
Under review as a conference paper at ICLR 2023

UNIVERSAL APPROXIMATION AND MODEL COMPRES-
SION FOR RADIAL NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce a class of fully-connected neural networks whose activation func-
tions, rather than being pointwise, rescale feature vectors by a function depending
only on their norm. We call such networks radial neural networks, extending pre-
vious work on rotation equivariant networks that considers rescaling activations in
less generality. We prove universal approximation theorems for radial neural net-
works, including in the more difficult cases of bounded widths and unbounded do-
mains. Our proof techniques are novel, distinct from those in the pointwise case.
Additionally, radial neural networks exhibit a rich group of orthogonal change-
of-basis symmetries on the vector space of trainable parameters. Factoring out
these symmetries leads to a practical lossless model compression algorithm. Op-
timization of the compressed model by gradient descent is equivalent to projected
gradient descent for the full model.

1 INTRODUCTION

Inspired by biological neural networks, the theory of artificial neural networks has largely focused
on pointwise (or “local”) nonlinear layers (Rosenblatt, 1958; Cybenko, 1989), in which the same
function σ : R→ R is applied to each coordinate independently:

Rn → Rn, v = (v1 , . . . , vn) 7→ (σ(v1) , σ(v2) , . . . , σ(vn)). (1.1)

In networks with pointwise nonlinearities, the standard basis vectors in Rn can be interpreted as
“neurons” and the nonlinearity as a “neuron activation.” Research has generally focused on finding
functions σ which lead to more stable training, have less sensitivity to initialization, or are better
adapted to certain applications (Ramachandran et al., 2017; Misra, 2019; Milletarı́ et al., 2018;
Clevert et al., 2015; Klambauer et al., 2017). Many σ have been considered, including sigmoid,
ReLU, arctangent, ELU, Swish, and others.

However, by setting aside the biological metaphor, it is possible to consider a much broader class
of nonlinearities, which are not necessarily pointwise, but instead depend simultaneously on many
coordinates. Freedom from the pointwise assumption allows one to design activations that yield
expressive function classes with specific advantages. Additionally, certain choices of non-pointwise
activations maximize symmetry in the parameter space of the network, leading to compressibility
and other desirable properties.

In this paper, we introduce radial neural networks which employ non-pointwise nonlinearities called
radial rescaling activations. Such networks enjoy several provable properties including high model
compressibility, symmetry in optimization, and universal approximation. Radial rescaling activa-
tions are defined by rescaling each vector by a scalar that depends only on the norm of the vector:

ρ : Rn → Rn, v 7→ λ(|v|)v, (1.2)

where λ is a scalar-valued function of the norm. Whereas in the pointwise setting, only the linear
layers mix information between different components of the latent features, for radial rescaling, all
coordinates of the activation output vector are affected by all coordinates of the activation input
vector. The inherent geometric symmetry of radial rescalings makes them particularly useful for
designing equivariant neural networks (Weiler & Cesa, 2019; Sabour et al., 2017; Weiler et al.,
2018a;b).

1

Under review as a conference paper at ICLR 2023

σ

σ
σ

σ

ρ
||·|| λ

Wi-1 Wi Wi-1 Wi

Figure 1: (Left) Pointwise activations distinguish a specific basis of each hidden layer and treat each
coordinate independently, see equation 1.1. (Right) Radial rescaling activations rescale each feature
vector by a function of the norm, see equation 1.2.

We note that radial neural networks constitute a simple and previously unconsidered type of multi-
layer radial basis functions network (Broomhead & Lowe, 1988), namely, one where the number of
hidden activation neurons (often denoted N) in each layer is equal to one. Indeed, pre-composing
equation 1.2 with a translation and post-composing with a linear map, one obtains a special case of
the local linear model extension of a radial basis functions network.

In our first set of main results, we prove that radial neural networks are in fact universal approxima-
tors. Specifically, we demonstrate that any asymptotically affine function can be approximated with
a radial neural network, suggesting potentially good extrapolation behavior. Moreover, this approx-
imation can be done with bounded width. Our approach to proving these results departs markedly
from techniques used in the pointwise case. Additionally, our result is not implied by the universality
property of radial basis functions networks in general, and differs in significant ways, particularly in
the bounded width property and the approximation of asymptotically affine functions.

In our second set of main results, we exploit parameter space symmetries of radial neural networks to
achieve model compression. Using the fact that radial rescaling activations commute with orthogonal
transformations, we develop a practical algorithm to systematically factor out orthogonal symmetries
via iterated QR decompositions. This leads to another radial neural network with fewer neurons in
each hidden layer. The resulting model compression algorithm is lossless: the compressed network
and the original network both have the same value of the loss function on any batch of training data.

Furthermore, we prove that the loss of the compressed model after one step of gradient descent is
equal to the loss of the original model after one step of projected gradient descent. As explained
below, projected gradient descent involves zeroing out certain parameter values after each step of
gradient descent. Although training the original network may result in a lower loss function after
fewer epochs, in many cases the compressed network takes less time per epoch to train and is faster
in reaching a local minimum.

To summarize, our main contributions and headline results are:

• Radial rescaling activations are an alternative to pointwise activations: We provide a for-
malization of radial neural networks, a new class of neural networks;

• Radial neural networks are universal approximators: Results include a) approximation of
asymptotically affine functions, and b) bounded width approximation;

• Radial neural networks are inherently compressible: We prove a lossless compression al-
gorithm for such networks and a theorem providing the relationship between optimization
of the original and compressed networks.

• Radial neural networks have practical advantages: We describe experiments verifying all
theoretical results and showing that radial networks outperform pointwise networks on a
noisy image recovery task.

2 RELATED WORK

Radial rescaling activations. As noted, radial rescaling activations are a special case of the ac-
tivations used in radial basis functions networks (Broomhead & Lowe, 1988). Radial rescaling
functions have the symmetry property of preserving vector directions, and hence exhibit rotation

2

Under review as a conference paper at ICLR 2023

equivariance. Consequently, examples of such functions, such as the squashing nonlinearity and
Norm-ReLU, feature in the study of rotationally equivariant neural networks (Weiler & Cesa, 2019;
Sabour et al., 2017; Weiler et al., 2018a;b; Jeffreys & Lau, 2021). However, previous works apply
the activation only along the channel dimension, and consider the orthogonal group O(n) only for
n = 2, 3. In contrast, we apply the activation across the entire hidden layer, and O(n)-equivariance
where n is the hidden layer dimension. Our constructions echo the vector neurons formalism (Deng
et al., 2021), in which the output of a nonlinearity is a vector rather than a scalar.

Universal approximation. Neural networks of arbitrary width and sigmoid activations have long
been known to be universal approximators (Cybenko, 1989). Universality can also be achieved by
bounded width networks with arbitrary depth (Lu et al., 2017b), and generalizes to other activations
and architectures (Hornik, 1991; Yarotsky, 2022; Ravanbakhsh, 2020; Sonoda & Murata, 2017).
While most work has focused on compact domains, some recent work also considers non-compact
domains (Kidger & Lyons, 2020; Wang & Qu, 2022), but only for Lp functions, which are less
general than asymptotically affine functions. The techniques used for pointwise activations do not
generalize to radial rescaling activations, where all activation output coordinates are affected by all
input coordinates. Consequently, individual radial neural network approximators of two different
functions cannot be easily combined to an approximator of the sum of the functions. The standard
proof of universal approximation for radial basis functions networks requires an unbounded increase
the number of hidden activation neurons, and hence does not apply to the case of radial neural
networks (Park & Sandberg, 1991).

Groups and symmetry. Appearances of symmetry in machine learning have generally focused
on symmetric input and output spaces. Most prominently, equivariant neural networks incorporate
symmetry as an inductive bias and feature weight-sharing constraints based on equivariance. Ex-
amples include G-convolution, steerable CNN, and Clebsch-Gordon networks (Cohen et al., 2019;
Weiler & Cesa, 2019; Cohen & Welling, 2016; Chidester et al., 2018; Kondor & Trivedi, 2018; Bao
& Song, 2019; Worrall et al., 2017; Cohen & Welling, 2017; Weiler et al., 2018b; Dieleman et al.,
2016; Lang & Weiler, 2021; Ravanbakhsh et al., 2017). By contrast, our approach does not depend
on symmetries of the input domain, output space, or feedforward mapping. Instead, we exploit
parameter space symmetries and obtain results that apply to domains with no apparent symmetry.

Model compression. A major goal in machine learning is to find methods to reduce the number
of trainable parameters, decrease memory usage, or accelerate inference and training (Cheng et al.,
2017; Zhang et al., 2018). Our approach toward this goal differs significantly from most existing
methods in that it is based on the inherent symmetry of network parameter spaces. One prior method
is weight pruning, which removes redundant weights with little loss in accuracy (Han et al., 2015;
Blalock et al., 2020; Karnin, 1990). Pruning can be done during training (Frankle & Carbin, 2018)
or at initialization (Lee et al., 2019; Wang et al., 2020). Gradient-based pruning removes weights
by estimating the increase in loss resulting from their removal (LeCun et al., 1990; Hassibi & Stork,
1993; Dong et al., 2017; Molchanov et al., 2016). A complementary approach is quantization,
which decreases the bit depth of weights (Wu et al., 2016; Howard et al., 2017; Gong et al., 2014).
Knowledge distillation identifies a small model mimicking the performance of a larger model (Bu-
ciluǎ et al., 2006; Hinton et al., 2015; Ba & Caruana, 2013). Matrix Factorization methods replace
fully connected layers with lower rank or sparse factored tensors (Cheng et al., 2015a;b; Tai et al.,
2015; Lebedev et al., 2014; Rigamonti et al., 2013; Lu et al., 2017a) and can often be applied before
training. Our method involves a type of matrix factorization based on the QR decomposition; how-
ever, rather than aim for rank reduction, we leverage this decomposition to reduce hidden widths via
change-of-basis operations on the hidden representations. Close to our method are lossless compres-
sion methods which remove stable neurons in ReLU networks (Serra et al., 2021; 2020) or exploit
permutation parameter space symmetry to remove neurons (Sourek et al., 2020); our compression
instead follows from the symmetries of the radial rescaling activation. Finally, the compression re-
sults of Jeffreys & Lau (2021), while conceptually similar to ours, are weaker, as the unitary group
action is only on disjoint layers, and the results are only stated for the squashing nonlinearity.

3

Under review as a conference paper at ICLR 2023

−2 −1.5 −1 −0.5 0.5 1 1.5 2

−2
−1.5
−1
−0.5

0.5

1

1.5

2 (1) Step-ReLU(r)

(3) Shifted ReLU

(2) Squashing function

Figure 2: Examples of different radial rescaling functions in R1, see Example 1.

3 RADIAL NEURAL NETWORKS

In this section, we define radial rescaling functions and radial neural networks. Let h : R→ R be a
function. For any n ≥ 1, set:

h(n) : Rn → Rn h(n)(v) = h(|v|) v

|v|
for v ̸= 0, and h(n)(0) = 0. A function ρ : Rn → Rn is called a radial rescaling function if
ρ = h(n) for some piecewise differentiable h : R→ R. Hence, ρ sends each input vector to a scalar
multiple of itself, and that scalar depends only on the norm of the vector1. It is easy to show that
radial rescaling functions commute with orthogonal transformations.
Example 1. (1) Step-ReLU, where h(r) = r if r ≥ 1 and 0 otherwise. In this case, the radial
rescaling function is given by

ρ : Rn → Rn, v 7→ v if |v| ≥ 1; v 7→ 0 if |v| < 1 (3.1)

(2) The squashing function, where h(r) = r2/(r2+1). (3) Shifted ReLU, where h(r) = max(0, r−
b) for r > 0 and b is a real number. See Figure 2. We refer to Weiler & Cesa (2019) and the
references therein for more examples and discussion of radial functions.

A radial neural network with L layers consists of positive integers ni indicating the width of each
layer i = 0, 1, . . . , L; the trainable parameters, comprising of a matrix Wi ∈ Rni×ni−1 of weights
and a bias vector bi ∈ Rni for each i = 1, . . . , L; and a radial rescaling function ρi : Rni → Rni

for each i = 1, . . . , L. We refer to the tuple n = (n0, n1, . . . , nL) as the widths vector of the
neural network. The hidden widths vector is nhid = (n1, n2, . . . , nL−1). The feedforward function
F : Rn0 → RnL of a radial neural network is defined in the usual way as an iterated composition of
affine maps and activations. Explicitly, set F0 = idRn0 and the partial feedforward functions are:

Fi : Rn0 → Rni , x 7→ ρi (Wi ◦ Fi−1(x) + bi)

for i = 1, . . . , L. Then the feedforward function is F = FL. Radial neural networks are a special
type of radial basis functions network; we explain the connection in Appendix F.
Remark 2. If bi = 0 for all i, then we have F (x) = W (µ(x)x) where µ : Rn → R is a scalar-
valued function and W = WLWL−1 · · ·W1 ∈ RnL×n0 is the product of the weight matrices. If any
of the biases are non-zero, then the feedforward function lacks such a simple form.

4 UNIVERSAL APPROXIMATION

We now consider two universal approximation results. The first approximates asymptotically affine
functions with a network of unbounded width. The second generalizes to bounded width. Proofs

1A function Rn → R that depends only on the norm of a vector is known as a radial function. Radial
rescaling functions rescale each vector according to the radial function v 7→ λ(|v|) := h(|v|)

|v| . This explains
the connection to Equation 1.2.

4

Under review as a conference paper at ICLR 2023

Rn

K

c1
c2

c3

c4

c5 c6

c7

c8

c2 + e2

c2

S2 ◦ ρ ◦ T2

Rm

f(c2)

Φ

Figure 3: Two layers of the radial neural network used in the proof of Theorem 3. (Left) The
compact set K is covered with open balls. (Middle) Points close to c2 (green ball) are mapped to
c2 + e2, all other points are kept the same. (Right) In the final layer, c2 + e2 is mapped to f(c2).

appear in Appendix B. Throughout, Br(c) = {x ∈ Rn : |x− c| < r} is the r-ball around a point c,
and an affine map Rn → Rm is one of the from L(x) = Ax+ b for A ∈ Rm×n and b ∈ Rm.

