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ABSTRACT

Large Language Models like ChatGPT demonstrate a remarkable capacity to learn
new concepts during inference without any fine-tuning. However, visual models
trained to detect new objects during inference have been unable to replicate this
ability, and instead either perform poorly or require meta-training and/or fine-
tuning on similar objects. In this work, we propose a meta-learning algorithm
that emulates Large Language Models by learning new visual concepts during
inference without fine-tuning. Our approach leverages a frozen pre-trained feature
extractor, and analogous to in-context learning, recasts visual meta-learning as
sequence modeling over datapoints with known labels and a test datapoint with
an unknown label. On 8 out of 11 few-shot image classification benchmarks, our
approach—without meta-training or fine-tuning—exceeds or matches the state-of-
the-art algorithm, P>M>F, which is meta-trained on these benchmarks. Our code
is available at https://github.com/cfifty/CAML.

1 INTRODUCTION

Meta-learning refers to a capacity to learn new concepts from a small number of demonstrations (Lake
et al., 2015). In a decade of remarkable advances to machine intelligence, it remains an area where
human performance continues to surpass that of machines (Brown et al., 2020). To match human
capabilities, and towards developing machines that can learn and think like humans, we must develop
machine intelligence capable of learning novel concepts from only a few examples (Lake et al., 2017).

Many applications of deep learning apply a learning algorithm to a large set of training data; however,
learning from a very small number of training examples poses a challenge (Lake et al., 2017; Garnelo
et al., 2018). This challenge led to two predominant evaluation settings: in-domain and cross-domain.
The in-domain setting evaluates a meta-learner’s ability to quickly adapt to new tasks after training
on similar tasks within a specific domain. Models designed for this setting are often extremely fast
but exhibit poor generalization to tasks outside the target domain (Chen et al., 2019). Meanwhile,
the cross-domain setting evaluates a meta-learner’s ability to adapt to tasks in previously unseen
domains. Methods designed for this setting are highly adaptable but slow during inference as they
require fine-tuning on the support set (Guo et al., 2020; Oh et al., 2022; Hu et al., 2022). Critically,
meta-learners in both settings differ from a human’s capacity to quickly generalize to new tasks.

The problem of simultaneously fast and general meta-learning has recently been addressed in Natural
Language by Large Language Models (LLMs). LLMs like ChatGPT can quickly generalize to new
tasks through an ability termed in-context learning (Brown et al., 2020). However, it remains an open
problem in Computer Vision. Even the best visual meta-learning algorithms cannot be deployed to a
ChatGPT-like system because such systems require models that can (1) generalize to a broad set of
tasks unknown at training time and (2) do so in real-time, without the time allowance for finetuning
the model. LLMs have shown a remarkable ability to do both; however, current visual meta-learners
may only satisfy one requirement or the other (Hu et al., 2022).

To measure progress towards this goal of fast and general visual meta-learners, we develop an
evaluation paradigm that we call universal meta-learning. Universal meta-learning measures a
model’s capacity to quickly learn new image classes. It evaluates models across a diverse set of
meta-learning benchmarks spanning many different image classification tasks without meta-training
on any of the benchmarks’ training sets or fine-tuning on the support set during inference. We focus on
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the application of few-shot image classification—as opposed to dense prediction tasks like in-painting
or segmentation—as the universal setting has already been explored for these applications (Bar et al.,
2022; Zhang et al., 2023; Wang et al., 2023; Kim et al., 2023; Butoi et al., 2023).

Beyond benchmarking methods in the universal setting, we present a meta-learner that achieves
strong universal performance. Drawing inspiration from in-context learning in LLMs, we reformulate
n-way-k-shot image classification as non-causal sequence modeling over the support set and an
unknown query image. Specifically, given n-way classification with k-examples from each class,
we train a non-causal model over {(xi, yi)}nki=1 (image, label) support set pairs, and an unlabeled
query image xnk+1, to predict the label of the query image. This formulation causes the meta-learner
to extrapolate to new classes in its parameter space, enabling it to learn new visual concepts during
inference without fine-tuning. Due to its capacity to learn visual information “in-context”, we term
our approach Context-Aware Meta-Learning (CAML).

In summary, our contribution is two-fold. First, we develop a meta-learning evaluation paradigm that
approximates the performance of visual meta-learners in a ChatGPT-like application. Second, we
design a meta-learning algorithm that works well in this setting. Our empirical findings show that
CAML outperforms other meta-learners in the universal setting. Remarkably, CAML’s performance
in the universal setting often matches—and even exceeds—the in-domain performance of the state-of-
the-art meta-learning algorithm, P>M>F (Hu et al., 2022), that is directly trained on each down-stream
benchmark.

2 RELATED WORK

Meta-Learning as Causal Sequence Modeling. Several of the earliest meta-learning algorithms were
formulated as causal sequence modeling problems. Hochreiter et al. (2001) leverage a LSTM (Hochre-
iter & Schmidhuber, 1997) to model extensions to semi-linear and quadratic functions, and two
decades later, Graves et al. (2014); Santoro et al. (2016); Kaiser et al. (2017) build upon this approach
by integrating a form of external memory that the LSTM can read to and write from memory to
develop Neural Turing Machines. With the advent of self-attention (Vaswani et al., 2017), Mishra et al.
(2017) predict the labels of query images by first composing a sequence of (image, label) pairs and
then feeding it through a stack of interleaved causal self-attention and temporal convolution layers.
Kirsch et al. (2022) replaces the stack of interleaved causal self-attention and temporal convolution
layers with a Transformer encoder; however, their approach is also causal in the input sequence by
composing a sequence of (image, label of previous image) pairs. Both Mishra et al. (2017) and Kirsch
et al. (2022) are conceptually similar to our work; however, the causal property of both approaches
breaks an important symmetry in meta-learning, namely invariance to permutations of the support
set (Garnelo et al., 2018; Müller et al., 2021). In Section 5.2, we observe a performance gap between
both approaches and CAML and hypothesize the causal approach actually forces a subtly more
difficult modeling problem by imposing a causality inductive bias on a fundamentally non-causal
prediction task.

Cross-Domain Meta-Learning. Cross-domain meta-learning refers to a challenging evaluation
paradigm where the meta-training and inference-time data distributions are significantly differ-
ent (Chen et al., 2019). Recent work finds that leveraging self-supervised pre-training—or foun-
dational model feature extractors—can significantly improve cross-domain performance (Hu et al.,
2022; Zhang et al., 2021). Moreover, fine-tuning with respect to the support set almost always
outperforms meta-learning without fine-tuning in this setting (Guo et al., 2020; Oh et al., 2022; Phoo
& Hariharan, 2020; Islam et al., 2021). While effective, fine-tuning is prohibitive to deploying visual
meta-learning models in a manner similar to LLMs like ChatGPT as the latency and memory cost
to fine-tune a model’s parameters on each user query is untenable. Accordingly, we propose the
universal setting to measure a meta-learner’s ability to learn to classify any task seen during inference
without fine-tuning.

In-Context Learning for Dense Prediction Tasks. Many recent works have explored in-context
learning for other applications of computer vision. Bar et al. (2022) casts in-context learning as
image in-painting by first concatenating demonstration images with a query image and then using
a vision model to fill-in-the-blank within this concatenated image. Building on this work, Zhang
et al. (2023) explores what demonstrations lead to strong in-painting performance and Wang et al.
(2023) generalizes the approach by formulating other visual applications like segmentation, depth
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Figure 1: Overview of CAML. Query and support set images are encoded with a pre-trained feature extractor
and then concatenated with their corresponding ELMES label embeddings. We feed the resulting sequence of
concatenated vectors into a non-casual sequence model and extract the query vector from the output sequence to
predict its class.

estimation, etc. as in-painting. Other approaches explore in-context learning for applications like
scene understanding (Balazevic et al., 2024), medical image segmentation (Butoi et al., 2023), and
more generally dense prediction tasks (Kim et al., 2023). Like these approaches, we study visual
in-context learning; however, this work focuses on few-shot image classification rather than dense
prediction tasks.

