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Abstract

Reinforcement learning has achieved remarkable success in complex decision-
making environments, yet its lack of transparency limits its deployment in practice,
especially in safety-critical settings. Shapley values from cooperative game theory
provide a principled framework for explaining reinforcement learning; however,
the computational cost of Shapley explanations is an obstacle for their use. We
introduce FastSVERL, a scalable method for explaining reinforcement learning
by approximating Shapley values. FastSVERL is designed to handle the unique
challenges of reinforcement learning, including temporal dependencies across
multi-step trajectories, learning from off-policy data, and adapting to evolving
agent behaviours in real time. FastSVERL introduces a practical, scalable approach
for principled and rigourous interpretability in reinforcement learning.

1 Introduction

Reinforcement learning has achieved remarkable success in complex decision-making environments
[3, 25], but the lack of transparency in an agent’s decisions limits its deployment in practice, especially
in safety-critical settings. While various interpretability methods have been proposed [9, 19], they
often lack theoretical guarantees. A principled and promising approach [1, 2] is the use of Shapley
values [26] to attribute the influence of features—numerical values that describe what an agent
observes in its environment—on the agent’s behaviour, outcomes, and predictions. Grounding these
attributions in Shapley values provides a principled method for fair, transparent, and consistent credit
assignment. One significant difficulty is that the computational cost of the Shapley approach scales
exponentially with the number of features, making its application impractical for most real-world
problems. There is therefore a strong need to develop scalable approximation methods that enable
practical Shapley-based interpretability in reinforcement learning.

In supervised learning, scalable approximations of Shapley values are achieved through two primary
methods: sampling over feature subsets [29, 27, 28, 15] and parametric models that amortise com-
putation across inputs [8, 12, 7]. These methods are designed primarily for single-step predictions,
whereas reinforcement learning introduces temporal dependencies across sequences of decisions. For
example, explaining an agent’s outcomes requires attributing influence over its expected return, which
accumulates across possibly an infinite number of decisions. Furthermore, (1) as an agent’s behaviour
evolves, the explanations must evolve with it, and (2) when environment interaction is limited,
explanations must be approximated from off-policy data—gathered by agents acting differently from
the agent being explained. Addressing these challenges requires approximation methods tailored
to the multi-stage, interactive, and evolving nature of reinforcement learning. We develop such an
approach here, which we call FastSVERL.1

1FastSVERL code is available at: https://github.com/djeb20/fastsverl.
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We introduce a scalable parametric learning method for approximating Shapley values in reinforce-
ment learning. The proposed approach is designed to handle the temporal dependencies inherent to
reinforcement learning, amortising Shapley value estimation across multi-step trajectories to explain
agent behaviour, outcomes, and predictions efficiently. We address the practical constraints introduced
in real-world reinforcement learning by considering how to explain policies from off-policy data
whilst adapting them to evolving agent behaviours. The comprehensive, model-based framework
we introduce provides a solid foundation that the research community can build upon. We present
one such promising extension in Section 5, which preliminary findings suggest halves computational
costs, improves estimation accuracy, and extends naturally to supervised learning.

These contributions position FastSVERL as a principled, rigourous, and scalable solution for inter-
pretability in the practice of reinforcement learning.

2 Background

Reinforcement learning [30] models an agent interacting with its environment to achieve desired
outcomes. It is commonly formalised as a Markov Decision Process (MDP), defined by the 5-tuple
(S,A, p, r, γ). The environment is initialised in a state S0 ∈ S, following initial state distribution
d(s) := Pr(S0 = s). At each decision stage t ≥ 0, the agent observes the environment’s current
state St ∈ S, which we assume can be decomposed into n features (S1

t , . . . , S
n
t ) indexed by

F = {1, . . . , n}; the agent selects an action At ∈ A; the environment then transitions to state
St+1 ∈ S according to the transition kernel p(s′ | s, a) := Pr(St+1 = s′ | St = s,At = a), and
emits a scalar reward Rt+1 ∈ R with expected value r(s, a) = E[Rt+1 | St = s,At = a]. A policy
π : S → ∆(A) maps each state to a distribution over actions. The agent’s objective is to learn a
policy that maximises the discounted sum of future rewards, known as expected return, which is
captured by the state value function:

vπ(s) := Eπ [Gt] = Eπ

[ ∞∑
k=0

γkRt+k+1 | St = s

]
, (1)

where γ ∈ [0, 1] is a discount factor that weights future rewards. An optimal policy is a policy that
maximises vπ(s) for all s ∈ S. In practice, reinforcement learning agents can use algorithms such as
Deep Q-Networks (DQN) [17] and Proximal Policy Optimisation (PPO) [24] to learn near-optimal
policies and value functions using neural networks. However, such methods generally do not explain
the process behind an agent’s behaviour, even though such explanations are often needed in practice.

Explaining supervised learning with Shapley values. One approach to interpreting supervised
learning models is to attribute their predictions to the influence of individual input features [28, 15, 6].
Consider a model f : X → R and an input x = (x1, x2, . . . , xn) ∈ X defined over a set of n features
F = {1, . . . , n}. To quantify how features contribute to the prediction f(x), we can consider how
the model’s output changes when some features are unknown. A characteristic function fx(C) [28]
represents the model’s expected prediction when only the features in subset C ⊆ F are known:

fx(C) = E
[
f(X) | XC = xC

]
, (2)

where xC denotes a subset of values {xi : i ∈ C}. In particular, the difference fx(F) − fx(∅)
quantifies the total change in prediction when all features are known versus when none are known. A
principled way to distribute this quantity among the features is via Shapley values [26], which assign
credit to each feature based on its mean marginal contribution across all possible subsets of features:

ϕi(fx) =
∑

C⊆F\{i}

|C|! · (|F| − |C| − 1)!

|F|!
[fx(C ∪ {i})− fx(C)] . (3)

Shapley values give the unique solution that satisfies four axioms formalising the notion of fairly
attributing a given prediction among features. Whilst they have strong theoretical guarantees, the cost
of computing Shapley values grows exponentially with the number of features. Each characteristic
value is an expectation over the input space X, with complexity O(|X|). Shapley values sum over 2n
such values, one for each subset of features, giving a total cost of O(2n · |X|) per input. As a result,
the characteristic values in Equation 2 and the Shapley value sum in Equation 3 must be approximated
in high-dimensional domains.

Approximating characteristic values. One common approach to approximating the characteristic
function fx(C) is to learn a parametric model f̂(x |C;β) that maps an input x, with features not in C
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replaced by a value outside the support of X, to an approximate characteristic value [8]. The model is
trained to minimise the expected squared error:

L(β) = E
p(x)

E
p(C)

∣∣∣f(x)− f̂(x | C;β)
∣∣∣2 , (4)

where p(x) is the data distribution and p(C) is any distribution defined over all feature subsets. This
loss cannot reach zero: for a sampled C, different inputs x sharing masked representations xC may
correspond to different f(x) values. The model cannot recover every target with only the features in
C, and instead learns to predict their mean—namely, the characteristic value fx(C).

Approximating the Shapley value summation. We now describe how to approximate the Shapley
summation in Equation 3, assuming access to a (possibly approximate) characteristic function fx(C).
One approach is to learn a parametric model ϕ̂(x; θ) : X → Rn that predicts the Shapley values for
all features of an input x. This is the approach taken by FastSHAP [12], which trains a model ϕ̂(x; θ)
using an equivalent characterisation of the Shapley values for a fixed input x as the solution to a
constrained least squares problem:

{ϕi(fx)}i∈F = argmin
{ϕi}i∈F∈Rn

E
C∼p(C)

∣∣∣fx(C)− fx(∅)−
∑
i∈C

ϕi
∣∣∣2 s.t.

n∑
i=1

ϕi = fx(F)− fx(∅)︸ ︷︷ ︸
Efficiency constraint

. (5)

Here, the distribution p(C) samples subsets in proportion to the combinatorial weights used in the
Shapley value formula:

p(C) ∝ n− 1(
n
|C|
)
· |C| · (n− |C|)

, (6)

for C ⊂ F where 0 < |C| < n. The efficiency constraint reflects the requirement that the total
contribution across features must equal the change in prediction from observing all features versus
none. FastSHAP implements this characterisation by training the model ϕ̂(x; θ) to minimise the
expected loss of the least squares objective over the data distribution p(x):

L(θ) = E
p(x)

E
p(C)

∣∣∣fx(C)− fx(∅)−
∑
i∈C

ϕ̂i(x; θ)
∣∣∣2.