4.1 APPROXIMATION OF ASYMPTOTICALLY AFFINE FUNCTIONS

A continuous function f : Rn → Rm is asymptotically affine if there exists an affine map L : Rn →
Rm such that, for every ϵ > 0, there is a compact subset K of Rn such that |L(x) − f(x)| < ϵ for
all x ∈ Rn \K. In particular, continuous functions with compact support are asymptotically affine.
The continuity of f and compactness of K imply that, for any ϵ > 0, there exist c1, . . . , cN ∈ K
and r1, . . . , rN ∈ (0, 1) such that, first, the union of the balls Bri(ci) covers K and, second, for all
i, we have f (Bri(ci) ∩K) ⊆ Bϵ(f(ci)). Let N(f,K, ϵ) be the minimal2 choice of N .
Theorem 3 (Universal approximation). Let f : Rn → Rm be an asymptotically affine function. For
any ϵ > 0, there exists a compact set K ⊂ Rn and a function F : Rn → Rm such that:

1. F is the feedforward function of a radial neural network with N = N(f,K, ϵ) layers
whose hidden widths are (n+ 1, n+ 2, . . . , n+N).

2. For any x ∈ Rn, we have |F (x)− f(x)| < ϵ.

We note that the approximation in Theorem 3 is valid on all of Rn, not only on K. To give an idea of
the proof, first fix c1, . . . , cN ∈ K and r1, . . . , rN ∈ (0, 1) as above. Let e1, . . . , eN be orthonormal
basis vectors extending Rn to Rn+N . For i = 1, . . . , N define affine maps Ti : Rn+i−1 → Rn+i

and Si : Rn+i → Rn+i by

Ti(z) = z − ci + hiei Si(z) = z − (1 + h−1
i)⟨ei, z⟩ei + ci + ei

where hi =
√
1− r2i and ⟨ei, z⟩ is the coefficient of ei in z. Setting ρi to be Step-ReLU (Equation

3.1) on Rn+i, these maps are chosen so that the composition Si◦ρi◦Ti maps the points in Bri(ci) to
ci+ei, while keeping points outside this ball the same. We now describe a radial neural network with
widths (n, n+1, . . . , n+N,m) whose feedforward function approximates f . For i = 1, . . . , N the
affine map from layer i− 1 to layer i is given by z 7→ Ti ◦ Si−1(z), with S0 = idRn . The activation
at each hidden layer is Step-ReLU. Let L be the affine map such that |L − f | < ϵ on Rn \K. The
affine map from layer N to the output layer is Φ ◦ SN where Φ : Rn+N → Rm is the unique affine
map determined by x 7→ L(x) if x ∈ Rn, and ei 7→ f(ci) − L(ci). See Figure 3 for an illustration
of this construction. Theorem 3 has the following straightforward corollary:
Corollary 4. Radial neural networks are dense in the space of all continuous functions with respect
to the topology of compact convergence, and hence satisfy cc-universality.

4.2 BOUNDED WIDTH APPROXIMATION

We now turn our attention to a bounded width universal approximation result.
2In many cases, the constant N(f,K, ϵ) can be bounded explicitly. For example, if K is the unit cube in

Rn and f is Lipschitz continuous with Lipschitz constant R, then N(f,K, ϵ) ≤
⌈

R
√
n

2ϵ

⌉n

.

5

Under review as a conference paper at ICLR 2023

Theorem 5. Let f : Rn → Rm be an asymptotically affine function. For any ϵ > 0, there exists a
compact set K ⊂ Rn and a function F : Rn → Rm such that:

1. F is the feedforward function of a radial neural network with N = N(f,K, ϵ) hidden
layers whose widths are all n+m+ 1.

2. For any x ∈ Rn, we have |F (x)− f(x)| < ϵ.

The proof, which is more involved than that of Theorem 3, relies on using orthogonal dimensions
to represent the domain and the range of f , together with an indicator dimension to distinguish the
two. We regard points in Rn+m+1 as triples (x, y, θ) where x ∈ Rn, y ∈ Rm and θ ∈ R. The proof
of Theorem 5 parallels that of Theorem 3, but instead of mapping points in Bri(ci) to ci + ei, we
map the points in Bri((ci, 0, 0)) to (0, f(ci)−L(0)

s , 1), where s is chosen such that different balls do
not interfere. The final layer then uses an affine map (x, y, θ) 7→ L(x) + sy, which takes (x, 0, 0) to
L(x), and (0, f(ci)−L(0)

s , 1) to f(ci).

We remark on several additional results; see Appendix B for full statements and proofs. The bound
of Theorem 5 can be strengthened to max(n,m) + 1 in the case of functions f : K → Rm defined
on a compact domain K ⊂ Rn (i.e., ignoring asymptotic behavior). Furthermore, with more layers,
it is possible to reduce that bound to max(n,m).

5 MODEL COMPRESSION

In this section, we prove a model compression result. Specifically, we provide an algorithm which,
given any radial neural network, computes a different radial neural network with smaller widths.
The resulting compressed network has the same feedforward function as the original network, and
hence the same value of the loss function on any batch of training data. In other words, our model
compression procedure is lossless. Although our algorithm is practical and explicit, it reflects more
conceptual phenomena, namely, a change-of-basis action on network parameter spaces.

5.1 PARAMETER SPACE SYMMETRIES

Suppose a fully connected network has L layers and widths given by the tuple n =
(n0, n1, n2, . . . , nL−1, nL). In other words, the i-th layer has input width ni−1 and output width
ni. The parameter space is defined as the vector space of all possible choices of parameter values.
Hence, it is given by the following product of vector spaces:

Param(n) =
(
Rn1×n0 × Rn2×n1 × · · · × RnL×nL−1

)
× (Rn1 × Rn2 × · · · × RnL)

An element is a pair of tuples (W,b) where W = (Wi ∈ Rni×ni−1)Li=1 are the weights and
b = (bi ∈ Rni)Li=1 are the biases. To describe certain symmetries of the parameter space, consider
the following product of orthogonal groups, with sizes corresponding to hidden layer widths:

O(nhid) = O(n1)×O(n2)× · · · ×O(nL−1)

There is a change-of-basis action of this group on the parameter space. Explicitly, the tuple of
orthogonal matrices Q = (Qi) ∈ O(nhid) transforms the parameter values (W,b) to Q ·W :=(
QiWiQ

−1
i−1

)
and Q · b := (Qibi), where we set Q0 and QL to be identity matrices.

5.2 MODEL COMPRESSION

In order to state the compression result, we first define the reduced widths. Namely, the reduction
nred = (nred

0 , nred
1 , . . . , nred

L) of a widths vector n is defined recursively by setting nred
0 = n0,

then nred
i = min(ni, n

red
i−1 + 1) for i = 1, . . . , L − 1, and finally nred

L = nL. For a tuple ρ =

(ρi : Rni → Rni)
L
i=1 of radial rescaling functions, we write ρred =

(
ρredi : Rnred

i → Rnred
i

)
for the

corresponding tuple of restrictions, which are all radial rescaling functions. The following result
relies on Algorithm 1 below.
Theorem 6. Let (W,b,ρ) be a radial neural network with widths n. Let Wred and bred be the
weights and biases of the compressed network produced by Algorithm 1. The feedforward function
of the original network (W,b,ρ) coincides with that of the compressed network (Wred,bred,ρred).

6

Under review as a conference paper at ICLR 2023

Algorithm 1: QR Model Compression (QR-compress)
input : W,b ∈ Param(n)
output : Q ∈ O(nhid) and Wred,bred ∈ Param(nred)

Q,Wred,bred ← [], [], [] // initialize output lists
A1 ← [b1 W1] // matrix of size n1 × (n0 + 1)
for i← 1 to L− 1 do // iterate through layers

Qi, Ri ← QR-decomp(Ai , mode = ‘complete’) // Ai = QiInciRi

Append Qi to Q

Append first column of Ri to bred // reduced bias for layer i

Append remainder of Ri to Wred // reduced weights for layer i
Set Ai+1 ← [bi+1 Wi+1QiInci] // matrix of size ni+1 × (nred

i + 1)

end
Append the first column of AL to bred // reduced bias for last layer
Append the remainder of AL to Wred // reduced weights for last layer
return Q, Wred, bred

We explain the notation of the algorithm. The inclusion matrix Inci ∈ Rni×nred
i has ones along

the main diagonal and zeros elsewhere. The method QR-decomp with mode = ‘complete’
computes the complete QR decomposition of the ni × (1 + nred

i−1) matrix Ai as QiInciRi where
Qi ∈ O(ni) and Ri is upper-triangular of size nred

i × (1+nred
i−1). The definition of nred

i implies that
either nred

i = nred
i−1 + 1 or nred

i = ni. The matrix Ri is of size nred
i × nred

i in the former case and of
size ni × (1 + nred

i−1) in the latter case.

Example 7. Suppose the widths of a radial neural network are (1, 8, 16, 8, 1). Then it has∑4
i=1(ni−1 + 1)ni = 305 trainable parameters. The reduced network has widths (1, 2, 3, 4, 1)

and
∑4

i=1(n
red
i−1 + 1)(nred

i) = 34 trainable parameters. Another example appears in Figure 4.

We note that the tuple of matrices Q produced by Algorithm 1 does not feature in the statement of
Theorem 6, but is important in the proof (which appears in Appendix C). Namely, an induction argu-
ment shows that the i-th partial feedforward function of the original and reduced models are related
via the matrices Qi and Inci. A crucial ingredient in the proof is that radial rescaling activations
commute with orthogonal transformations.

6 PROJECTED GRADIENT DESCENT

The typical use case for model compression algorithms is to produce a smaller version of the fully
trained model which can be deployed to make inference more efficient. It is also worth considering
whether compression can be used to accelerate training. For example, for some compression algo-
rithms, the compressed and full models have the same feedforward function after a step of gradient
descent is applied to each, and so one can compress before training and still reach the same mini-
mum. Unfortunately, in the context of radial neural networks, compression using Algorithm 1 and
then training does not necessarily give the same result as training and then compression (see Ap-
pendix D.6 for a counterexample). However, QR-compress does lead to a precise mathematical
relationship between optimization of the two models: the loss of the compressed model after one

R R4 R4 R4 R4 R

•
•
•
•


ρ

• • • •
• • • •
• • • •
• • • •


ρ

[
• • • •

]
R R2 R2 R4 R4 R

[
•
•

]
ρ

• •
• •
• •
• •


ρ

[
• • • •

]
R R2 R2 R3 R3 R

[
•
•

]
ρ

• •
• •
• •


ρ

[
• • •

]

Figure 4: Model compression in 3 steps. Layer widths can be iteratively reduced to 1 greater than
the previous. The number of trainable parameters reduces from 33 to 17.

7

Under review as a conference paper at ICLR 2023

step of gradient descent is equivalent to the loss of (a transformed version of) the original model
after one step of projected gradient descent. Proofs appear in Appendix D.

To state our results, fix widths n and radial rescaling functions ρ as above. The loss function
L : Param(n) → R associated to a batch of training data is defined as taking parameter values
(W,b) to the sum

∑
j C(F (xj), yj) where C is a cost function on the output space, F = F(W,b,ρ) is

the feedforward of the radial neural network with the specified parameters, and (xj , yj) ∈ Rn0×RnL

are the data points. Similarly, we have a loss function Lred on the parameter space Param(nred) with
reduced widths vector. For any learning rate η > 0, we obtain gradient descent maps:

γ : Param(n)→ Param(n); (W,b) 7→ (W,b)− η∇(W,b)L
γred : Param(nred)→ Param(nred); (V, c) 7→ (V, c)− η∇(V,c)Lred

γproj : Param(n)→ Param(n); (W,b) 7→ Proj (γ(W,b))

where the last is the projected gradient descent map on Param(n). The map Proj zeroes out all
entries in the bottom left (ni − nred

i)× nred
i−1 submatrix of Wi −∇Wi

L, and the bottom (ni − nred
i)

entries in bi −∇biL, for each i. Schematically:

Wi −∇Wi
L =

[
∗ ∗
∗ ∗

]
7→
[
∗ ∗
0 ∗

]
, bi −∇biL =

[
∗
∗

]
7→
[
∗
0

]
To state the following theorem, recall that, applying Algorithm 1 to parameters (W,b), we obtain
the reduced model (Wred,bred) and an orthogonal parameter symmetry Q. We consider, for k ≥ 0,
the k-fold composition γk = γ ◦ γ ◦ · · · ◦ γ and similarly for γred and γred.
Theorem 8. Let Wred,bred,Q = QR-compress(W,b) be the outputs of Algorithm 1 applied to
(W,b) ∈ Param(n). Set U = Q−1 · (W,b)− (Wred,bred). For any k ≥ 0, we have:

γk(W,b) = Q · γk(Q−1 · (W,b)) γk
proj(Q

−1 · (W,b)) = γk
red(W

red,bred) +U.

We conclude that gradient descent with initial values (W,b) is equivalent to gradient descent with
initial values Q−1 · (W,b) since at any stage we can apply Q±1 to move from one to the other
(using the action from Section 5.1). Furthermore, projected gradient descent with initial values
Q−1 · (W,b) is equivalent to gradient descent on Param(nred) with initial values (Wred,bred) since
at any stage we can move from one to the other by ±U. Neither Q nor U depends on k.

7 EXPERIMENTS

In addition to our theoretical results, we provide an implementation of Algorithm 1 in order to
validate the claims of Theorems 6 and 8 empirically, as well as a demonstration that a radial network
outperforms a MLP on a noisy image recovery task. Full experimental details are in Appendix E.

(1) Empirical verification of Theorem 6. We learn the function f(x) = e−x2

from samples us-
ing a radial neural network with widths n = (1, 6, 7, 1) and activation the radial shifted sigmoid
h(x) = 1/(1 + e−x+s). Applying QR-compress gives a compressed radial neural network with
widths nred = (1, 2, 3, 1). Theorem 6 implies that the respective neural functions F and Fred are
equal. Over 10 random initializations, the mean absolute error is negligible up to machine precision:
(1/N)

∑
j |F (xj)− Fred(xj)| = 1.31 · 10−8 ± 4.45 · 10−9.

(2) Empirical verification of Theorem 8. We verified the claim on same synthetic data as above.
See Appendix E for details.

(3) The compressed model trains faster. Our compression method may be applied before training
to produce a smaller model class which trains faster without sacrificing accuracy. We demonstrate
this in learning the function R2 → R2 sending (t1, t2) to (e−t21 , e−t22) using a radial neural network
with widths (2, 16, 64, 128, 16, 2) and activation the radial sigmoid h(r) = 1/(1 + e−r). Applying
QR-compress gives a compressed network with widths nred = (2, 3, 4, 5, 6, 2). We trained both
models until the training loss was≤ 0.01. Over 10 random initializations on our system, the reduced
network trained in 15.32± 2.53 seconds and the original network trained in 31.24± 4.55 seconds.

