
1,024 tokens encoded in the baseline approach.

Using a CPU datastore is many times slower than a GPU datastore because of slower search and the
need to transfer retrieved embeddings to the GPU. In our experiments, we were able to use a GPU
datastore for input examples exceeding 500k tokens (on GPUs no larger than 48 GBs), but this may
be a concern when using smaller GPUs or even larger inputs. Additionally, CPU indices are necessary
for models with context windows larger than 2048 tokens, as the Faiss GPU index implementation
does not support retrieving more than 2048 nearest neighbors; however, the datastore can still be
stored on GPU.

"Zhttps://spacy.io
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Method Relative GPU-time

Baseline training 1.00 £ 0.00
Chunked training 1.02 £0.02
+early stop w/ Unlimiformer | 1.00 & 0.00
Retrieval training 1.89 £ 0.06
Random-encoded training 2.87 +0.28
Baseline inference 1.00 £ 0.00
Unlimiformer inference 4.48 + 0.56

Table 7: Computational effort per epoch for different training methodologies, relative to the baseline
of standard finetuning and inference. All are averaged over 3 runs on BookSum using a single 48 GB
A6000 GPU, 32 GB RAM, and 16 CPUs.

Number of layers using Unlimiformer = Memory consumption (GB)

0 (normal inference) 1.61
1 7.33
2 7.32
3 7.36
4 7.32
5 7.33
6 (all) 7.35

Table 8: Memory consumption for applying Unlimiformer at different numbers of layers in BART.

Memory usage Table[§]shows the memory required to apply Unlimiformer on varying numbers
of layers in a BART model. Using Unlimiformer requires more memory than the base model for
two reasons: index construction and the additional input processed. There is a slight overhead for
constructing and storing the index. But more crucially, the base BART (“normal inference”) is
truncating the input to the first 1024 tokens. When Unlimiformer is used, we process the full inputs,
some of which are >500,000 tokens, and so much of the additional memory cost comes from storing
the additional hidden states. However, the GPU memory consumption remains constant even when
we use Unlimiformer in more layers, highlighting the scalability of Unlimiformer compared to other
approaches such as Memorizing Transformers, which need to allocate more memory with every layer
and every attention head.

E Validation Results

Table O shows the validation metrics for GovReport and SummScreen.

F Sample Outputs

These outputs from BookSum are summaries of The Brothers Karamazov, an elaborate novel about a
Russian family. Neither summary is fully factually correct, but the summary from the input-truncated
model hallucinates several plotlines (e.g. a lover from the Congo, the many deaths of Pavel) which
are not present in the original. The hallucinations in the Unlimiformer output are more constrained;
for instance, it incorrectly describes Dmitri as a “nobleman” instead of a landowner and says he has
been sentenced to death instead of jail. This summary features more of the novel’s characters and
identifies plot details from the later parts of the book, such as Dmitri’s trial.

Gold (reference) summary:

The Brothers Karamazov is a family tragedy centered around a father and his sons.
Fyodor, the eldest Karamazov, has three sons: Dmitri, Ivan, and Alyosha. Ivan
and Alyosha have the same mother, but Dmitri, the oldest, has a different mother.
Fyodor is a greedy landowner, a bawdy lecher, and a neglectful father. Hence, the
Karamazov brothers end up growing into young men under the care of various
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Base model Training method

ROUGE 1/2 /L /BERTScore

GovReport

SummScreen

Low-cost training methods:

BARTp se Standard finetuning

BARTy se +test SLED

BARTpa5e +test Unlimiformer

BARTp 56 +early stop w/ Unlimiformer
BARTh.se Train chunked

BARTp 56 +test Unlimiformer

Long-range training methods:

BARThase SLED (Ivgi et al.;[2022)
BARTp 56 Memorizing Transformers
BARTL 56 Unlimiformer

47.77/18.5/22.3/64.0
46.0/16.3/20.3/62.8
49.5/19.6/219/64.8
51.0/20.6/21.6/65.9
48.3/18.1/22.3/63.8
52.9/22.2/22.4/65.8

