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ABSTRACT

Large Language Models like ChatGPT demonstrate a remarkable capacity to learn
new concepts during inference without any fine-tuning. However, visual models
trained to detect new objects during inference have been unable to replicate this
ability, and instead either perform poorly or require meta-training and/or fine-
tuning on similar objects. In this work, we propose a meta-learning algorithm
that emulates Large Language Models by learning new visual concepts during
inference without fine-tuning. Our approach leverages a frozen pre-trained feature
extractor, and analogous to in-context learning, recasts visual meta-learning as
sequence modeling over datapoints with known labels and a test datapoint with
an unknown label. On 8 out of 11 few-shot image classification benchmarks, our
approach—without meta-training or fine-tuning—exceeds or matches the state-of-
the-art algorithm, P>M>F, which is meta-trained on these benchmarks. Our code
is available at https://github.com/cfifty/CAML.

1 INTRODUCTION

Meta-learning refers to a capacity to learn new concepts from a small number of demonstrations (Lake
et al., 2015). In a decade of remarkable advances to machine intelligence, it remains an area where
human performance continues to surpass that of machines (Brown et al., 2020). To match human
capabilities, and towards developing machines that can learn and think like humans, we must develop
machine intelligence capable of learning novel concepts from only a few examples (Lake et al., 2017).

Many applications of deep learning apply a learning algorithm to a large set of training data; however,
learning from a very small number of training examples poses a challenge (Lake et al., 2017; Garnelo
et al., 2018). This challenge led to two predominant evaluation settings: in-domain and cross-domain.
The in-domain setting evaluates a meta-learner’s ability to quickly adapt to new tasks after training
on similar tasks within a specific domain. Models designed for this setting are often extremely fast
but exhibit poor generalization to tasks outside the target domain (Chen et al., 2019). Meanwhile,
the cross-domain setting evaluates a meta-learner’s ability to adapt to tasks in previously unseen
domains. Methods designed for this setting are highly adaptable but slow during inference as they
require fine-tuning on the support set (Guo et al., 2020; Oh et al., 2022; Hu et al., 2022). Critically,
meta-learners in both settings differ from a human’s capacity to quickly generalize to new tasks.

The problem of simultaneously fast and general meta-learning has recently been addressed in Natural
Language by Large Language Models (LLMs). LLMs like ChatGPT can quickly generalize to new
tasks through an ability termed in-context learning (Brown et al., 2020). However, it remains an open
problem in Computer Vision. Even the best visual meta-learning algorithms cannot be deployed to a
ChatGPT-like system because such systems require models that can (1) generalize to a broad set of
tasks unknown at training time and (2) do so in real-time, without the time allowance for finetuning
the model. LLMs have shown a remarkable ability to do both; however, current visual meta-learners
may only satisfy one requirement or the other (Hu et al., 2022).

To measure progress towards this goal of fast and general visual meta-learners, we develop an
evaluation paradigm that we call universal meta-learning. Universal meta-learning measures a
model’s capacity to quickly learn new image classes. It evaluates models across a diverse set of
meta-learning benchmarks spanning many different image classification tasks without meta-training
on any of the benchmarks’ training sets or fine-tuning on the support set during inference. We focus on

1

https://github.com/cfifty/CAML


Published as a conference paper at ICLR 2024

the application of few-shot image classi�cation—as opposed to dense prediction tasks like in-painting
or segmentation—as the universal setting has already been explored for these applications (Bar et al.,
2022; Zhang et al., 2023; Wang et al., 2023; Kim et al., 2023; Butoi et al., 2023).

Beyond benchmarking methods in the universal setting, we present a meta-learner that achieves
strong universal performance. Drawing inspiration from in-context learning in LLMs, we reformulate
n-way-k-shot image classi�cation as non-causal sequence modeling over the support set and an
unknown query image. Speci�cally, givenn-way classi�cation withk-examples from each class,
we train a non-causal model overf (x i ; yi )gnk

i =1 (image, label) support set pairs, and an unlabeled
query imagexnk +1 , to predict the label of the query image. This formulation causes the meta-learner
to extrapolate to new classes in its parameter space, enabling it to learn new visual concepts during
inference without �ne-tuning. Due to its capacity to learn visual information “in-context”, we term
our approachContext-Aware Meta-Learning(CAML).