(4) Noisy image recovery. A Step-ReLU radial network performs better than an otherwise compa-
rable network with pointwise ReLU on a noisy image recovery task. Using samples of MNIST with

8

Under review as a conference paper at ICLR 2023

Figure 5: (Left) Different levels of noise. (Right) Training five Step-ReLU radial networks and five
ReLU MLPs on data with n=3 original images, m=100 noisy copies of each.

significant added noise, the network must identify from which original sample the noisy sample
derives (see Figure 5). We observe that the radial network 1) is able to obtain a better fit, 2) has
faster convergence, and 3) generalizes better than the pointwise ReLU. We hypothesize the radial
nature of the random noise makes radial networks well-adapted to the task. Our data takes n = 3
original MNIST images with the same label, and produces m = 100 noisy images for each, with a
240 train / 60 test split. Over 10 trials, each training for 150 epochs, the radial network achieves
training loss 0.00256 ±3.074 · 10−1 with accuracy 1 ± 0, while the ReLU MLP has training loss
0.295 ±2.259 · 10−1 with accuracy 0.768 ±2.199 · 10−1. On the test set, the radial network has loss
0.00266 ±3.749 · 10−4 with accuracy 1 ± 0, while the ReLU MLP has loss 0.305 ±2.588 · 10−1

with accuracy 0.757±2.464 ·10−1. The convergence rates are illustrated in Figure 5, with the radial
network outperforming the ReLU MLP, and 150 epochs are sufficient for all methods to converge.

In another experiment, we sampled 1000 MNIST digits and added spherical noise to each. Using
a 800/200 train/test split, we trained both a Step-ReLU and a pointwise ReLU network for the task
of recovering the original digit (so there are ten classes total). Both networks had dimension vector
[784, 785, 786, 10]. After 1000 epochs, the Step-ReLU achieved a training loss of 0.008248 and a
test loss of 1.193811, while for pointwise ReLU these were 7.534195 and 1.374735, respectively.

8 CONCLUSIONS AND DISCUSSION

This paper demonstrates that radial neural networks are universal approximators and that their pa-
rameter spaces exhibit a rich symmetry group, leading to a model compression algorithm. The
results of this work combine to build a theoretical foundation for the use of radial neural networks,
and suggest that radial neural networks hold promise for wider practical applicability. Furthermore,
this work makes an argument for considering non-pointwise nonlinearities in neural networks.

There are two main limitations of our results, each providing an opportunity for future work. First,
our universal approximation constructions currently work only for Step-ReLU radial rescaling ra-
dial activations; it would be desirable to generalize to other activations. Additionally, Theorem 6
achieves compression only for networks whose widths satisfy ni > ni−1 + 1 for some i. Networks
which do not have increasing widths anywhere, such as encoders, would not be compressible.

Further extensions of this work include: First, little is currently known about the stability properties
of radial neural networks during training, as well as their sensitivity to initialization. Second, radial
rescaling activations provide an extreme case of symmetry; there may be benefits to combining radial
and pointwise activations within a single network, for example, through ‘block’ radial rescaling
functions. Our techniques may yield weaker compression properties for more general radial basis
functions networks; radial neural networks may be the most compressible such networks. Third,
radial rescaling activations can be used within convolutional or group-equivariant NNs. Finally,
based on the theoretical advantages and experiments laid out in this paper, future empirical work will
further explore applications in which we expect radial networks to outperform alternate methods.
Such potential applications include data spaces with circular or distance-based class boundaries.

9

Under review as a conference paper at ICLR 2023

ETHICS STATEMENT

Our work is primarily focused on theoretical foundations of machine learning, however, it does have
a direct application in the form a model compression. Model compression is largely beneficial to
the world since it allows for inference to run on smaller systems which use less energy. On the other
hand, when models may be run on smaller systems such as smartphones, it is easier to use deep
models covertly, for example, for facial recognition and surveillance. This may make abuses of deep
learning technology easier to hide.

REPRODUCIBILITY STATEMENT

The theoretical results of this paper, namely Theorem 3, Theorem 5, Theorem 6, and Theorem 8, may
be independently verified through their proofs, which we include in their entirety in the appendices,
including all necessary definitions, lemmas, and hypotheses in precise and complete mathematical
language. The empirical verification of Section 7 may be reproduced using the code included with
the supplementary materials. In addition, Algorithm 1 is written in detailed pseudocode, allowing
readers to recreate our algorithm in a programming language of their choosing.

10

Under review as a conference paper at ICLR 2023

REFERENCES

Lei Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? arXiv:1312.6184, 2013.

Erkao Bao and Linqi Song. Equivariant neural networks and equivarification. arXiv:1906.07172,
2019.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of
neural network pruning? arXiv:2003.03033, 2020.

David S Broomhead and David Lowe. Radial basis functions, multi-variable functional interpolation
and adaptive networks. Technical report, Royal Signals and Radar Establishment Malvern (United
Kingdom), 1988.

Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In Proceed-
ings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 535–541, 2006.

Yu Cheng, X Yu Felix, Rogerio S Feris, Sanjiv Kumar, Alok Choudhary, and Shih-Fu Chang. Fast
neural networks with circulant projections. arXiv:1502.03436, 2, 2015a.

Yu Cheng, Felix X Yu, Rogerio S Feris, Sanjiv Kumar, Alok Choudhary, and Shi-Fu Chang. An
exploration of parameter redundancy in deep networks with circulant projections. In Proceedings
of the IEEE international conference on computer vision, pp. 2857–2865, 2015b.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and acceleration
for deep neural networks. arXiv:1710.09282, 2017.

Benjamin Chidester, Minh N. Do, and Jian Ma. Rotation equivariance and invariance in convolu-
tional neural networks. arXiv:1805.12301, 2018.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

Taco S. Cohen and Max Welling. Group equivariant convolutional networks. In International
conference on machine learning (ICML), pp. 2990–2999, 2016.

Taco S Cohen and Max Welling. Steerable CNNs. In Proceedings of the International Conference
on Learning Representations (ICLR), 2017.

Taco S. Cohen, Maurice Weiler, Berkay Kicanaoglu, and Max Welling. Gauge equivariant convo-
lutional networks and the icosahedral CNN. In Proceedings of the 36th International Conference
on Machine Learning (ICML), volume 97, pp. 1321–1330, 2019.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

Congyue Deng, O. Litany, Yueqi Duan, A. Poulenard, A. Tagliasacchi, and L. Guibas. Vector
Neurons: A General Framework for SO(3)-Equivariant Networks. 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), 2021. doi: 10.1109/iccv48922.2021.01198.

Sander Dieleman, Jeffrey De Fauw, and Koray Kavukcuoglu. Exploiting cyclic symmetry in convo-
lutional neural networks. In International Conference on Machine Learning (ICML), 2016.

Xin Dong, Shangyu Chen, and Sinno Jialin Pan. Learning to prune deep neural networks via layer-
wise optimal brain surgeon. arXiv preprint arXiv:1705.07565, 2017.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv:1803.03635, 2018.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional net-
works using vector quantization. arXiv:1412.6115, 2014.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv:1510.00149, 2015.

11

Under review as a conference paper at ICLR 2023

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen,
David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert
Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane,
Jaime Fernández del Rı́o, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard,
Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Ar-
ray programming with NumPy. Nature, 585(7825):357–362, September 2020. doi: 10.1038/
s41586-020-2649-2. URL https://doi.org/10.1038/s41586-020-2649-2.

Babak Hassibi and David G Stork. Second order derivatives for network pruning: Optimal brain
surgeon. Morgan Kaufmann, 1993.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv:1503.02531, 2015.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4
(2):251–257, 1991.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv:1704.04861, 2017.

George Jeffreys and Siu-Cheong Lau. Kähler Geometry of Quiver Varieties and Machine Learning.
arXiv:2101.11487, 2021. URL http://arxiv.org/abs/2101.11487.

Ehud D Karnin. A simple procedure for pruning back-propagation trained neural networks. IEEE
transactions on neural networks, 1(2):239–242, 1990.

Patrick Kidger and Terry Lyons. Universal approximation with deep narrow networks. In Conference
on learning theory, pp. 2306–2327. PMLR, 2020.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
neural networks. Advances in neural information processing systems, 30, 2017.

Risi Kondor and Shubhendu Trivedi. On the Generalization of Equivariance and Convolution in
Neural Networks to the Action of Compact Groups. In International conference on machine
learning (ICML), 2018.

Leon Lang and Maurice Weiler. A Wigner-Eckart theorem for group equivariant convolution ker-
nels. In International Conference on Learning Representations (ICLR), 2021.

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor Lempitsky.
Speeding-up convolutional neural networks using fine-tuned cp-decomposition. arXiv:1412.6553,
2014.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural
information processing systems, pp. 598–605, 1990.

Namhoon Lee, Thalaiyasingam Ajanthan, Stephen Gould, and Philip HS Torr. A signal propagation
perspective for pruning neural networks at initialization. arXiv preprint arXiv:1906.06307, 2019.

Yongxi Lu, Abhishek Kumar, Shuangfei Zhai, Yu Cheng, Tara Javidi, and Rogerio Feris. Fully-
adaptive feature sharing in multi-task networks with applications in person attribute classification.
In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp.
5334–5343, 2017a.

Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive power of
neural networks: A view from the width. Advances in neural information processing systems, 30,
2017b.

Mirco Milletarı́, Thiparat Chotibut, and Paolo E Trevisanutto. Mean field theory of activation func-
tions in deep neural networks. arXiv preprint arXiv:1805.08786, 2018.

Diganta Misra. Mish: A self regularized non-monotonic activation function. arXiv preprint
arXiv:1908.08681, 2019.

12

https://doi.org/10.1038/s41586-020-2649-2
http://arxiv.org/abs/2101.11487

Under review as a conference paper at ICLR 2023

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440, 2016.

Jooyoung Park and Irwin W Sandberg. Universal approximation using radial-basis-function net-
works. Neural computation, 3(2):246–257, 1991.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems (NeurIPS) 32, pp.
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv
preprint arXiv:1710.05941, 2017.

Siamak Ravanbakhsh. Universal equivariant multilayer perceptrons. In International Conference on
Machine Learning, pp. 7996–8006. PMLR, 2020.

Siamak Ravanbakhsh, Jeff Schneider, and Barnabas Poczos. Equivariance through parameter-
sharing. In International Conference on Machine Learning, pp. 2892–2901. PMLR, 2017.

Roberto Rigamonti, Amos Sironi, Vincent Lepetit, and Pascal Fua. Learning separable filters. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2754–2761,
2013.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization
in the brain. Psychological review, 65(6):386, 1958.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules.
arXiv:1710.09829, 2017.

Thiago Serra, Abhinav Kumar, and Srikumar Ramalingam. Lossless compression of deep neural
networks. In International Conference on Integration of Constraint Programming, Artificial In-
telligence, and Operations Research, pp. 417–430. Springer, 2020.

Thiago Serra, Xin Yu, Abhinav Kumar, and Srikumar Ramalingam. Scaling up exact neural network
compression by relu stability. Advances in Neural Information Processing Systems, 34, 2021.

Sho Sonoda and Noboru Murata. Neural network with unbounded activation functions is universal
approximator. Applied and Computational Harmonic Analysis, 43(2):233–268, 2017.

Gustav Sourek, Filip Zelezny, and Ondrej Kuzelka. Lossless compression of structured convolu-
tional models via lifting. arXiv preprint arXiv:2007.06567, 2020.

Cheng Tai, Tong Xiao, Yi Zhang, Xiaogang Wang, et al. Convolutional neural networks with low-
rank regularization. arXiv:1511.06067, 2015.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. arXiv preprint arXiv:2002.07376, 2020.

Ming-Xi Wang and Yang Qu. Approximation capabilities of neural networks on unbounded do-
mains. Neural Networks, 145:56–67, 2022.

Maurice Weiler and Gabriele Cesa. General E(2)-Equivariant Steerable CNNs. Conference on
Neural Information Processing Systems (NeurIPS), 2019.

Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco Cohen. 3D steerable
CNNs: Learning rotationally equivariant features in volumetric data. Proceedings of the 32nd
International Conference on Neural Information Processing Systems (NeurIPS), 2018a.

13

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Under review as a conference paper at ICLR 2023

Maurice Weiler, Fred A Hamprecht, and Martin Storath. Learning steerable filters for rotation
equivariant CNNs. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 849–858, 2018b.

Daniel E Worrall, Stephan J Garbin, Daniyar Turmukhambetov, and Gabriel J Brostow. Harmonic
networks: Deep translation and rotation equivariance. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 5028–5037, 2017.

Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. Quantized convolutional
neural networks for mobile devices. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 4820–4828, 2016.

Dmitry Yarotsky. Universal approximations of invariant maps by neural networks. Constructive
Approximation, 55(1):407–474, 2022.

Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wujie Wen, Makan Fardad, and Yanzhi Wang.
A systematic DNN weight pruning framework using alternating direction method of multipliers.
In Proceedings of the European Conference on Computer Vision (ECCV), pp. 184–199, 2018.

14

Under review as a conference paper at ICLR 2023

A ORGANIZATION OF THE APPENDICES

This paper is a contribution to the mathematical foundations of machine learning, and our results are
motivated by expanding the applicability and performance of neural networks. At the same time, we
give precise mathematical formulations of our results and proofs. The purposes of these appendices
are several:

1. To clarify the mathematical conventions and terminology, thus making the paper more
accessible.

2. To provide full proofs of the main results.

3. To develop context around various construction appearing in the main text.

4. To discuss in detail examples, special cases, and generalizations of our results.

5. To specify implementation details for the experiments.

We now give a summary of the contents of the appendices.

Appendix B contains proofs the universal approximation results (Theorems 3 and 5) stated in Section
4 of the main text, as well as proofs of additional bounded width results. The proofs use notation
given in Appendix B.1, and rely on preliminary topological considerations given in Appendix B.2.

In Appendix C, we give a proof of the model compression result given in Theorem 6, which appears
in Section 5. For clarity and background we begin the appendix with a discussion of the version
of the QR decomposition relevant for our purposes (Appendix C.1). We also establish elementary
properties of radial rescaling activations (Appendix C.2).

The focus of Appendix D is projected gradient descent, elaborating on Section 6. We first prove a
result on the interaction of gradient descent and orthogonal transformations (Appendix D.1), before
formulating projected gradient descent in more detail (Appendix D.2), and introducing the so-called
interpolating space (Appendix D.3). We restate Theorem 8 in more convenient notation (Appendix
D.4) before proceeding to the proof (Appendix D.5).

Appendix E contains implementation details for the experiments summarized in Section 7. Several
of our implementations use shifted radial rescaling activations, which we formulate in Appendix
E.1.