Since the model is unconstrained, a correction term is added post hoc to enforce the efficiency
constraint in Equation 5:

ϕi(fx) ≈ ϕ̂i(x; θ) +
1

n

(
fx(F)− fx(∅)−

∑
j∈F

ϕ̂j(x; θ)
)
.

Explaining reinforcement learning with Shapley values. Unlike supervised learning, which typ-
ically focuses on single predictions, reinforcement learning concerns how an agent sequentially
interacts with its environment to achieve desired outcomes. To understand these long-term interac-
tions, it is helpful to distinguish between three explanatory targets [2]: behaviour (how an agent acts),
outcome (the consequences of those actions), and prediction (estimates of those outcomes). SVERL
(Shapley Values for Explaining Reinforcement Learning) [1, 2] formalises these elements by attribut-
ing them to state features. While outcomes can refer to many consequences of an agent’s behaviour,
SVERL focuses on expected return, a standard formalisation of outcome in reinforcement learning.
For each element, SVERL defines a characteristic function over subsets of features C ⊆ F, which
measures how the agent’s action, expected return, or prediction of expected return changes when
only the features in C are observed. By evaluating how these measurements change across subsets
of features, SVERL computes Shapley values to attribute each explanatory element to individual
features. We now describe each characteristic function and explanation, beginning with behaviour.

SVERL explains behaviour by measuring how each feature influences the agent’s action choice. The
behaviour characteristic function π̃a

s (C) is defined as the expected probability of selecting action a in
state s when only the features in C are known:

π̃a
s (C) := E

[
π(S, a) | SC = sC

]
=
∑
s∈S+

pπ(s | sC)π(s, a), (7)

where S+ is the set of non-terminal states. The distribution pπ(S | SC = sC) is the conditional
steady-state distribution: the probability that an agent following policy π is in state s, given that it

3



observes sC. Shapley values (Equation 3) are computed over the behaviour characteristic function to
attribute the change in action probability when all features are known versus none, π̃a

s (F)− π̃a
s (∅),

to the individual features of state s.

SVERL explains outcomes by measuring how each feature contributes to the agent’s expected return.
The outcome characteristic function ṽπs (C) is defined as the expected return received from state s
when the agent’s policy has access only to the features sC:

ṽπs (C) := Eµ [Gt | St = s] , (8)
where µ is a modified policy that selects actions using the behaviour characteristic function π̃a

s (C)
when features are unknown in state s, and follows the original policy π elsewhere. Shapley values
computed over the outcome characteristic function attribute the change in expected return across all
features, ṽπs (F)− ṽπs (∅), to the individual features of state s.

SVERL explains prediction by measuring how each feature contributes to the agent’s, or an observer’s,
prediction of the agent’s expected return v̂π(s), which estimates the true expected return vπ(s). The
prediction characteristic function v̂πs (C) function is defined as the predicted expected return from
state s when only the features in C are known:

v̂πs (C) := E
[
v̂π(S) | SC = sC

]
=
∑
s∈S+

pπ(s | sC) v̂π(s). (9)

Shapley values computed over this function attribute the change in predicted expected return across
all features, v̂πs (F)− v̂πs (∅), to the individual features of state s.

3 Approximating Shapley values in reinforcement learning

SVERL provides a rigorous and comprehensive framework for explaining reinforcement learning
agents, but exact computation is impractical for most real-world problems. Each characteristic value
is an expectation over the state space S, and Shapley values sum these values over all possible
combinations of features F, resulting in a total cost of O(2|F| · |S|) per explanation. In high-
dimensional settings, exact computation is infeasible, necessitating scalable approximation methods
for both (1) the Shapley value sum and (2) the characteristic functions that underpin each explanation.