3 APPROACH

We adapt the ideas underpinning in-context learning in LLMs—namely learning to classify a query
from a context of support set demonstrations in a single forward pass—to image classification.
However, dissimilar from in-context learning, visual meta-learners should be non-causal: placing one
example before another in the support set does not entail a causal relationship (Garnelo et al., 2018;
Müller et al., 2021).

Architecture. An overview of CAML is shown in Figure 1. It consists of three different components:
(1) a frozen pre-trained image encoder, (2) a fixed Equal Length and Maximally Equiangular Set
(ELMES) class encoder, and (3) a non-causal sequence model. While pre-trained image encoders and
non-causal sequence models are well-known, to encode label information we introduce an ELMES
encoder. An ELMES encoder is a bijective mapping between the labels and a set of vectors that are
equal length and maximally equiangular. Historically, labels have been encoded with one-hot vectors;
however in Section 4, we prove that an ELMES encoding of mutually exclusive classes allows the
sequence model to maximally identify classes within the support set.

As visualized in Figure 1, CAML first encodes query and support set images using a frozen pre-trained
feature extractor. Crucially, the pre-trained image encoder’s embedding space distills images into
low-dimensional representations so that images with similar content and visual characteristics have
similar embeddings. Classes of the support set are encoded with an ELMES class encoder; however
as the class of the query is unknown, we use a special learnable “unknown token” embedding that is
learned during large-scale pre-training. CAML then concatenates each image embedding with its
corresponding query embedding to form an input sequence.

Progressing through Figure 1, this sequence is fed into a non-causal sequence model, i.e. a Trans-
former encoder, to condition the output representations on the full context of query and support
set points. This enables dynamic and real-time classification; visual characteristics from query and
support set images can be compared with each other to determine the specific visual features—such
as content, textures, etc.—used to classify the query. From the output sequence of the non-causal
sequence model, we select the element at the same position as the query in the input sequence, and
pass this vector through a shallow MLP to predict the label of the query.

Large-Scale Pre-Training. As our focus is universal meta-learning—and CAML may encounter any
new visual concept during inference—we pre-train CAML’s non-causal sequence model on few-shot
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image classification tasks from ImageNet-1k (Deng et al., 2009), Fungi (Schroeder & Cui, 2018),
MSCOCO (Lin et al., 2014), and WikiArt (Saleh & Elgammal, 2015). We chose these datasets because
they span generic object recognition (ImageNet-1k, MSCOCO), fine-grained image classification
(Fungi), and unnatural image classification (WikiArt). To avoid distorting the pre-trained image
encoder’s embedding space, we freeze this module and only update the sequence model’s parameters
during pretraining. Similarly, since an ELMES minimizes the entropy of detecting classes within
the support set, the label encoder is also frozen. In the context of pre-training, meta-training, and
fine-tuning, CAML only requires pre-training and avoids meta-training on the train/validation splits
of meta-learning benchmarks or fine-tuning on the support set during inference.

4 THEORETICAL ANALYSIS

In this section, we motivate our choice of the ELMES Class Encoder by considering the symmetries
desirable in meta-learning algorithms. Two important symmetries are (1) invariance to the assignment
of support set classes to numeric labels and (2) invariance to permutations in the ordering of the input
sequence. The first invariance implies the class embeddings must be equiangular and equal norm,
with an ELMES configuration minimizing the entropy of learnable model parameters detecting any
given class. Later, we show an ELMES also satisfies the second symmetry. Due to space constraints,
all proofs and many definitions, properties, lemmas, and theorems are allocated to Appendix A.1. We
begin with a formal definition of an ELMES.

4.1 EQUAL LENGTH AND MAXIMALLY EQUIANGULAR SET OF VECTORS

Definition 1. An Equal Length and Maximally Equiangular Set (ELMES) is a set of non-zero
vectors {ϕj}dj=1, ϕj ∈ Rd+k for some k ≥ 0 and d > 1, such that ∀j ̸= j′, ∥ϕj∥ = ∥ϕj′∥ and
⟨ϕj , ϕj′⟩ = −1

d−1 . Simply, all vectors in this set are equal length and maximally equiangular.

An Equal Angle and Maximally Equiangular Set (ELMES) of vectors has connections to both
Equiangular Tight Frames in representation theory (Welch, 1974; Fickus et al., 2018) as well as the
Simplex Equiangular Tight Frames highlighted in recent neural collapse works exploring softmax-
layer geometry at the terminal phase of training (Papyan et al., 2020; Yang et al., 2022). We offer
additional discussion comparing these structures in Appendix A.1 as well as provide an intuitive view
of an ELMES as a regular d-simplex immersed in Rd+k.

4.2 LABEL SYMMETRY

Symmetry in the assignment of support classes to numeric labels is an important property of meta-
learning algorithms. For example, if we have the support set classes {tower, bear, tree}, the mapping
of {bear -> 1, tower -> 2, tree -> 3} should produce the same prediction for a query point as a
different mapping {bear -> 2, tower -> 3, tree -> 1}. To explore this symmetry, we examine how
class embeddings may be used by the model.

From our formulation in Section 3, we represent a demonstration vector as a concatenation of an
image embedding ρ and a label embedding ϕ: [ρ ϕ]. This vector is directly fed into the self-attention
mechanism, where we matrix multiply with key, query, and value self-attention heads. Taking only
one of these matrices for simplicity with head-dimension k:

[ρ ϕ]

[
Γ1 ... Γk
ψ1 ... ψk

]
= [⟨ρ , Γ1⟩ ... ⟨ρ , Γk⟩] + [⟨ϕ , ψ1⟩ ... ⟨ϕ , ψk⟩] (1)

The output of this transformation will be the sum of two vectors: one composed of the inner products
between the image embedding ρ and the learnable {Γi}ki=1 and the other composed of the class
embedding ϕ and the learnable {ψi}ki=1. Note that Equation (1) implies that CAML is not invariant
to the assignment of labels to support set classes due to the addition between ⟨ρ , Γi⟩ and ⟨ϕ , ψi⟩;
however, we can constrain the geometry of the class embeddings {ϕ}dj=1 to in principle respect label
symmetry. Specifically for i ̸= j ̸= k, ⟨ϕi , ϕj⟩ = ⟨ϕi , ϕk⟩ and ∥ϕi∥ = ∥ϕj∥.

Similar to a convolutional filter learning to match a pattern within an image, our analysis assumes
the learnable [ψ1 ... ψk] will converge to vectors that maximize the inner product with a single
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class embedding subject to certain constraints. Under this assumption, we ask what geometry of the
d-class embeddings {ϕ}dj=1 allows a learnable ψi vector to most unambiguously detect a single class
embedding. To answer this question, we define a probability mass function for each ψi over the set
of d−classes so that maximizing the probability of the jth class aligns with maximizing ⟨ϕj , ψi⟩
and equally minimizing ⟨ϕk , ψi⟩ for k ̸= j.
Definition 2. LetX be a discrete Random Variable taking on values in {1, 2, ..., d}. For learnable vec-
tor ψi, define probability mass function pψi(X = j) as the softmax over [⟨ϕ1 , ψi⟩ ... ⟨ϕd , ψi⟩]
so that:

pψi
(X = j) =

e∥ψi∥∥ϕj∥ cos(θi,j)∑d
k=1 e

∥ψi∥∥ϕj∥ cos(θi,k)

where θi,j is the angle between ϕj and ψi.

We say ψi learns to detect class j when pψi(X = j) > pψi(X = k) for 1 ≤ k ≤ d with k ̸= j. By
symmetry in the assignment of class embeddings to support classes, we can assume that the number
of ψi learned to detect class i is similar to the number of ψj learned to detect class j for all pairs (i, j).
We also leverage symmetry in the assignment of labels to support set classes to make the following
assumptions. A justification for each assumption is located in Appendix A.1.
Assumption 1. Suppose {ψi}ki=1 are learnable class detectors of unit norm with at least one ψi
detecting each class 1 ≤ i ≤ d. The probability pψj

(X = j) = pψi
(X = i) for 1 ≤ i, j ≤ d.