55.5/24.8/25.8/66.9
55.8/25.6/269/67.7
57.4/26.4/27.9/68.2

30.0/6.5/17.7/56.7
28.4/59/17.0/56.0
31.8/7.1/18.6/57.8
32.5/7.2/19.9/57.9
29.4/6.3/17.6/56.8
29.4/6.3/17.6/56.8

342/8.2/19.2/58.8
32.8/7.6/19.3/57.7
35.0/8.3/19.6/58.4

Low-cost training methods:
PRIMERA  Standard finetuning
PRIMERA +test Unlimiformer
PRIMERA +early stop w/ Unlimiformer
Long-range training methods:
PRIMERA Memorizing transformers
PRIMERA  Unlimiformer

55.0/23.6/259/66.9
56.4/24.7/26.4/67.6
56.4/25.0/26.4/67.6

57.0/25.6/26.8/67.8
58.0/26.5/28.6/68.3

33.0/7.8/18.8/574
33.1/79/18.7/57.4
33.5/8.2/19.3/57.7

32.9/7.77/118.5/757.5
34.1/7.9/19.0/57.8

Table 9: Validation results on long-document datasets (average input length between 4k to 16k
tokens). The best metric in every dataset and every training category is marked in bold.

other people. But they all have returned home to visit their father, and it is the first
time they all have been together for quite some time. Dmitri has a dispute with
Fyodor over his inheritance, and Alyosha, who is living in a monastery, suggests
that they see Father Zossima, Alyosha’s mentor. Alyosha believes that the wise
old man can settle the dispute peacefully. Father Zossima is patient and kind, but
Fyodor and Dmitri end up quarreling anyway. After Fyodor drives the men to
frustration, they leave the monastery separately, and Alyosha worries about their
family’s future. Alyosha talks to Dmitri, who confesses his complicated situation
with women and money. Dmitri promised to marry a girl named Katerina, and she
lent him 3,000 rubles. Instead of paying it back, he spent it on another girl named
Grushenka. He wants to run away with Grushenka, but he feels that he needs to
pay Katerina back before he can do so. This is why he is so interested in getting
the money from Fyodor. Back at Fyodor’s house, Smerdyakov is talking to the
Karamazovs. Smerdyakov is an epileptic servant who was adopted by Grigory and
Marfa, Fyodor’s other servants. He was born to a woman named Lizaveta who
died in childbirth. She was the town idiot, and she lived off charity from the other
townspeople. Everyone called her "Stinking Lizaveta," and when the town found
out she was pregnant, they were furious at whoever could do such a thing to a
helpless girl. They decided Fyodor must have been the culprit. Grigory and Marfa
gave birth to a deformed child, and when they buried the child, they found Lizaveta,
who had just given birth to Smerdyakov. They adopted the child immediately, and
Fyodor named him. Father Zossima is dying, and Alyosha is distraught. Instead of
asking Alyosha to stay with him during his last days, however, Father Zossima tells
Alyosha he should leave the monastery to be with his family. His life gets even
more complicated when a young crippled girl named Lise expresses that she has
feelings for him. Alyosha visits Katerina, the girl who is engaged to marry Dmitri.
Ivan is in love with her, but he feels that Dmitri is a better match for her. Frustrated
and disgusted with his family’s situation, Ivan says he is going to leave town.
Alyosha sees a boy being picked on by his schoolmates, and he tries to talk to the
boy, but he bites Alyosha’s hand and runs away. Later, when Alyosha is bringing
money to a man named Captain Snegiryov, who has been beaten by Dmitri, he
recognizes the man’s son. It is Ilusha, the boy who bit his hand. The family is poor,
but Captain Snegiryov refuses to take the money because he feels that he needs
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to earn his son’s respect after being humiliated by Dmitri—and accepting charity,
especially from a Karamazov, is out of the question. When Alyosha goes back to
see Katerina, he finds Lise, Madame Hohlakov’s daughter. The two realize that
they love each other, and they decide to get married. Alyosha goes to visit Ivan, and
he finds him in a restaurant. Ivan has gone there to get away from his father, and
Alyosha sits down with him to have an intimate talk. Ivan tells his brother about
