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Abstract

We propose Continual Learning for Long-Tailed Recognition (CLTR), a framework that em-
ploys standard off-the-shelf Continual Learning (CL) methods for addressing Long-Tailed
Recognition (LTR) problems, by first learning the majority classes (Head) followed by learn-
ing of the minority classes (Tail), without forgetting the majority. To ensure that our method
is theoretically sound, we first prove that training a model on long-tailed data leads to
weights similar to training the same learner on the Head classes. This naturally necessitates
another step where the model learns the Tail after the Head in a sequential manner. We
then prove that employing CL can effectively mitigate catastrophic forgetting in this setup
and thus improve the model’s performance in addressing LTR. We evaluate the efficacy
of our approach using several standard CL methods on multiple datasets (CIFAR100-LT,
CIFAR10-LT, ImageNet-LT, and Caltech256), showing that CLTR achieves state-of-the-art
performance on all the benchmarks. Further, we demonstrate the effectiveness of CLTR in
the more challenging task of class-incremental LTR, surpassing the state-of-the-art methods
in this area by notable margins. Lastly, extensive sensitivity analyses and detailed discus-
sions are provided to further explore the underlying mechanisms of CLTR. Our work not
only bridges LTR and CL in a systematic way, but also paves the way for leveraging future
advances in CL methods to more effectively tackle LTR problems.

1 Introduction

Data in real-world scenarios often exhibits long-tailed distributions (Buda et al., 2018; Reed, 2001; Zhang
et al., 2023; Fu et al., 2022), where the number of samples in some classes (Head set) is significantly larger
than the number of samples in other classes (Tail set). This imbalance can lead to sub-optimal performance
in deep learning models. This problem is known as Long-Tailed Recognition (LTR), which can be described
as training a model on highly imbalanced data and attempting to achieve high accuracy on a balanced test
set (Zhang et al., 2023).

Given that the size of the Head set is substantially larger than the Tail set, samples from the Head generally
dominate the loss and determine the gradient. Consequently, samples from the Tail are less impactful,
leading to strong performance in Head classes but a significant decline in the performance of the Tail classes
(Alshammari et al., 2022). Numerous studies have sought to mitigate this issue by balancing training data
through over-sampling the Tail classes (sample-wise balancing) (Chawla et al., 2002; Estabrooks et al., 2004;
Feng et al., 2021). Alternatively, feature extractors have been trained using the Head set and adapted through
transfer learning to be used for the Tail classes (Liu et al., 2019; Wang et al., 2017; Zhong et al., 2019; Jamal
et al., 2020). Another approach has been to regularize the loss or gradient selectively, depending on the size
of the class set (loss-wise balancing) (Cao et al., 2019; Cui et al., 2019; Tang et al., 2020). Weight balancing
has been proposed as a method for penalizing excessive weight growth during training, thus forcing per-class
weight norms to maintain more uniform magnitudes (Alshammari et al., 2022). However, both sample-wise
and loss-wise balancing methods lead to increased sensitivity to variations in the tail (Wang et al., 2021c).
It has also been shown that these methods may compromise the representational capability of the deep
features learned by the model (Zhou et al., 2020). To address these issues, multi-stage training has recently
been proposed as a viable approach to this problem (Zhou et al., 2020; Zhang et al., 2022). However, these
solutions often rely on an ensemble of multiple experts or backbones to allow effective training of both
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Head and Tail sets, as the use of a single model for multi-stage training would likely result in catastrophic
forgetting.

To address this, we propose a simple yet novel framework called Continual Learning for Long-Tailed
Recognition (CLTR), which formulates LTR as a sequential learning problem where the Head classes are
learned first, followed by the Tail classes. In this framework, our method draws on the benefits of CL to
alleviate catastrophic forgetting and retain both Head and Tail information effectively. To ensure that our
approach is theoretically well-grounded, we first prove that training a model on an LTR dataset leads to sim-
ilar weights as training the same model solely on the Head. This naturally leads to the need for an additional
step where the Tail classes are further learned by the model, i.e., a sequential learning of the Head followed
by the Tail. Next, we prove that CL can effectively mitigate catastrophic forgetting in this setup and allow
for effective learning of the Tail without forgetting the Head. We validate our theory and the efficacy of
CLTR using five datasets, MNIST-LT, CIFAR100-LT, CIFAR10-LT, ImageNet-LT, and Caltech256. First,
we use the toy MNIST-LT dataset and show that the actual distance between weight vectors when trained on
either the Head or the entire dataset aligns closely with our theoretical predictions. Next, to further assess
the efficacy of CLTR, we employ a range of CL methods in our framework and evaluate the performance on
LTR benchmarks, namely CIFAR100-LT, CIFAR10-LT, and ImageNet-LT, with varying imbalance factors.
The results indicate that CLTR consistently achieves either the best or second-best performance across all
benchmarks, affirming its viability as a long-tailed classifier. We then compare the performance of our model
to recent works on Long-Tail class-incremental Learning (LT-CIL), and show that CLTR outperforms the
state-of-the-art methods. Finally, we offer a discussion on the implications of the proposed perspective for
LTR and the limitations of our study.

Our contributions are as follows: (1) We propose and prove a theorem that sets an upper bound on the
distance between weights obtained when training a learner on different partitions of an imbalanced dataset,
under the assumption of strong convexity of the loss function. This bound is inversely proportional to the
imbalance factor and proportional to the strong convexity of the loss function. (2) Building on this theorem,
we introduce a new approach that employs CL solutions for the LTR problem using a sequential learning
framework. To support this approach, we prove the effectiveness of CLTR in reducing the loss when learning
the Head and Tail sets sequentially. (3) We substantiate our method through comprehensive experiments
that show the effectiveness of our CLTR framework in addressing LTR and LT-CIL problems. Our results
indicate that using CLTR leads to state-of-the-art performances in both problem setups.

2 Related Work

Long-Tailed Recognition. Real-world datasets often exhibit imbalanced distributions, with some classes
appearing more frequently than others. Training a model on such imbalanced data can result in poor
performance on the rare classes. LTR addresses this issue by enabling models to perform well on both Head
and Tail classes (Cao et al., 2019). LTR approaches can be broadly categorized into three primary groups:
data distribution re-balancing, class-balanced losses, and transfer learning from Head to Tail (Kang et al.,
2019). Data distribution re-balancing techniques include over-sampling the Tail (Chawla et al., 2002; Han
et al., 2005), under-sampling the Head (Drummond et al., 2003), and class-balanced sampling (Shen et al.,
2016; Mahajan et al., 2018). Class-balanced loss approaches modify the loss function to treat each sample
differently, e.g., including class distribution-based loss (Cao et al., 2019; Cui et al., 2019; Huang et al., 2019),
focal loss (Lin et al., 2017), and Bayesian uncertainty (Khan et al., 2019). Additionally, transfer learning
techniques leverage features learned from the Head to improve learning on the Tail (Yin et al., 2019; Liu
et al., 2019). More recently, the limitations of class re-balancing have been discussed and the Bilateral-Branch
Network (BBN) was proposed to improve representation learning (Zhou et al., 2020). This method addresses
the training of the encoder and classifier separately through a novel cumulative learning strategy that initially
focuses on universal patterns before progressively concentrating on the Tail. The RoutIng Diverse Experts
(RIDE) model is introduced to enhance LTR by reducing model variance (Wang et al., 2021c). Finally,
the assumption that the test set distribution is always uniform is challenged and test-agnostic long-tailed
recognition is introduced (Zhang et al., 2022). The authors discuss that self-supervised learning facilitates
universal feature learning, improving performance on test sets with unknown distribution. To this end,
they introduce a new method that trains multiple experts on a long-tailed dataset to manage various class
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distributions and uses self-supervision at test time to combine these experts for unknown class distributions.
Although numerous prior works have addressed LTR, few provide a mathematical analysis of the training
process using imbalanced data (Ye et al., 2021; Francazi et al., 2023). These works demonstrate that the
Head is learned more quickly than the Tail, primarily focusing on the training dynamics. In contrast, our
theoretical analysis studies the convergence point of training within the LTR framework.

As discussed, some LTR solutions fall into the category of multi-stage training (Zhou et al., 2020; Zhang
et al., 2022). Our work here extends this by first presenting a formal framework in which LTR is formulated
as a sequential problem. Along with the theoretical foundations that describe why sequential learning is
particularly well-suited for LTR, we also identify the key factors that influence the success of these methods.
Subsequently, we propose that CL be used as a viable and highly effective solution for LTR. This allows us
to draw from a rich pool of prior work on CL, which unlike existing multi-stage learning solutions to LTR,
use only a single network throughout the training.