Assumption 2. Define pψi(X = i)\{ϕl}dl=(m+1) as the probability of ψi detecting ϕi from the
set of vectors {ϕj}mj=1, m < d. Then the probability pψj (X = j)\{ϕl}dl=(m+1) = pψi(X =

i)\{ϕl}dl=(m+1) for 1 ≤ i, j ≤ m and m ≥ 2.

Assumption 3. When ψi = ϕi

∥ϕi∥ , pψi
(X = i) is maximized.

When Assumption 1, Assumption 2, and Assumption 3 hold, the set of class embeddings that
maximize the probability of a learnable ψi detecting class i is necessarily an ELMES.
Theorem 1. The set of class embeddings {ϕj}dj=1 ∀j, 1 ≤ j ≤ d that maximizes pψj

(X = j) is
necessarily an ELMES.

Alternatively when viewed through the lens of information theory, we can interpret an ELMES as the
class embedding that minimizes the entropy of ψi detecting class i. Informally, ELMES causes ψi to
have the least uncertainty when detecting class i.
Proposition 1. Let Hψi

(X) be the entropy of pψi
(X). An ELMES minimizes Hψi

(X).

4.3 PERMUTATION INVARIANCE.

In addition to label symmetry, it is also desirable for the output prediction of CAML to not depend on
the order of demonstrations in the sequence. For example, if we have the support set classes {tower,
bear, tree}, the sequence {(bear -> 1), (tower -> 2), (tree -> 3)} should produce the same output as the
permuted sequence {(tree -> 3), (bear -> 1), (tower -> 2)}. Building on the prior work of Kossen et al.
(2021); Fifty et al. (2023), it suffices to show to show that the ELMES label encoder is equivariant to
permutations in the input sequence to show that CAML is invariant to permutations.
Proposition 2. Consider an n-sequence of one-hot labels stacked into a matrix S ∈ Rn×w, and an
ELMES label encoder denoted by W ∈ Rw×d with w denoting “way” and d the dimension of the
label embedding. The label embedding SW is equivariant to permutations.

5 EXPERIMENTS

To quantify universal image classification performance, we evaluate a diverse set of 11 meta-learning
benchmarks divided across 4 different categories:

1. Generic Object Recognition: mini-ImageNet (Vinyals et al., 2016), tiered-ImageNet (Ren et al.,
2018), CIFAR-fs (Bertinetto et al., 2018), and Pascal VOC (Everingham et al.)
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Table 1: MiniImageNet & CIFAR-fs mean accuracy and standard error across 10,000 test epochs. †
indicates the pre-trained image encoder backbone was frozen during training.

Method (Backbone) CIFAR-fs MiniImageNet

5w-1s 5w-5s 5w-1s 5w-5s

In-Domain [Meta-Training]
P>M>F Hu et al. (2022) 84.3 92.2 95.3 98.4

Universal Meta-Learning;
No Meta-Training or Finetuning
ProtoNet (Snell et al., 2017) 62.9±.2 79.7±.2 92.1±.1 97.1±.0
ProtoNet† 57.7±.2 81.0±.2 85.3±.2 96.0±.1
MetaOpt (Lee et al., 2019) 53.1±.3 73.1±.2 78.5±.2 91.6±.1
MetaOpt† 61.7±.2 83.1±.1 86.9±.2 96.5±.1
MetaQDA (Zhang et al., 2021) 60.4±.2 83.2±.1 88.2±.2 97.4±.0
GPICL (Kirsch et al., 2022) 41.5±.4 78.3±.2 95.6±.1 98.2±.1
SNAIL (Mishra et al., 2017) 62.1±.3 71.1±.3 93.6±.1 98.1±.0
CAML 70.8±.2 85.5±.1 96.2±.1 98.6±.0

Table 2: Pascal & Paintings mean accuracy and standard error across 10,000 test epochs. † indicates
the the pre-trained image encoder backbone was frozen during training.

Method (Backbone) Pascal + Paintings Paintings Pascal

5w-1s 5w-5s 5w-1s 5w-5s 5w-1s 5w-5s

In-Domain [Meta-Training]
P>M>F 60.7 74.4 53.2 65.8 72.2 84.4

Universal Meta-Learning
ProtoNet 49.6±.2 63.5±.1 38.3±.2 48.2±.1 77.9±.2 87.3±.2
ProtoNet† 52.2±.2 70.6±.1 48.3±.2 64.1±.1 72.2±.2 84.3±.2
MetaOpt 38.2±.2 58.2±.1 31.6±.2 48.0±.1 63.7±.2 81.7±.2
MetaOpt† 53.2±.2 74.8±.1 49.3±.2 65.9±.1 72.8±.2 84.4±.2
MetaQDA 53.8±.2 74.1±.1 49.4±.2 66.6±.1 73.5±.2 85.2±.2
GPICL 62.6±.2 74.6±.1 51.6±.2 61.0±.1 81.7±.2 88.2±.2
SNAIL 62.5±.2 77.6±.1 51.9±.2 65.8±.1 79.7±.2 88.0±.2
CAML 63.8±.2 78.3±.1 51.1±.2 65.2±.1 82.6±.2 89.7±.1

2. Fine-Grained Image Classification: CUB (Wah et al., 2011), Aircraft (Maji et al., 2013), meta-
iNat (Wertheimer & Hariharan, 2019), and tiered meta-iNat (Wertheimer & Hariharan, 2019)

3. Unnatural Image Classification: ChestX (Guo et al., 2020) and Paintings (Crowley & Zisserman,
2015)

4. Inter-Domain Image Classification: Pascal+Paintings (Everingham et al.; Crowley & Zisserman,
2015).

Generic object recognition, fine-grained image classification, and unnatural image classification
are standard benchmarking tasks in meta-learning literature (Chen et al., 2020; Hu et al., 2022;
Wertheimer et al., 2020; Guo et al., 2020). Beyond this, we compose a challenging new inter-domain
category by combining Pascal VOC with Paintings so that each class is composed of both natural
images and paintings. This allows us to evaluate the ability of meta-learning algorithms to generalize
across domains within the same class. For example, the support image for the class “tower” may be
Van Gogh’s The Starry Night, while the query may be a picture of the Eiffel Tower. Humans have
the ability to generalize visual concepts between such domains; however, meta-learning algorithms
struggle with this formulation (Jankowski & Grąbczewski, 2011).

5.1 BASELINES

We evaluate the performance of CAML, Prototypical Networks (ProtoNet) (Snell et al., 2017),
MetaOpt (Lee et al., 2019), MetaQDA (Zhang et al., 2021), SNAIL (Mishra et al., 2017), and
GPICL (Kirsch et al., 2022) in a universal meta-learning setting by pre-training them with a ViT-
base (Dosovitskiy et al., 2020) feature extractor initialized with weights from CLIP (Radford et al.,
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Table 3: meta-iNat & tiered meta-iNat & ChestX mean accuracy and standard error across 10,000
test epochs. † indicates the the pre-trained image encoder backbone was frozen during training.

Method (Backbone) meta-iNat tiered meta-iNat ChestX

5w-1s 5w-5s 5w-1s 5w-5s 5w-1s 5w-5s

In-Domain [Meta-Training]
P>M>F 91.2 96.1 74.8 89.9 27.0 32.1

Universal Meta-Learning
ProtoNet 78.4±.2 89.4±.1 66.3±.2 82.2±.2 22.4±.1 25.3±.1
ProtoNet† 84.5±.2 94.8±.1 73.8±.2 89.5±.1 22.7±.1 25.8±.1
MetaOpt 53.0±.2 77.7±.2 37.3±.2 63.0±.2 20.8±.1 23.0±.1
MetaOpt† 85.5±.2 95.5±.1 75.1±.2 91.9±.1 23.0±.1 27.4±.1
MetaQDA 86.3±.2 95.9±.1 76.0±.2 92.4±.1 22.6±.1 27.0±.1
GPICL 90.0±.2 95.1±.1 60.8±.5 87.6±.2 20.1±.1 20.9±.1
SNAIL 89.1±.2 94.8±.1 77.3±.2 86.5±.2 20.2±.0 20.0±.0
CAML 91.2±.2 96.3±.1 81.9±.2 91.6±.1 21.5±.1 22.2±.1

Table 4: CUB & tiered-ImageNet & Aircraft mean accuracy and standard error across 10,000 test
epochs. † indicates the the pre-trained image encoder backbone was frozen during training.