In summary, our contribution is two-fold. First, we develop a meta-learning evaluation paradigm that
approximates the performance of visual meta-learners in a ChatGPT-like application. Second, we
design a meta-learning algorithm that works well in this setting. Our empirical �ndings show that
CAML outperforms other meta-learners in the universal setting. Remarkably, CAML's performance
in the universal setting often matches—and even exceeds—the in-domain performance of the state-of-
the-art meta-learning algorithm, P>M>F (Hu et al., 2022), that is directly trained on each down-stream
benchmark.

2 RELATED WORK

Meta-Learning asCausalSequence Modeling.Several of the earliest meta-learning algorithms were
formulated ascausalsequence modeling problems. Hochreiter et al. (2001) leverage a LSTM (Hochre-
iter & Schmidhuber, 1997) to model extensions to semi-linear and quadratic functions, and two
decades later, Graves et al. (2014); Santoro et al. (2016); Kaiser et al. (2017) build upon this approach
by integrating a form of external memory that the LSTM can read to and write from memory to
develop Neural Turing Machines. With the advent of self-attention (Vaswani et al., 2017), Mishra et al.
(2017) predict the labels of query images by �rst composing a sequence of (image, label) pairs and
then feeding it through a stack of interleaved causal self-attention and temporal convolution layers.
Kirsch et al. (2022) replaces the stack of interleaved causal self-attention and temporal convolution
layers with a Transformer encoder; however, their approach is also causal in the input sequence by
composing a sequence of (image, label of previous image) pairs. Both Mishra et al. (2017) and Kirsch
et al. (2022) are conceptually similar to our work; however, the causal property of both approaches
breaks an important symmetry in meta-learning, namely invariance to permutations of the support
set (Garnelo et al., 2018; Müller et al., 2021). In Section 5.2, we observe a performance gap between
both approaches and CAML and hypothesize the causal approach actually forces a subtly more
dif�cult modeling problem by imposing a causality inductive bias on a fundamentally non-causal
prediction task.

Cross-Domain Meta-Learning. Cross-domain meta-learning refers to a challenging evaluation
paradigm where the meta-training and inference-time data distributions are signi�cantly differ-
ent (Chen et al., 2019). Recent work �nds that leveraging self-supervised pre-training—or foun-
dational model feature extractors—can signi�cantly improve cross-domain performance (Hu et al.,
2022; Zhang et al., 2021). Moreover, �ne-tuning with respect to the support set almost always
outperforms meta-learning without �ne-tuning in this setting (Guo et al., 2020; Oh et al., 2022; Phoo
& Hariharan, 2020; Islam et al., 2021). While effective, �ne-tuning is prohibitive to deploying visual
meta-learning models in a manner similar to LLMs like ChatGPT as the latency and memory cost
to �ne-tune a model's parameters on each user query is untenable. Accordingly, we propose the
universal setting to measure a meta-learner's ability to learn to classifyanytask seen during inference
without �ne-tuning.

In-Context Learning for Dense Prediction Tasks.Many recent works have explored in-context
learning for other applications of computer vision. Bar et al. (2022) casts in-context learning as
image in-painting by �rst concatenating demonstration images with a query image and then using
a vision model to �ll-in-the-blank within this concatenated image. Building on this work, Zhang
et al. (2023) explores what demonstrations lead to strong in-painting performance and Wang et al.
(2023) generalizes the approach by formulating other visual applications like segmentation, depth
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Figure 1:Overview of CAML. Query and support set images are encoded with a pre-trained feature extractor
and then concatenated with their corresponding ELMES label embeddings. We feed the resulting sequence of
concatenated vectors into anon-casualsequence model and extract the query vector from the output sequence to
predict its class.

estimation, etc. as in-painting. Other approaches explore in-context learning for applications like
scene understanding (Balazevic et al., 2024), medical image segmentation (Butoi et al., 2023), and
more generally dense prediction tasks (Kim et al., 2023). Like these approaches, we study visual
in-context learning; however, this work focuses on few-shot image classi�cation rather than dense
prediction tasks.