Continual Learning. CL addresses the challenge of adapting a deep learning model to new tasks (e.g., new
classes or distributions) while maintaining performance on the previously learned tasks. The main challenge
to address by CL methods is the mitigation of catastrophic forgetting, i.e., forgetting the previous tasks
as the new tasks are learned. CL methods are typically grouped into three categories: expansion-based,
regularization-based, and memory-based approaches. Expansion-based CL methods utilize a distinct subset
of parameters for learning each task (Sarwar et al., 2019; Li et al., 2019; Yoon et al., 2020). Regularization-
based techniques penalize significant changes in crucial network parameters (relative to previous tasks) by
incorporating a regularization term in the loss function (Saha et al., 2020; 2021; Farajtabar et al., 2020;
Kirkpatrick et al., 2017; Li & Hoiem, 2017). Memory-based approaches employ a replay memory to store a
limited number of samples from previous tasks, which are then used in future training to minimize forgetting
(Riemer et al., 2018; Chaudhry et al., 2019; Shim et al., 2021). FOSTER uses a two-stage paradigm to
dynamically expand and compress modules when learning new tasks (Wang et al., 2022). Task-id Prediction
based on Likelihood Ratio (TPL) is proposed in (Lin et al., 2024a) for class-incremental Learning. This
method utilizes likelihood ratios for task-id prediction by leveraging available replay data and task-specific
models trained within a shared network. It thus overcomes the challenge of task identification in the absence
of explicit task identifiers at test time. More recently, gradient surgery has been employed for addressing
CL where the gradient from the new task is projected to the orthogonal direction of the previously learned
tasks to ensure learning the new task does not impact the previous task (Saha et al., 2020; Saha & Roy,
2023). These methods achieve state-of-the-art performance on CL benchmarks.

Long-Tailed Class-Incremental Learning. Few prior works have attempted to address the problem of
class-incremental learning when the data is heavenly imbalanced. A novel replay method called Partitioning
Reservoir Sampling (PRS) is proposed in (Kim et al., 2020). This method dedicates a sufficient amount of
memory to tail classes in order to avoid catastrophic forgetting in minority classes. In (Liu et al., 2022a),
this problem is addressed in two different setups, ordered and shuffled. In the ordered scenario the number
of samples in each new task is less than in previous tasks, while in the shuffled scenario, the size of classes
is completely random. They propose a two-stage learning method utilizing a learnable weight scaling layer
for reducing the bias due to data imbalance. Finally, in (Liu et al., 2022b), OLTR++ is proposed which
is a unified algorithm that integrates imbalanced classification, few-shot learning, open-set recognition, and
active learning through dynamic meta-embedding and memory association. Note that none of the above
works attempt to employ CL as a solution for LTR scenarios.

3 Proposed Approach

3.1 Training on Long-Tailed Distributions

In this section, we first define the LTR problem and then analyze the behavior of a model when trained on
long-tailed distributions to provide a theoretical basis for our proposed CLTR framework. Let’s consider
the input space to be Rd, where each input is represented by xi, and the label space is {1, . . . , k}, where
each label is denoted by yi. Let D denote the training set containing samples (xi, yi). Dc is a subset of
D where Dc = {(xi, yi) ∈ D ∣ yi = c} and ∣Dc∣ represents its cardinality. Without loss of generality, let the
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classes be ordered by their cardinalities such that ∣Di∣ ≥ ∣Dj ∣ for all i < j. Following (Hong et al., 2024),
let DH and DT represent the subsets of D corresponding to the Head set and Tail set, respectively as
DH = {(xi, yi) ∈ D ∶ yi ≤ ck} and DT = {(xi, yi) ∈ D ∶ yi > ck}, where ck denotes how many classes belong to
each set. As a result, every class in the Head has more samples than any class in the Tail. The loss function
over Dc is defined as L(Dc, θ) =

1
∣Dc∣ ∑

∣Dc∣
i=1 ℓ((xi, yi), θ), where (xi, yi) ∈ Dc. Note that ℓ((xi, yi), θ) is the

loss of each individual sample. For brevity, we will henceforth use notations LDc = LDc(θ) = L(Dc, θ) and
ℓ((xi, yi)) = ℓ(xi,yi)(θ) = ℓ((xi, yi), θ).

LTR aims to address the challenge of learning from highly imbalanced data. This occurs when the training
data D contains more samples in some classes (the Head set DH) and fewer in others (the Tail set DT ). The
imbalance factor IF quantifies the severity of this issue in a dataset, defined as:

IF = ∣Dcmax ∣

∣Dcmin ∣
, (1)

where c represents the class index, ∣Dc∣ denotes the cardinality of each class, cmax = arg max ∣Dc∣, and
cmin = arg min ∣Dc∣, such that Dcmax ∈ DH and Dcmin ∈ DT . Now we formally define a long-tailed dataset and
the LTR problem in the following:
Definition 3.1. A dataset is deemed long-tailed when ∣Dcmax ∣≫ ∣Dcmin ∣ or, in other words, IF ≫ 1. When
a model is trained on such a dataset and its performance is assessed on a test set where each class c has the
same number of samples (i.e. ∣Dc∣ = κ for each class c within the test set where κ is a constant number), the
problem is referred to as Long-Tailed Recognition.
Assumption 3.2. We initially assume that all head classes are of size ∣DH ∣, and all tail classes are of size
∣DT ∣, with ∣DH ∣ >> ∣DT ∣. These assumptions will be relaxed later in Assumption 3.7. The model is a logistic
regression classifier with parameters θ trained with regularized crossed-entropy loss which is a combination
of cross-entropy loss and an additional L2 regularization term µ

2 ∥θ∥
2 that prevents weights from growing

excessively.

Assumption 3.2 helps simplify the derivation of the following theoretical analysis. However, our framework
shows strong performances even when all the constraints in this Assumption are relaxed, as presented in
Section 4.2. We now introduce Theorem 3.3 demonstrating the relationship between the weights of the model
when it is trained solely on the head as well as on the entire dataset.
Theorem 3.3. Given Assumption 3.2, if a model with parameter vector θ is trained in an LTR setting
(Definition 3.1), then,

∥θ∗ − θ∗H∥
2
≤

4δ
µH + µ

, (2)

where θ∗ represents the parameter vector obtained after training, θ∗H denotes the parameter vector when the
model is trained solely on the Head set, δ is the maximum difference between the loss of the learner using
the entire dataset and the Head set (∣L(D) − L(DH)∣ ≤ δ) for any value of θ, and µH and µ are the strong
convexity parameters of the loss calculated on the Head set and the entire dataset, respectively.

To prove this theorem, we first introduce Lemma 3.4, which shows that when the difference between two
strongly convex functions is bounded, their minimizers also reside in a bounded neighborhood of each other.
Lemma 3.4. If ∣f(x) − g(x)∣ ≤ δ and both f(x) and g(x) are strongly convex, then:

∥xg − xf∥
2
≤

4δ
µf + µg

, (3)

where xg and xf are arg min f(x) and arg min g(x), respectively.

For the full proof of Lemma 3.4, see Appendix A.1.

Proof of Theorem 3.3. The model is trained on the entire dataset D by minimizing the loss function L
defined as:

L(D) =
1
∣D∣

⎛

⎝
∑

(xi,yi)∈DH

ℓ((xi, yi)) + ∑
(xi,yi)∈DT

ℓ((xi, yi))
⎞

⎠
, (4)

4



Under review as submission to TMLR

Using L(DH) =
1
∣DH ∣ ∑(xi,yi)∈DH

ℓ((xi, yi)) and L(DT ) =
1
∣DT ∣ ∑(xi,yi)∈DT

ℓ((xi, yi)), we can derive:

L(D) =
∣DH ∣

∣D∣
L(DH) +

∣DT ∣

∣D∣
L(DT ). (5)

Now we define γ = ∣DH ∣
∣D∣ . Since ∣D∣ = ∣DH ∣+ ∣DT ∣, we can derive that 1−γ = ∣DT ∣

∣D∣ . Plugging γ into Eq. 5 yields:

L(D) = γL(DH) + (1 − γ)L(DT ). (6)

Given that IF = ∣DH ∣
∣DT ∣ , hence γ = IF

1+IF , which falls within the range of [0.5,1). Since based on Definition 3.1,
IF≫ 0 in LTR, we can conclude that the value of γ approaches one. Consequently, L(D) approaches L(DH)

for all θ values. Let δ be defined as the maximum difference of the losses:

∣L(D) −L(DH)∣ < δ. (7)

From Eq. 6, it follows that lim
IF→∞

δ = 0.

Following Assumption 3.2, the loss function can be formulated as:

L(D, θ) = −
1
N

N

∑
i=1
yi log (P (f(θ, xi))) +

µ

2
∥θ∥2, (xi, yi) ∈ D. (8)

where P (.) is the softmax function, f(θ, xi) is the output of the logistic regression with inputs xi and param-
eters θ, and µ denotes the coefficient of the regularization term. The value of this training hyper-parameter
is determined by the user, usually through hyper-parameter tuning, grid search, or similar approaches. This
loss function is employed because it is highly effective for the LTR problem, improving generalizability by re-
ducing overfitting and achieving state-of-the-art performance when dealing with LTR scenarios (Alshammari
et al., 2022). As our model is assumed to be a logistic regression classifier, the Hessian of the cross-entropy
loss, ∇2

θLCE(D, θ), is positive semi-definite, where ∇2
θ denotes the Hessian with respect to θ. Adding a

regularization term with a coefficient µ
2 results in a positive definite Hessian matrix with a lower bound of µ.