Method (Backbone) CUB tiered-ImageNet Aircraft

5w-1s 5w-5s 5w-1s 5w-5s 5w-1s 5w-5s

In-Domain [Meta-Training]
P>M>F 92.3 97.0 93.5 97.3 79.8 89.3

Universal Meta-Learning
ProtoNet 59.4±.2 77.3±.2 93.5±.1 97.4±.1 37.9±.2 52.5±.2
ProtoNet† 87.0±.2 97.1±.1 87.3±.2 96.1±.1 62.4±.3 82.0±.2
MetaOpt 71.5±.2 41.2±.2 76.6±.2 89.6±.1 41.6±.2 26.7±.1
MetaOpt † 87.9±.2 97.2±.1 88.2±.2 96.5±.1 64.8±.2 82.6±.2
MetaQDA 88.3±.2 97.4±.1 89.4±.2 97.0±.1 63.6±.3 83.0±.2
GPICL 75.1±.5 94.5±.1 94.6±.1 97.2±.1 19.8±.2 61.8±.3
SNAIL 87.5±.2 92.8±.2 93.1±.1 97.3±.1 48.9± .3 35.8±.3
CAML 91.8±.2 97.1±.1 95.4±.1 98.1±.1 63.3±.3 79.1±.2

2021). Pre-training runs over few-shot classification tasks from ImageNet-1k, Fungi, MSCOCO,
and WikiArt, and during evaluation on the set of 11 meta-learning benchmarks, models are not
meta-trained or fine-tuned. We compare with ProtoNet, MetaOpt, and MetaQDA as they achieve
state-of-the-art results when paired with a pre-trained feature extractor (Hu et al., 2022). As sequence
modeling underpins CAML, we also compare with SNAIL and GPICL to evaluate the performance
of past formulations of causal sequence-based meta-learning algorithms in the universal setting.

To assess the gap between universal and in-domain meta-learning performance, we benchmark the
current state-of-the-art meta-learning algorithm P>M>F (Hu et al., 2022). Similar to the universal
setting, P>M>F uses a ViT-base feature extractor initialized with weights from DINO (Caron et al.,
2021); however, it meta-trains on the training set of each benchmark before evaluating on that
benchmark’s test set.

When pre-training all models in the universal setting, we set the learning rate to a fixed 1× 10−5 and
do not perform any hyperparameter tuning in order to match the practices used by P>M>F. We use
early stopping with a window size of 10 epochs during pre-training and the code release of Hu et al.
(2022) to benchmark P>M>F with the training settings and hyperparameters described in their work.

5.2 RESULTS

Our findings are summarized in Table 1, Table 2, Table 3, and Table 4 and indicate that CAML sets a
new state-of-the-art for universal meta-learning by significantly outperforming other baselines on
14 of 22 evaluation settings. For 5 of the other 8 evaluation settings, CAML matches—or nearly
matches—the best performing baseline. Remarkably, CAML also performs competitively with
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P>M>F on 8 out of 11 meta-learning benchmarks, even though P>M>F meta-trains on the training
set of each benchmark.

This result suggests that the amount of new visual information learned during inference through
visual in-context learning can be comparable to the amount learned when directly meta-training on
in-domain data. This capacity may unlock new applications in the visual space, just as the emergence
of in-context learning in LLMs has enabled many new applications in natural language.

Benchmarks Where CAML Underperforms. The 3 datasets where P>M>F outperforms CAML
are CIFAR-fs, Aircraft, and ChestX. CIFAR-fs is a generic object recognition benchmark containing
CIFAR images downsampled to 32x32 resolution. As CAML and CLIP pre-train on 224x224
resolution images, downsampling by a factor of 49 likely induces a distribution shift that was not
learned by CAML during large-scale pre-training. In the cases of Aircraft and ChestX, we postulate
that the CLIP embedding space—structured so images with similar captions have similar embeddings–
struggles to effectively differentiate between the fine-grained, specialized classes in these tasks. For
example, while a Boeing 737 and Airbus A380 have different labels in the Aircraft dataset, the
scraped CLIP captions for those images may not reach that level of granularity. This corroborates the
findings from Radford et al. (2021), which found that in a zero-shot setting, CLIP underperforms in
specialized or complex tasks.

Our ablation study into non-CLIP pre-trained feature extractors in Tables 5 to 8 of Appendix C shows
CAML’s performance on Aircraft can drastically improve. Specifically, 5w-1s performance increases
from 63.3 to 81.8 and 5w-5s performance increases from 79.1 to 92.1 when a ViT-Huge pre-trained
on Laion-2b (Schuhmann et al., 2022) initializes the weights of the image encoder rather than CLIP.

Fine-tuning CLIP Backbone. Our findings in Tables 1 to 4 indicate that updating the CLIP image
encoder during pre-training hurts the performance of ProtoNet and MetaOpt. We observe that these
methods tend to overfit during pre-training, and our empirical results show a similar pattern: pre-
training with these methods often helps the performance of benchmarks similar to ImageNet (i.e.
Pascal, MiniImageNet, tiered-ImageNet), but it significantly hurts the performance of out-of-domain
tasks (i.e. Aircraft, CUB, Paintings) as shown in Tables 1 to 4. We believe that further training the
CLIP backbone distorts the structure of its embedding space, leading to catastrophic forgetting on
out-of-domain tasks. Conversely, CAML, MetaQDA, SNAIL, and GPICL—all of which freeze the
parameters of the CLIP feature extractor—benefit greatly from large-scale episodic pre-training on
ImageNet-1k, Fungi, MSCOCO, and WikiArt.

6 ANALYSIS

To better understand how CAML learns during inference, we analyze its ability to dynamically update
its representations. Due to casting meta-learning as non-causal sequence modeling, CAML considers
the full context of query and support set to predict the label of the query. Specifically, the query
dynamically influences the representation of support set points, and the support set points dynamically
influence the representation of the query as this sequence is passed through the layers of a non-causal
sequence model. This property enables universal meta-learning by allowing the model to update
the support and query representations based on the context of the task, not only the contents of the
images, within the parameter space of the sequence model.

An example where the query dynamically influences the support set is visualized in Figure 2. Given
only the 5 support examples, the prediction task is ambiguous. However, the nature of the query
determines the prediction task. The query image of a tower in Figure 2a reduces the task to generic
object recognition: classify the query based on the object portrayed in the image. On the other hand,
and as visualized in Figure 2b, the query image of embroidery reduces the prediction task to texture
identification: classify the query based on artistic medium.

To analyze how dynamic representations affect CAML, we examine the representations of the support
set and query vectors at the input to and output of the non-causal sequence model. For both examples
visualized in Figure 2a and Figure 2b, the non-causal sequence model learns to separate support set
vectors by class identity and group the query representation with the correct support set example.

We find the frozen CLIP image embeddings are actually antagonistic for the classification-by-texture
task visualized in Figure 2b: the query image embedding is closest to the support set example for
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Tower Chicken

Support

Cow

Flower Human

Tower

Query

(a) Left: An example task—classify images by the objects depicted. Center: image embeddings output from the
Image Encoder (CLIP) in CAML . Right: joint image-label representations output by the non-causal sequence
model in CAML for the same task.

Embroidery 3D Model

Support

Pencil Sketch

Oil Painting Stained Glass

Embroidery

Query

(b) Left: An example task—classify images by the artistic medium used. Center: CLIP image embeddings output
from the Image Encoder (CLIP) in CAML . Right: joint image-label representations output by the non-causal
sequence model in CAML for the same task.