3.1 Approximating the Shapley value summation in reinforcement learning

We begin by considering how to approximate the Shapley value sum (Equation 3). Given a character-
istic function for each type of explanation, the computation proceeds identically, allowing a single
approximation method to be used across all three explanation types.

In supervised learning, a common approach to estimate the Shapley value sum is via Monte Carlo
sampling, averaging marginal contributions over randomly selected subsets C ⊆ F [28, 15]. However,
such sampling estimates would not generalise across states and would need to be recomputed from
scratch whenever the agent’s policy changes. As a result, this approach would be inefficient for
repeated explanations of evolving policies. We therefore do not pursue it here. Instead, we propose
learning a parametric model that estimates the Shapley value contributions for all states. Our approach
amortises the approximation cost across states and enables continual refinement of explanations under
changing policies. We illustrate the method using behaviour explanations; we provide analogous loss
functions for outcome and prediction explanations in Appendix A.

Specifically, we learn a parametric model ϕ̂(s, a; θ) : S×A → R|F|, with parameters θ, to estimate
the Shapley contributions of all features of state s to the probability of selecting action a. We refer
to models that predict Shapley values as Shapley models. Following FastSHAP [12], we adopt the
characterisation of Shapley values in Equation 5 as the solution to a weighted least-squares problem,
and train the Shapley model by minimising this loss:

L(θ) = E
pπ(s)

E
Unif(a)

E
p(C)

∣∣∣π̃a
s (C)− π̃a

s (∅)−
∑
i∈C

ϕ̂i(s, a; θ)
∣∣∣2. (10)

Here, pπ(s) denotes the steady-state distribution of the policy that the characteristic function π̃a
s (C)

is defined over. The distribution Unif(a) represents a uniform distribution over actions, and subsets
C are drawn from the distribution in Equation 6. Because pπ(s) is not directly accessible, we
approximate the expectation by sampling from states encountered while following π. Since the model
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is unconstrained, we add a post hoc correction to enforce the efficiency constraint in Equation 5:

ϕi(π̃a
s ) ≈ ϕ̂i(s, a; θ) +

1

|F|

(
π(s, a)− π̃a

s (∅)−
∑
j∈F

ϕ̂j(s, a; θ)
)
. (11)

In Appendix A, we prove that with a sufficiently expressive model class, the corrected output of the
global optimum ϕ̂(s, a; θ∗) recovers exact and unbiased Shapley values for all state-action pairs (s, a)
such that pπ(s) > 0 and a ∈ A. By substituting the appropriate characteristic function into the loss
in Equation 10, the same model architecture and training procedure can be used across all SVERL
explanations of behaviour, outcome, and prediction.

3.2 Approximating characteristic functions in reinforcement learning

SVERL explanations rely on a characteristic function defined as an expectation over the state space,
which is infeasible to compute exactly in high-dimensional domains. We begin by considering how to
approximate these functions for explaining behaviour and prediction, which share the same structure,
before turning to explaining outcomes, which requires a different approach.

The behaviour characteristic function π̃a
s (C) in Equation 7 is the expected probability of taking

action a in state s, given only the features in subset C. One possible approach is to estimate it via
Monte Carlo sampling, drawing samples from the conditional steady-state distribution pπ(s | sC) [8].
However, such estimates would not generalise across states or feature subsets, making them inefficient
for repeated explanations. We instead, we propose training a parametric model π̂(s, a |C;β), with
parameters β, to estimate the characteristic function, replacing features of s not in C with a value
outside the support of S, minimising the expected squared error:

L(β) = E
pπ(s)

E
Unif(a)

E
p(C)

|π(s, a)− π̂(s, a |C;β)|2 . (12)

This approach amortises the approximation cost across multiple states and feature subsets. The
model cannot recover the exact target π(s, a) from partial input because different states can share
the same values on a subset C. It instead learns to predict their mean: the characteristic function
πa
s (C). In Appendix B, we prove that with a sufficiently expressive model class, the global optimum

π̂(s, a | C;β∗) recovers the exact and unbiased characteristic values for all triples (s, a,C) such that
pπ(s) > 0, a ∈ A, and p(C) > 0.