Therefore, the Hessian matrix satisfies ∇2
θL(D, θ) ⪰ µI. Consequently, the eigenvalues of the Hessian matrix

are bounded below by µ, ensuring that L is a strongly convex loss function, where µ represents the extent
of the convexity. From the definition of strong convexity (Sherman et al., 2021), it therefore follows that:

L(x1) ≥ L(x2) +∇L(x2)
T
(x1 − x2) +

µL
2
∥x1 − x2∥

2, (9)

where µL is the strong convexity parameter. A more detailed discussion of the strong convexity of the
loss function, its properties, and the relevance of the proposed theoretical analysis to the LTR problem is
provided in Appendix B.

Applying Lemma 3.4 to Eqs. 7 and 9 yields:

∥θ∗ − θ∗H∥
2
≤

4δ
µH + µ

, (10)

where θ∗ and θ∗H are arg minL and arg minLH , respectively.

As a result, when the model is trained on a long-tailed dataset, the network parameter θ converges to a point
close to the weights of the model when it was only trained on the Head set θH . It is worth mentioning that
if the same coefficient for the regularization term µ is used for both L and LH , the lower bound in Eq. 2
can be further simplified to 2δ

µ
. To further analyze the training of the model under the LTR scenario, let us

relax the assumption on the loss function and assume that the model is just using cross-entropy loss without
the regularization term. This leads to the following remark:
Remark 3.5. The upper bound of the distance between a learner’s parameters when trained on the entire
dataset, and the parameters of the same learner solely trained on the Head set, can be calculated as:

∥θ∗ − θ∗H∥
2
≤

4δ
λ + λH

, (11)

where λ and λH are the minimum eigenvalues of the hessian matrices of L(D) and L(DH), respectively
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Proof of Remark 3.5. We first show through Lemma 3.6 that if the difference between two convex functions
is bounded, then the distance between their minimizers can also be bounded.

Lemma 3.6. If ∣f(x) − g(x)∣ ≤ δ and both f(x) and g(x) are strictly convex, then:

∥xf − xg∥
2
≤

4δ
λf + λg

, (12)

where xg and xf are arg min f(x) and arg min g(x), and λf and λg are the minimum eigenvalues of the
hessian matrices of f(x) and g(x), respectively.

The full proof of Lemma 3.6 is provided in Appendix A.2. Since the loss is now unregularized cross-entropy,
the loss function is strictly (but not strongly) convex (i.e. ∇2L(D, θ) ≥ 0.) Hence, by applying Lemma 3.6
and Eq. 7 we conclude Eq. 11, which completes the proof.

To ensure that the upper bound expressed by Remark 3.5 is limited and approaches zero when δ → 0, the
minimum eigenvalues of the Hessian of both loss functions should have lower bounds, which is again another
definition of strong convexity and verify our finding in theorem 3.3.

Theorem 3.3 assumes that there is only one Head and one Tail in the dataset, which is not the case in many
real-world datasets. So we are relaxing Assumption 3.2 as follows:
Assumption 3.7. Building upon Assumption 3.2, we modify the distribution of classes. Specifically, we no
longer assume that all classes are of equal size within the Head and Tail sets, respectively. Instead, the model
accommodates a scenario where the number of samples in the Head classes can differ from each other and
the same applies to the Tail, without specifying the relationship in size between ∣DH ∣ and ∣DT ∣.

Under the relaxed assumption where the size of the classes within Head and Tail sets differ, these sets can
be each further partitioned into their own distinct Head and Tail subsets. While each individual partition
remains imbalanced, we continue to subdivide them until: (1) ∣Di∣ >> ∣Dj ∣ for i < j, and (2) IFDi /≫ 1 for all
partitions Di. In this scenario, there is no long-tailed partition of the data. Theorem 3.8 extends Theorem
3.3 to address this scenario for any number of partitions.
Theorem 3.8. Following Assumption 3.7, we divide the dataset D into n partitions. Let a subset of m ≤ n
partitions be ⋃m

i=1D
i ⊆ D, with the largest partition being Da, i.e. a = arg maxi∣D

i∣, i ∈ [1,m]. Then, the
weights θ∗⋃Di obtained from training the model on ⋃m

i=1D
i will always be in a bounded neighborhood of the

weights θ∗Da
obtained from training on the largest subset Da.

Proof Sketch. We start by dividing the dataset into multiple partitions each substantially larger than the
previous one. We then apply Theorem 3.3 on the two largest subsets and find the upper bound for the weight
differences. We then consider the aggregation of these two subsets as the new ‘largest’ subset and apply
Theorem 3.3 to this ‘largest’ subset and the next largest partition to find a new upper bound. Repetitively
applying Theorem 3.3 allows us to calculate an ultimate upper bound for the weight difference when training
on the largest subset versus the entire dataset. The formal proof is provided in Appendix A.3.

3.2 Continual Learning for Long-Tailed Recognition

Let us assume an LTR problem and a learner with a set of parameters denoted as θ (recall definition 3.1).
Initially, the learner is trained on a highly imbalanced dataset D, as shown in Fig. 1, where θi is the
initialized model in the weight space. Owing to the larger number of Head samples in each iteration, they
dominate the evolution of the gradients (Eq. 5), resulting in a learner that performs significantly better on
the Head set than on the Tail set at the end of training. This process leads the parameters to converge
to θ∗. We showed in theorem 3.3 and 3.8 that under a strongly convex loss function, θ∗ lies within a
bounded neighborhood of radius r of the learner’s weights θ∗H when trained exclusively on the Head set
DH , where r is proportional to the strong convexity of the loss function and inversely proportional to the
imbalance factor. This neighborhood falls in ψH which represents an area within the weight space where
the network performs well on the Head set. At this stage, the model should learn the Tail; however, if it
is simply fine-tuned on the Tail (DT ), then it results in moving towards θ∗T in ψT and will likely leave ψH .
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Continual Learning for Long-Tailed Recognition: 

Bridging the Gap in Theory and Practice

Motivation

The Long-Tailed Recognition (LTR) problem arises in imbalanced datasets.

This paper bridges the theory-practice gap in this context, providing

mathematical insights into the training dynamics of LTR and proposing a

novel perspective of using Continual Learning (CL) for addressing this

problem.

• We propose a mathematical insight into the optimization dynamics in the

LTR scenario by establishing an upper bound on the distance between

weights obtained when trained on the full dataset and the Head.

Furthermore, we extend this theorem to apply to any number of partitions

with varying class sizes.

• Using this bound as a basis, we introduce a new perspective on using CL

solutions for the LTR problem supported by another theorem that proves

the effectiveness of CL in reducing the loss when focusing on Tail

classes.

• We substantiate our method through comprehensive experiments that

demonstrate the effectiveness of CL techniques in addressing LTR.

Proposed Perspective

This diagram depicts the overview of the proposed solution where a

machine learning model is trained on an imbalanced dataset, where the

learner, initially at 𝜃𝑖, tends to favor the majority class, converging to a point

𝜃∗ near 𝜃𝐻
∗  (optimal for the Head but not the Tail). Our proposed theorem

demonstrates that the optimal point 𝜃∗ is within a bounded neighborhood (𝑟)

of 𝜃𝐻
∗ . Employing Continual Learning, we sequentially train on Head and

Tail, steering the learner towards 𝜓𝐻𝑇, an rea in the weight space where the

model’s performance is balanced for both Head and Tail.
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∗

𝜃𝑖  

𝑟 

Training on Long-Tailed Distribution

CL for LTR

Results

Numerical Verification

To verify the predicted upper bound in Theorem 1, The actual distance

between 𝜃∗ and 𝜃𝐻
∗  in different 𝐼𝐹 and µ are compared with the calculated

upper bound.

The results confirm that CL methods are effective for LTR, aligning with our 

theorems. While not outperforming specialized LTR methods, CL shows 

significant improvement over baselines.

 We then utilize the Caltech256 dataset to evaluate the performance of CL 

on a naturally skewed dataset and demonstrate that CL can outperform 

SOTA methods.

To validate the efficacy of CL in LTR, we apply five CL strategies (LwF, 

EWC, Modified EWC, GPM, and SGP) on CIFAR100-LT (Table 1), 

CIFAR10-LT (Table 2), and ImageNet-LT (Table 3). 

Conclusion

We advanced a CL-based approach for LTR, grounded in the following 

three theorems that provide insights into optimization dynamics of models in 

LTR scenarios: 1) an upper bound on weight distances when trained on the 

Head versus the entire dataset, 2) an extension to multiple subsets, and 3) 

a proof that CL yields lower loss in LTR scenarios. Our empirical validation 

on bench marks like MNIST-LT, CIFAR100-LT, CIFAR10-LT, and 

ImageNet-LT, as well as real-world data via Caltech256, corroborates our 

theoretical framework. Future work will delve into non-convex loss 

landscapes and refine CL methods for LTR, aiming for robust solutions in 

imbalanced settings.
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Theorem 3

Consider a logistic regression model with parameters 𝜃 trained using 

regularized cross-entropy loss in an LTR setting, converging to 𝜃𝑖 . Then, 

ℒ 𝒟, 𝜃𝐸𝑊𝐶
𝑖+1 < ℒ 𝒟, 𝜃ℒ

𝑖+1 , where 𝜃𝐸𝑊𝐶
𝑖+1  and 𝜃ℒ

𝑖+1 denote the weights of the 

model after a single update using EWC loss and regularized cross-entropy 

loss, respectively.