3 APPROACH

We adapt the ideas underpinning in-context learning in LLMs—namely learning to classify a query
from a context of support set demonstrations in a single forward pass—to image classi�cation.
However, dissimilar from in-context learning, visual meta-learners should be non-causal: placing one
example before another in the support set does not entail a causal relationship (Garnelo et al., 2018;
Müller et al., 2021).

Architecture. An overview of CAML is shown in Figure 1. It consists of three different components:
(1) a frozen pre-trained image encoder, (2) a �xedEqual Length and Maximally Equiangular Set
(ELMES) class encoder, and (3) anon-causalsequence model. While pre-trained image encoders and
non-causalsequence models are well-known, to encode label information we introduce an ELMES
encoder. An ELMES encoder is a bijective mapping between the labels and a set of vectors that are
equal length and maximally equiangular. Historically, labels have been encoded with one-hot vectors;
however in Section 4, we prove that an ELMES encoding of mutually exclusive classes allows the
sequence model to maximally identify classes within the support set.

As visualized in Figure 1, CAML �rst encodes query and support set images using a frozen pre-trained
feature extractor. Crucially, the pre-trained image encoder's embedding space distills images into
low-dimensional representations so that images with similar content and visual characteristics have
similar embeddings. Classes of the support set are encoded with an ELMES class encoder; however
as the class of the query is unknown, we use a special learnable “unknown token” embedding that is
learned during large-scale pre-training. CAML then concatenates each image embedding with its
corresponding query embedding to form an input sequence.

Progressing through Figure 1, this sequence is fed into a non-causal sequence model, i.e. a Trans-
former encoder, to condition the output representations on the full context of query and support
set points. This enables dynamic and real-time classi�cation; visual characteristics from query and
support set images can be compared with each other to determine the speci�c visual features—such
as content, textures, etc.—used to classify the query. From the output sequence of the non-causal
sequence model, we select the element at the same position as the query in the input sequence, and
pass this vector through a shallow MLP to predict the label of the query.

Large-Scale Pre-Training.As our focus is universal meta-learning—and CAML may encounter any
new visual concept during inference—we pre-train CAML's non-causal sequence model on few-shot
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image classi�cation tasks from ImageNet-1k (Deng et al., 2009), Fungi (Schroeder & Cui, 2018),
MSCOCO (Lin et al., 2014), and WikiArt (Saleh & Elgammal, 2015). We chose these datasets because
they span generic object recognition (ImageNet-1k, MSCOCO), �ne-grained image classi�cation
(Fungi), and unnatural image classi�cation (WikiArt). To avoid distorting the pre-trained image
encoder's embedding space, we freeze this module and only update the sequence model's parameters
during pretraining. Similarly, since an ELMES minimizes the entropy of detecting classes within
the support set, the label encoder is also frozen. In the context of pre-training, meta-training, and
�ne-tuning, CAML only requires pre-training and avoids meta-training on the train/validation splits
of meta-learning benchmarks or �ne-tuning on the support set during inference.

4 THEORETICAL ANALYSIS

In this section, we motivate our choice of the ELMES Class Encoder by considering the symmetries
desirable in meta-learning algorithms. Two important symmetries are (1) invariance to the assignment
of support set classes to numeric labels and (2) invariance to permutations in the ordering of the input
sequence. The �rst invariance implies the class embeddings must be equiangular and equal norm,
with an ELMES con�guration minimizing the entropy of learnable model parameters detecting any
given class. Later, we show an ELMES also satis�es the second symmetry. Due to space constraints,
all proofs and many de�nitions, properties, lemmas, and theorems are allocated to Appendix A.1. We
begin with a formal de�nition of an ELMES.

4.1 EQUAL LENGTH AND MAXIMALLY EQUIANGULAR SET OF VECTORS

De�nition 1. An Equal Length and Maximally Equiangular Set (ELMES)is a set of non-zero
vectorsf � j gd

j =1 , � j 2 Rd+ k for somek � 0 andd > 1, such that8j 6= j 0, k� j k = k� j 0k and
h� j ; � j 0i = � 1

d� 1 . Simply, all vectors in this set are equal length and maximally equiangular.