Figure 2: Two sample tasks over the same support images but utilizing different criteria to define classes. The
nature of the query image informs the task being presented, e.g. classification by object (top) vs. classification
by texture (bottom). For both tasks, the output of the non-causal sequence model provides better separation
among class representations than CLIP embeddings and groups the query representation with the proper task,
even when projected into 2D space by PCA.

the second class, “oil painting”. Unsurprisingly, the baseline methods that rely on frozen CLIP
embeddings—specificially MetaQDA, ProtoNet†, and MetaOpt†—group the query with “oil painting”
and therefore misclassify this example. On the other hand, as CAML considers the full context of the
query and support set, it develops representations of the query in the context of the support set—and
the support set in the context of the query—to group the query with the “embroidery” support set
image as they share the same texture, thereby correctly classifying this example.

7 CONCLUSION

In this work, we develop universal meta-learning to approximate the performance of visual meta-
learners deployed to a ChatGPT-like application and present CAML: a meta-learning algorithm that
emulates in-context learning in LLMs by learning new visual concepts during inference without
fine-tuning. Our empirical findings show that CAML—without meta-training or fine-tuning—exceeds
or matches the performance of the current state-of-the-art meta-learning algorithm on 8 out of 11
benchmarks. This result indicates visual meta-learning models are ready for deployment in a manner
similar to LLMs, and we hope this work recalibrates our sense of limitations for the universal
meta-learning paradigm.

Nevertheless, there are areas where CAML struggles. Specifically, the performance of CAML on
highly out-of-distribution images—e.g. chest x-rays—and varying image resolutions—e.g. rescaled
CIFAR images—lags behind that of the best in-domain approaches. Developing methods for the
universal setting that are robust to these cases is a promising direction for future work.
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A APPENDIX

A.1 SUPPLEMENTARY THEORETICAL ANALYSIS

We offer additional insight into the theoretical analysis presented in Section 4 and provide the omitted
remarks, properties, lemmas, and proofs.

A.1.1 EQUIANGULAR TIGHT FRAMES

Papyan et al. (2020) coin the term Simplex Equianguar Tight Frame to describe a set of vectors
{ϕj}dj=1 such that the minimum angle between any two pairs of vectors is maximized and all vectors
have equal norm. Formally,

Definition 3. Let Rd be a d−dimensional inner product space over R with the Euclidean inner
product. A Simplex ETF is a set of d vectors {ϕj}dj=1, ϕj ∈ Rd, specified by the columns of√

d
d−1 (Id −

1
d11

T )

where Id ∈ Rd×d is the identity matrix and 1 ∈ Rd×1 is the ones vector. Somewhat contradictory, a
Simplex Equiangular Tight Frame is not an Equiangular Tight Frame (Welch, 1974) as this set of
vectors does not form a tight frame in Rd.

Definition 4. Let R be a d−dimensional space over R with the Euclidean inner product. An
Equiangular Tight Frame (ETF) is a set of non-zero, equal norm vectors {ϕj}nj=1, n ≥ d, that
achieves the Welch lower bound:

max
j ̸=j′

|⟨ϕj , ϕj′⟩|
∥ϕj∥∥ϕj′∥

=

√
n− d

d(n− 1)

It is well-known that a set of non-zero equal-norm vectors satisfies the Welch lower bound if and
only if that set of vectors is equiangular and also a tight frame for Rd (Fickus et al., 2018).

Definition 5. A set of non-zero, equal norm vectors {ϕj}nj=1 is equiangular if ∀j ̸= j′, |⟨ϕj , ϕj′⟩| =
c for some c ∈ R, c > 0.

Definition 6. {ϕj}nj=1 is a tight frame for Rd if, ∀v ∈ Rd, ∃A > 0 such that A∥v∥2 =∑n
j=1 |⟨ϕj , v⟩|2.

Remark 1. A Simplex Equiangular Tight Frame is not a tight frame.

Proof. Observe that for any finite d, for {ϕj}dj=1 equal to the columns of
√

d
d−1 (Id −

1
d11

T ), it

is the case that
d−1∑
j=1

ϕj = −1 ∗ ϕd. So {ϕj}nj=1 do not span Rd, and therefore, cannot be a tight

frame.

Similarly, a Simplex ETF is not a d−simplex.

Remark 2. A Simplex Equiangular Tight Frame is not a simplex.

Proof. A simplex in Rn requires n+ 1 points.

To align terminology with properties, we generalize a Simplex ETF to an ELMES in Definition 1: a
set of d vectors in a (d+ k)-dimensional ambient space with k ≥ 0. Observe that a regular simplex
is a special type of ETF in which the number of vectors in the set is one more than the dimension
of the space that they span (Fickus et al., 2018). Building on this observation, an intuitive view of
ELMES is a regular d−simplex immersed in Rd+k.

Remark 3. Consider a centered d-dimensional regular simplex with vertices {ϕj}d+1
j=1 , ϕj ∈ Rd+1.

Let ıcan be the canonical inclusion map: Rd → Rd+1, ıcan(x1, x2, ..., xd) = (x1, x2, ..., xd, 0d+1),
then {ıcan(ϕj)}d+1

j=1 is an ELMES.
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Figure 3: A visualization of a d = 4 ELMES in R3. Observe the endpoints of the vectors of an ELMES lie on
the vertices of a centered regular tetrahedron.

Proof. The two criteria of an ELMES are maximally equiangular and equal length. As all vertices
of a centered regular d−simplex are equal length from the origin, {ϕj}d+1

j=1 are equal length and
therefore {ıcan(ϕj)}d+1

j=1 must also have equal length.

Similarly, from Lemma 10 of Papyan et al. (2020), we know the cosine of the angle between any
two vectors in a (d+ 1)−dimensional ELMES is −1

d . It is known that for a d−dimensional regular
simplex in Rd centered at the origin, the angle subtended by any two verticies through the origin is
cos(θ) = −1

d . Immersing {ϕj}d+1
j=1 , ϕj ∈ Rd, into Rd+1 via the canonical inclusion operator ıcan

does not change the pairwise angle between vectors in this set: ⟨ϕj , ϕj′⟩ = ⟨ıcan(ϕj) , ıcan(ϕj′)⟩.
As {ıcan(ϕj)}d+1

j=1 are equal length and maximally equiangular, it forms an ELMES.

We now show that an ELMES immersed in a higher dimension remains an ELMES. Taken with
Remark 3, we can view a high-dimensional ELMES in Rd composed of n + 1 vectors {ϕj}n+1

j=1 ,
d >> n+ 1, as simply a n−simplex immersed in Rd via the canonical inclusion operator.

Lemma 1. Let ıcan : Rd → Rd+k. If {ϕj}nj=1 is an ELMES , then {ıcan(ϕj)}dj=1 is an ELMES.

Proof. This reduces to proving that the maximum angle between a set of d equiangular points in Rd
is the maximum angle between a set of d equiangular points in Rd+k. Let {ϕj}dj=1 be an ELMES
such that ϕj ∈ Rd and {ψj}dj=1 be an ELMES such that ψj ∈ Rd+k. Then {ψj}dj=1 lie in a
d−dimensional subspace of Rd+k: ∃γ1, ..., γd and basis vectors e1, ..., ed such that ∀ψj ∈ {ψj}dj=1,
ψj =

∑d
i=1 γiei. Therefore, ∀j ̸= j′, ⟨ψj , ψj′⟩ ≤ ⟨ϕj , ϕj′⟩ as {ϕj}dj=1 are an ELMES for

Rd.

A.1.2 ELMES ROTATIONAL SYMMETRY

There are infinitely many ELMES by rotating one such set of vectors about the origin.

Remark 4. Let {ϕj}dj=1 be an ELMES in Rd+k for some k ≥ 0. Let o : Rd+k → Rd+k be an
operator from the special orthogonal group SO(d+ k). Then {o(ϕj)}dj=1 is also an ELMES .
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Proof. Length is preserved as operations in SO(d+ k) have determinant 1 and angles are similarly
preserved as operations in SO(d+ k) are unitary (i.e. preserving inner product).

A.1.3 A SET OF ORTHONORMAL BASIS VECTORS IS NOT AN ELMES

A final remark relates to the common misconception that a set of orthonormal basis vectors {ψj}dj=1

is an ELMES. While {ψj}dj=1 is an ETF in Rd since this set realizes the Welch lower-bound
in Definition 4, these vectors are not maximally equiangular: ⟨ψj , ψj′⟩ = 0 > −1

d−1 .