The prediction characteristic function v̂πs (C) shares the same conditional expectation structure
but uses v̂π(s) as the prediction target. We propose approximating it using the same parametric
modelling approach, minimising the expected squared error:

L(β) = E
pπ(s)

E
p(C)

|v̂π(s)− v̂(s |C;β)|2. (13)

For the outcome characteristic function ṽπs (C), defined as the expected return from a state se when
the agent follows a modified policy µ that selects actions using the behaviour characteristic π̃a

s (C)
at se and the original policy π at all other states, we can use the parametric approximation of π̃a

s (C)
from earlier, which reduces the challenge to estimating expected returns under the policy µ across
many (se,C) pairs.

The outcome characteristic ṽπs (C) highlights the unique challenges posed by the sequential dynamics
of reinforcement learning. For a fixed state se and feature subset C, the characteristic can be estimated
using standard reinforcement learning techniques. However, estimating this quantity for all (se,C)
pairs amounts to solving 2|F|×|S| separate optimisation problems. To address this, we define a single
conditioned policy π̂(a | s; se,C) that behaves according to π̃a

s (C) when the agent’s current state s
matches the state-to-be-explained se, and otherwise follows the original policy π. This conditioned
policy enables us to parametrise the agent’s behaviour across all states s and actions a for any (se,C)
pair. We then introduce a parametric value function V (s | se,C;β) to estimate expected returns under
the conditioned policy, amortising estimation of ṽπs (C) across all (se,C) pairs.

To estimate V (s | se,C;β), we consider the strengths and limitations of two general strategies from
reinforcement learning. Off-policy methods can reuse data from earlier policies but may include few
or no transitions under the policy π̂(a | s; se,C); on-policy methods avoid this difficulty by collecting
new data from π̂ at the cost of additional interaction with the environment. Both strategies have
advantages; we present one representative approach for each. For clarity, we use simple DQN-style
losses [17], but more advanced value-based methods can also be applied.
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Figure 1: How approximation accuracy improves with training updates in Mastermind-222. Shaded
regions, which are negligible, indicate standard error over 20 runs. As we progress from plot (a) to
(b) to (c), downstream models use exact or approximate upstream models from earlier plots.

For on-policy learning, we minimise the difference between the current state-value estimate
V (s | se,C;β) and a target computed from the bootstrapped return:

L(β) = E
(s,r,s′,se,C)∼B

∣∣r + γV ′(s′ | se,C;β−)− V (s | se,C;β)
∣∣2 , (14)

where B contains transitions sampled from the conditioned policy, and V ′ is a target network with
periodically updated parameters. To populate B, consider collecting a single transition at decision
stage t: the agent is in state st, and separately, a state-to-be-explained se and feature subset C are
sampled (e.g. from a replay buffer and uniform distribution, respectively). Conditioning on the
sampled se and C collapses the single conditioned policy π̂(a | s; se,C) into a standard policy for this
step. The agent takes an action at based on this policy: if its current state st happens to be the state
being explained, se, it acts according to the behaviour characteristic model (Equation 12); otherwise,
it acts according to its original policy π. This action produces a single transition (st, at, rt+1, st+1),
which is stored in buffer B.

For off-policy learning, we instead learn a state-action value function Q(s, a | se,C;β) to bootstrap
using actions sampled from the conditioned policy π̂(a | s; se,C) by optimising the following
objective:

L(β) = E
(s,a,r,s′)∼B

E
a′∼π̂(·|s′)

E
pπ(se)

E
p(C)

∣∣r + γQ′(s′, a′ | se,C;β−)−Q(s, a | se,C;β)
∣∣2. (15)

Here, the buffer B contains transitions sampled from some other policy. The corresponding outcome
characteristic is then recovered by:

ṽπs (C) ≈
∑
a∈A

π̂(s, a | se,C) ·Q(s, a | se,C;β). (16)

Together, these approximation techniques form the basis of a scalable framework for generating
Shapley-based explanations in reinforcement learning. We call this framework FastSVERL.