An Equal Angle and Maximally Equiangular Set(ELMES) of vectors has connections to both
Equiangular Tight Frames in representation theory (Welch, 1974; Fickus et al., 2018) as well as the
Simplex Equiangular Tight Frames highlighted in recent neural collapse works exploring softmax-
layer geometry at the terminal phase of training (Papyan et al., 2020; Yang et al., 2022). We offer
additional discussion comparing these structures in Appendix A.1 as well as provide an intuitive view
of an ELMES as a regulard-simplex immersed inRd+ k .

4.2 LABEL SYMMETRY

Symmetry in the assignment of support classes to numeric labels is an important property of meta-
learning algorithms. For example, if we have the support set classesf tower, bear, treeg, the mapping
of f bear -> 1, tower -> 2, tree -> 3g should produce the same prediction for a query point as a
different mappingf bear -> 2, tower -> 3, tree -> 1g. To explore this symmetry, we examine how
class embeddings may be used by the model.

From our formulation in Section 3, we represent a demonstration vector as a concatenation of an
image embedding� and a label embedding� : [� � ]. This vector is directly fed into the self-attention
mechanism, where we matrix multiply with key, query, and value self-attention heads. Taking only
one of these matrices for simplicity with head-dimensionk:

[� � ]
�
� 1 ::: � k
 1 :::  k

�
= [ h� ; � 1i ::: h� ; � k i ] + [ h� ;  1i ::: h� ;  k i ] (1)

The output of this transformation will be the sum of two vectors: one composed of the inner products
between the image embedding� and the learnablef � i gk

i =1 and the other composed of the class
embedding� and the learnablef  i gk

i =1 . Note that Equation (1) implies that CAML is not invariant
to the assignment of labels to support set classes due to the addition betweenh� ; � i i andh� ;  i i ;
however, we can constrain the geometry of the class embeddingsf � gd

j =1 to in principle respect label
symmetry. Speci�cally fori 6= j 6= k, h� i ; � j i = h� i ; � k i andk� i k = k� j k.

Similar to a convolutional �lter learning to match a pattern within an image, our analysis assumes
the learnable[ 1 :::  k ] will converge to vectors that maximize the inner product with a single
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class embedding subject to certain constraints. Under this assumption, we ask what geometry of the
d-class embeddingsf � gd

j =1 allows a learnable i vector to most unambiguously detect a single class
embedding. To answer this question, we de�ne a probability mass function for each i over the set
of d� classes so that maximizing the probability of thej th class aligns with maximizingh� j ;  i i
and equally minimizingh� k ;  i i for k 6= j .

De�nition 2. LetX be a discrete Random Variable taking on values inf 1; 2; :::; dg. For learnable vec-
tor  i , de�ne probability mass functionp i (X = j ) as the softmax over[h� 1 ;  i i ::: h� d ;  i i ]
so that:

p i (X = j ) =
ek i kk � j k cos(� i;j )

P d
k=1 ek i kk � j k cos(� i;k )

where� i;j is the angle between� j and i .

We say i learns to detect classj whenp i (X = j ) > p  i (X = k) for 1 � k � d with k 6= j . By
symmetry in the assignment of class embeddings to support classes, we can assume that the number
of  i learned to detect classi is similar to the number of j learned to detect classj for all pairs(i; j ).
We also leverage symmetry in the assignment of labels to support set classes to make the following
assumptions. A justi�cation for each assumption is located in Appendix A.1.

Assumption 1. Supposef  i gk
i =1 are learnable class detectors of unit norm with at least one i

detecting each class1 � i � d. The probabilityp j (X = j ) = p i (X = i ) for 1 � i; j � d.

Assumption 2. De�ne p i (X = i )nf � l gd
l =( m +1) as the probability of i detecting� i from the

set of vectorsf � j gm
j =1 ; m < d . Then the probabilityp j (X = j )nf � l gd

l =( m +1) = p i (X =

i )nf � l gd
l =( m +1) for 1 � i; j � m andm � 2.

Assumption 3. When i = � i
k� i k , p i (X = i ) is maximized.

When Assumption 1, Assumption 2, and Assumption 3 hold, the set of class embeddings that
maximize the probability of a learnable i detecting classi is necessarily an ELMES.

Theorem 1. The set of class embeddingsf � j gd
j =1 8j , 1 � j � d that maximizesp j (X = j ) is

necessarily an ELMES.