Appendix F explains the connection between our constructions and radial basis functions networks.
While radial neural networks turn out to be a specific type of radial basis functions network, our
universality results are not implied by those for general radial basis functions networks.

B UNIVERSAL APPROXIMATION PROOFS AND ADDITIONAL RESULTS

In this section, we provide full proofs of the universal approximation (UA) results for radial neu-
ral networks, as stated in Section 4. In order to do so, we first clarify our notational conventions
(Appendix B.1), and collect basic topological results (Appendix B.2).

B.1 NOTATION

Recall that, for a point c in the Euclidean space Rn and a positive real number r, we denote the r-ball
around c by Br(c) = {x ∈ Rn | |x − c| < r}. All networks in this section have the Step-ReLU
radial rescaling activation function, defined as:

ρ : Rn −→ Rn, z 7−→
{
z if |z| ≥ 1

0 otherwise

Throughout, ◦ denotes the composition of functions. We identify a linear map with a corresponding
matrix (in the standard bases). In the case of linear maps, the operation ◦ can be be identified with
matrix multiplication. Recall also that an affine map L : Rn → Rm is one of the from L(x) = Ax+b
for a matrix A ∈ Rm×n and b ∈ Rm.

15

Under review as a conference paper at ICLR 2023

B.2 TOPOLOGY

Let K be a compact subset of Rn and let f : K → Rm be a continuous function.
Lemma 9. For any ϵ > 0, there exist c1, . . . , cN ∈ K and r1, . . . , rN ∈ (0, 1) such that, first, the
union of the balls Bri(ci) covers K; second, for all i, we have f (Bri(ci) ∩K) ⊆ Bϵ(f(ci)).

Proof. The continuity of f implies that for each c ∈ K, there exists r = rc such that f(Brc(c) ∩
K) ⊆ Bϵ(f(c)). The subsets Brc(c)∩K form an open cover of K. The compactness of K implies
that there is a finite subcover. The result follows.

We also prove a variation of Lemma 9 that additionally guarantees that none of the balls in the cover
of K contains the center point of another ball.
Lemma 10. For any ϵ > 0, there exist c1, . . . , cM ∈ K and r1, . . . , rM ∈ (0, 1) such that, first, the
union of the balls Bri(ci) covers K; second, for all i, we have f (Bri(ci)) ⊆ Bϵ(f(ci)); and, third,
|ci − cj | ≥ ri.

Proof. Because f is continuous on a compact domain, it is uniformly continuous. So, there exists
r > 0 such that f(Br(c) ∩K) ⊆ Bϵ(f(c)) for each c ∈ K. Because K is compact it has a finite
volume, and so does Br/2(K) =

⋃
c∈K Br/2(c). Hence, there exists a finite maximal packing

of Br/2(K) with balls of radius r/2. That is, a collection c1, . . . , cM ∈ Br/2(K) such that, for
all i, Br/2(ci) ⊆ Br/2(K) and, for all j ̸= i, Br/2(ci) ∩ Br/2(cj) = ∅. The first condition
implies that ci ∈ K. The second condition implies that |ci − cj | ≥ r. Finally, we argue that
K ⊆

⋃M
i=1 Br(ci). To see this, suppose, for a contradiction, that x ∈ K does not belong to⋃M

i=1 Br(ci). Then Br/2(ci)∩Br/2(x) = ∅, and x could be added to the packing, which contradicts
the fact that the packing was chosen to be maximal. So the union of the balls Br(ci) covers K.

We turn our attention to the minimal choices of N and M in Lemmas 9 and 10.
Definition 11. Given f : K → Rm continuous and ϵ > 0, let N(f,K, ϵ) be the minimal choice of
N in Lemma 9, and let M(f,K, ϵ) be the minimal choice of M in Lemma 10.

Observe that M(f,K, ϵ) ≥ N(f,K, ϵ). In many cases, it is possible to give explicit bounds for the
constants N(f,K, ϵ) and M(f,K, ϵ). As an illustration, we give the argument in the case that K is
the closed unit cube in Rn and f : K → Rm is Lipschtiz continuous.
Proposition 12. Let K = [0, 1]n ⊂ Rn be the (closed) unit cube and let f : K → Rm be Lipschitz
continuous with Lipschitz constant R. For any ϵ > 0, we have:

N(f,K, ϵ) ≤
⌈
R
√
n

2ϵ

⌉n
and M(f,K, ϵ) ≤ Γ(n/2 + 1)

πn/2

(
2 +

2R

ϵ

)n

.

Proof. For the first inequality, observe that the unit cube can be covered with
⌈
R
√
n

2ϵ

⌉n
cubes of side

length 2ϵ
R
√
n

. Each cube is contained in a ball of radius ϵ
R centered at the center of the cube. (In

general, a cube of side length a in Rn is contained in a ball of radius a
√
n

2 .) Lipschitz continuity
implies that, for all x, x′ ∈ K, if |x− x′| < ϵ/R then |f(x)− f(x′)| ≤ R|x− x′| < ϵ.

For the second inequality, let r = ϵ/R. Lipschitz continuity implies that, for all x, x′ ∈ K, if
|x− x′| < r then |f(x)− f(x′)| ≤ R|x− x′| < ϵ. The n-dimensional volume of the set of points
with distance at most r/2 to the unit cube is vol(Br/2(K)) ≤ (1 + r)n. The volume of a ball with

radius r/2 is vol(Br/2(0)) =
πn/2

Γ(n/2+1) (r/2)
n. Hence, any packing of Br/2(K) with balls of radius

r/2 consists of at most

vol(Br/2(K))

vol(Br/2(0))
≤ Γ(n/2 + 1)

πn/2

(
2 +

2R

ϵ

)n

such balls. So there also exists a maximal packing with at most that many balls. This packing can
be used in the proof of Theorem 10, which implies that it is a bound on M(f,K, ϵ).

16

Under review as a conference paper at ICLR 2023

We note in passing that any differentiable function f : K → Rn on a compact subset K of Rn is
Lipschitz continuous. Indeed, the compactness of K implies that there exists R such that |f ′(x)| ≤
R for all x ∈ K. Then one can take R to be the Lipschitz constant of f .

B.3 PROOF OF THEOREM 3: UA FOR ASYMPTOTICALLY AFFINE FUNCTIONS

In this section, we restate and prove Theorem 3, which proves that radial neural networks are uni-
versal approximators of asymptotically affine functions. We recall the definition of such functions:

Definition 13. A function f : Rn → Rm is asymptotically affine if there exists an affine function
L : Rn → Rm such that, for all ϵ > 0, there exists a compact set K ⊂ Rn such that |L(x)−f(x)| <
ϵ for all x ∈ Rn \K. We say that L is the limit of f .

Remark 14. An asymptotically linear function is defined in the same way, except L is taken to be
linear (i.e., given just by applying matrix multiplication without translation). Hence any asymptot-
ically linear function is in particular an asymptotically affine function, and Theorem 3 applies to
asymptotically linear functions as well.

Given an asymptotically affine function f : Rn → Rm and ϵ > 0, let K be a compact set as in
Definition 13. We apply Lemma 9 to the restriction f |K of f to K and produce a minimal constant
N = N(f |K ,K, ϵ) as in Definition 11. We write simply N(f,K, ϵ) for this constant.

Theorem 3 (Universal approximation). Let f : Rn → Rm be an asymptotically affine function. For
any ϵ > 0, there exists a compact set K ⊂ Rn and a function F : Rn → Rm such that:

1. F is the feedforward function of a radial neural network with N = N(f,K, ϵ) layers
whose hidden widths are (n+ 1, n+ 2, . . . , n+N).

2. For any x ∈ Rn, we have |F (x)− f(x)| < ϵ.

Proof. By the hypothesis on f , there exists an affine function L : Rn → Rm and a compact set
K ⊂ Rn such that |L(x) − f(x)| < ϵ for all x ∈ Rn \ K. Abbreviate N(f,K, ϵ) by N . As in
Lemma 9, fix c1, . . . , cN ∈ K and r1, . . . , rN ∈ (0, 1) such that, first, the union of the balls Bri(ci)

covers K and, second, for all i, we have f (Bri(ci)) ⊆ Bϵ(f(ci)). Let U =
⋃N

i=1 Bri(ci), so that
K ⊂ U . Define F : Rn → Rm as:

F (x) =

{
L(x) if x /∈ U

f(cj) where j is the smallest index with x ∈ Brj (cj)

If x /∈ U , then |F (x) − f(x)| = |L(x) − f(x)| < ϵ. Hence suppose x ∈ U . Let j be the smallest
index such that x ∈ Brj (cj). Then F (x) = f(cj), and, by the choice of rj , we have:

|F (x)− f(x)| = |f(cj)− f(x)| < ϵ.

We proceed to show that F is the feedforward function of a radial neural network. Let e1, . . . , eN be
orthonormal basis vectors extending Rn to Rn+N . We regard each Rn+i−1 as a subspace of Rn+i

by embedding into the first n + i − 1 coordinates. For i = 1, . . . , N , we set hi =
√
1− r2i and

define the following affine transformations:

Ti : Rn+i−1 → Rn+i Si : Rn+i → Rn+i

z 7→ z − ci + hiei z 7→ z − (1 + h−1
i)⟨ei, z⟩ei + ci + ei

where ⟨ei, z⟩ is the coefficient of ei in z. Consider the radial neural network with widths (n, n +
1, . . . , n+N,m), whose affine transformations and activations are given by:

• For i = 1, . . . , N the affine transformation from layer i − 1 to layer i is given by z 7→
Ti ◦ Si−1(z), where S0 = idRn .

• The activation function at the i-th hidden layer is Step-ReLU on Rn+i, that is:

ρi : Rn+i −→ Rn+i, z 7−→
{
z if |z| ≥ 1

0 otherwise

17

Under review as a conference paper at ICLR 2023

• The affine transformation from layer i = N to the output layer is

z 7→ ΦL,f,c ◦ SN (z)

where ΦL,f,c is the affine transformation given by:

ΦL,f,c : Rn+N → Rm, x+

N∑
i=1

aiei 7→ L(x) +

N∑
i=1

ai(f(ci)− L(ci))

which can be shown to be affine when L is affine. Indeed, write L(x) = Ax + b where A
is a matrix in Rm×n and b ∈ Rm is a vector. Then ΦL,f,c is the composition of the linear
map given by the matrix

[A f(c1)− L(c1) f(c2)− L(c2) · · · f(cN)− L(cN)] ∈ Rm×(n+N)

and translation by b ∈ Rm. Note that we regard each f(ci) − L(ci) ∈ Rm as a column
vector in the matrix above.

We claim that the feedforward function of the above radial neural network is exactly F . To show
this, we first state a lemma, whose (omitted) proof is an elementary computation.

Lemma 3.1. For i = 1, . . . , N , the composition Si ◦ Ti is the embedding Rn+i−1 ↪→ Rn+i.

Next, recursively define Gi : Rn → Rn+i via

Gi = Si ◦ ρi ◦ Ti ◦Gi−1,

where G0 = idRn . The function Gi admits an direct formulation:

Proposition 3.2. For i = 0, 1, . . . , N , we have:

Gi(x) =

{
x if x /∈

⋃i
j=1 Brj (cj)

cj + ej where j ≤ i is the smallest index with x ∈ Brj (cj)
.

Proof. We proceed by induction. The base step i = 0 is immediate. For the induction step, assume
the claim is true for i− 1, where 0 ≤ i− 1 < N . There are three cases to consider.

Case 1. Suppose x /∈
⋃i

j=1 Brj (cj). Then in particular x /∈
⋃i−1

j=1 Brj (cj), so the induction
hypothesis implies that Gi−1(x) = x. Additionally, x /∈ Bri(ci), so:

|Ti(x)| = |x− ci + hiei| =
√
|x− ci|+ h2

i ≥
√
r2i + 1− r2i = 1.

Using the definition of ρi and Lemma 3.1, we compute:

Gi(x) = Si ◦ ρi ◦ Ti ◦Gi−1(x) = Si ◦ ρi ◦ Ti(x) = Si ◦ Ti(x) = x.

Case 2. Suppose x ∈ Bj \
⋃j−1

k=1 Brk(ck) for some j ≤ i−1. Then the induction hypothesis implies
that Gi−1(x) = cj + ej . We compute:

|Ti(cj + ej)| = |cj + ej − ci + hiei| > |ej | = 1.

Therefore,
Gi(x) = Si ◦ ρi ◦ Ti(cj + ej) = Si ◦ Ti(cj + ej) = cj + ej .

Case 3. Finally, suppose x ∈ Bi \
⋃i−1

j=1 Brj (cj). The induction hypothesis implies that Gi−1(x) =

x. Since x ∈ Bri(ci), we have:

|Ti(x)| = |x− ci + hiei| =
√
|x− ci|+ h2

i <
√
r2i + 1− r2i = 1.

Therefore:
Gi(x) = Si ◦ ρi ◦ Ti(x) = Si(0) = ci + ei.

This completes the proof of the proposition.

18

Under review as a conference paper at ICLR 2023

Finally, we show that the function F defined at the beginning of the proof is the feedforward function
of the above radial neural network. The computation is elementary:

Ffeedforward = ΦL,f,c ◦ SN ◦ ρN ◦ TN ◦ SN−1 ◦ ρN−1 ◦ TN−1 ◦ · · ·S1 ◦ ρ1 ◦ T1

= ΦL,f,c ◦GN

= F

where the first equality follows from the definition of the feedforward function, the second from the
definition of GN , and the last from the case i = N of Proposition 3.2 together with the definition of
ΦL,f,c. This completes the proof of the theorem.

B.4 PROOF OF THEOREM 5: BOUNDED WIDTH UA FOR ASYMPTOTICALLY AFFINE
FUNCTIONS

We restate and prove Theorem 5, which strengthens Theorem 3 by providing a bounded width radial
neural network approximation of any asymptotically affine function.
Theorem 5. Let f : Rn → Rm be an asymptotically affine function. For any ϵ > 0, there exists a
compact set K ⊂ Rn and a function F : Rn → Rm such that:

1. F is the feedforward function of a radial neural network with N = N(f,K, ϵ) hidden
layers whose widths are all n+m+ 1.

2. For any x ∈ Rn, we have |F (x)− f(x)| < ϵ.

Proof. By the hypothesis on f , there exists an affine function L : Rn → Rm and a compact set
K ⊂ Rn such that |L(x)− f(x)| < ϵ for all x ∈ Rn \K. Given ϵ > 0, let N = N(f,K, ϵ) and use
Lemma 9 to choose c1, . . . , cN ∈ K and r1, . . . , rN ∈ (0, 1) such that the union of the balls Bri(ci)
covers K, and, for all i, we have f(Bri(ci)) ⊆ Bϵ(f(ci)). Let s be the minimal non-zero value of
|f(ci)− f(cj)| for i, j ∈ {1, . . . , N}, that is, s = mini,j,f(ci)̸=f(cj) |f(ci)− f(cj)|.