3.3 Empirical illustration

We illustrate the use of FastSVERL in multiple domains, guided by three questions on accuracy,
efficiency, and scalability: (1) How well can the proposed models learn to approximate characteristic
functions and Shapley values? (2) How many training updates are required to reach a given level
of approximation error? (3) How does the computational cost of the approximation scale with the
number of states and features in an environment?

We start by focusing on outcome explanations, a natural choice because they depend on three
components—the behaviour characteristic, the outcome characteristic, and Shapley values—that
together span the key parametric models and loss functions introduced in Sections 3.1 and 3.2. We
approximate all three components for a DQN agent in the Mastermind-222 domain used by Beechey
et al. [2]. In the main paper, we present experiments on a subset of explanation types and domains,
focusing on Mastermind-222, with eight features and 53 states, due to its tractability for exact
Shapley value computation. In the appendix, analogous results for all explanation types, additional
domains, and complete domain descriptions are provided, including experiments in larger domains
where exact computation remains feasible only for behaviour and prediction explanations.

Figure 1 shows the mean squared error (MSE) between predicted and exact values for (a) the
behaviour characteristic, (b) outcome characteristic, and (c) outcome Shapley values, averaged over
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all states and features, plotted against training updates. For the outcome characteristic, we include
both on-policy and off-policy training regimes. For all downstream models, we present results using
exact or approximate upstream components (e.g. the outcome characteristic trained using the exact or
approximate behaviour characteristic), to reveal how errors propagate through model approximations.
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Figure 2: Training updates (mean ± standard error
over 20 runs) needed to reach a fixed target loss
(0.01) when approximating behaviour explanations
in Hypercube. Each subplot fixes the number of
features n (i.e. dimensions). Bar colour indicates
cube side length l.

All three models converge to low approximation
error (< 0.01). As expected, downstream mod-
els that rely on approximated characteristics—
rather than exact ones—converge to less ac-
curate solutions, illustrating how errors in up-
stream components degrade downstream per-
formance. For the outcome characteristic, off-
policy training converges faster than on-policy
training, which is expected given that it reuses
the original agent’s training experience rather
than collecting new transitions from the con-
ditioned policy. Whilst the improvement is
substantial, off-policy learning is effective only
when the stored experience sufficiently covers
states relevant to the conditioned policy.

We now examine how FastSVERL’s approxima-
tions scale with domain size in Hypercube, an
n-dimensional gridworld where the cube’s di-
mension n and side length l control the number
of states (ln) and features (n). Figure 2 shows
how the training updates required to reach a tar-
get loss of 0.01 for the behaviour characteristic,
and corresponding Shapley values, scales with
the number of states and features. To isolate
how the Shapley model scales without errors
propagating from the behaviour characteristic,
we train it using exact characteristic values.

For a fixed number of features (i.e. cube di-
mension), the training cost increases roughly
linearly on the log-log scale, indicating approx-
imate polynomial growth as the number of states increases. In contrast, given a fixed number of
states, increasing the number of features has little effect on training cost, suggesting that states—not
features—are the dominant driver of computational cost. Finally, the behaviour characteristic requires
more updates than the Shapley model, possibly because it must predict values for all feature subsets
at each state (|S| × 2n). In contrast, the Shapley model predicts values per feature and state (|S| × n).

Table 1: Convergence of behaviour models in large-scale Mastermind domains over 10 runs.

Domain Model Updates to Converge Final Loss
(Mean ± Std. Err.) (Mean ± Std. Err.)