Alternatively when viewed through the lens of information theory, we can interpret an ELMES as the
class embedding that minimizes the entropy of i detecting classi . Informally, ELMES causes i to
have the least uncertainty when detecting classi .

Proposition 1. LetH  i (X ) be the entropy ofp i (X ). An ELMES minimizesH  i (X ).

4.3 PERMUTATION INVARIANCE .

In addition to label symmetry, it is also desirable for the output prediction of CAML to not depend on
the order of demonstrations in the sequence. For example, if we have the support set classesf tower,
bear, treeg, the sequencef (bear -> 1), (tower -> 2), (tree -> 3)g should produce the same output as the
permuted sequencef (tree -> 3), (bear -> 1), (tower -> 2)g. Building on the prior work of Kossen et al.
(2021); Fifty et al. (2023), it suf�ces to show to show that the ELMES label encoder is equivariant to
permutations in the input sequence to show that CAML is invariant to permutations.

Proposition 2. Consider ann-sequence of one-hot labels stacked into a matrixS 2 Rn � w , and an
ELMES label encoder denoted byW 2 Rw� d with w denoting “way” andd the dimension of the
label embedding. The label embeddingSW is equivariant to permutations.

5 EXPERIMENTS

To quantify universal image classi�cation performance, we evaluate a diverse set of11meta-learning
benchmarks divided across4 different categories:

1. Generic Object Recognition: mini-ImageNet (Vinyals et al., 2016), tiered-ImageNet (Ren et al.,
2018), CIFAR-fs (Bertinetto et al., 2018), and Pascal VOC (Everingham et al.)
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Table 1:MiniImageNet & CIFAR-fs mean accuracy and standard error across10;000test epochs.y
indicates the pre-trained image encoder backbone was frozen during training.

Method (Backbone) CIFAR-fs MiniImageNet

5w-1s 5w-5s 5w-1s 5w-5s

In-Domain [Meta-Training]
P>M>F Hu et al. (2022) 84.3 92.2 95.3 98.4

Universal Meta-Learning;
No Meta-Training or Finetuning
ProtoNet (Snell et al., 2017) 62.9� :2 79.7� :2 92.1� :1 97.1� :0
ProtoNety 57.7� :2 81.0� :2 85.3� :2 96.0� :1
MetaOpt (Lee et al., 2019) 53.1� :3 73.1� :2 78.5� :2 91.6� :1
MetaOpty 61.7� :2 83.1� :1 86.9� :2 96.5� :1
MetaQDA (Zhang et al., 2021) 60.4� :2 83.2� :1 88.2� :2 97.4� :0
GPICL (Kirsch et al., 2022) 41.5� :4 78.3� :2 95.6� :1 98.2� :1
SNAIL (Mishra et al., 2017) 62.1� :3 71.1� :3 93.6� :1 98.1� :0
CAML 70.8� :2 85.5� :1 96.2� :1 98.6� :0

Table 2:Pascal & Paintingsmean accuracy and standard error across10;000test epochs.y indicates
the the pre-trained image encoder backbone was frozen during training.

Method (Backbone) Pascal + Paintings Paintings Pascal

5w-1s 5w-5s 5w-1s 5w-5s 5w-1s 5w-5s

In-Domain [Meta-Training]
P>M>F 60.7 74.4 53.2 65.8 72.2 84.4

Universal Meta-Learning
ProtoNet 49.6� :2 63.5� :1 38.3� :2 48.2� :1 77.9� :2 87.3� :2
ProtoNety 52.2� :2 70.6� :1 48.3� :2 64.1� :1 72.2� :2 84.3� :2
MetaOpt 38.2� :2 58.2� :1 31.6� :2 48.0� :1 63.7� :2 81.7� :2
MetaOpty 53.2� :2 74.8� :1 49.3� :2 65.9� :1 72.8� :2 84.4� :2
MetaQDA 53.8� :2 74.1� :1 49.4� :2 66.6� :1 73.5� :2 85.2� :2
GPICL 62.6� :2 74.6� :1 51.6� :2 61.0� :1 81.7� :2 88.2� :2
SNAIL 62.5� :2 77.6� :1 51.9� :2 65.8� :1 79.7� :2 88.0� :2
CAML 63.8� :2 78.3� :1 51.1� :2 65.2� :1 82.6� :2 89.7� :1