Using the decomposition Rn+m+1 ∼= Rn × Rm × R, we write elements of Rn+m+1 as (x, y, θ),
where x ∈ Rn, y ∈ Rm, and θ ∈ R. For i = 1, . . . , N , set:

Ti : Rn+m+1 → Rn+m+1, (x, y, θ) 7→
(
x− (1− θ)ci , y − θ

f(ci)− L(0)

s
, (1− θ)hi

)
where hi =

√
1− r2i . Note that Ti is an invertible affine transformation, whose inverse is given by:

T−1
i (x, y, θ) =

(
x+

θ

hi
ci , y +

(
1− θ

hi

)f(ci)− L(0)

s
, 1− θ

hi

)
For i = 1, . . . , N , define Gi : Rn → Rn+m+1 via the following recursive definition:

Gi = T−1
i ◦ ρ ◦ Ti ◦Gi−1,

where G0(x) = (x, 0, 0) : Rn ↪→ Rn+m+1 is the inclusion, and ρ : Rn+m+1 → Rn+m+1 is
Step-ReLU on Rn+m+1. We claim that, for x ∈ Rn, we have:

Gi(x) =

{
(x, 0, 0) if x /∈

⋃i
j=1 Brj (cj)(

0,
f(cj)−L(0)

s , 1
)

where j ≤ i is the smallest index with x ∈ Brj (cj)

This claim can be verified by a straightforward induction argument, similar to the one given in the
proof of Proposition 3.2, and using the following key facts:

• For x ∈ Rn,
∣∣Ti

(
(x, 0, 0)

)∣∣ = ∣∣(x− ci, 0, hi)
∣∣ < 1 if and only if |x− ci| < ri.

• T−1
i (0) =

(
0, f(ci)−L(0)

s , 1
)

.

• Ti

((
0,

f(cj)−L(0)
s , 1

))
=
(
0,

f(cj)−f(ci)
s , 0

)
, which, by the choice of s, has norm at least

1 if f(cj) ̸= f(ci), and is 0 if f(cj) = f(ci).

19

Under review as a conference paper at ICLR 2023

Let Φ : Rn+m+1 → Rm denote the affine map sending (x, y, θ) to L(x) + sy. It follows that
F = Φ ◦GN satisfies

F (x) =

{
L(x) if x /∈

⋃N
j=1 Brj (cj)

f(cj) where j is the smallest index with x ∈ Brj (cj)

By construction, F is the feedforward function of a radial neural network with N hidden layers
whose widths are all n +m + 1. Let x ∈ Rn. If x ∈ K, let j be the smallest index such that x ∈
Brj (cj). Then F (x) = f(cj), and, by the choice of rj , we have |F (x)−f(x)| = |f(cj)−f(x)| < ϵ.
Otherwise, x ∈ Rn \K, and |F (x)− f(x)| = |L(x)− f(x)| < ϵ.

B.5 ADDITIONAL RESULT: BOUND OF max(n,m) + 1

We state and prove an additional bounded width result. In contrast to the results above, the theo-
rem below only holds for functions defined on a compact domain, without assumptions about the
asymptotic behavior. The proof is an adaptation of the proof of Theorem 5, so we give only a sketch.
Theorem 15. Let f : K → Rm be a continuous function, where K is a compact subset of Rn. For
any ϵ > 0, there exists F : Rn → Rm such that:

1. F is the feedforward function of a radial neural network with N(f,K, ϵ) hidden layers
whose widths are all max(n,m) + 1.

2. For any x ∈ K, we have |F (x)− f(x)| < ϵ.

Sketch of proof. The construction appearing in the proof of Theorem 5 with L ≡ 0 can be used
to produce a radial neural network with N(f,K, ϵ) hidden layers with widths n + m + 1 that
approximates f on K. (Note that the approximation works only on K, as f is not defined outside
of K.) All values in the hidden layers are of the form (x, 0, 0) or (0, y, 1). We can therefore replace
(x, y, θ) ∈ Rn+m+1 by (x+ y, θ) ∈ Rmax(n,m)×R ∼= Rmax(n,m)+1 everywhere, without affecting
any statements about the hidden layers. In particular, the transformation Ti becomes

Ti : Rmax(n,m)+1 → Rmax(n,m)+1, (x, θ) 7→
(
x− (1− θ)ci − θ

f(ci)

s
, (1− θ)hi

)
.

With this change the final affine map Φ sends (x, θ) to sx. From the rest of the proof of Theorem 5
it follows that the feedforward function F of the radial network satisfies |F (x) − f(x)| < ϵ for all
x ∈ K.

B.6 ADDITIONAL RESULT: BOUND OF max(n,m)

In this section, we prove a different version of the result of the previous section. Specifically, we
reduce the bound on the widths to max(n,m) at the cost of using more layers. Again, we focus
on functions defined on a compact domain without assumptions about their asymptotic behavior.
Recall the notation M(f,K, ϵ) from Theorem 10 and Theorem 11.
Theorem 16. Let f : K → Rm be a continuous function, where K is a compact subset of Rn for
n ≥ 2. For any ϵ > 0, there exists F : Rn → Rm such that:

1. F is the feedforward function of a radial neural network with 2M(f,K, ϵ/2) hidden layers
whose widths are all max(n,m).

2. For any x ∈ K, we have |F (x)− f(x)| < ϵ.

Proof. We first consider the proof in the case n = m. Set M = M(f,K, ϵ). As in Lemma 10,
fix c1, . . . , cM ∈ K and r1, . . . , rM ∈ (0, 1) such that, first, the union of the balls Bri(ci) covers
K; second, for all i, we have f (Bri(ci)) ⊆ Bϵ/2(f(ci)); and third, |ci − cj | ≥ ri for i ̸= j. For
i = 1, . . . ,M , set

Ti : Rn → Rn, x 7→ x− ci
ri

,

and recursively define Gi : Rn → Rn as Gi = T−1
i ◦ρ◦Ti ◦Gi−1, where G0 = idRn is the identity

on Rn and ρ : Rn → Rn is Step-ReLU.

20

Under review as a conference paper at ICLR 2023

Lemma 16.1. For i = 0, 1, . . . , N , we have:

Gi(x) =

{
x if x /∈

⋃i
j=1 Brj (cj)

cj where j ≤ i is the smallest index with x ∈ Brj (cj).

We omit the full proof of Lemma 16.1, as it is a standard induction argument similar to Proposition
3.2, relying on the following two facts. First, |Ti(x)| < 1 if and only if x ∈ Bri(ci). Second, by the
choice of ci, we have |ci − cj | ≥ ri for all i ̸= j. This implies that |Ti(cj)| ≥ 1 for i ̸= j.

Next, perform the following loop over i = 1, . . . ,M :

• Set Pi−1 = {c1, . . . , cM} ∪ {d1, . . . , di−1}

• Choose di in Bϵ/2(f(ci)) that is not colinear with any pair of points in Pi−1. This is where
we use the hypothesis that n ≥ 2.

• Let si be the minimum distance between any point on the line through ci and di and any
point in Pi−1 \ {ci}.

• Let Ui : Rn → Rn be the following affine transformation:

Ui : Rn → Rn, x 7→ x− di
si

+

(
1

|ci − di|
− 1

si

)
⟨x− di, ci − di⟩
|ci − di|2

(ci − di)

• Define Hi : Rn → Rn recursively as Hi = U−1
i ◦ ρ ◦ Ui ◦Hi−1, where H0 = idRn .

We note that the transformation Ui can also be written as Ai(x − di) where Ai is the linear map
given by Ai = 1

si
proj⟨ci−di⟩⊥ + 1

|ci−di|proj⟨ci−di⟩, which involves the projections onto the line
spanned by ci − di and onto the orthogonal complement of this line.

Lemma 16.2. For i, j = 1, . . . ,M , we have:

Hi(cj) =

{
dj if j ≤ i

cj if j > i

Proof. It is immediate that Ui(di) = 0 and |Ui(ci)| = 1/2. It is also straightforward to show, using
the choice of si, that |Ui(p)| ≥ 1 for all p ∈ Pi−1 \ {ci}. It follows that U−1

i ◦ ρ ◦ Ui sends ci to di
and fixes all other points in Pi−1.

Lemma 16.3. For x ∈ K, we have HM◦GM (x) = di where i is the smallest index with x ∈ Bri(ci)

Proof. Let x ∈ K. By Lemma 16.1, we have that GM (x) = ci where i is the smallest index with
x ∈ Bri(ci). (We use the fact that the balls {Bri(ci)} cover K.) By Lemma 16.2, we have that
HM (ci) = di for all i. The result follows.

Set F = HM ◦GM . We see that, for x ∈ K:

|F (x)− f(x)| = |di − f(x)| ≤ |di − f(ci)|+ |f(ci)− f(x)| < ϵ/2 + ϵ/2 = ϵ

where i is the smallest index with x ∈ Bri(ci). We show that F is the feedforward function of
a radial neural network with 2M hidden layers, all of width equal to n. Indeed, take the affine
transformations and activations as follows:

• For i = 1, . . . ,M the affine transformation from layer i − 1 to layer i is given by x 7→
Ti ◦ T−1

i−1(x), where T0 = idRn .

• For i = 1, . . . ,M the affine transformation from layer M + i − 1 to layer M + i is given
by x 7→ Ui ◦ U−1

i−1(x), where U0 = T−1
N .

• The activation at each hidden layer is Step-ReLU on Rn that is ρ(x) = x if |x| ≥ 1 and 0
otherwise.

21

Under review as a conference paper at ICLR 2023

• Layer 2M + 1 has the affine transformation U−1
M .

It is immediate from definitions that the feedforward function of this network is F .

To conclude the proof, we discuss the cases where n ̸= m. Suppose n < m so that max(n,m) = m.
Then we can regard K as a compact subset of Rm and apply the above constructions. Suppose
n > m so that max(n,m) = n. Let inc : Rm ↪→ Rn. Apply the above constructions to the function
f̃ = inc ◦ f : K → Rn.

C MODEL COMPRESSION PROOFS

The aim of this appendix is to give a proof of Theorem 6. In order to do so, we first (1) provide
background on a relevant version of the QR decomposition, and (2) establish basic properties of
radial rescaling activations.

C.1 THE QR DECOMPOSITION

In this section, we recall the QR decomposition and note several relevant facts. For integers n and
m, let (Rn×m)

upper denote the vector space of upper triangular n by m matrices.

Theorem 17 (QR Decomposition). The following map is surjective:

O(n)×
(
Rn×m

)upper −→ Rn×m

Q , R 7→ Q ◦R

In other words, any matrix can be written as the product of an orthogonal matrix and an upper-
triangular matrix. When m ≤ n, the last n −m rows of any matrix in (Rn×m)

upper are zero, and
the top m rows form an upper-triangular m by m matrix. These observations lead to the following
“complete” version of the QR decomposition, which coincides with the above result when m ≥ n:

Corollary 18 (Complete QR Decomposition). The following map is surjective:

µ : O(n)×
(
Rk×m

)upper −→ Rn×m

Q , R 7→ Q ◦ inc ◦ R

where k = min(n,m) and inc : Rk ↪→ Rn is the standard inclusion into the first k coordinates.

We make some remarks:

1. There are several algorithms for computing the QR decomposition of a given matrix. One
is Gram–Schmidt orthogonalization, and another is the method of Householder reflections.
The latter has computational complexity O(n2m) in the case of a n × m matrix with
n ≥ m. The package numpy includes a function numpy.linalg.qr that computes the
QR decomposition of a matrix using Householder reflections.

2. In each iteration of the loop in Algorithm 1, the method QR-decomp with mode =
‘complete’ takes as input a matrix Ai of size ni × (nred

i−1 + 1), and produces an or-
thogonal matrix Qi ∈ O(ni) and an upper-triangular matrix Ri of size min(ni, n

red
i−1 +

1)× (nred
i−1 + 1) such that Ai = Qi ◦ inci ◦Ri. Note that nred

i = min(ni, n
red
i−1 + 1).

3. The QR decomposition is not unique in general, or, in other words, the map µ is not injec-
tive in general. For example, if n > m, each fiber of µ contains a copy of the orthogonal
group O(n−m).

4. The QR decomposition is unique (in a certain sense) for invertible square matrices. To
be precise, let B+

n be the subset of of (Rn×n)
upper consisting of upper triangular n by n

matrices with positive entries along the diagonal. Both B+
n and O(n) are subgroups of

the general linear group GLn(R), and the multiplication map O(n) × B+
n → GLn(R) is

bijective. However, the QR decomposition is not unique for non-invertible square matrices.

22

https://numpy.org/doc/stable/reference/generated/numpy.linalg.qr.html

Under review as a conference paper at ICLR 2023

C.2 RADIAL RESCALING FUNCTIONS

We now prove the following basic facts about radial rescaling functions:

Lemma 19. Let ρ = h(n) : Rn → Rn be a radial rescaling function on Rn.

1. The function ρ commutes with any orthogonal transformation of Rn. That is, ρ◦Q = Q◦ρ
for any Q ∈ O(n).

2. If m ≤ n and inc : Rm ↪→ Rn is the standard inclusion into the first m coordinates, then:
h(n) ◦ inc = inc ◦ h(m).

Proof. Suppose Q ∈ O(n) is an orthogonal transformation of Rn. Since Q is norm-preserving, we
have |Qv| = |v| for any v ∈ Rn. Since Q is linear, we have Q(λv) = λQv for any λ ∈ R and
v ∈ Rn. Using the definition of a = h(n) we compute:

ρ(Qv) =
h(|Qv|)
|Qv|

Qv =
h(|v|)
|v|

Qv = Q

(
h(|v|)
|v|

v

)
= Q(ρ(v)).

The first claim follows. The second claim is an elementary verification.

More generally, the restriction of the radial rescaling function ρ to a linear subspace of Rn

is a radial rescaling function on that subspace. Given a tuple radial rescaling functions ρ =

(ρi : Rni → Rni)
L
i=1 suited to widths n = (ni)

L
i=1, we write ρred =

(
ρredi : Rnred

i → Rnred
i

)
for

the tuple of restrictions suited to the reduced widths nred, so that ρredi = ρi

∣∣∣∣
Rnred

i

.