Mastermind-443 Characteristic (1.10± 0.11)× 106 (3.83± 0.02)× 10−3

(24 features, ≥ 4.3× 107 states) Shapley (7.31± 0.68)× 105 (1.30± 0.04)× 10−3

Mastermind-453 Characteristic (1.29± 0.11)× 106 (3.60± 0.02)× 10−3

(30 features, ≥ 3.5× 109 states) Shapley (7.84± 0.49)× 105 (0.96± 0.03)× 10−3

Mastermind-463 Characteristic (1.18± 0.12)× 106 (3.70± 0.01)× 10−3

(36 features, ≥ 2.8× 1011 states) Shapley (7.12± 0.51)× 105 (1.88± 0.04)× 10−3

While accuracy validation requires small domains with computable ground truths, it is also important
to investigate FastSVERL’s approximations at scale. We now examine three key properties in
substantially larger Mastermind domains: (1) if the models converge, (2) the stability of that
convergence, and (3) if the computational cost remains manageable. Table 1 shows that both the
characteristic and Shapley models converge and that this convergence is stable and reliable across
runs. Most importantly, the number of training updates required remains consistent even as the
number of states and features grows. Note that this training loss is not a measure of ground-truth
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Figure 3: Approximation accuracy over training updates in Mastermind-222. Each line shows the
mean squared error (MSE) between predicted and exact values, averaged over all states and features.
Shaded regions indicate standard error over 20 runs, corrected for variance in agent training [16].

accuracy. For the characteristic model, the loss is designed to converge to a non-zero value as it learns
an expectation over unknown features. For the Shapley model, convergence to zero indicates it has
learned to explain the approximations from the characteristic model, not necessarily the true values.

While ground-truth accuracy cannot be validated, we demonstrate example behavioural insights
the framework can produce by visualising an explanation for a trained Mastermind-463 agent in
Table 2. In this version of the code-breaking game, an agent must guess a hidden 4-letter code, drawn
from a 3-letter alphabet. Each guess receives clues for the number of correct letters in the correct
position (Clue 2) and wrong position (Clue 1, full details in Appendix G). The table shows a board
state where darker blue indicates a feature’s positive contribution to the probability of the agent’s
next action (in green).

Table 2: Behaviour Shapley values in one sample
state of Mastermind-463.

Guess Clue 1 Pos 1 Pos 2 Pos 3 Pos 4 Clue 2

6
5 C C C B
4 2 B C C C 2
3 2 C B C C 2
2 0 C C C C 3
1 0 A A C A 1

Taking care not to over-interpret [2], the expla-
nation appears to align with a logical, high-level
strategy for the game. First, the most influen-
tial features (blue cells) are from recent guesses
(2-4), which are sufficient to deduce that the
code is a permutation of (B, C, C, C), while the
now-redundant first guess has a neutral influ-
ence. Secondly, the unused guess slots are cor-
rectly assigned a neutral influence. This reveals
an important insight about the agent’s behaviour:
the optimal policy does not require these slots.
Importantly, it also suggests the approximation
satisfies the nullity axiom of Shapley values by
assigning zero contribution to irrelevant features.

4 Applying FastSVERL to common reinforcement learning settings

We now discuss approximating Shapley explanations under practical constraints.

Learning to explain off-policy. FastSVERL trains characteristic and Shapley models using samples
from the steady-state distribution of the policy being explained. This distribution is approximated
using states encountered by the policy. What if the agent cannot interact with the environment to
collect this data, or if the interaction is costly? We then have a more constrained off-policy problem,
distinct from the setting previously discussed for the performance characteristic, which addressed
sample-efficient data reuse when new interactions are possible. Here, we propose learning passively
by drawing states from the agent’s history of interaction and applying importance sampling [18] to
correct the distributional mismatch. For any loss of the form L(β) = Es∼pπ [ℓ(s;β)], we estimate:

L(β) ≈ E
(st,at)∼B

[
π(st, at)

πt(st, at)
· ℓ(st;β)

]
, (17)

where πt denotes the policy used at decision stage t to generate sample (st, at). The reweighting
in Equation 17 estimates the loss that would have been observed had the data been collected under
policy π. The usefulness of this estimate depends on factors such as whether the buffer contains
states visited under π. We provide a full derivation and discussion of Equation 17 in Appendix D.
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We illustrate the impact of importance sampling by training the behaviour characteristic model in
Mastermind-222 under three conditions: (1) using on-policy data from the final policy, (2) using
off-policy data from the agent’s training buffer without importance sampling (IS), and (3) using the
same buffer with importance sampling. The results are shown in Figure 3a. Importance sampling
lowers approximation error when using the agent’s training buffer, as expected, but does not match
the accuracy of the on-policy baseline.