Theorem 1

Assume that a logistic regression model with parameters 𝜃 is trained using

regularized cross-entropy loss in an LTR setting. Then, 𝜃∗ − 𝜃𝐻
∗ 2 ≤

4𝛿

𝜇𝐻+𝜇
 , where 𝜃∗ represents the parameter vector obtained after training,

𝜃𝐻
∗  denotes the parameter vector when the model is trained solely on the

Head set, 𝛿 is the maximum difference between the loss of the learner

using the entire dataset or the Head set for any value of 𝜃, and 𝜇𝐻 and

𝜇 are the strong convexity parameters of the loss computed on either the

Head set or the entire dataset.

Theorem 2

Let a logistic regression model with parameters 𝜃 be trained using 

regularized cross-entropy loss in an LTR setting, and let dataset 𝒟 be 

divided into 𝑛  partitions. Further, let a subset of 𝑚 < 𝑛 partitions be 

𝑖=1ڂ
𝑚 𝒟𝑖 ⊆ 𝒟 , with the largest partition being 𝒟𝑎 i.e. 𝑎 =

arg max
𝑖

𝒟𝑖 , 𝑖 ∈ [1, 𝑚] .Then, the weights𝜃ڂ 𝒟𝑖

∗  obtained from training the 

model on ڂ𝑖=1
𝑚 𝒟𝑖 will always be in a bounded neighborhood of the weights 

𝜃𝒟𝑎

∗  obtained from training on the largest subset  𝒟𝑎.

In this section, we derive the conditions in which CL can be applied to a

long-tailed scenario by analyzing the convergence of the model when

training data is highly imbalanced.

In order to prove the effectiveness of employing CL methods for addressing

LTR problems, the 116 following theorem is proposed.

Contributions

Theorem 1

Theorem 2

Theorem 3

Figure 1: Overview of learning under the
LTR scenario and our proposed CLTR ap-
proach (symbols described in the text).

This phenomenon occurs in sequential learning and it is known
as catastrophic forgetting. To mitigate this problem and guide
the model to the intersection of ψH and ψT denoted as ψHT ,
where the model performs well on both Head and Tail, the Tail
should be learned without forgetting the Head. To this end,
we propose using the standard CL methods for sequentially
learning the Tail after the Head while avoiding catastrophic
forgetting (converging to θ∗HT ).

Following (Prabhu et al., 2020), a general CL problem can be
formulated as a model exposed to a stream of N incoming
training datasets DYt = {(xi, yi)∣yi ∈ Yt} for 1 ≤ t ≤ N , where Yt

is the corresponding set of labels. Up to the current timestep t,
the set of labels ⋃t

i=1Yi in dataset ⋃t
i=1DYi has been previously

used in training of the network. The objective at the next
timestep t + 1 is to find a mapping fθ ∶ x → y that accurately
maps sample x to ⋃t

i=1Yi ∪ Yt+1, where Yt+1 is the set of new
unseen labels in the incoming new dataset DYt+1 = {(xi, yi)∣yi ∈

Yt+1}. Therefore the ultimate objective of CL is to find an accurate mapping fθ ∶ x → y for all (x, y) ∈
⋃

N
i=1DYi .

Consider datasetD under the LTR setup (Definition 3.1) divided intoN partitions with substantially different
sizes sorted based on cardinality such that D = ⋃N

i=1D
i and ∣Di∣ >> ∣Di+1∣. We have shown in Theorem 3.3

and Theorem 3.8 that θ∗ (the weights of the model when trained on the entire dataset) will be very close
to θ∗1 , which is the weights of the model when it is only trained on D1 (the largest partition of the dataset).
As a result, the model after training on D can be considered as fθ∗1

∶ x → y for all (x, y) ∈ D1. On the other
hand, following Definition 3.1, the objective of LTR is to learn fθ ∶ x→ y for all (x, y) ∈ D = ⋃N

i=1D
i. Hence,

additional training steps are required for the model to further learn the rest of the partitions of the dataset
(⋃N

i=2D
i). Thus, if we consider each of the partitions of the LTR dataset (Di for 1 ≤ i ≤ N) as an incoming

CL dataset (DYt
for 1 ≤ t ≤ N), the objective of the LTR problem would be equivalent to the objective of

CL, which is to estimate fθ:

fθ ∶ x→ y s.t. (x, y) ∈
N

⋃
t=1
DYt and DY1 = D

1, DY2 = D
2, . . . , DYN

= D
N . (13)

Thus, our proposed approach unifies the two domains so that an LTR problem can be treated as a CL
problem. Algorithm 1 lays out the detailed procedure of our proposed framework. Due to the higher number
of samples in the Head, we start the sequence by learning the Head, a convention also followed in prior
multi-stage LTR methods (Zhou et al., 2020; Zhang et al., 2022).

Without loss of generality, we prove the effectiveness of employing a standard and simple CL method for
addressing LTR problems in the following theorem. We then extend this notion to other more powerful CL
methods empirically in the next section.
Theorem 3.9. Following Assumption 3.2, for the model trained on imbalance dataset D for i epochs and
converging to θi, we have

L(D, θi+s
CL) < L(D, θ

i+s
L ), (14)

for all s < S − i, where s is the number of past training epochs in the second phase of training (training on
Tail), S is the total number of epochs in both phases of the training, θi+s

CL and θi+s
L denote the weights of the

model after s number of updates using CL and regularized cross-entropy loss, respectively.

Proof Sketch. (Formal proof in Appendix A.4) In this theorem, we use the simple EWC loss to represent CL
in general. It’s important to highlight that while EWC is not the most recent CL technique to be proposed,
it serves as a common baseline for comparison of all other CL methods. Furthermore, the mathematical
formulation of EWC is succinct and is amenable for use within Theorem 3.9. Moreover, we empirically
demonstrate the effectiveness of other and more sophisticated forms of CL for LTR in Section 4.2. We
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Algorithm 1 CLTR
1: Input: imbalanced data D, initialized model parameters θi, number of partitions N
2: Output: θ∗HT

3: sort(D) in ascending order by cardinality of each class ∣Di∣ ≥ ∣Dj ∣ for all i < j
4: partition(D, L) where L = {l1, l2, . . . , lN , lN+1} denotes the partition boundaries, l1 = 0, and lN+1 = k
5: initialize CL replay memory M
6: for i = 1 to N do
7: Di = ⋃

li+1
j=li
Dj

8: end for
9: for t = 1 to N do

10: θ∗t = arg minLCL(θ,D
t,M) # CL training

11: update M
12: end for
13: return θ∗N

consider the updated weights after one iteration using both EWC loss and regularized cross-entropy loss. By
employing Taylor expansion, we approximate the losses for the new weights. We then show that the EWC
loss incorporates a regularization term that effectively constrains the weight updates. Leveraging the strong
convexity of the loss function and the positive nature of the Fisher information matrix, we prove that the
loss with EWC-updated weights is strictly less than that with regular cross-entropy updated weights. Note
that the loss on the entire dataset D in Eq. 14 is used as a theoretical upper bound, while this stage of
training is solely performed on the Tail set.

4 Experiments and Results

4.1 Experiment Setup

Datasets. First, we use the MNIST-LT (LeCun et al., 1998) toy dataset with different IF values and strong
convexity parameters to study the behavior of the upper bound (Eq. 10) and its compliance with our theorem.
Next, to evaluate the performance of CLTR in addressing the LTR problem, we employ three widely used
LTR datasets: CIFAR100-LT, CIFAR10-LT (Cao et al., 2019), and ImageNet-LT (Liu et al., 2019).
These datasets represent long-tailed versions of the original CIFAR100, CIFAR10, and ImageNet datasets,
maintaining the same number of classes while the number of samples in each class decreases exponentially
according to the IF, where the first class has the maximum number of samples and the last class contains
the least number of samples, as illustrated in Appendix D. Finally, to further highlight the benefits of using
CLTR, we carry out additional experiments using the naturally skewed Caltech256 dataset (Griffin et al.,
2007).

Implementation Details. Following the experimental setup of (Alshammari et al., 2022) and (Fu et al.,
2022), we use ResNet-32 (He et al., 2016) and ResNeXt-50 (Xie et al., 2017) for CIFAR and ImageNet
benchmarks, respectively. The LTR methods selected for comparison are state-of-the-art solutions in the
area. We also employ various standard and state-of-the-art CL method in CLTR, namely LwF (Li & Hoiem,
2017), EWC (Kirkpatrick et al., 2017), Modified EWC (Molahasani et al., 2023), GPM (Saha et al., 2020),
FOSTER (Wang et al., 2022), SGP (Saha & Roy, 2023), and TPL (Lin et al., 2024a). We divided the dataset
into 2 partitions for LwF, EWC, Modified EWC, GPM, and SGP and 4 partitions for FOSTER and TPL.
All trainings were conducted using an NVIDIA RTX 3090 GPU with 24GB VRAM. More details on the
implementation specifics are provided in Appendix C.