C.3 PROOF OF THEOREM 6

Adopting notation from above and Section 5, we now restate and prove Theorem 6.
Theorem 6. Let (W,b,ρ) be a radial neural network with widths n. Let Wred and bred be the
weights and biases of the compressed network produced by Algorithm 1. The feedforward function
of the original network (W,b,ρ) coincides with that of the compressed network (Wred,bred,ρred).

Proof. Let (Wred,bred,Q) = QR-Compress(W,b) be the output of Algorithm 1, so that
Q ∈ O(nhid) and (Wred,bred,ρred) is a neural network with widths nred and radial rescaling ac-

tivations ρred
i = ρi

∣∣∣∣
Rnred

i

. Let F = F(W,b,ρ) denote the feedforward function of the radial neural

network with parameters (W,b) and activations ρ. Similarly, let F red = F(Wred,bred,ρred) denote the
feedforward function of the radial neural network with parameters (Wred,bred) and activations ρred.
Additionally, we have the partial feedforward functions Fi and F red

i . We show by induction that

Fi = Qi ◦ inci ◦ F red
i

for any i = 0, 1, . . . , N . (Continuing conventions from Sections 5.1 and 5.2, we set Q0 = idRn0 ,
QL = idRnL , and inci : Rnred

i → Rni to be the inclusion map.) The base step i = 0 immediate. For
the induction step, let x ∈ Rn0 . Then:

Fi(x) = ρi (Wi ◦ Fi−1(x) + bi)

= ρi
(
Wi ◦Qi−1 ◦ inci−1 ◦ F red

i−1(x) + bi
)

= ρi

(
[bi Wi ◦Qi−1 ◦ inci−1]

[
1

F red
i−1(x)

])
= ρi

(
Qi ◦ inci ◦

[
bred
i W red

i

] [1
F red
i−1(x)

])
= Qi ◦ inci ◦ ρi

∣∣∣∣
Rnred

i

(
W red

i ◦ F red
i−1(x) + bred

i

)
= Qi ◦ inci ◦ F red

i

23

Under review as a conference paper at ICLR 2023

The first equality relies on the definition of the partial feedforward function Fi; the second on the
induction hypothesis; the fourth on an inspection of Algorithm 1, noting that Ri = [bred

i W red
i]; the

fifth on the results of Lemma 19, observing that ρi ◦ inci = ρi|Rnred
i

= inci ◦ ρred
i ; and the sixth on

the definition of F red
i . In the case i = L, we have:

F = FL = QL ◦ incL ◦ F red
L = F red

since QL = incL = idRnL and F red
L = F red. The theorem now follows.

The techniques of the above proof can be used to show that the action of the group O(nhid) of
orthogonal change-of-basis symmetries on the parameter space Param(n) leaves the feedforward
function unchanged. We do not use this result directly, but state is precisely it nonetheless:

Proposition 20. Let (W,b,ρ) be a radial neural network with widths vector n. Suppose g ∈
O(nhid). Then the original and transformed networks have the same feedforward function:

F(g·W, g·b, ρ) = F(W, b, ρ)

In other words, fix parameters (W,b) ∈ Param(n), radial rescaling activations ρ, and g ∈ O(nhid).
Then the radial neural network with parameters (W,b) has the same feedforward function as the
radial neural network with transformed parameters (g ·W,g · b), where we take radial rescaling
activations ρ in both cases.

We remark that Proposition 20 is analogous to the “non-negative homogeneity” (or “positive scaling
invariance”) of the pointwise ReLU activation function3. In that setting, instead of considering the
product of orthogonal groups O(nhid), one considers the rescaling action of the following subgroup
of
∏L−1

i=1 GLni :

G =

{
g = (gi) ∈

L−1∏
i=1

GLni
| each gi is diagonal with positive diagonal entries

}

Note that G is isomorphic to the product
∏L−1

i=1 Rni
>0, and the action on Param(n) is given by the

same formulas as those appearing near the end of Section 5.1. The feedforward function of a MLP
with pointwise ReLU activations is invariant for the action of G on Param(n).

D PROJECTED GRADIENT DESCENT PROOFS

In this section, we give a proof of Theorem 8, which relates projected gradient descent for a repre-
sentation with dimension n to (usual) gradient descent for the corresponding reduced representation
with dimension vector nred. This proof requires some set up and background resutls.

D.1 GRADIENT DESCENT AND ORTHOGONAL SYMMETRIES

We first prove a result that gradient descent commutes with invariant orthogonal transformations.
This section is general and departs from the specific case of radial neural networks.

D.1.1 SETTING

Let L : V = Rp → R be a smooth function. Semantically, V is a the parameter space of a neural
network and L the loss function with respect to a batch of training data. The differential dLv of L

3See Armenta and Jodoin, The Representation Theory of Neural Networks, arXiv:2007.12213; Dinh, Pas-
canu, Bengio, and Bengio, Sharp Minima Can Generalize For Deep Nets, ICML 2017; Meng, Zheng, Zhang,
Chen, Ye, Ma, Yu, and Liu, G-SGD: Optimizing ReLU Neural Networks in its Positively Scale-Invariant Space,
2019; and Neyshabur, Salakhutdinov, and Srebro. Path-SGD: path-normalized optimization in deep neural
networks, NIPS’15.

24

Under review as a conference paper at ICLR 2023

at v ∈ V is row vector, while the gradient∇vL of L at v is a column vector4:

dLv =

[
∂L
∂x1

∣∣∣∣
v

· · · ∂L
∂xp

∣∣∣∣
v

]
∇vL =


∂L
∂x1

∣∣∣∣
v

...
∂L
∂xp

∣∣∣∣
v


Hence∇vL is the transpose of dLv , that is: ∇vL = (dLv)

T . A step of gradient descent with respect
to L at learning rate η > 0 is defined as:

γ = γη : V −→ V

v 7−→ v − η∇vL

We drop η from the notation when it is clear from context. For any k ≥ 0, we denote by γk the
k-fold composition of the gradient descent map γ:

γk =

k︷ ︸︸ ︷
γ ◦ γ ◦ · · · ◦ γ

D.1.2 INVARIANT GROUP ACTION

Now suppose ρ : G→ GL(V) is an action of a Lie group G on V such that L is G-invariant, i.e.:

L(ρ(g)(v)) = L(v)
for all g ∈ G and v ∈ V . We write simply g · v for ρ(g)(v), and g for ρ(g).
Lemma 21. For any v ∈ V and g ∈ G, we have:

∇vL = gT · (∇g·vL)

Proof. The proof is a computation:

∇vL = (dvL)T = (d(L ◦ g)v)T = (dLg·v ◦ dgv)T = (dLg·v ◦ g)T = gT · (dLg·v)
T

= gT · (∇Lg·v)

The second equality relies on the hypothesis that L ◦ g = L, the third on the chain rule, and the
fourth on the fact that dgv = g since g is a linear map.

One can perform the computation of the proof in coordinates, for i = 1, . . . , p:

(∇vL)i = (dLv)
i
=

∂L
∂xi

∣∣∣∣
v

=
∂(L ◦ g)

∂xi

∣∣∣∣
v

=
∂L
∂xj

∣∣∣∣
gv

∂gj
∂xi

∣∣∣∣
v

= (∇gvL)j g
i
j = (gT)ji (∇gvL)j =

(
gT · ∇gvL

)
i

D.1.3 ORTHOGONAL CASE

Furthermore, suppose the action of G is by orthogonal transformations, so that ρ(g)T = ρ(g)−1 for
all g ∈ G. Then Lemma 21 implies that

∇g·vL = g · ∇vL (D.1)

for any v ∈ V and g ∈ G. The proof of the following lemma is immediate from Equation D.1,
together with the definition of γ. See Figure 6 for an illustration.
Lemma 22. Suppose the action of G on V is by orthogonal transformations, and that L is G-
invariant. Then the action of G commutes with gradient descent (for any learning rate). That is,

γk(g · v) = g · γk(v)

for any v ∈ V , g ∈ G, and k ≥ 0.
4Following usual conventions, we regard column vectors as elements of V and row vectors as elements of

the dual vector space V ∗. The differential dLv of L at v ∈ V is also known as the Jacobian of L at v ∈ V .

25

Under review as a conference paper at ICLR 2023

Figure 6: Illustration of Lemma 22. If the loss is invariant with respect to an orthogonal transforma-
tion Q of the parameter space, then optimization of the network by gradient descent is also invariant
with respect to Q. (Note: in this example, projected and usual gradient descent match; this is not the
case in higher dimensions, as explained in D.6.)

D.2 GRADIENT DESCENT NOTATION AND SET-UP

We now turn our attention back to radial neural networks. In this section, we recall notation from
above, and introduce new notation that will be relevant for the formulation and proof of Theorem 8.

D.2.1 MERGING WIDTHS AND BIASES

Let n = (n0, n1, n2, . . . , nL−1, nL) be the widths vector of an MLP. Recall the definition of
Param(n) as the parameter space of all possible choices of trainable parameters:

Param(n) =
(
Rn1×n0 × Rn2×n1 × · · · × RnL×nL−1

)
× (Rn1 × Rn2 × · · · × RnL)

We have been denoting an element therein as a pair of tuples (W,b) where W = (Wi ∈
Rni×ni−1)Li=1 are the weights and b = (bi ∈ Rni)Li=1 are the biases. However, in this appendix we
adopt different notation. Observe that, placing each bias vector as a extra column on the left of the
weight matrix, we obtain matrices:

Ai = [bi Wi] ∈ Rni×(1+ni−1).

Thus, there is an isomorphism:

Param(n) ≃
L⊕

i=1

Rni×(ni−1+1) = Rn1×(n0+1) × Rn2×(n1+1) × · · · × RnL×(nL−1+1)

In this appendix, we regard an element of Param(n) as a tuple of ‘merged’ matrices A = (Ai ∈
Rni×(1+ni−1))Li=1. We now define convenient maps to translate between the merged notation and
the split notation. For each i, define the extension-by-one map from Rni to R × Rni ≃ Rni+1 as
follows:

exti : Rni → Rni+1 v = (v1, v2, . . . , vni
) 7→ (1, v1, v2, . . . , vni

) (D.2)
Observe that, for any i and x ∈ Rni−1 , we have

Ai ◦ exti−1(x) = Wix+ bi.

Consequently, the i-th partial feedforward function can be defined recursively as:

Fi = ρi ◦Ai ◦ exti−1 ◦ Fi−1 (D.3)

where ρi : Rni → Rni is the activation5 at the i-th layer, and F0 is the identity on Rn0 .

D.2.2 ORTHOGONAL CHANGE-OF-BASIS ACTION

To describe the orthogonal change-of-basis symmetries of the parameter space in the merged nota-
tion, recall the following product of orthogonal groups, with sizes corresponding to the widths of
the hidden layers:

O(nhid) = O(n1)×O(n2)× · · · ×O(nL−1)

5In this general formulation, ρi can be any piece-wise differentiable function; for most of the rest of the
paper we will be interested in the case where ρi is a radial rescaling function.

26

Under review as a conference paper at ICLR 2023

In the merged notation, the element Q = (Qi)
L−1
i=1 ∈ O(nhid) transforms A ∈ Param(n) as:

A 7→ Q ·A :=

(
Qi ◦Ai ◦

[
1 0
0 Q−1

i−1

])L

i=1

(D.4)

where Q0 = idn0 and QL = idnL
.

D.2.3 MODEL COMPRESSION ALGORITHM

We now restate Algorithm 1 in the merged notation. We emphasize that Algorithms 1 and 2 are
mathematically equivalent; the later simply uses more compact notation.

Algorithm 2: QR Model Compression (QR-compress)
input : A ∈ Param(n)
output : Q ∈ O(nhidden) and V ∈ Param(nred)

Q,V← [], [] // initialize output matrix lists
M1 ← A1

for i← 1 to L− 1 do // iterate through layers
Qi, Ri ← QR-decomp(Mi, mode = ‘complete’) // Mi = Qi ◦ inci ◦Ri

Append Qi to Q
Append Ri to V // reduced merged weights for layer i

Set Mi+1 ← Ai+1 ◦
[
1 0
0 Qi ◦ inci

]
// transform next layer

end
Append ML to V

return Q, V

We explain the notation. As noted in Appendix B.1, the symbol ‘◦’ denotes composition of maps, or
matrix multiplication in the case of linear maps. The standard inclusion inci : Rnred

i ↪→ Rni maps
into the first nred

i coordinates. As a matrix, Inci ∈ Rni×nred
i has ones along the main diagonal and

zeros elsewhere. The method QR-decomp with mode = ‘complete’ computes the complete
QR decomposition of the ni × (1 + nred

i−1) matrix Mi as Qi ◦ inci ◦Ri where Qi ∈ O(ni) and Ri is
upper-triangular of size nred

i ×(1+nred
i−1). The definition of nred

i implies that either nred
i = nred

i−1+1

or nred
i = ni. The matrix Ri is of size nred

i × nred
i in the former case and of size ni × (1 + nred

i−1) in
the latter case.

D.2.4 GRADIENT DESCENT DEFINITIONS

As in Section 6, we fix:

• a widths vector n = (n0, n1, . . . , nL).

• a tuple ρ = (ρ1, . . . , ρL) of radial rescaling activations, where ρi : Rni → Rni for i =
1, . . . , L.

• a batch of training data {(xj , yj)} ⊆ Rn0 × RnL = Rnred
0 × Rnred

L .

• a cost function C : RnL × RnL → R

As a result, we have a loss function on Param(n):

L : Param(n)→ R L(A) =
∑
C(F(A,ρ)(xj), yj)

where F(A,ρ) is the feedforward of the radial neural network with (merged) parameters A and ac-
tivations ρ. We emphasize that the loss function L depends on the batch of training data chosen
above; however, for clarity, we omit extra notation indicating this dependency since the batch of
training data is fixed throughout this discussion. Similarly, we have:

• the reduced widths vector nred = (nred
0 , nred

1 , . . . , nred
L).

27

Under review as a conference paper at ICLR 2023

• the restrictions ρred = (ρred1 , . . . , ρredL), where ρredi : Rnred
i → Rnred

i for i = 1, . . . , L.

Using the fact that nred
0 = n0 and nred

L = nL, there is a loss function on Param(nred):

Lred : Param(nred)→ R Lred(B) =
∑
C(F(B,ρred)(xj), yj)

where F(B,ρred) is the feedforward of the radial neural network with parameters B ∈ Param(nred)

and activations ρred. (Again, technically speaking, the loss function Lred depends on the batch of
training data fixed above.) For any learning rate η > 0, we obtain a gradient descent maps:

γ : Param(n)→ Param(n) γred : Param(nred)→ Param(nred)

A 7→ A− η∇AL B 7→ B− η∇BLred

D.3 THE INTERPOLATING SPACE

In this section, we introduce a subspace Paramint(n) of Param(n), that, as we will later see, inter-
polates between Param(n) and Param(nred).