his thoughts regarding God and the world. He recites to Alyosha a poem he has
written called "The Great Inquisitor." The poem describes Christ returning to earth
in the sixteenth century. The Church throws him in jail, and The Great Inquisitor
explains to him that his presence is problematic for the world. The Church has
spent years trying to replace the sense of freedom Christ gave man with security.
He talks about how cruel the world is, especially to innocent children. After their
meal, Alyosha and Ivan part ways, feeling closer than ever. Ivan sees Smerdyakov
when he goes back to his father’s house, and Smerdyakov tells him he is worried
about Fyodor. He is worried Dmitri will come to kill him and the old man will be
helpless to save himself. Ivan goes to sleep very troubled. Father Zossima is on
his deathbed, and Alyosha goes to visit him. The Elder tells those around him how
much Alyosha reminds him of his older brother, a boy who died when he was a
youth. He talks about being a profligate youth in the army. One day, he challenged
another man to a duel because of a girl. Before the duel, however, he had a change
of heart. He did not shoot and, after the duel, he retired from the army and joined
a monastery. He talks about how much the Bible has affected him and says that
everyone should embrace the world and the people in it. He dies. Many predicted
that a miracle would happen upon Father Zossima’s death, but his body begins to
putrefy, filling the monastery with an awful smell. This fills the other monks with
doubt that Father Zossima was the saintly man they thought he was. Alyosha is
shaken by the news. He goes to see Grushenka, who has sent for him, and she
admits to wanting to "ruin" him. When he tells her that Father Zossima has died,
however, she becomes contrite about her callousness. She says she thinks she is
a wicked person, and the two comfort each other. When Alyosha leaves, he has
a renewed faith in Father Zossima and his teachings because Alyosha feels how
wonderful it is to love and be loved in return. Meanwhile, Dmitri has become
desperate. He wants to be with Grushenka, but he wants to pay Katerina back first.
He goes on an odyssey, hoping that he can depend on the charity of others. He
visits a man named Samsanov, a man who used to pursue Grushenka, and he hates
Dmitri. He sends Karamazov to see a surly drunk, tricking Dmitri into thinking this
man may be helpful. The man is practically incoherent, however, and Dmitri goes
to find Madame Hohlakov. She tells Dmitri that the only way he will find 3,000
rubles is in the gold mines. In confusion, Dmitri concludes that Grushenka has
gone to visit his father, and he goes to his father’s house in a rage, carrying a brass
pestle. When he arrives, he does not find Grushenka, but as he is leaving, Grigory,
his father’s servant, thinks he has come to murder Fyodor. The two scuffle, and
Dmitri hits Grigory on the head with the pestle. After determining that the man is
not dead, Dmitri flees the scene and looks for Grushenka. She is with Kalganov, a
former lover who had treated her poorly. Dmitri decides that he will not end up
with Grushenka and decides to kill himself after seeing her one more time. He
crashes her party and sits down with her gentleman friend and some other men. The
situation becomes tense, and after the gentlemen make some disparaging remarks
about Russians and Dmitri, Grushenka decides she does not want to be with such
an insulting and vicious man. She decides that she loves Dmitri, and as the two are
coming to terms with their love, the police come to arrest him for the murder of
Fyodor. As the police question Dmitri, it becomes clear that the facts all support
the conclusion that he did indeed murder his father, even though he did not commit
the crime. He was at the scene of the crime, wielding a weapon, the night of the
murder. He had said he would kill his father on several occasions. He publicly
announced he was looking for 3,000 rubles and was desperate to find them, and
Fyodor reportedly had an envelope with 3,000 rubles that was stolen the night of