Evaluation. For the LTR datasets (MNIST-LT, CIFAR100-LT, CIFAR10-LT, ImageNet-LT), we first train
the model on the long-tailed imbalanced training set and then evaluate it on the balanced test set, following
the evaluation protocol of (Alshammari et al., 2022). For Caltech256, we use the entire training set for
training and assess the model’s performance on the entire test set, retaining its original distribution. All
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Figure 3: The actual distance between θ∗ and θ∗H in different
IF and µ compared with the calculated upper bound.

reported values represent classification accuracy. The results of our proposed approach are highlighted in
the Tables.

4.2 Results

Empirical support for Theorem 3.3. To evaluate the validity of Theorem 3.3 on the upper bound for
the distance between the learner’s weights when trained on D and DH (∥θ∗ − θ∗H∥), we first train a logistic
regression model on MNIST-LT with varying IF and µ values. Then we calculate the Euclidean distance
between the two sets of weights, as illustrated in Fig. 2. As expected from Eq. 10, increasing either the IF
or strong convexity (µ) results in a reduced distance, indicating that the weights of the model trained using
D approach the weights when it is solely trained using DH . We also compared these actual distances with
the upper bound predicted by Theorem 3.3, as exhibited in Fig. 3. The results show that for all IF and µ
values, the measured distance is lower than the theoretical upper bound, which is aligned with our proposed
theorem. It is important to note that for this experiment, the upper bound is calculated using Eq. 5 in
Appendix A.1 which results in even a tighter neighborhood compared to Eq. 10.

Performance. We compare the performance of our CLTR framework with existing state-of-the-art LTR
solutions on three LTR benchmarks, CIFAR100-LT, CIFAR10-LT, and ImageNet-LT, as presented in Tables
1, 2, and 3. We also present two additional baselines where we train the backbone model on the imbalanced
data, with and without a class-balanced loss term. These results demonstrate that CLTR indeed provides
the best or the second-to-best performance across all benchmarks, as predicted by our proposed theorems.

Following the prior works such as (Alshammari et al., 2022), we avoid direct comparisons with solutions with
“bells and whistles” such as RIDE (Wang et al., 2021c), ACE (Cai et al., 2021), SSD (Li et al., 2021), and
PaCo (Cui et al., 2021), which employ aggressive data augmentations, ensembles learning, multi-expert and
self-supervised pretraining. It is worth mentioning that some previous LTR solutions like BBN (Zhou et al.,
2020) learn the Head and Tail separately in a multi-stage manner. They rely on various techniques to prevent
performance loss on the Head while learning the Tail. However, unlike these methods, our approach only
uses one model through the entire training process, and the results demonstrate that employing standard CL
methods designed to mitigate catastrophic forgetting yields the best performance in the LTR benchmarks.

To further explore the capabilities of our approach in more challenging settings, we compare the performance
of CLTR in addressing the LT-CIL problem with the prior state-of-the-art solutions in the area. Following
the experimental setup in (Liu et al., 2022a; Hou et al., 2019; Douillard et al., 2020), the models are first
trained on the largest 50 classes (Head), then, the remaining classes are learned incrementally in 5 or 10
consecutive tasks (Tail) with an equal number of new classes in each new task, from the largest subset
to the smallest subset of the dataset. We apply our method in this setting on the CIFAR100-LT dataset
and compare its performance with the prior works, as presented in Table 4. The results demonstrate that
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Table 1: LTR benchmarks for CIFAR100-LT.

Model IF
100 50 10

Baseline (Cui et al., 2019) 38.3 43.9 55.7
Baseline + CB (Cui et al., 2019) 39.6 45.3 58.0
Focal loss (Lin et al., 2017) 38.4 44.3 55.8
Focal+CB (Cui et al., 2019) 39.6 45.2 58.0
τ -norm (Kang et al., 2019) 47.7 52.5 63.8
LDAM-DRW (Cao et al., 2019) 42.0 46.6 58.7
BBN∗ (Zhou et al., 2020) 42.6 47.0 59.1
LogitAjust (Menon et al., 2020) 42.0 47.0 57.7
LDAM+SSP (Yang & Xu, 2020) 43.4 47.1 58.9
De-confound (Tang et al., 2020) 44.1 50.3 59.6
SSD (Li et al., 2021) 46.0 50.5 62.3
DiVE (He et al., 2021) 45.4 51.1 62.0
DRO-LT (Samuel & Chechik, 2021) 47.3 57.6 63.4
WD (Alshammari et al., 2022) 46.0 52.7 66.1
WD & Max (Alshammari et al., 2022) 53.4 57.7 68.7
CLTR (LwF) 45.1 49.3 58.7
CLTR (EWC) 44.4 50.3 58.8
CLTR (Modified EWC) 45.9 51.0 60.7
CLTR (GPM) 48.3 54.7 64.7
CLTR (FOSTER) 48.7 54.4 63.6
CLTR (SGP) 50.7 58.0 67.2
CLTR (TPL) 48.4 54.0 62.1

Table 2: LTR benchmarks for CIFAR10-LT.

Model IF
100 50

Baseline (Cui et al., 2019) 69.8 75.2
Baseline + CB (Cui et al., 2019) 74.7 79.3
Focal loss(Lin et al., 2017) 70.4 75.3
PG Re-sampling (Cui et al., 2018) 67.1 75.0
3LSSL (Díaz-Rodríguez et al., 2018) 85.2 88.2
Focal+CB(Cui et al., 2019) 74.6 79.3
LDAM-DRW(Cao et al., 2019) 77.0 79.3
BBN∗ (Cao et al., 2019) 79.8 82.2
Manifold mixup (Cui et al., 2019) 73.0 78.1
CBA-LDAM (Cui et al., 2019) 80.3 82.2
ELF (LDAM)+DRW (Cui et al., 2019) 78.1 82.4
De-confound (Tang et al., 2020) 80.6 83.6
Hybrid-SC (Wang et al., 2021b) 81.4 85.4
MiSLAS (Zhong et al., 2021) 82.1 85.7
BCL (Zhu et al., 2022) 84.3 87.2
CLTR (LwF) 76.3 78.6
CLTR (EWC) 75.1 80.1
CLTR (Modified EWC) 77.8 81.3
CLTR (GPM) 81.2 84.8
CLTR (FOSTER) 81.7 85.9
CLTR (SGP) 83.0 85.5
CLTR (TPL) 84.7 87.6

Table 3: LTR benchmarks for ImageNet-LT.

Model Top-1
accuracy

Baseline (Cui et al., 2019) 44.4
Baseline + CB (Cui et al., 2019) 33.2
KD (Hinton et al., 2015) 35.8
Focal (Lin et al., 2017) 30.5
SR Re-sampling (Mahajan et al., 2018) 46.8
OLTR (Liu et al., 2018) 35.6
cRT (Kang et al., 2019) 49.6
τ -norm (Kang et al., 2019) 49.4
LFME (Xiang et al., 2020) 37.5
De-confound (Tang et al., 2020) 51.8
Seasaw Loss (Wang et al., 2021a) 50.4
DiVE (He et al., 2021) 53.1
DisAlign (Zhang et al., 2021) 52.9
WD (Alshammari et al., 2022) 48.6
WD+Max (Alshammari et al., 2022) 53.9
CLTR (LwF) 47.6
CLTR (EWC) 48.9
CLTR (Modified EWC) 49.1
CLTR (GPM) 51.7
CLTR (FOSTER) 52.7
CLTR (SGP) 53.2
CLTR (TPL) 53.9

Table 4: The performance of CLTR on Ordered LT-
CIL Benchmark for CIFAR100-LT .

Method Tasks
5 10

EEIL (Castro et al., 2018) 38.5 37.5
EEIL+2sLWS Liu et al. (2022a) 39.0 37.6
LUCIR (Hou et al., 2019) 42.7 42.2
PODNET (Douillard et al., 2020) 44.1 44.0
PODNET+2sLWS (Liu et al., 2022a) 44.4 44.4
LUCIR+2sLWS (Liu et al., 2022a) 45.9 45.7
CLTR (TPL) 48.4 47.3

Table 5: The performance of CLTR on Caltech256.

Method Backbone
Inc.V4 Res.101

L2
− FE (Li et al., 2018) 84.1 85.3

L2 (Li et al., 2018) 85.8 87.2
L2
− SP (Li et al., 2018) 85.3 87.2

DELTA (Li et al., 2018) 86.8 88.7
GBN (Liu et al., 2021) - 86.9
TransTailor (Liu et al., 2021) - 87.3
CLTR (SGP) 88.6 89.8

CLTR outperforms prior methods in both 5- and 10-task settings by considerable margins of 2.5% and 1.6%,
repsectively.