2. Fine-Grained Image Classi�cation: CUB (Wah et al., 2011), Aircraft (Maji et al., 2013), meta-
iNat (Wertheimer & Hariharan, 2019), and tiered meta-iNat (Wertheimer & Hariharan, 2019)

3. Unnatural Image Classi�cation: ChestX (Guo et al., 2020) and Paintings (Crowley & Zisserman,
2015)

4. Inter-Domain Image Classi�cation: Pascal+Paintings (Everingham et al.; Crowley & Zisserman,
2015).

Generic object recognition, �ne-grained image classi�cation, and unnatural image classi�cation
are standard benchmarking tasks in meta-learning literature (Chen et al., 2020; Hu et al., 2022;
Wertheimer et al., 2020; Guo et al., 2020). Beyond this, we compose a challenging newinter-domain
category by combining Pascal VOC with Paintings so that each class is composed of both natural
images and paintings. This allows us to evaluate the ability of meta-learning algorithms to generalize
across domains within the same class. For example, the support image for the class “tower” may be
Van Gogh'sThe Starry Night, while the query may be a picture of the Eiffel Tower. Humans have
the ability to generalize visual concepts between such domains; however, meta-learning algorithms
struggle with this formulation (Jankowski & Gr �abczewski, 2011).

5.1 BASELINES

We evaluate the performance of CAML, Prototypical Networks (ProtoNet) (Snell et al., 2017),
MetaOpt (Lee et al., 2019), MetaQDA (Zhang et al., 2021), SNAIL (Mishra et al., 2017), and
GPICL (Kirsch et al., 2022) in a universal meta-learning setting by pre-training them with a ViT-
base (Dosovitskiy et al., 2020) feature extractor initialized with weights from CLIP (Radford et al.,
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Table 3:meta-iNat & tiered meta-iNat & ChestX mean accuracy and standard error across10;000
test epochs.y indicates the the pre-trained image encoder backbone was frozen during training.

Method (Backbone) meta-iNat tiered meta-iNat ChestX

5w-1s 5w-5s 5w-1s 5w-5s 5w-1s 5w-5s

In-Domain [Meta-Training]
P>M>F 91.2 96.1 74.8 89.9 27.0 32.1

Universal Meta-Learning
ProtoNet 78.4� :2 89.4� :1 66.3� :2 82.2� :2 22.4� :1 25.3� :1
ProtoNety 84.5� :2 94.8� :1 73.8� :2 89.5� :1 22.7� :1 25.8� :1
MetaOpt 53.0� :2 77.7� :2 37.3� :2 63.0� :2 20.8� :1 23.0� :1
MetaOpty 85.5� :2 95.5� :1 75.1� :2 91.9� :1 23.0� :1 27.4� :1
MetaQDA 86.3� :2 95.9� :1 76.0� :2 92.4� :1 22.6� :1 27.0� :1
GPICL 90.0� :2 95.1� :1 60.8� :5 87.6� :2 20.1� :1 20.9� :1
SNAIL 89.1� :2 94.8� :1 77.3� :2 86.5� :2 20.2� :0 20.0� :0
CAML 91.2� :2 96.3� :1 81.9� :2 91.6� :1 21.5� :1 22.2� :1

Table 4:CUB & tiered-ImageNet & Aircraft mean accuracy and standard error across10;000test
epochs.y indicates the the pre-trained image encoder backbone was frozen during training.

Method (Backbone) CUB tiered-ImageNet Aircraft

5w-1s 5w-5s 5w-1s 5w-5s 5w-1s 5w-5s

In-Domain [Meta-Training]
P>M>F 92.3 97.0 93.5 97.3 79.8 89.3

Universal Meta-Learning
ProtoNet 59.4� :2 77.3� :2 93.5� :1 97.4� :1 37.9� :2 52.5� :2
ProtoNety 87.0� :2 97.1� :1 87.3� :2 96.1� :1 62.4� :3 82.0� :2
MetaOpt 71.5� :2 41.2� :2 76.6� :2 89.6� :1 41.6� :2 26.7� :1
MetaOpty 87.9� :2 97.2� :1 88.2� :2 96.5� :1 64.8� :2 82.6� :2
MetaQDA 88.3� :2 97.4� :1 89.4� :2 97.0� :1 63.6� :3 83.0� :2
GPICL 75.1� :5 94.5� :1 94.6� :1 97.2� :1 19.8� :2 61.8� :3
SNAIL 87.5� :2 92.8� :2 93.1� :1 97.3� :1 48:9 � :3 35.8� :3
CAML 91.8� :2 97.1� :1 95.4� :1 98.1� :1 63.3� :3 79.1� :2