the murder. Dmitri is carried away, and very few people believe that he is innocent
of Fyodor’s murder. Meanwhile, Alyosha is visiting [lusha, the boy who bit his
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hand, in the hospital. The boy has fallen quite ill, and Alyosha has gotten to know
many of the boy’s friends, who are also visiting him. One boy, Kolya Krassotkin,
is a leader among the boys. He and Ilusha were friends, but they had a falling out
because Ilusha fed a pin to a dog, and Kolya did not approve of his cruelty. When
Alyosha comes to visit, he and Kolya talk for quite some time. The boy looks up to
this wise man about which he has heard so much from the other boys, and he wants
to impress him. The two become friends, and Alyosha treats all the boys as equals.
When Kolya goes in to see Ilusha, he gives him a dog as a present. He reveals
that the dog is none other but the dog Ilusha gave the piece of bread with a pin in
it. Kolya has nursed the dog back to health and has fully trained him as a gesture
of friendship to Ilusha. The mood is dampened, however, when the doctors go in
to see [lusha. Without even saying it, everyone understands that the boy does not
have much time left. Ilusha is brave, and he tries to lift the spirits of those around
him. Later, Alyosha visits his brother in jail. Dmitri tells Alyosha that Ivan has
concocted a plan for his escape from jail. Alyosha goes to talk to Ivan, who feels
strangely guilty about his father’s death. Alyosha tells his brother that he should
not feel responsible for a crime that he did not commit, but Ivan stalks off angrily.
He meets Smerdyakov, who tells Ivan he thinks the Karamazov brother is guilty
as an accomplice to the murder. He says that Ivan wanted his father dead and left
the night of the murder to try to free himself of the responsibility of protecting
his father. Ivan is angry and troubled by this, and when he talks to Smerdyakov
later, Smerdyakov flatly admits to hilling Fyodor. He says that Ivan’s theories and
ideas were the basis for his crime and that Ivan’s talks with Smerdyakov basically
rationalized the deed. When Ivan returns home after this meeting, he sees a devil
in his room. The devil chastises him for being a wicked person with weaknesses
and foibles that have led to disastrous circumstances. Alyosha bangs on the door
and finds his brother in a feverish state, muttering about a devil and Smerdyakov.
Alyosha stays the night with his brother to take care of him. Dmitri’s trial begins.
Many people from all around come to see the spectacle of the parricide trial. Dmitri
has an excellent lawyer, but it is a hard case to win. The prosecution brings many
witnesses who testify to seemingly damning evidence against Dmitri. The defense,
however, discredits one after another of these witnesses, showing ulterior motives
or mitigating circumstances. Alyosha defends his brother from the stand, and
Katerina gives a moving account of Dmitri’s honorable nature. Then Ivan comes
into the courtroom, waving money and implicating Smerdyakov. Since he is yelling
nonsense, disrupting the trial, and generally acting crazy, the court does not believe
him. Suddenly, at the end of the trial, Katerina stands up again, showing a letter
from Dmitri that clearly states Dmitri’s intention to kill Fyodor as a last resort. She
has a change of heart and no longer wants to lie to protect a man who has hurt her
so much. Word comes to the courtoom that Smerdyakov has hanged himself. After
final statements are made, the verdict comes back: guilty. Dmitri is sentenced to
jail. Dmitri welcomes this chance to become a new man, but he does not want to
be in exile in Siberia for the rest of his life; he wants to return to his home country
before he dies. Ivan is still sick, and Katerina takes care of him. Alyosha visits
the boys with whom he has become friends. They are sad because Ilusha has died.
Alyosha passes along Father Zossima’s teachings of love and understanding, and
they all embrace his words, cheering him.