In LTR benchmarks, datasets are modified to exhibit a skewed distribution of samples among various classes.
However, such imbalanced class distributions are naturally observed in real-world data as well (Alshammari
et al., 2022). To evaluate the efficacy of CL techniques on non-LTR benchmark datasets, we utilize the
Caltech256 dataset (Griffin et al., 2007), which consists of 256 distinct classes representing everyday objects.
The largest class comprises 827 samples, while the smallest class contains only 80 samples, exhibiting an IF
of over 10. Here, we employ the CLTR and compare its performance to the state-of-the-art methods on this
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Figure 4: The Error behavior for various (left) number of incremental steps and (right) replay memory (M)
size.

dataset for objected classification. The results are presented in Table 5. We observe that CL outperforms the
previous method on this dataset, demonstrating the strong potential of using CL in dealing with long-tailed
real-world datasets.

4.3 Discussion

Multiple Incremental Steps. Recall that Theorem 3.8 highlights CLTR’s capability for extending beyond
two incremental steps. Increasing the number of partitions leads to smaller IF within each partition at the cost
of an increase in forgetting. To explore the effect of varying partition numbers on CLTR’s final performance,
we adhere to the experimental protocol outlined in (Liu et al., 2022a). Initially, the model is trained on
the first 60 classes, followed by sequential learning of the remaining classes, divided into different numbers
of partitions. The results of this experiment are presented in Fig. 4 (left). Our results reveal an optimal
value for CLTR (FOSTER) (4 steps), yet the performance margin remains slim even with up to 30 tasks.
This highlights the effectiveness of CL methods employed within CLTR. The optimal value for the number
of incremental steps for each CL algorithm can be found in Appendix C.

Replay Memory. Several CL algorithms incorporate mechanisms to retain partial information from the
previous task, aiming to mitigate catastrophic forgetting. For example, EWC maintains prior model param-
eters along with their Fisher values, whereas both GPM and SGP safeguard the Core Gradient Space of
previous tasks. FOSTER, on the other hand, utilizes a replay memory for this purpose. Within the LTR
context, the presence of a buffer memory doesn’t require additional storage, as access to the full dataset
is already available. Nonetheless, to prevent hindering the model’s capacity to learn Tail distributions, we
deliberately avoid replaying all Head samples when learning the Tail, as evidenced by Eq. 7. Accordingly,
our analysis extends to how the number of Head samples replayed while learning the Tail impacts the model’s
performance, as illustrated in Fig. 4 (right). The replay memory’s size serves as a mediator between for-
getting previous information and worsening class imbalance, e.g. a larger replay memory reduces forgetting
but increases imbalance. Therefore, identifying an optimal balance in this trade-off is crucial. Our results
demonstrate the significance of an appropriate replay memory size; however, there exists a threshold beyond
which additional samples per class do not further improve the performance and the performance levels off.

Backward/Forward Transfer and Catastrophic Forgetting. Prior works discuss three key concepts in
the context of CL: catastrophic forgetting, backward transfer, and forward transfer (Díaz-Rodríguez et al.,
2018). As mentioned earlier, catastrophic forgetting occurs when the performance of a class declines after
retraining. Despite the use of CL methods, which are designed to mitigate this forgetting, a certain degree
of forgetting is still inevitable. Forward transfer is the improvement in performance on a new task after
employing CL, which is the central aim of retraining in CL. Finally, backward transfer is a beneficial side-
effect where retraining on new samples can actually enhance the model’s performance on the previous tasks.
This interesting phenomenon in CL has been extensively discussed in previous works in theory and practice
(Lin et al., 2022). Now, let’s discuss Fig. 5, which presents the difference in per-class accuracy of the best
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Figure 5: The difference in per-class accuracy of CLTR (SGP) and the baseline model. ü

CL method (CLTR (SGP)) versus the baseline network. The analysis is based on CIFAR100-LT with an IF
of 100. The figure is divided into three regions corresponding to the scenarios discussed above: catastrophic
forgetting (bottom), backward transfer (top-left), and forward transfer (top-right). The bottom region in the
figure represents classes that undergo catastrophic forgetting, while the top-right region represents the Tail
samples (with a class index larger than 60), which demonstrate improved performance, or forward transfer.
We observe that using SGP as a CL solution for LTR results in very effective improvements in the per-class
accuracy of the Tail (forward transfer). Interestingly, despite the absence of Head data in the retraining
process, 42 out of 60 Head classes see some level of improvement after the model is exposed to the Tail
samples (backward transfer). This result emphasizes the remarkable potential of CL methods in enhancing
the performance on both new and previous tasks.

Runtime. The inference runtime is identical between CLTR and LTR solutions, due to identical backbones
in both types of methods and the fact that CL does not affect inference. Regarding the training runtime,
when CLTR is used, the data is divided into Head and Tail sets. At each step of the training, only one
partition of data is involved, alongside a replay memory with a limited size. Since the backbone is consistent
among all LTR approaches for each benchmark, the runtime is determined by the amount of data fed to the
model. Dividing the learning into multiple steps and using CL therefore does not impact the total runtime,
nor does it increase the training time significantly.

Limitations. Strong convexity is a key assumption in our theorem, which determines an upper bound
for the distance between the weights of a learner trained on the full dataset and the weights of the same
learner trained solely on the Head. This assumption offers a solid theoretical foundation for our method,
showcasing the feasibility of using CL techniques to address the LTR problem. However, as many deep
learning models in practice employ non-convex loss functions that potentially limit the theorem’s applicability
to specific cases, it is crucial to highlight that our experimental results are not strictly dependent on the
strong convexity condition. In fact, our method exhibits impressive performance even under more relaxed
conditions, indicating its robustness and adaptability.

5 Conclusion and Future Work

In this work, we propose CLTR, a novel framework that uses standard CL techniques to learn the Head
and Tail sets sequentially. To ensure that our proposed solution is theoretically grounded, we first prove
that learning a long-tailed dataset leads to weights similar to the case where the model is solely trained
on the Head. Relying on this finding, we propose CL for learning the Tail sequentially following the Head,
without forgetting the Head. Our experimental results on CIFAR100-LT, CIFAR10-LT, ImageNet-LTR,
and Clatech256 support our theoretical findings and demonstrate the viability of our approach in achieving
state-of-the-art performances in all LTR and LT-CIL benchmarks. Future research directions include relaxing
some of our theoretical assumptions, and employing few-shot learning alongside CL for addressing LTR.
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Appendix

A Proofs

A.1 Proof of Lemma 3.4

Proof. Since f(x) is strongly convex:

f(x2) ≥ f(x1) +∇f(x1)
T
(x2 − x1) +

µf

2
∥x2 − x1∥

2. (1)

Accordingly if x2 = xg = arg min g(x) and x1 = xf = arg min f(x), then:

f(xg) − f(xf) ≥ ∇f(xf)
T
(xg − xf) +

µf

2
∥xg − xf∥

2. (2)

Since xf is the minimizer of f , ∇f(xf) = 0. Therefore:

f(xg) − f(xf) ≥
µf

2
∥xg − xf∥

2. (3)

Similarly, considering g(x), with x1 = xg, and x2 = xf , we can derive Equation 1 as follows:

g(xf) − g(xg) ≥
µg

2
∥xf − xg∥

2. (4)

By adding and rearranging Eqs. 3 and 4, we will have:

(g(xf) − f(xf)) + (f(xg) − g(xg)) ≥
(µf + µg)

2
∥xg − xf∥

2. (5)

Using ∣f(x) − g(x)∣ ≤ δ, we can maximize (g(xf) − f(xf)) and (f(xg) − g(xg)) to obtain:

2δ ≥
µf + µg

2
∥xg − xf∥

2. (6)

Hence:
∥xg − xf∥

2
≤

4δ
µf + µg

, (7)

which completes the proof.

A.2 Proof of Lemma 3.6

Proof. Using the second-order Taylor series expansion for multivariate functions, we can approximate f(xg)

and g(xf) as follows:

f(xg) ≃ f(xf) +∇f(xf)(xg − xf) +
1
2
(xg − xf)

⊺Hf(xf)(xg − xf), (8)

g(xf) ≃ g(xg) +∇g(xg)(xf − xg) +
1
2
(xf − xg)

⊺Hg(xg)(xf − xg), (9)

where Hf(xf) and Hg(xg) are the Hessian matrices of f and g evaluated at xf and xg, respectively.

Since ∇f(xf) = ∇g(xg) = 0, by adding Eq. 8 and Eq. 9 together, we obtain:

f(xg) − g(xg) + g(xf) − f(xf) ≃
1
2
(xg − xf)

⊺Hf(xf)(xg − xf) +
1
2
(xf − xg)

⊺Hg(xg)(xf − xg), (10)

Using ∣f(x) − g(x)∣ ≤ δ, we can maximize (g(xf) − f(xf)) and (f(xg) − g(xg)):

2δ ≥ 1
2
(xg − xf)

⊺Hf(xf)(xg − xf) +
1
2
(xf − xg)

⊺Hg(xg)(xf − xg), (11)
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Let λf and λg be the minimum eigenvalues of Hf(xf) and Hg(xg), respectively. By properties of the
minimum eigenvalues, we can say:

(xg − xf)
⊺Hf(xf)(xg − xf) ≥ λf∥xg − xf∥

2, (12)

(xf − xg)
⊺Hg(xg)(xf − xg) ≥ λg∥xf − xg∥

2. (13)

Using Eqs. 12 and 13, we can rewrite Eq. 11:

2δ ≥ 1
2
λf∥xg − xf∥

2
+

1
2
λg∥xf − xg∥

2. (14)

Therefore:
∥xf − xg∥

2
≤

4δ
λf + λg

, (15)

which completes the proof.