A.2 ELMES MAXIMIZES pψj
(X = j)

Justification of Assumption 1. This property is implied by symmetry in the assignment of class
embeddings to support classes. As the assignment is arbitrary, all learnable ψi class detectors should
have equal probability of detecting their respective class. For simplicity of notation, we say ψi learns
to detect class embedding ϕi rather another class embedding ϕk, k ̸= i.

Justification of Assumption 2. Informally, this property states that, for any m-subset of classes
{ϕj}mj=1, the probability of ψj detecting class j is equal to the probability of ψi detecting class
i. This is again implied by symmetry in the assignment of class embeddings to support classes as
meta-learning algorithms may predict among a subset of m classes in the support set rather than the
maximum number of classes d.

Justification of Assumption 3. Recall in Rd, ⟨ψ , ϕ⟩ = ∥ψ∥∥ϕ∥ cos(θ) where θ is the angle between
ψi and ϕi. Then this assumption constrains our set {ϕj}dj=1 so that relative norm of ϕi with respect

to ϕj is lower bounded by cos(θi,j):
∥ϕi∥
∥ϕj∥ > cos(θi,j).

Informally, the {ϕj}dj=1 are sufficiently spread out in the ambient space so that the learnable ψi that
maximizes pψi

(X = i) is ϕi itself: ψi = ϕi

∥ϕi∥ . This constraint helps us avoid degenerative cases like
{ϕj}dj=1 all equal. For example, ϕj = αϕi, i ̸= j with α > 0 is one such degenerative case where
one class embedding vector is stacked on a different class embedding, but with higher norm.

Proof of Theorem 1. Taken with Assumption 1, Assumption 2, and Assumption 3, it suffices to show
Theorem 2 and Lemma 4 to prove Theorem 1.

Theorem 2. pψ1
(X = 1) = pψ2

(X = 2) = ... = pψd
(X = d) ⇐⇒ {ϕj}dj=1 are equiangular and

equal norm.

To show the forward (⇒) direction, it suffices to first show pψ1
(X = 1) = pψ2

(X = 2) = ... =
pψd

(X = d) ⇒ {ϕj}dj=1 are equal norm and then show pψ1
(X = 1) = pψ2

(X = 2) = ... =

pψd
(X = d)⇒ {ϕj}dj=1 are equiangular.

Lemma 2. pψ1
(X = 1 ) = pψ2

(X = 2 ) = ... = pψd
(X = d) ⇒ {ϕj}dj=1 are equal norm.

Proof. This implication holds when d = 2:

pψ1
(X = 1) =

e∥ϕ1∥

e∥ϕ1∥ + e∥ϕ2∥ cos(θ1,2)
=

e∥ϕ2∥

e∥ϕ2∥ + e∥ϕ1∥ cos(θ1,2)
= pψ2

(X = 2)

e∥ϕ1∥(e∥ϕ2∥ + e∥ϕ1∥ cos(θ1,2)) = e∥ϕ2∥(e∥ϕ1∥ + e∥ϕ2∥ cos(θ1,2))

e∥ϕ1∥+∥ϕ1∥ cos(θ1,2) = e∥ϕ2∥+∥ϕ2∥ cos(θ1,2)

∥ϕ1∥(1 + cos(θ1,2)) = ∥ϕ2∥(1 + cos(θ1,2))

∥ϕ1∥ = ∥ϕ2∥

Suppose d > 2 and pψ1
(X = 1) = ... = pψd

(X = d). By Assumption 2, all m−combinations(
d
m

)
of {pψ1(X = 1), ..., pψd

(X = d)} are equal. This implies all 2-combinations are equal:
pψi(X = i) = pψj (X = j) ⇒ ∥ϕi∥ = ∥ϕj∥. Therefore, ∥ϕ1∥ = ... = ∥ϕd∥.
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Lemma 3. pψ1
(X = 1) = pψ2

(X = 2) = ... = pψd
(X = d)⇒ {ϕj}dj=1 are equiangular.

Proof. This implication is trivially true when d = 2 (see the proof of Lemma 2), and we show it is
similarly true when d = 3. Following the steps in the proof of Lemma 2, we arrive at the following 3
pairs of equalities:

(1) e∥ϕ1∥(1+cos(θ1,2)) + e∥ϕ1∥+∥ϕ3∥ cos(θ2,3) = e∥ϕ2∥(1+cos(θ1,2)) + e∥ϕ2∥+∥ϕ3∥ cos(θ1,3)

(2) e∥ϕ1∥(1+cos(θ1,3)) + e∥ϕ1∥+∥ϕ2∥ cos(θ2,3) = e∥ϕ3∥(1+cos(θ1,3)) + e∥ϕ3∥+∥ϕ2∥ cos(θ1,3)

(3) e∥ϕ2∥(1+cos(θ2,3)) + e∥ϕ2∥+∥ϕ1∥ cos(θ1,3) = e∥ϕ3∥(1+cos(θ2,3)) + e∥ϕ3∥+∥ϕ1∥ cos(θ1,2)

From Lemma 2, pψ1
(X = 1) = pψ2

(X = 2) = pψ3
(X = 3) ⇒ ∥ϕ1∥ = ∥ϕ2∥ = ∥ϕ3∥, so the

above pairs of equalities reduce to:

(1) cos(θ2,3) = cos(θ1,3)

(2) cos(θ2,3) = cos(θ1,3)

(3) cos(θ1,3) = cos(θ1,2)

and when d = 3, {ϕj}3j=1 are equiangular.

Suppose d > 3 and pψ1
(X = 1) = ... = pψd

(X = d). By Assumption 2, all m−combinations(
d
m

)
of {pψ1

(X = 1), ..., pψd
(X = d)} are equal. This implies all 3-combinations are equal:

pψi(X = i) = pψj (X = j) = pψk
(X = k) ⇒ θi,j = θi,k = θj,k. Therefore, all angles are equal

θi,j = θl,m for 1 ≤ i, j, l,m ≤ d.

Proof of Theorem 2. (⇒) Suppose pψ1(X = 1) = pψ2(X = 2) = ... = pψd
(X = d).

By Lemma 2 and Lemma 3, pψ1
(X = 1) = pψ2

(X = 2) = ... = pψd
(X = d) ⇒ {ϕj}dj=1 are

equiangular and equal norm.

(⇐) Suppose {ϕj}dj=1 are equiangular and equal norm. Let ∥ϕ∥ be the norm of any vector in our set
and cos(θ) be the pairwise angle between any two vectors. Then

pψi(X = i) =
e∥ϕ∥

e∥ϕ∥ + (d− 1)e∥ϕ∥ cos(θ)
= pψj (X = j)

for any 1 ≤ i, j ≤ d.

Lemma 4. For a set of equiangular and equal norm vectors, maximum equiangularity maximizes∑
j

pψj
(X = j).

Proof. The maximum pairwise angle between two vectors in Rd is π, and from Theorem 2

pψi
(X = i) = pψj

(X = j) =
e∥ϕ∥

e∥ϕ∥ + (d− 1)e∥ϕ∥ cos(θ)

for all 1 ≤ i, j ≤ d. Increasing the angle θ decreases cos(θ). Decreasing cos(θ) only decreases
the denominator, which in turn, increases pψi

(X = i). Therefore, maximizing the pairwise angle
between all vectors maximizes pψi

(X = i) for all 1 ≤ i ≤ d.

A.2.1 AN ELMES MINIMIZES Hψi
(X)

Proof of Lemma 1. Equal norm and equiangular {ϕj}dj=1 are bounded in norm, and thus, the set of
probability distributions we obtain {pψi

(1), pψi
(2), ..., pψi

(d)} belong to a capped simplex (Warmuth

& Kuzmin, 2008) ∆d
c = {p ∈ ∆|maxk pψi

(k) ≤ c} where c = e∥ϕ∥2

e∥ϕ∥2+(d−1)e∥ϕ∥2 cos(θ)
. Clearly,

among such probability vectors, the minimum entropy is achieved at the boundary where cos(θ) is
minimized, i.e., when the {ϕj}dj=1 are maximally equiangular.
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A.2.2 AN ELMES MAINTAINS PERMUTATION INVARIANCE

Proof of Proposition 2. This follows from row-wise equivariance to permutations in matrix mul-
tiplication. For any permutation π : [1, . . . , n] → [1, . . . , n] applied to the rows of Sn, we have
π(S)W = π(SW ).