BART (with input truncated to 1024) summary:

Fyodor Pavlovitch Karamazov, a landowner in his own day, lives with his three
sons, Adelaida Ivanovna and Alexey. He is the son of the landowner, Fyodor, and
his wife, Adele, are the daughters of a wealthy nobleman in the district. Adele is
the daughter of a nobleman, and her father, Ivanovitch, is a prominent figure in the
town. She is a beautiful, intelligent, and intelligent young woman, who is destined
to be a great writer. She has a great deal of ambition, and she is determined to
achieve her goals. However, her ambition is short-lived. She falls in love with a
handsome young man named Ivanovn, who has recently returned from a trip to
the Congo. He has a lot of money, but he is also a poor man, and he has no means
of earning it. In fact, he is a miserly beggar, and so he spends most of his time
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trying to earn money from the poor. He also has a wife, a beautiful young girl, who
he marries, and a young son, Ivan, who lives with him. He and Adele have two
children, Ivan and Aleksey, and they are very happy, but they have a problem: Ivan
is a poor beggar who is unable to pay his rent, and Aleksandra is a beggar. Ivan is
very ill, so he is forced to sell his estate to a rich man named Vladimir. Vladimir
is a rich, well-to-do man who is also rich, but who is not well-liked by the people
who live in the neighborhood. Vladimir’s wife, Evgeny, is also ill, and Vladimir’s
son, Pavel, is very sick. Vladimir has a bad case of typhus fever, which causes him
to lose his job and his money. Vladimir, Pavel’s younger brother, is sick, and Pavel
is sent to the hospital to recover his father’s condition. Pavel is also sick and dies,
and Ivan is left to care for him. The next day, Pavel and Adelayna are reunited with
their father, who died in a typhus epidemic in the country. Pavel’s father, Vladimir,
has died, and the family is now in mourning. Pavel has been unable to find a new
wife, so the family decides to send him to Moscow, where he will be reunited with
his father. The family is devastated, but Pavel is able to find an old friend, a young
man who has just returned from the Congo, who will be able to help him. Pavel
and Ivan are devastated by the loss of his father, but Ivan and Vladimir are able
to make amends with Vladimir. Pavel, however, is devastated by this news, and,
after a long period of mourning, he decides to return to Moscow. He returns to
Moscow to find his father dead, and to find that his father has died. He then goes to
Moscow and is buried in the city cemetery, where his father is buried. Pavel dies of
a heart attack, and then he is buried with his mother. He was a young, beautiful,
and beautiful woman who was raised by a kindly, kind, and generous family. He
had a great time with his family, but his life was cut short when his father died.
Pavel was left to live with his aunt and uncle in Moscow, and when he died, he
was left alone with his uncle and his two sons. He died in Moscow and his mother,
who had been living with him in a convent, died in the same convent. Pavel had
been a poor, poor, and ill-treated man, but now he was able to raise his son and
raise his own son. Pavel survived, and now he lives in Moscow with his Aunt and
Uncle. He lives with their aunt and Uncle, who are very poor and poor. They live
in a small house in the countryside, and their children are raised by their uncle and
aunt. They have a great love for each other, but their love for one another is not
reciprocated. Pavel also dies in the convent, and after a brief illness, Pavel is left
with a broken heart. He dies in Moscow. His father, a wealthy man, is the father
of his son, who was also a clergyman. Pavel died of a stroke in the hospital, and
was buried in a nearby cemetery. He left Pavel and his family behind. Pavel tried
to help Pavel, but was unable to save him, so Pavel was forced to leave Moscow.
Pavel returned to Moscow in the middle of the night. He tried to save Pavel’s life,
but it was too late for Pavel. Pavel managed to escape, and in the end, Pavel was
killed by a bullet. Pavel took Pavel’s body and died of his own wounds. Pavel left
Pavel to die in the forest. Pavel stayed with the family for a few years, until he died
of an illness. Pavel became ill and Pavel was sent to

Unlimiformer summary:

The first part of the novel focuses on the question of whether or not the Russian
nobleman, Dmitri Fyodorovitch, has killed his father. In the town of Ivanovna,
the lieutenant-colonel of the Mushenkhanovitch is accused of the murder of his
brother Ivanovitch. The lieutenant-in-command, Vasilyevitch, takes the form of
a dog, and the two men—the two men and the woman who are questioned by the
court-martial-murphy. The two men cry out to the God of Russia for help in their
quest to save the town. The man, afraid of the wrath of the God, hands the dog a
bunch of letters that are supposed to be proof of his love for his brother. The old
man-the one who had killed his mother, and then found the letter—arrives. He reads
it—asked the old man to forgive him for the murder and then takes the dog away.
The other men, all of whom are prisoners, demand that the man confess his crime
to the court. The first and most important thing they tell the court is that they love
the man. The court acquits the man and sentences the man to death. The second
man-—an old officer of the town, Alekandrovitch—askes to tell them the same thing.
The third man—in the process of confessing his crime—is Vashenka, a drunk man
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who has been sent to the town to kill his father, for reasons which are not entirely
clear to the people. The woman’s servant, Evgenyevna, is also the one who has
told the court the story of the Medvedevitch’s murder, for the good old man’s and
the young man’s love. The three men, who are separated for the first time, are
laughing at the man’s attempt to seduce Mitya. The young man, in the meantime,
is conscripted into the town-side. He tells the court that he loves her, but he has yet
to tell her the true story. The men, in this room, demand a man to kill her, and she
will not betray them. The women, in their own country, are rebelling against the
man who had sent them three thousand roubles, and they will not allow the man
of the people to see them. They will not let the man in the town be allowed to see
the man—or Dmitriovitch; he will have her husband killed him. He will not tell the
people who love him. The next man, named Vashenovitch, arrives, and takes the
man away. They all begin to laugh at the fact that he has succeeded in seducing
and entrusting his brother Dmitri. He is then taken away to the old woman’s house,
where the governor-side-of-the-world, and his sister, Arkadin, is being punished.
The priestesses and the baron are shocked, for they have been so virtuous and
well-suited. The only thing they will be able to do is kill the priest. They threaten
to burn the priestess to death, for she has been so wicked and libidinous that she
has not yet seen the priest, for her husband. The priests—ostensibly convinced that
she is a woman who loves the priest and has been punished for her love and for
allowing the priest to marry her. The last man, Yakivitch, arrives at the house,
and, after a long day of drinking and then some of the men—is killed. He and the
priest are ordered to leave the town so that the priest can finally be reunited with
the people of the old lady. The final man, the commander of the St. Petersburg
town of Arkadina, is sentenced to death for the crime of having killed and then
the lieutenant of the governor, for taking the money. The commander, the former
lieutenant-delegation of the People’s Army, is summarily executed, and all the men,
except for the commander, have been summarily punished for their crime. The
entire town is shocked and, in a very dramatic way, the priestesses plead for the
forgiveness of the man, for allowing them to kill and imprison Ivan. They plead for
their brother to be restored as well, for all the people they have loved, and for the
priestor to tell the story.

G Additional Related Work

Long-document summarization Prior work has proposed several strategies for long-document
summarization. In particular, many methods select a subsection of input to summarize using TF-IDF
(Liu* et al.l 2018)), smaller retriever models (Liu and Lapatal 2019), or sentence similarity metrics
(Bajaj et al.| [2021). An orthogonal approach is to summarize chunks of the input, then combine
and condense these sub-summaries into a global summary, either using vanilla transformer models
(Kryscinski et al.| (2021)), |[Zhang et al.| (2022), (Zhang et al.| [2021)) or a specialized architecture
(Liu and Lapatal (2019), |Grail et al.|(2021)). Other work has focused on expanding the amount of
text that can be processed, by applying long-context transformers or developing new long-context
methods (Huang et al.||2021). However, these methods all suffer from cascading errors: if the initial
trimming or chunk summarization steps remove important information, there is no way to recover
that information in the downstream summary.

Retrieval-augmented transformers Interpolating language model probabilities with nearest neigh-
bors retrieval from an external datastore was originally proposed by |[Khandelwal et al.| (2019).
Additional work in this space has improved the selection of neighbors (Drozdov et al. |[2022) or
added structure to the datastore (Alon et al., [2022). Despite the shared use of retrieval, all these
works retrieve from an external datastore, while Unlimiformer retrieves from a single input example,
independently from external cumbersome sources. Borgeaud et al.|(2022) incorporate retrieval from
the external datastore into the architecture, which requires pretaining the model from scratch; in
contrast, Unlimiformer leverages any already-pretrained model, and thus can be applied to future
models as well.

Other efficient processing methods Outside of retrieval, many other works have attempted to
combine inputs encoded across multiple context windows to process long inputs. This may be
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achieved by running the model over sliding windows (and using clustering to permute information
between windows) (Wang et al.,|2021); by learning a pooling operation over a set of independently-
encoded examples (Lee et al.,|2019); by attending over clusters of embeddings (Vyas et al.,|2020);
by learning a retriever to determine a subset of embeddings to attend to (Qin and Durmel 2023); by
performing fusion in-decoder (Ivgi et al.| 2022); or by using bucketed local attentions with hashing
Kitaev et al.[(2020). Most of these methods either modify the architecture or introduce additional

trainable components.
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