A.3 Proof of Theorem 3.8

Proof. Let D be a dataset divided into a sequence of partitions D1,D2, . . . ,Dn such that the imbalance factor
between any two consecutive partitions Di and Di+1 is significantly large, i.e., ∣Di∣

∣Di+1∣ ≫ 1.

Consider a random subset of D sorted from largest to smallest denoted as Da,Db,Dc, . . . (where ∣Da∣ ≫

∣Db∣≫ ∣Dc∣).

From Theorem 3.3, we know that if the imbalance factor between two partitions is significantly large, ∣D
1∣

∣D2∣ ≫ 1,
then the distance between the optimal parameters when trained on D1 and D1 ∪D2 is bounded by ζ, i.e.,
∣∣θ∗D1 − θ∗D1∪D2∣∣

2 ≤ ζ where ζ is computed using Eq. 9 in the manuscript.

Applying this Theorem to Da and Db, we have:

∣∣θ∗Da − θ∗Da∪Db ∣∣
2
≤ ζ1

Next, considering the combination of Da ∪Db and Dc, given that ∣D
a∪Db∣
∣Dc∣ ≫ 1, we deduce:

∣∣θ∗Da∪Db − θ
∗
Da∪Db∪Dc ∣∣

2
≤ ζ2

Given that the weights reside in a metric space, and the distances are Euclidean, the triangle inequality
applies. Combining the above inequalities, we therefore get:

∣∣θ∗Da − θ∗Da∪Db∪Dc ∣∣
2
≤ (
√
ζ1 +
√
ζ2)

2

Extending this argument for all partitions, we can conclude:

∣∣θ∗Da − θ∗∑Di ∣∣
2
≤ (

m

∑
i=1

√
ζi)

2

where m is the number of subsets selected randomly.

A.4 Proof of Theorem 3.9

Proof. Define the updated weight vector after one iteration over the Tail using EWC loss as:

θi+s
EWC = θ

i+s−1
− η∇LEWC(DT , θ

i+s−1
) (16)

Similarly, for L:
θi+s
L = θi+s−1

− η∇L(DT , θ
i+s−1

) (17)
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From the Taylor series expansion, we can estimate the L of the model with θi+s
EWC over D:

L(D, θi+s
EWC) ≃ L(D, θ

i+s−1
) − η∇LEWC(DT , θ

i+s−1
)∇L(D, θi+s−1

) (18)

Similarly, for the L of the model with θi+s
L over D:

L(D, θi+s−1
L ) ≃ L(D, θi+s−1

) − η∇L(DT , θ
i+s−1

)∇L(D, θi+s−1
) (19)

Subtracting Eq. 19 from 18, we derive:

L(D, θi+s
EWC) −L(D, θ

i+s
L ) ≃ η∇L(D, θ

i+s−1
)(∇L(DT , θ

i+s−1
) −∇LEWC(DT , θ

i+s−1
)) (20)

Elastic Weight Consolidation (EWC) loss is expressed as:

LEWC(θ
i+s−1

) = L(θi+s−1
) +

λ

2

∣θ∣
∑
i

Fi(θ
i+s−1

− θ∗)2 (21)

Thus, we can compute ∇LEWC(DT , θ
i+s−1) as:

∇LEWC(DT , θ
i+s−1

) = ∇L(DT , θ
i+s−1

) + λdiag(F )(θi+s−1
− θ∗) (22)

Substituting Eq. 22 into Eq. 20, we obtain:

L(D, θi+s
EWC) −L(D, θ

i+s
L ) = −ηλdiag(F )∇L(D, θi+s−1

)
T
(θi+s−1

− θ∗) (23)

To determine the sign of ηλdiag(F )∇L(D, θi+s−1)T (θi+s−1 − θ∗), we must investigate the sign of each factor.
The values of η and λ are positive by construction. To determine the sign of ∇L(D, θi+s−1)T (θi+s−1 − θ∗),

based on the strong convexity of L with respect to θi and θ∗, we have:

L(D, θ∗) ≥ L(D, θi+s−1
) +∇L(D, θi+s−1

)
T
(θ∗ − θi+s−1

) +
µL
2
∣θi+s−1

− θ∗∣2. (24)

Rearranging, we obtain:

∇L(D, θi+s−1
)

T
(θ∗ − θi+s−1

) ≤ L(D, θ∗) −L(D, θi+s−1
) −

µL
2
∥θi+s−1

− θ∗∥2. (25)

Since θ∗ minimizes L, the term L(D, θ∗) − L(D, θi+s−1) is always negative. Moreover, −µL
2 ∥θ

i − θ∗∥2 is also
always negative, leading to:

∇L(D, θi+s−1
)

T
(θ∗ − θi+s−1

) < 0. (26)

Consequently, ∇L(D, θi+s−1)T (θi − θ∗) is positive definite.

Finally, the diag(F ) term is determined to be positive valued, according to the following Lemma A.1.

Lemma A.1. Let a logistic regression model be characterized by parameters θ and trained using regularized
cross-entropy loss. Then, the diagonal values of its Fisher information matrix (diag(F)) are strictly positive.

The full proof is presented in A.5. Relying on Lemma A.1, we have derived that the sign of
ηλdiag(F )∇L(D, θi+s−1)T (θi − θ∗) is positive, which from Eq. 23 we can conclude:

L(D, θi+s
EW C) −L(D, θ

i+s
L ) < 0, (27)

which completes the proof.
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A.5 Proof of Lemma A.1

Proof. The Fisher information matrix is the estimated value of the Hessian of the log-likelihood:

F = E [∇2
(− logL(θ))] (28)

In logistic regression, we model the probability of a binary outcome y given input x as:

P (y = 1∣x; θ) = 1
1 + e−θT x (29)

where θ is the vector of model parameters. For a dataset {(xi, yi)}
N
i=1}, the negative log-likelihood is:

− logL(θ) =
N

∑
i=1
[−yi log ( 1

1 + e−θT xi
) − (1 − yi) log (1 − 1

1 + e−θT xi
)] (30)

So the Hessian of the negative log-likelihood is:

∇
2
(− logL(θ)) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂2(− logL)
∂θ2

1
⋯

∂2(− logL)
∂θ1∂θd

⋮ ⋱ ⋮
∂2(− logL)

∂θd∂θ1
⋯

∂2(− logL)
∂θ2

d

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(31)

As a result:
∇

2
(− logL(θ)) = ∇2L(θ) (32)

where d is the dimensionality of θ. Now since the model is logistic regression and loss is regularized cross-
entropy, from Eq. 9, we have:

L(x1) ≥ L(x2) +∇L(x2)
T
(x1 − x2) +

µL
2
∥x1 − x2∥

2, (33)

Which is the condition of strong convexity. As a result:

∇
2
L ≥ µLI (34)

From Eq.32 and Eq. 34:
∇

2
(− logL(θ)) = ∇2L(θ) ≥ µI (35)

Hence:
E [∇2

(− logL(θ))] ≥ µI (36)

consequently:
diag(F ) > diag(D), where Dii > 0, for all i (37)

which completes the proof.

B Strong Convexity of the Loss Function

The assumption of strong convexity has been widely used in prior theoretical analysis of CL algorithms
(Lin et al., 2024b; Wu et al., 2024; Hao et al., 2024; Cai & Diakonikolas, 2024; Zeno et al., 2021; Bennani
et al., 2020). Here we aim to investigate whether the sequence in which training on multiple datasets is
conducted affects the outcome when the loss abides by this assumption. We begin by illustrating how the
loss landscape and its minima are influenced by the training data. We then establish that when training the
model on multiple datasets, altering the sequence of training impacts the convergence point under the strong
convexity condition. This is then followed by simple numerical examples that empirically demonstrate how
different training orders yield different results.
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Following (Picot et al., 2022), we define the empirical loss landscape E as the change of the loss function
with respect to the change in the parameters of the model (θ) when training on a particular dataset Di.
Therefore the loss landscape can be formulated as:

EDi(θ) = L(θ,D)∣D=Di
=

1
∣D∣

∣D∣
∑
k=1

ℓ((xk, yk), θ)
RRRRRRRRRRR(xk,yk)∈Di

. (1)

Hence, the parameters of the model after training can be expressed as:

θ∗i = arg min
θ

EDi(θ) = arg min
θ

1
∣D∣

∣D∣
∑
k=1

ℓ((xk, yk), θ)
RRRRRRRRRRR(xk,yk)∈Di

. (2)

Since the loss function is assumed to be strongly convex, there will be only one minima (the global minima),
and the convergence of SGD to this point, under proper selection of the learning rate, is guaranteed (Rakhlin
et al., 2011). As a result, regardless of the initialization, for each dataset, the model will converge to its
corresponding global minima in the weight space. Consequently, if the model is trained on a sequence of
different datasets, it will always converge to the global minimum corresponding to the final dataset. So the
order of training can significantly change the outcome. We further demonstrate this phenomenon in the
following simple numerical examples.