Let Paramint(n) denote the subspace of Param(n) consisting of those T = (T1, . . . , TL) ∈
Param(n) for which the bottom left (ni−nred

i)×(1+nred
i−1) block of Ti is zero for each i. Schemat-

ically:

Ti =

[
∗ ∗
0 ∗

]
where the rows are divided as nred

i on top and ni−nred
i on the bottom, while the columns are divided

as (1 + nred
i−1) on the left and ni−1 − nred

i−1 on the right. Let

ι1 : Paramint(n) ↪→ Param(n)

be the inclusion. The following proposition follows from an elementary analysis of the workings of
Algorithm 2 (or, equivalently, Algorithm 1).
Proposition 23. Let A ∈ Param(n) and let Q ∈ O(nhid) be the tuple of orthogonal matrices
produced by Algorithm 2. Then Q−1 ·A belongs to Paramint(n).

Define a map
q1 : Param(n)→ Paramint(n)

by taking A ∈ Param(n) and zeroing out the bottom left (ni − nred
i)× (1 + nred

i−1) block of Ai for
each i. Schematically:

A =

(
Ai =

[
∗ ∗
∗ ∗

])L

i=1

7→ q1(A) =

([
∗ ∗
0 ∗

])L

i=1

It is straightforward to check that q1 is a well-defined, surjective linear map. The transpose of q1 is
the inclusion ι1. We summarize the situation in the following diagram:

Paramint(n)

ι1
--
Param(n)

q1
mm (D.5)

We observe that the composition q1 ◦ ι is the identity on Paramint(n).

D.4 PROJECTED GRADIENT DESCENT AND MODEL COMPRESSION

Recall from Section 6 that the projected gradient descent map on Param(n) is given by:

γproj : Param(n)→ Param(n), A 7→ Proj (A− η∇AL)

where A = (W,b) are the merged parameters (Appendix D.2), and, in the notation of the previous
section, the map Proj is ι1 ◦ q1. To reiterate, while all entries of each weight matrix and each bias
vector contribute to the computation of the gradient∇AL = ∇(W,b)L, only those not in the bottom
left submatrix get updated under the projected gradient descent map γproj.

28

Under review as a conference paper at ICLR 2023

Let V,Q = QR-Compress(A) be the outputs of Algorithm 2 (which is equivalent to Algorithm
1), so that V = (Wred,bred) ∈ Param(nred) are the parameters of the compressed model corre-
sponding to the full model with merged parameters A = (W,b), and Q ∈ O(nhid) is an orthogonal
change-of-basis symmetry of the parameter space. Moreover, set T = Q−1 · A ∈ Paramint(n),
where we use the change-of-basis action from Appendix D.2 and Proposition 23. We have the
following rephrasing of Theorem 8.

Theorem 24 (Theorem 8). Let A ∈ Param(n), and let V,Q,T be as above. For any k ≥ 0:

1. γk(A) = Q · γk(T)

2. γk
proj(T) = γk

red(V) +T−V.

More precisely, the second equality is γk
proj(T) = ι(γk

red(V))+T− ι(V) where ι : Param(nred) ↪→
Param(n) is the inclusion into the top left corner in each coordinate. Also, in the statement of
Theorem 8, we have U = T−V.

We summarize this result in the following diagram. The left horizontal maps indicate the addition of
U = T−V, the right horizontal arrows indicate the action of Q, and the vertical maps are various
versions of gradient descent. The shaded regions indicate the (smallest) vector space to which the
various representations naturally belong.

V T W

γk
red(V) γk

proj(T) γk(T) γk(W)

+T − V

proj-GD on Param(n)

+T − V

GD on Param(nred) GD on Param(n)

Q·

Q·

GD on Param(n)

Param(nred) Paramint(n) Param(n)

D.5 PROOF OF THEOREM 8

We begin by explaining the sense in which Paramint(n) interpolates between Param(n) and
Param(nred). One extends Diagram D.5 as follows:

Param(nred)

ι2
--
Paramint(n)

q2
mm

ι1
--
Param(n)

q1
mm

• The map
ι2 : Param(nred) ↪→ Paramint(n)

takes B = (Bi) ∈ Param(nred) and pad each matrix with ni − nred
i rows of zeros on the

bottom and ni−1 − nred
i−1 columns of zeros on the right:

B = (Bi)
L
i=1 7→ ι2(B) =

([
Bi 0
0 0

])L

i=1

It is straightforward to check that ι2 is a well-defined injective linear map.

• The map
q2 : Paramint(n)→ Param(nred)

29

Under review as a conference paper at ICLR 2023

extracts from T the top left nred
i × (1 + nred

i−1) matrix:

T =

(
Ti =

[
T

(1)
i T

(2)
i

0 T
(4)
i

])L

i=1

7→ q2(T) =
(
T

(1)
i

)L
i=1

It is straightforward to check that q2 is a surjective linear map. The transpose of q2 is the
inclusion ι2.

Lemma 25. We have the following:

1. The inclusion ι : Param(nred) ↪→ Param(n) coincides with the composition ι1 ◦ ι2, and
commutes with the loss functions:

Param(nred) �
� ι1◦ι2=ι

//

Lred
$$

Param(n)

L
{{

R

2. The following diagram commutes:

Paramint(n)
q2 // //

_�

ι1

��

Param(nred)

Lred

��

Param(n)
L // R

3. For any T ∈ Paramint(n), we have: q1
(
∇ι1(T)L

)
= ι2

(
∇q2(T)Lred

)
.

Proof. We have the following standard inclusions into the first coordinates and projections onto the
first coordinates, for i = 0, 1, . . . , L:

inci = incnred
i ,ni

: Rnred
i ↪→ Rni , ĩnci = inc1+nred

i ,1+ni
: R1+nred

i ↪→ R1+ni ,

πi : Rni → Rnred
i , π̃i : R1+ni → R1+nred

i .

Observe that Paramint(n) is the subspace of Param(n) consisting of those T = (T1, . . . , TL) ∈
Param(n) such that:

(idni − inci ◦ πi) ◦ Ti ◦ ĩnci−1 ◦ π̃i−1 = 0

for i = 1, . . . , L.

By the definition of radial rescaling functions, for each i = 1, . . . , L, there is a piece-wise

differentiable function hi : R → R such that ρi = h
(ni)
i . Note that ρredi = h

(nred
i)

i , and
h(ni) ◦ inci = inci ◦ h(nred

i).

The identity ι = ι1 ◦ ι2 follows directly from definitions. To prove the commutativity of the first
diagram, it is enough to show that, for any X in Param(nred), the feedforward functions of X and
ι(X) coincide. This follows easily from the fact that, for i = 1, . . . , L, we have:

πi ◦ h(ni) ◦ inci = πi ◦ inci ◦ h(nred
i) = h(nred

i).

For the second claim, let T ∈ Paramint(n). It suffices to show that ι1(T) and q2(T) have the same
feedforward function. Recall the exti maps and the formulation of the feedforward function in the
merged notation given in Equation D.3. Using this set-up, the key computation is:

inci ◦ h(nred
i) ◦ πi ◦ Ti ◦ extni−1

◦ inci−1 = h(ni) ◦ inci ◦ πi ◦ Ti ◦ ĩnci−1 ◦ extni−1

= h(ni) ◦ Ti ◦ ĩnci−1 ◦ extni−1

= h(ni) ◦ Ti ◦ extni−1
◦ inci−1

30

Under review as a conference paper at ICLR 2023

which uses the fact that (idni − inci ◦ πi)◦Ti ◦ ĩnci−1 = 0, or, equivalently, inci ◦πi ◦Ti ◦ ĩnci−1 =

Ti ◦ ĩnci−1, as well as the fact that exti ◦ inci = ĩnci ◦ exti. Applying this relation successively
starting with the second-to-last layer (i = L − 1) and ending in the first (i = 1), one obtains the
result. For the last claim, one computes∇T(L ◦ ι1) in two different ways. The first way is:

∇T(L ◦ ι1) = (d(LT ◦ ι1))T =
(
dLι1(T) ◦ dTι1

)T
=
(
dLι1(T) ◦ ι1

)T
= ιT1

(
dLT

ι1(T)

)
= q1

(
∇ι1(T)L

)
where we use the fact that ι1 is a linear map whose transpose is q1. The second way uses the
commutative diagram of the second part of the Lemma:

∇T(L ◦ ι1) = ∇T (Lred ◦ q2) = (d (Lred)T ◦ q2)
T
=
(
d (Lred)q2(T) ◦ d (q2)Z

)T
=
(
d (Lred)q2(T) ◦ q2

)T
= qT2

(
d (Lred)

T
q2(T)

)
= ι2

(
∇q2(T)Lred

)
.

We also use the fact that q2 is a linear map whose transpose is ι2.

Proof of Theorem 8. As above, let R,Q = QR-compress(A) be the outputs of Algorithm 1,
so that V = (Wred,bred) ∈ Param(nred) is the dimensional reduction of the merged parameters
A = (W,b), and Q ∈ O(nhid). Set T = Q−1 ·A ∈ Paramint(n).

The action of Q ∈ O(nhid) on Param(n) is an orthogonal transformation, so the first claim follows
from Lemma 22.

For the second claim, it suffices to consider the case η = 1. The general case follows similarly. We
proceed by induction. The base case k = 0 amounts to Theorem 6. For the induction step, we set

Z(k) = ι(γk
red(V)) +T− ι(V).

Each Z(k) belongs to Paramint(n), so i1(Z
(k)) = Z(k). Moreover, q2

(
Z(k)

)
= γk

red(V). We
compute:

γk+1
proj (Q

−1 ·A) = γproj
(
γk

proj(Q
−1 ·A)

)
= γproj

(
ι(γk

red(V)) +T− ι(V)
)

= ι1 ◦ q1
(
ι(γk

red(V)) +T− ι(V)−∇ι(γk
red(V))+T−ι(V)L

)
= ι(γk

red(V))− ι1 ◦ q1
(
∇ι1(Z(k))L

)
+T− ι(V)

= ι(γk
red(V))− ι1 ◦ ι2

(
∇q2(Z(k))Lred

)
+T− ι(V)

= ι
(
γk

red(V)−∇γk
red(V)Lred

)
+T− ι(V)

= ι
(
γk+1

red (V)
)
+T− ι(V)

where the second equality uses the induction hypothesis; the third invokes the definition of γproj; the
fourth uses the fact that Z(k) = ι(γk

red(V)) +T − ι(V) belongs to Paramint(n); the fifth and sixth
use Lemma 25 above; and the last uses the definition of γred.

D.6 EXAMPLE

We now discuss an example where projected gradient descent does not match usual gradient descent.

Let n = (1, 3, 1) be a widths vector. The space of parameters with this widths vector is 10-
dimensional:

Param(n) = Hom(R2,R3)⊕Hom(R4,R) ≃ R10.

We identify a choice of parameters (in the merged notation)

A =

(
A1 =

[
a b
c d
e f

]
, A2 = [g h i j]

)
∈ Param((1, 3, 1)) (D.6)

31

Under review as a conference paper at ICLR 2023

with the point p = (a, b, c, d, e, f, g, h, i, j) in R10. To be even more explicit, the weights for the

first layer are W1 =

[
b
d
f

]
, the bias in the first hidden hidden layer is b1 = (a, c, e), the weights for

the second layer are W2 = [h i j], and the bias for the output layer is b2 = g.

The action of the orthogonal group O(n) = O(3) on Param(n) ≃ R10 can be expressed as:

Q 7→

Q 0 0 0
0 Q 0 0
0 0 1 0
0 0 0 Q

 ,

where the rows and columns are divided according to the partition 3+3+1+3 = 10. Consider the
function6:

L : Param(n)→ R
p = (a, b, c, d, e, f, g, h, i, j) 7→ h(a+ b) + i(c+ d) + j(e+ f) + g

By the product rule, we have:

∇pL = (h, h, i, i, j, j, 1, a+ b, c+ d, e+ f)

One easily checks that L(Q · p) = L(p) and that∇Q·pL = Q · ∇pL for any Q ∈ O(3).

The interpolating space is the eight-dimensional subspace of Param(n) ≃ R10 with e = f = 0
(using the notation of Equation D.6). Suppose p′ = (a, b, c, d, 0, 0, g, h, i, j) belongs to the interpo-
lating space. Then the gradient is

∇p′L = (h, h, i, i, j, j, 1, a+ b, c+ d, 0)

which does not belong to the interpolating space. So one step of usual gradient descent, with learning
rate η > 0 yields:

γ :p′ = (a, b, c, d, 0, 0, g, h, i, j) 7→
(a− ηh , b− ηh , c− ηi , d− ηi , −ηj , −ηj , g − η , h− η(a+ b) , i− η(c+ d) , j)

On the other hand, one step of projected gradient descent yields:

γproj : p
′ = (a, b, c, d, 0, 0, g, h, i, j) 7→
(a− ηh , b− ηh , c− ηi , d− ηi , 0 , 0 , g − η , h− η(a+ b) , i− η(c+ d) , j)

Direct computation shows that the difference between the evaluation of L after one step of gradient
descent and the evaluation of L after one step of projected gradient descent is:

L(γ(p′))− L(γproj(p
′)) = 2ηj2.

E EXPERIMENTS

As mentioned in Section 7, we provide an implementation of Algorithm 1 in order to (1) empirically
validate that our implementation satisfies the claims of Theorems 6 and Theorem 8 and (2) quantify
real-world performance. Our implementation uses a generalization of radial neural networks, which
we explain presently.

E.1 RADIAL NEURAL NETWORKS WITH SHIFTS

In this section, we consider radial neural networks with an extra trainable parameter in each layer
that shifts the radial rescaling activation. Adding such parameters allows for more flexibility in the
model, and (as shown in Theorem 26) the model compression of Theorem 6 holds for such networks.
It is this generalization that we use in our experiments.

6For A ∈ Param(n), the neural function of the neural network with affine maps determined by A and
identity activation functions is R → R; x 7→ L(W)x. The function L can appear as a loss function for certain
batches of training data and cost function on R.