B EXPERIMENTAL SETTINGS

In this section, we describe our experimental settings, and further, we direct readers interested in
reproducing or using any of the methods we benchmark in this work to our released code. Unless
stated otherwise, all universal meta-learning baselines use a CLIP feature extractor to encode images.

Large-Scale Pre-Training. All methods evaluated in the universal meta-learning setting adhere to
the same pre-training paradigm. For each large-scale image classification dataset, we reformulate the
objective from typical supervised image classification to both a 5-way-1-shot and a 5-way-5-shot
episodic prediction tasks. Within a dataset, examples from different classes are randomly sampled
to compose a batch of episodes, and after exhausting iterating through every training example, this
process is repeated with the next dataset. Iterating through each dataset in our set of ImageNet-1k,
Fungi, MSCOCO, and WikiArt then constitutes a single epoch of training.

ProtoNet and MetaOpt Implementations. For the ProtoNet and MetaOpt algorithms, we evaluate
two settings. The first freezes the CLIP backbone and then applies the metric-learning objective—
cosine distance for ProtoNet and SVM for MetaOpt—to classify the query image from the unmodified
CLIP embeddings. The second emulates P>M>F Hu et al. (2022) by fine-tuning the CLIP backbone
during large-scale pre-training with the metric-learning objective function. During inference, the
metric-learning objective is applied to the fine-tuned CLIP embeddings to classify query images.

MetaQDA Implementation. We follow the MetaQDA algorithm presented in Zhang et al. (2021).
Specifically, we freeze the CLIP feature extractor backbone and train the MetaQDA classifier during
large-scale episodic pre-training.

SNAIL Implementation. We use the architecture presented in Mishra et al. (2017) but with the
hidden dimension of the Attention and Temporal Convolution Blocks adapted to CLIP embeddings
rather than the ResNet embeddings used in the original implementation. As in this Mishra et al.
(2017), we freeze the CLIP feature extractor and train the SNAIL model parameters during large-scale
pre-training.

GPICL Implementation. We adapt the GPICL algorithm presented by Kirsch et al. (2022) for
episodic meta-training with an ELMES label encoder. Specifically, we represent image feature vectors
as CLIP embeddings and the label embeddings with an ELMES. Following Kirsch et al. (2022), we
form a sequence by concatening the current CLIP image embedding with the previous example’s
ELMES label embedding and add learnable positional embeddings so the model can use positional
information of elements in the sequence to classify the query point in a causal-like fashion. We set the
General-Purpose In-Context Learning Transformer model to a ViT-Large (Dosovitskiy et al., 2020)
with leranable positional embeddings.

CAML Implementation. The image encoder is set to CLIP and the label encoder is an ELMES.
For the non-causal sequence model, we use a ViT-Large as described in Table 1 of Dosovitskiy et al.
(2020). This size is chosen as it has a hidden dimension of 1,024 and the CLIP output embedding
vectors have hidden dimension of size 768. Choosing a non-causal sequence model with a large
hidden dimension allows us to concatenate the label embedding to the CLIP embedding; in this case,
the label embedding is a 256 dimensional ELMES. In total, the implementation of CAML used for
empirical evaluation has 302 million trainable parameters.

Optimization Settings. Following the recommendation of training Vision Transformers (Steiner
et al., 2021) as well as standard practices, all universal meta-learning approaches use a cosine learning
rate schedule with 9,600 warmup steps increasing linearly from 0 to 1e-5 followed by cosine decay
to 1e−6 over the subsequent 360,000 steps. Given the size of our pre-training datasets, we do not
apply dropout, attention dropout, or weight decay regularization. We select a batch size of 525 so
the 5-way-1-shot episodes contain 520 query predictions and the 5-way-5-shot episodes contain 500
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Table 5: MiniImageNet & CIFAR-fs mean accuracy and standard error across 10,000 test epochs.

Method CIFAR-fs MiniImageNet

5w-1s 5w-5s 5w-1s 5w-5s

CAML [ELMES Class Embedding] 70.8±.2 85.5±.1 96.2±.1 98.6±.0
CAML [Learnable Class Embedding] 71.1±.2 85.9±.1 96.1±.1 98.7±.0

Table 6: CUB & tiered-ImageNet & Aircraft mean accuracy and standard error across 10,000 test
epochs.

Method CUB tiered-ImageNet Aircraft

5w-1s 5w-5s 5w-1s 5w-5s 5w-1s 5w-5s

CAML [ELMES Class Embedding] 91.8±.2 97.1±.1 95.4±.1 98.1±.1 63.3±.3 79.1±.2
CAML [Learnable Class Embedding] 91.8±.2 97.1±.1 95.3±.1 98.3±.1 66.3±.2 80.6±.2

Table 7: Pascal & Paintings mean accuracy and standard error across 10,000 test epochs.

Method Pascal + Paintings Paintings Pascal

5w-1s 5w-5s 5w-1s 5w-5s 5w-1s 5w-5s

CAML [ELMES Class Embedding] 63.8±.2 78.3±.1 51.1±.2 65.2±.1 82.6±.2 89.7±.1
CAML [Learnable Class Embedding] 63.1±.2 78.0±.1 51.3±.2 65.0±.1 82.1±.2 89.7±.1

Table 8: meta-iNat & tiered meta-iNat & ChestX mean accuracy and standard error across 10,000
test epochs.

Method meta-iNat tiered meta-iNat ChestX

5w-1s 5w-5s 5w-1s 5w-5s 5w-1s 5w-5s

CAML [ELMES Class Embedding] 91.2±.2 96.3±.1 81.9±.2 91.6±.1 21.5±.1 22.2±.1
CAML [Learnable Class Embedding] 91.4±.2 96.4±.1 82.1±.2 91.8±.1 21.5±.1 22.6±.1

query predictions. Given the scale of the pre-training datasets—and the computation to train a single
model—we do not conduct any hyperparameter tuning.

P>M>F Meta-Training. We follow the settings used by Hu et al. (2022) to evaluate P>M>F.
Specifically, P>M>F uses a DINO (Caron et al., 2021) feature extractor rather than a CLIP feature
extractor as the authors of P>M>F found a DINO feature extractor to be preferrable. We refer
readers Hu et al. (2022) for this comparison. For meta-training, we use the code released by Hu et al.
(2022) and simply switch out the datasets to evaluate the In-Domain setting. Both the in-domain and
universal meta-learning settings use the same test-set data; the difference is that P>M>F meta-trains
on each training dataset before evaluating on the testing dataset of each benchmark.

C SUPPLEMENTARY ANALYSIS

ELMES Ablation. To supplement our theoretical analysis in Section 4, we train a version of CAML
with learnable class embedding vectors in place of the fixed ELMES encoder. Given our analysis
in Section 4, it is perhaps unsurprising we find that—without any constraints or limitations—the
class embeddings converge to an ELMES. The average pair-wise angle between embedding vectors
is 1.77± 0.02 radians whereas the expected pairwise angle from an ELMES is 1.82. Similarly, the
average norm of the learnable class embeddings converges to 1.34± 0.02 whereas the learned norm
of the ELMES model is 1.32.

An evaluation comparing CAML with learnable class embeddings to the approach with a fixed
ELMES encoder is presented in Table 5, Table 6, Table 7, and Table 8 of the Appendix. In summary,
the performance is approximately the same on each benchmark with the exception of Aircraft. In this
case, the learnable embedding model significantly outperforms the ELMES model, and moreover,
surpasses all other universal meta-learning baselines on the 5-way-1-shot split with an accuracy of
66.3± .2. Nevertheless, given the similarity between both approaches on the remaining 10 datasets,
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Table 9: MiniImageNet & CIFAR-fs mean accuracy and standard error across 10,000 test epochs. ◦
indicates mean and standard error across 2,500 test epochs.