2021). Pre-training runs over few-shot classi�cation tasks from ImageNet-1k, Fungi, MSCOCO,
and WikiArt, and during evaluation on the set of11 meta-learning benchmarks, models are not
meta-trained or �ne-tuned. We compare with ProtoNet, MetaOpt, and MetaQDA as they achieve
state-of-the-art results when paired with a pre-trained feature extractor (Hu et al., 2022). As sequence
modeling underpins CAML, we also compare with SNAIL and GPICL to evaluate the performance
of past formulations ofcausalsequence-based meta-learning algorithms in the universal setting.

To assess the gap between universal and in-domain meta-learning performance, we benchmark the
current state-of-the-art meta-learning algorithm P>M>F (Hu et al., 2022). Similar to the universal
setting, P>M>F uses a ViT-base feature extractor initialized with weights from DINO (Caron et al.,
2021); however, it meta-trains on the training set of each benchmark before evaluating on that
benchmark's test set.

When pre-training all models in the universal setting, we set the learning rate to a �xed1 � 10� 5 and
do not perform any hyperparameter tuning in order to match the practices used by P>M>F. We use
early stopping with a window size of 10 epochs during pre-training and the code release of Hu et al.
(2022) to benchmark P>M>F with the training settings and hyperparameters described in their work.

5.2 RESULTS

Our �ndings are summarized in Table 1, Table 2, Table 3, and Table 4 and indicate that CAML sets a
new state-of-the-art for universal meta-learning by signi�cantly outperforming other baselines on
14 of 22 evaluation settings. For5 of the other8 evaluation settings, CAML matches—or nearly
matches—the best performing baseline. Remarkably, CAML also performs competitively with
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P>M>F on8 out of11meta-learning benchmarks, even though P>M>F meta-trains on the training
set of each benchmark.

This result suggests that the amount of new visual information learned during inference through
visual in-context learning can be comparable to the amount learned when directly meta-training on
in-domain data. This capacity may unlock new applications in the visual space, just as the emergence
of in-context learning in LLMs has enabled many new applications in natural language.

Benchmarks Where CAML Underperforms. The3 datasets where P>M>F outperforms CAML
are CIFAR-fs, Aircraft, and ChestX. CIFAR-fs is a generic object recognition benchmark containing
CIFAR images downsampled to 32x32 resolution. As CAML and CLIP pre-train on 224x224
resolution images, downsampling by a factor of49 likely induces a distribution shift that was not
learned by CAML during large-scale pre-training. In the cases of Aircraft and ChestX, we postulate
that the CLIP embedding space—structured so images with similar captions have similar embeddings–
struggles to effectively differentiate between the �ne-grained, specialized classes in these tasks. For
example, while a Boeing 737 and Airbus A380 have different labels in the Aircraft dataset, the
scraped CLIP captions for those images may not reach that level of granularity. This corroborates the
�ndings from Radford et al. (2021), which found that in a zero-shot setting, CLIP underperforms in
specialized or complex tasks.

Our ablation study into non-CLIP pre-trained feature extractors in Tables 5 to 8 of Appendix C shows
CAML's performance on Aircraft can drastically improve. Speci�cally, 5w-1s performance increases
from 63:3 to 81:8 and 5w-5s performance increases from79:1 to 92:1 when a ViT-Huge pre-trained
on Laion-2b (Schuhmann et al., 2022) initializes the weights of the image encoder rather than CLIP.