32

Under review as a conference paper at ICLR 2023

Let h : R → R be a function. For any n ≥ 1 and any t ∈ R, the corresponding shifted radial
rescaling function on Rn is given by:

ρ = h(n,t) : v 7→ h(|v| − t)

|v|
v

if v ̸= 0 and ρ(0) = 0. A radial neural network with shifts consists of the following data:

1. Hyperparameters: A positive integer L and a widths vector n = (n0, n1, n2, . . . , nL).
2. Trainable parameters:

(a) A choice of weights and biases (W,b) ∈ Param(n).
(b) A vector of shifts t = (t1, t2, . . . , tL) ∈ RL.

3. Activations: A tuple h = (h1, . . . , hL) of piecewise differentiable functions R → R.
Together with the shifts, we have the shifted radial rescaling activation ρi = h

(ni,ti)
i :

Rni → Rni in each layer.

The feedforward function of a radial neural network with shifts is defined in the usual recursive
way, as in Section 3. The trainable parameters form the vector space Param(n) × RL, and the loss
function of a batch of training data {(xi, yi)} ⊂ Rn0 × RnL is defined as

L : Param(n)× RL −→ R; (W, t) 7→
∑
j

C(F(W,b,t,h)(xj), yj)

where F(W,b,t,h) is the feedforward function of a radial neural network with weights W, biases b,
shifts t, and radial rescaling activations produced from h. We have the gradient descent map:

γ : Param(n)× RL −→ Param(n)× RL

which updates the entries of W, b, and t. The group O(nhid) = O(n1) × · · · × O(nL−1) acts on
Param(n) as usual (see Section 5.1), and on RL trivially. The neural function is unchanged by this
action. We conclude that the O(nhid) action on Param(n)×RL commutes with gradient descent γ.
We now state a generalization of Theorem 6 for the case of radial neural networks with shifts. We
omit a proof, as it uses the same techniques as the proof of Theorem 6.
Theorem 26. Let (W,b, t,h) be a radial neural network with shifts and widths vector n. Let
Wred and bred be the weights and biases of the compressed network produced by Algorithm 1. The
feedforward function of the original network (W,b, t,h) coincides with that of the compressed
network (Wred,bred, t,h).

Theorem 8 also generalizes to the setting of radial neural networks with shifts, using projected
gradient descent with respect to the subspace Paramint(n)× RL of Param(n)× RL.

E.2 IMPLEMENTATION DETAILS

Our implementation is written in Python and uses the QR decomposition routine in NumPy Harris
et al. (2020). We also implement a general class RadNet for radial neural networks using PyTorch
Paszke et al. (2019). For brevity, we write Ŵ for (W,b) and Ŵred for (Wred,bred).

(1) Empirical verification of Theorem 6. We use synthetic data to learn the function f(x) = e−x2

with N = 121 samples xj = −3+ j/20 for 0 ≤ j < 121. We model fŴ as a radial neural network
with widths n = (1, 6, 7, 1) and activation the radial shifted sigmoid h(x) = 1/(1+e−x+s). Apply-
ing QR-compress gives a radial neural network fŴred with widths nred = (1, 2, 3, 1). Theorem 6
implies that the neural functions of fŴ and fŴred are equal. Over 10 random initializations of Ŵ,
the mean absolute error (1/N)

∑
j |fŴ(xj) − fŴred(xj)| = 1.31 · 10−8 ± 4.45 · 10−9. Thus fŴ

and fŴred agree up to machine precision.

(2) Empirical verification of Theorem 8. Adopting the notation from above, the claim is that
training fQ−1·Ŵ with objective L by projected gradient descent coincides with training fŴred with
objective Lred by usual gradient descent. We verified this on synthetic data using 3000 epochs at
learning rate 0.01. Over 10 random initializations of Ŵ, the loss functions match up to machine
precision with |L − Lred| = 4.02 · 10−9 ± 7.01 · 10−9.

33

Under review as a conference paper at ICLR 2023

(3) Reduced model trains faster. Due to the relation between projected gradient descent of the
full network Ŵ and gradient descent of the reduced network Ŵred, our method may be applied
before training to produce a smaller model class which trains faster without sacrificing accuracy.
We test this hypothesis in learning the function f : R2 → R2 sending x = (t1, t2) to (e−t21 , e−t22)
using N = 1212 samples (−3 + j/20,−3 + k/20) for 0 ≤ j, k < 121. We model fŴ as a
radial neural network with layer widths n = (2, 16, 64, 128, 16, 2) and activation the radial sigmoid
h(r) = 1/(1 + e−r). Applying QR-compress gives a radial neural network fŴred with widths
nred = (2, 3, 4, 5, 6, 2). We trained both models until the training loss was ≤ 0.01. Running
on a system with an Intel i5-8257U@1.40GHz and 8GB of RAM and averaged over 10 random
initializations, the reduced network trained in 15.32±2.53 seconds and the original network trained
in 31.24± 4.55 seconds.

(4) Comparison with ReLU MLP on noisy image recovery. We show that a Step-ReLU radial
network performs better than an otherwise comparable network with pointwise ReLU on a noisy im-
age recovery task. Using samples of MNIST with significant added noise the network classification
task is to identify from which original sample the noisy sample derives.

Specifically, we choose n samples from MNIST, all with the same MNIST label, and produce m
noisy samples from each by adding noise. The noise is added by considering each sample as a point
in R784, and adding uniform random noise in a ball around each. The radius of the ball around
a given point is the product of the noise level variable (noise scale, which is the same for all
points) and the minimal distance to another sample point (which varies from point to point). As
indicated in Figure 5, when noise scale=3 the classification task is difficult for the human eye.

Our data takes n = 3 original MNIST images with the same label, and produces m = 100 noisy
images for each, with noise scale=3. We perform a 240 train / 60 test split of the 300 data
points. Both models have three layers with widths (d, d+ 1, d+ 2, n = 3), where d = 282 = 784;
hence, both models have 620, 158 trainable parameters

Over 10 trials, each training for 150 epochs and learning rate 0.05 for both models, the radial network
achieves training loss 0.00256±3.074·10−4 with accuracy 1± 0, while the ReLU MLP has training
loss 0.295 ±2.259 · 10−1 with accuracy 0.768 ±2.199 · 10−1. On the test set, the radial network has
loss 0.00266±3.749 ·10−4 with accuracy 1± 0, while the ReLU MLP has loss 0.305±2.588 ·10−1

with accuracy 0.757±2.464 ·10−1. The convergence rates are illustrated in Figure 5, with the radial
network outperforming the ReLU MLP. We note that 150 epochs is sufficient for all methods to
converge, although the ReLU MLP does not always converge to zero loss.

We observe that the radial network 1) is able to obtain a better fit, 2) has faster convergence, and 3)
generalizes better than the pointwise ReLU. We hypothesize the radial nature of the random noise
makes radials networks well-adapted to the task.

F RELATION TO RADIAL BASIS FUNCTION NETWORKS

In this appendix, we show that radial neural networks are equivalent to a particular class of mul-
tilayer radial basis functions networks. This class is obtained by imposing the condition that the
so-called ‘hidden dimension’ at each layer is equal to one; the total number of layers, however, is
unconstrained. To our knowledge, the literature contains no universal approximation result for this
class of radial basis functions networks.

F.1 SINGLE LAYER CASE

We first recall the definition of a radial basis function network. A local linear model extension of a
radial basis function network (henceforth abbreviated simply by RBFN) consists of:

• An input dimension n, an output dimension m, and a ‘hidden’ dimension N .

• For i = 1, . . . , N , a matrix Wi ∈ Rm×n, a vector bi ∈ Rn, and a weight ai ∈ Rm.

• A nonlinear function7 λ : R→ R.
7A more general version allows for a different nonlinear function for every i = 1, . . . , N .

34

Under review as a conference paper at ICLR 2023

The feedforward function of a RBFN is defined as:

F : Rn → Rm x 7→
N∑
i=1

(ai +Wi(x+ bi))λ(|x+ bi|).

The integer N is commonly referred to as ‘the hidden number of neurons’. This is a bit of a mis-
nomer. Really there is only one layer with input dimension n and output dimension m; the integer
N is part of the specification of the activation function.

We observe that if N = 1 and a1 = 0, then the feedforward function is given by:

F : Rn → Rm x 7→Wρ(x+ b)

where ρ is the radial rescaling function determined by λ. In words, one adds b1 = b ∈ Rn to
the input vector x, applies the activation ρ to obtain new vector in Rn, and then applies the linear
transformation determined by the matrix W1 = W to obtain the output vector in Rm. Motivated by
this observation, we say that a RBFN is constrained if N = 1 and a1 = 0.

F.2 CONSTRAINED MULTILAYER CASE

Next, we consider the constrained multilayer case of a radial basis functions network. Specifically,
a constrained multilayer RBFN consists of:

• A widths vector (n0, . . . , nL) where L is the number of layers.

• A matrix Wℓ ∈ Rnℓ×nℓ−1 for ℓ = 1, . . . , L.

• A vector bℓ ∈ Rnℓ for ℓ = 0, 1, . . . , L− 1.

• A nonlinear function λℓ : R→ R for ℓ = 0, 1, . . . , L−1. (Equivalently, the corresponding
radial rescaling function ρℓ : Rnℓ → Rnℓ for ℓ = 0, . . . , L− 1.)

The feedforward function is defined as follows. For ℓ = 0, . . . , L, we recursively define Fℓ : Rn0 →
Rnℓ by setting F0(x) = x and

Fℓ(x) = Wℓρℓ−1(Fℓ−1(x) + bℓ−1)

for ℓ = 1, . . . , L. The feedforward function is FL.

F.3 RELATION TO RADIAL NEURAL NETWORKS

We now demonstrate that radial neural networks are equivalent to constrained multilayer RBFNs.

Proposition 27. For any radial neural network, there is a constrained multilayer RBFN with the
same feedforward function. Conversely, for any constrained multiplayer RBFN, there is a radial
neural network with the same feedforward function.

Proof. For the first statement, let (W,b,ρ) be a radial neural network with L layers and widths
vector (n0, . . . , nL). Recall the partial feedforward functions Gℓ : Rn0 → Rnℓ defined recursively
by setting G0(x) = x and

Gℓ(x) = ρℓ (WℓGℓ−1(x) + bℓ)

The feedforward function is GL. Consider the constrained multilayer RBFN with L+ 1 layers and
the following:

• Widths vector (n0, n1, . . . , nL−1, nL, nL). The last two layers have the same dimension.

• Weight matrices Wℓ ∈ Rnℓ×nℓ−1 for ℓ = 1, . . . , L and WL+1 = idnL
∈ RnL×nL .

• A vector bℓ ∈ Rnℓ for ℓ = 1, . . . , L, and b0 = 0 ∈ Rn0 .

• A radial rescaling activation ρℓ : Rnℓ → Rnℓ for ℓ = 1, . . . , L, and ρ0 = idn0 .

35

Under review as a conference paper at ICLR 2023

Let Fℓ be the partial feedforward functions for this RBFN, defined recursively as above. We claim
that

Fℓ(x) = Wℓ ◦Gℓ−1(x)

for any x ∈ Rn0 and ℓ = 1, . . . , L. We prove this by induction. The base case is ℓ = 1:

F1(x) = W1 ◦ ρ0 (F0(x) + b0) = W1x = W1 ◦G0(x)

For the induction step, take ℓ > 1 and compute:

Fℓ(x) = Wℓ ◦ ρℓ−1 (Fℓ−1(x) + bℓ−1) = Wℓ ◦ ρℓ−1 (Wℓ−1Gℓ−2(x) + bℓ−1) = Wℓ ◦Gℓ−1(x)

The first claim now follows from the case ℓ = L, using the fact that WL+1 is the identity.

For the second statement, let (W,b,ρ) be a constrained multilayer RBFN with L layers and widths
vector (n0, . . . , nL). Consider the radial neural network with L+ 1 layers and the following:

• Widths vector (n0, n0, n1, . . . , nL−1, nL). The first two layers have the same dimension.

• Weight matrices given by W̃1 = idn0 and W̃ℓ = Wℓ−1 for ℓ = 2, . . . , L+ 1.

• Bias vectors given by b̃ℓ = bℓ−1 for ℓ = 1, 2, . . . , L, and b̃L+1 = 0.

• Radial rescaling activations given by ρ̃ℓ = ρℓ−1 for ℓ = 1, . . . , L, and ρ̃L+1 = idnL
.

One uses the recursive definition of the partial feedforward functions to show that, for ℓ = 1, . . . , L,
we have Fℓ(x) = Wℓ ◦Gℓ(x), where Fℓ and Gℓ are the partial feedforward functions of the RBFN
and radial neural network, respectively. Then:

GL+1(x) = ρ̃L+1

(
W̃L+1 ◦GL(x) + b̃L+1

)
= WL ◦GL(x) = FL(x),

so the two feedforward functions coincide.

F.4 CONCLUSIONS

While radial neural networks are equivalent to a certain class of radial basis function network, we
point out differences between our results and the standard theory of radial basis functions network.
First, RBFNs generally only have two layers; we consider ones with unbounded depth. Second, to
our knowledge, ours is the first universal approximation result such that:

• it uses networks in the subclass of multilayer RBFNs satisfying the constraint that all the
number of ‘hidden neurons’ in each layer is equal to 1.

• it approximates functions with networks of bounded width.
• it can be used to approximate asymptotically affine functions, rather than functions defined

on a compact domain.

Our compressibility result may apply to multilayer RBFNs where the number of ‘hidden neurons’
Nℓ at each layer is not equal to 1, but we expect the compression to be weaker, and that constrained
mulitlayer RBFNs are in some sense the most compressible type of RBFN.

36

	Introduction
	Related work
	Radial neural networks
	Universal Approximation
	Approximation of asymptotically affine functions
	Bounded width approximation

	Model compression
	Parameter space symmetries
	Model compression

	Projected gradient descent
	Experiments
	Conclusions and Discussion
	Organization of the appendices
	Universal approximation proofs and additional results
	Notation
	Topology
	Proof of Theorem 3: UA for asymptotically affine functions
	Proof of Theorem 5: bounded width UA for asymptotically affine functions
	Additional result: bound of max(n,m) + 1
	Additional result: bound of max(n,m)

	Model compression proofs
	The QR decomposition
	Radial rescaling functions
	Proof of Theorem 6

	 Projected gradient descent proofs
	Gradient descent and orthogonal symmetries
	Setting
	Invariant group action
	Orthogonal case

	Gradient descent notation and set-up
	Merging widths and biases
	Orthogonal change-of-basis action
	Model compression algorithm
	Gradient descent definitions

	The interpolating space
	Projected gradient descent and model compression
	Proof of Theorem 8
	Example

	Experiments
	Radial neural networks with shifts
	Implementation details

	Relation to radial basis function networks
	Single layer case
	Constrained multilayer case
	Relation to radial neural networks
	Conclusions