Method CIFAR-fs MiniImageNet

5w-1s 5w-5s 5w-1s 5w-5s

CAML (ResNet34) 61.8± .2 79.4± .2 94.7± .1 98.1± .0
CAML (ViT-base) 70.8±.2 85.5±.1 96.2±.1 98.6±.0
CAML (ViT-huge)◦ 83.3±.4 93.5±.2 98.6±.1 99.6±.0

Table 10: CUB & tiered-ImageNet & Aircraft mean accuracy and standard error across 10,000 test
epochs. ◦ indicates mean and standard error across 2,500 test epochs.

Method CUB tiered-ImageNet Aircraft

5w-1s 5w-5s 5w-1s 5w-5s 5w-1s 5w-5s

CAML (ResNet34) 75.4± .2 88.3± .1 96.1± .1 98.5± .0 45.1± .2 58.7± .2
CAML (ViT-base) 91.8±.2 97.1±.1 95.4±.1 98.1±.1 63.3±.3 79.1±.2
CAML (ViT-huge)◦ 95.8±.2 98.7±.1 96.8±.2 98.8±.1 81.8±.4 92.1±.3

Table 11: Pascal & Paintings mean accuracy and standard error across 10,000 test epochs. ◦
indicates mean and standard error across 2,500 test epochs.

Method Pascal + Paintings Paintings Pascal

5w-1s 5w-5s 5w-1s 5w-5s 5w-1s 5w-5s

CAML (ResNet34) 57.5± .2 71.0± .1 46.1± .2 57.3± .1 77.4± .2 86.8± .1
CAML (ViT-base) 63.8±.2 78.3±.1 51.1±.2 65.2±.1 82.6±.2 89.7±.1
CAML (ViT-huge)◦ 66.4±.4 81.0±.2 54.7±.3 69.9±.2 83.4±.4 90.1±.3

Table 12: meta-iNat & tiered meta-iNat & ChestX mean accuracy and standard error across 10,000
test epochs. ◦ indicates mean and standard error across 2,500 test epochs.

Method meta-iNat tiered meta-iNat ChestX

5w-1s 5w-5s 5w-1s 5w-5s 5w-1s 5w-5s

CAML (ResNet34) 82.4± .2 91.4± .1 72.3± .2 84.6± .2 21.8± .1 23.6± .1
CAML (ViT-base) 91.2±.2 96.3±.1 81.9±.2 91.6±.1 21.5±.1 22.2±.1
CAML (ViT-huge)◦ 94.6±.3 97.9±.1 89.3±.4 95.6±.2 21.6±.2 22.0±.2

and the learnable class embeddings actually forming an ELMES, we attribute the difference in
Aircraft performance to stochasticity in training the model, suggesting that the fixed ELMES encoder
is indeed optimal.

Image Encoder Ablation. To evaluate how the performance of CAML is affected by the pre-trained
image encoder, we evaluate CAML with a ResNet-34 image encoder pre-trained on ImageNet-1k, a
ViT-base image encoder pre-trained with CLIP, and a ViT-huge image encoder that is pre-trained on
Laion-2b (Schuhmann et al., 2022). We use the open source models released by Hugging Face in our
evaluation.

As indicated in Table 9, Table 10, Table 11, and Table 12, the performance of CAML scales with the
strength of the feature extractor. Specifically, the performance with a ResNet-34 feature extractor
is significantly worse than the performance with a CLIP ViT-base feature extractor, and in turn, the
performance with a CLIP ViT-base is significantly worse than the performance with a Laion-2b
ViT-huge feature extractor. However, its unclear what facet of the improved feature extractor is
relevant for CAML , especially on out-of-distribution tasks like Aircraft where the most benefit is
seen. Moreover, it is unclear why there is no improvement on another out-of-distribution dataset,
ChestX.
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t-SNE Plots of Image Encoder Embeddings 

ViT-b CLIP ChestX ViT-b CLIP Aircraft

ViT-h Laion-2b ChestX ViT-h Laion-2b Aircraft

Figure 4: t-SNE projections of different image embeddings of various benchmark datasets with embeddings
colored class identity. We see ViT-huge trained with Laion-2b better separates the Aircraft dataset than does
ViT-base trained with CLIP. However, both image encoders are unable to separate ChestX.

To investigate this dimension, we visualize the image embeddings of both Aircraft and ChestX
using t-sne (Van der Maaten & Hinton, 2008) dimensionality reduction. Figure 4 visualizes these
embeddings colored by class identity. We find the ViT-huge model pre-trained on Laion-2b better
separates the Aircraft dataset than the ViT-base model pre-trained using the CLIP objective; however,
both models do not reasonably separate ChestX. We postulate that an image encoder that can capture
the axes of variability among image embeddings is crucial for strong CAML performance, and the
reason we observe significantly improved results on Aircraft but not ChestX when using a Laion-2b
ViT-h image encoder.

Taken together, these results indicate CAML is modular: as foundational model feature extractors
continue to improve, CAML will be able to capture these advances to improve its own performance.

Assignment of Labels to Support Set Classes Analysis. Symmetry to the assignment of labels
to support set classes is a desirable property of few-shot learning algorithms. For instance, the
predictions for [(bear, 1), (tower, 2), (tree, 3)] should be the same if the labels are permuted to [(bear,
3), (tower 1), (tree, 2)]. CAML is not invariant to permutations in the assignment of classes to support
set examples as implied by eq. (1) in Section 4.2; however, we empirically find it is robust to them.
Label symmetry is distinct from the permutation invariance property of CAML that is discussed in
Section 4.3. Tangibly for the sequence [(bear, 1), (tower, 2), (tree, 3)], permutation invariance ensures
the predictions are the same as if the order of demonstrations is permuted to [(tower, 2), (tree, 3),
(bear, 1)].

In Figure 5(left), we visualize the histogram of the correct class probability for the example presented
in Figure 2a after permuting the assignment of labels to support-set images for all 120 permutations
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Histogram Plots of Variability to Permutations in Label Assignment

Distribution of P(Tower) after Permuting Label 
Assignment from Task in Figure 2a

Average Std. of Correct Class Probability after 
Permuting Label Assignment in mini-ImageNet

Figure 5: (Left) histogram of the correct class probability for the example presented in Figure 2a after
permuting the assignment of labels to support-set images for all 120 permutations of the 5-way-1-shot task.
(Right) histogram of the average standard deviation of all 120 permutations of the 5-way-1-shot task for 1,000
samples from mini-ImageNet.

of the 5-way-1-shot task. In Figure 5(right), we visualize the average standard deviation of all 120
permutations of the 5-way-1-shot task for 1,000 samples from mini-ImageNet. The mean of this
statistic is 0.004±0.0004. Taken together, this indicates CAML is empirically robust to permutations
in the assignment of labels to support set classes.

D DISCUSSION

Weaknesses of CAML. Despite its strong empirical performance, CAML presents several weaknesses.
First, the maximum number of classes present in the support set at any point during inference must be
known at pre-training to instantiate a d-way ELMES. Further, at least one dataset during pre-training
must use a d-way classification setting so the ψi class detectors referenced in Section 4 are trained
within the Transformer encoder’s attention layers.

Why does CAML not fine-tune the image encoder during pre-training? We do not fine-tune the
image encoder because it is not advantageous for universal meta-learning.

Our goal is to develop a meta-learning algorithm that may function in a ChatGPT-like application; it
should be able to run in-context learning on any set of images. Foundational image models are trained
for exactly this purpose: they are pre-trained on billions of images to form a well-structured image
embedding space that is robust to augmentations, occlusions, etc. Moreover, valuable characteristics
such as the presence of objects, textures, etc. of an image are encoded into the structure of the
embedding space so that the axes of variability among the embeddings encode variation in specific
visual attributes.

Fine-tuning the image encoder can corrupt this embedding space; especially since the datasets we
use for pre-training are orders of magnitude smaller than the ones used to train the Foundational
model. This hypothesis is supported by our experiments with ProtoNet and MetaOpt in Tables 1 to 4.
Specifically, we find fine-tuning the backbone during pre-training leads to performance degradation
on many of our benchmarks when evaluated in the universal meta-learning setting.
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