We consider a simple dataset D1 consisting of two data points {(0,0), (1,1)} with labels {0,1}. We train
a logistic regression model with L2 regularization (following Assumption 3.2) on this dataset which falls
under the strong convexity assumption, following Eq. 8. We use randomly initialized parameters θinit and
compare the corresponding convergence points θ∗ as shown in Table A1. This experiment shows that the
model converges to the same point in the weight space (global minimum of the loss landscape) regardless of
the initialization.

Table A1: Convergence point of the model with different initialization parameters.

Metrics Initializations
Exp 1 Exp 2 Exp 3

θinit [1.7640, 0.4001] [0.4967,−0.1382] [−1.5062,−0.5786]
θ∗ [0.3554, 0.3554] [0.3554, 0.3554] [0.3554, 0.3554]

We now introduce the second dataset D2 consisting of two data points {(0.5,0.5), (0.7,0.7)} with labels
{0,1}. We train the model using D1 and D2 in four setups: (1) training only on D1; (2) training only on D2;
(3) training on D1 followed by D2; (4) training only on D2 followed by D1. We present the results for this
experiment in Table A2, where we observe that changing the order of the training, under the assumption
of strong convexity of the loss function, changes the convergence point in the weight space, with the last
training step being the determining factor.

Table A2: Convergence point of the model when trained on different datasets.

Metrics Datasets
D1 D2 D1 → D2 D2 → D1

θ∗ [0.3554, 0.3554] [0.2264, 0.2264] [0.2264, 0.2264] [0.3554, 0.3554]

Relying on these results and the above explanation on the loss landscape and convergence points, the concept
of forgetting in a strongly convex setup can be explained as follows. First, the model is trained on D1 and
converges to its corresponding unique global minimum (θ∗t1 = θ1), as the convergence of strongly convex loss
using SGD is guaranteed. Next, starting from θ1, the model is trained on D2. Consequently, the model
will converge to the unique global minimum of the second dataset’s loss landscape (θ∗t2 = θ2). Since the
loss function is strongly convex, L(D1, θ) has one global minimum which happens in θ1. As a result, the
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loss value in all other points in the weight space is larger than its value at its minimizer θ1. Hence, it can
be concluded that L(D1, θ2) > L(D1, θ1) which means the second step of training increases L(D1, θ). This
increase in the loss of the first dataset in the sequential learning of these two datasets represents catastrophic
forgetting.

C Implementation Details

All our experiments were conducted utilizing the PyTorch framework. We use the original implementation
of Learning without Forgetting (LwF), Elastic Weight Consolidation (EWC), a modified version of EWC,
Gradient Projection Memory (GPM), Scaled Gradient Projection (SGP), FOSTER, and TPL.1. The specifics
of each algorithm’s implementation are summarized in Table A3. The parameters for each algorithm such as
Learning Rate (LR), Optimizer, Momentum, LR Scheduler, CL Weight, and number of Epochs are detailed.

Table A3: Table A1: Implementation Details of the Considered Algorithms for LTR benchmark.

Algorithm LR Opt. Momentum LR Scheduler CL Loss Weight Epochs Steps
LwF 0.001 SGD 0.9 - 0.01 5 2
EWC 0.01 SGD 0.9 - 10 90 2

Modified EWC 0.01 SGD 0.9 - 1000 90 2
GPM 0.001 SGD 0 Cosine Anneal LR - 100 2
SGP 0.001 SGD 0 Cosine Anneal LR - 150 2

FOSTER phase1 0.1 SGD 0.9 Cosine Anneal LR - 170 4
FOSTER phase2 0.1 SGD 0 Cosine Anneal LR - 130 4

TPL 0.01 SGD 0.8 Cosine Anneal LR - 50 4

Note that for SGP, the algorithm-specific hyperparameters are acquired through grid search as follows:
gpmeps = 0.96 and gpmeps−inc = 0.004.

D Datasets

Fig. A1 illustrates the distribution of samples among different classes and the division of the dataset into
the Head and Tail sections. In the case of CIFAR100-LT with IF= 100, the initial partition is configured
such that 5% of the samples fall within the Tail and 95% in the Head section (Classes 60 to 100 are classified
as Tail). For comparison purposes, the rest of the datasets follow a similar partition threshold where 60% of
the classes are assigned to the Head section.

1The code for the algorithms was obtained and modified from various open-source repositories:
https://github.com/ngailapdi/LWF
https://github.com/shivamsaboo17/Overcoming-Catastrophic-forgetting-in-Neural-Networks
https://github.com/MahdiyarMM/Continual-pedestrian-detection
https://github.com/sahagobinda/GPM
https://github.com/sahagobinda/SGP
https://github.com/G-U-N/ECCV22-FOSTER
https://github.com/linhaowei1/TPL
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Figure A1: Class cardinality of (a) MNIST-LT, (b) CIAFR100-LT, (c) CIFAR10-LT, (d) ImageNet-LT and
(e) Caltech256

An interesting phenomenon observed when training models on highly imbalanced data is the presence of
artificially large weights in neurons corresponding to the Head classes (Alshammari et al., 2022). The LTR
solution, WD, addresses this problem by penalizing weight growth using weight decay. One way to assess
the network’s ability to handle LTR is by analyzing the bias in per-class weight norms. To this end, we
present the per-class weight norms of the Baseline, WD, and CLTR (SGP) models in Fig. A2.
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Figure A2: Per-class weight norms of the
baseline, SGP, and WD.

The figure reveals a significant imbalance in the weight norms
of the Baseline model, which is naively trained on the imbal-
anced dataset. In contrast, the WD and CLTR (SGP) models
exhibit more uniform weight norms across different classes. In-
terestingly, although CLTR (SGP) starts with the heavily im-
balanced weights of the Baseline model, it converges towards a
more uniform weight distribution without any explicit penalty
on weight growth. Unlike many other CL methods that re-
strict the plasticity of crucial weights, SGP only constrains the
direction of the weight update in the weight space, enabling
the model to converge to a more balanced weight distribution.
This further demonstrates the effectiveness of CL in addressing
LTR problem.

F Imbalanced Binary Classification

In this work, we address the LTR problem, which inherently involves multi-class classification (Zhou et al.,
2020; Zhang et al., 2022). Consequently, binary classification does not typically fall under the LTR framework
and is beyond the primary scope of our study. However, we demonstrate that our proposed method, CLTR,
is also applicable to binary imbalanced learning scenarios. To evaluate CLTR on this setup, we adopt a two-
stage training process. First, we train the model on the Head class using one-class classification inspired by
(Perera & Patel, 2019). Here the model is trained to detect the Head class samples among other unlabeled
samples from an external dataset. Then, the model is trained on the Tail class samples with a replay
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memory storing a few samples from the Head. We conduct these experiments on two datasets, MNIST-LT
and CIFAR10-LT. For the first dataset, we select a random class from the Head and a random class from the
Tail: class 4 with 1,000 samples (Head) and class 7 with 100 samples (Tail). We then train a logistic regression
model on the Head, alongside 1,000 unlabeled randomly selected samples from other classes excluding the
Tail as the external data. We then train the model on the Tail using CL. A replay memory with 100 samples
of the Head is also employed in this stage. For CIFAR10-LT, we randomly select 5,000 samples of class 3
(Head) and 500 samples of class 5 (Tail) and train a ResNet-18 model under the same settings. We compare
the performance of the model on the Tail, Head, and the balanced test set against the following models:
BCE as the naive baseline trained on the entire imbalanced dataset using Binary Cross-Entropy loss; BCE
(Balanced loss), where the loss associated with each class is weighted based on its size; and BCE (Balanced
dataset), where the model is trained on the balanced version of the dataset in which the Head is under-
sampled to ensure both classes are of the same size. We use two versions of CLTR for this experiment with
EWC and SGP as the CL method. The results of this experiment are presented in Table A4, demonstrating
that CLTR can effectively improve the overall performance and reduce the performance gap between the
Head and Tail classes in imbalanced binary classification problems.

Table A4: The performance of CLTR on binary imbalanced classification.

Model MNIST-LT (IF = 10) CIFAR10-LT (IF = 10)
Acc. Minority Acc. Majority Acc. Overall Acc. Minority Acc. Majority Acc. Overall

BCE 0.0 99.9 50.0 10.3 98.3 54.3
BCE (Balanced loss) 91.5 99.2 95.2 14.5 95.9 55.2
BCE (Balanced dataset) 89.4 91.6 90.6 57.5 54.7 56.2
CLTR (EWC) 95.8 95.0 95.4 52.2 68.0 60.1
CLTR (SGP) 96.4 98.1 97.3 58.7 70.5 64.6
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