Fine-tuning CLIP Backbone. Our �ndings in Tables 1 to 4 indicate that updating the CLIP image
encoder during pre-training hurts the performance of ProtoNet and MetaOpt. We observe that these
methods tend to over�t during pre-training, and our empirical results show a similar pattern: pre-
training with these methods often helps the performance of benchmarks similar to ImageNet (i.e.
Pascal, MiniImageNet, tiered-ImageNet), but it signi�cantly hurts the performance of out-of-domain
tasks (i.e. Aircraft, CUB, Paintings) as shown in Tables 1 to 4. We believe that further training the
CLIP backbone distorts the structure of its embedding space, leading to catastrophic forgetting on
out-of-domain tasks. Conversely, CAML, MetaQDA, SNAIL, and GPICL—all of which freeze the
parameters of the CLIP feature extractor—bene�t greatly from large-scale episodic pre-training on
ImageNet-1k, Fungi, MSCOCO, and WikiArt.

6 ANALYSIS

To better understand how CAML learns during inference, we analyze its ability to dynamically update
its representations. Due to casting meta-learning asnon-causalsequence modeling, CAML considers
the full context of query and support set to predict the label of the query. Speci�cally, the query
dynamically in�uences the representation of support set points, and the support set points dynamically
in�uence the representation of the query as this sequence is passed through the layers of a non-causal
sequence model. This property enables universal meta-learning by allowing the model to update
the support and query representations based on the context of the task, not only the contents of the
images, within the parameter space of the sequence model.

An example where the query dynamically in�uences the support set is visualized in Figure 2. Given
only the5 support examples, the prediction task is ambiguous. However, the nature of the query
determines the prediction task. The query image of a tower in Figure 2a reduces the task to generic
object recognition: classify the query based on the object portrayed in the image. On the other hand,
and as visualized in Figure 2b, the query image of embroidery reduces the prediction task to texture
identi�cation: classify the query based on artistic medium.

To analyze how dynamic representations affect CAML, we examine the representations of the support
set and query vectors at the input to and output of the non-causal sequence model. For both examples
visualized in Figure 2a and Figure 2b, the non-causal sequence model learns to separate support set
vectors by class identity and group the query representation with the correct support set example.

We �nd the frozen CLIP image embeddings are actually antagonistic for the classi�cation-by-texture
task visualized in Figure 2b: the query image embedding is closest to the support set example for

8



Published as a conference paper at ICLR 2024

(a) Left: An example task—classify images by the objects depicted. Center: image embeddings output from the
Image Encoder (CLIP) in CAML . Right: joint image-label representations output by the non-causal sequence
model in CAML for the same task.

(b) Left: An example task—classify images by the artistic medium used. Center: CLIP image embeddings output
from the Image Encoder (CLIP) in CAML . Right: joint image-label representations output by the non-causal
sequence model in CAML for the same task.

Figure 2:Two sample tasks over the same support images but utilizing different criteria to de�ne classes. The
nature of the query image informs the task being presented, e.g. classi�cation by object (top) vs. classi�cation
by texture (bottom). For both tasks, the output of the non-causal sequence model provides better separation
among class representations than CLIP embeddings and groups the query representation with the proper task,
even when projected into 2D space by PCA.

the second class, “oil painting”. Unsurprisingly, the baseline methods that rely on frozen CLIP
embeddings—speci�cially MetaQDA, ProtoNety, and MetaOpty—group the query with “oil painting”
and therefore misclassify this example. On the other hand, as CAML considers the full context of the
query and support set, it develops representations of the query in the context of the support set—and
the support set in the context of the query—to group the query with the “embroidery” support set
image as they share the same texture, thereby correctly classifying this example.

7 CONCLUSION

In this work, we developuniversal meta-learningto approximate the performance of visual meta-
learners deployed to a ChatGPT-like application and present CAML: a meta-learning algorithm that
emulates in-context learning in LLMs by learning new visual concepts during inference without
�ne-tuning. Our empirical �ndings show that CAML—without meta-training or �ne-tuning—exceeds
or matches the performance of the current state-of-the-art meta-learning algorithm on8 out of 11
benchmarks. This result indicates visual meta-learning models are ready for deployment in a manner
similar to LLMs, and we hope this work recalibrates our sense of limitations for the universal
meta-learning paradigm.

Nevertheless, there are areas where CAML struggles. Speci�cally, the performance of CAML on
highly out-of-distribution images—e.g. chest x-rays—and varying image resolutions—e.g. rescaled
CIFAR images—lags behind that of the bestin-domainapproaches. Developing methods for the
universalsetting that are robust to these cases is a promising direction for future work.
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