Continuously learning to explain. FastSVERL explains an agent’s behaviour, outcomes, and
prediction under a given policy. Yet, in many settings, such as continual learning, we will want to
explain an agent as its policy changes over time. Rather than retraining FastSVERL’s models when the
policy changes, we ask whether jointly updating them with the agent’s policy can keep explanations
aligned to the policy throughout learning. FastSVERL’s approximations can be continuously updated
because they use parametric models; in contrast, sampling-based methods would require recomputing
explanations from scratch whenever the policy changes. To this end, we propose a training regime in
which the interaction data used to update the agent’s policy is also used to learn and continuously
update the Shapley explanation models.

Once again, we find ourselves in an off-policy context because earlier behaviour policies will have
typically generated the data. We therefore apply the importance sampling technique from Equation 17
to account for off-policy samples. When policy changes are small, as is typical when using algorithms
like PPO [24], we expect the explanation models from the previous decision stage to remain closely
aligned with the agent’s newly updated policy. As a result, jointly updating the explanation models
alongside the agent’s policy may restore complete alignment.

We illustrate the proposed approach by jointly training a DQN agent, a characteristic model, and a
Shapley model for prediction in Mastermind-222. To control how quickly the explanations adapt
to the changing policy, we vary the number of gradient descent updates applied to the explanation
models, per policy update, using the ratios 1:1, 2:1, 10:1, and 50:1. Figure 3b shows the approximation
error in the Shapley model throughout training for the various update ratios tested. All configurations
start with a low error for the agent’s initial (random) policy because actions and value estimates are
independent of features; the ground truth contributions already match the near-zero predictions of
the randomly initialised Shapley model. As the agent’s policy improves, the approximation error
spikes for low update ratios (1:1 and 2:1). These spikes coincide with a sharp rise in expected
return observed during training (see Appendix E), reflecting large policy updates and suggesting that
explanation models aligned with the agent’s previous policy become misaligned when the policy
shifts significantly. However, increasing the update ratio mitigates these spikes: the 10:1 and 50:1
configurations maintain relatively low approximation error throughout. These results suggest that
jointly training FastSVERL’s models with the agent may allow explanations to remain aligned with a
changing policy, provided the update rate is sufficient to track larger shifts.

5 Approximating Shapley values without characteristic models

We introduced FastSVERL, a model-based framework to approximate Shapley values in reinforcement
learning, providing a solid foundation upon which the community can build. Here, we present one
such promising extension. FastSVERL uses parametric approximations of characteristic functions to
train Shapley models. Training these characteristic models is a major computational bottleneck, with
the Hypercube experiment in Figure 2 suggesting they require as much computation as training the
Shapley models themselves. This motivates the search for alternative approximation methods. Monte
Carlo sampling might be an appealing alternative because it removes the need for parametric models
entirely. However, this merely shifts the computational burden from model training to the high cost of
repeated sampling. What if we could preserve the model-free benefits of sampling without incurring
its computational cost? We propose integrating single-sample approximations of characteristic
values (with low computational cost) directly into the Shapley model loss, amortising characteristic
estimation within Shapley training itself. We illustrate this idea using behaviour explanations.

We replace the behaviour characteristic π̃a
s (C) in the Shapley model loss (Equation 10) with a single-

sample approximation. At each loss evaluation, we sample a state s′ ∼ pπ(· | sC) and use the action
probability π(s′, a) in place of querying a characteristic model:

L(θ) = E
pπ(s)

E
Unif(a)

E
p(C)

E
s′∼pπ( · | sC)

∣∣∣π(s′, a)− πs,a(∅)−
∑
i∈C

ϕ̂i(s, a; θ)
∣∣∣2. (18)
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In Appendix F, we prove that optimising this new loss recovers the exact and unbiased Shapley values,
with the same per-update cost as the original loss in Equation 10. This approach presents a favourable
trade-off: we accept higher variance in individual gradients to eliminate the cost of pre-training a
characteristic model and prevent its approximation errors from propagating into the Shapley model.

We illustrate the proposed approach by training a behaviour Shapley model in Mastermind-222
with three characteristic approximations: (1) single-samples, (2) model-based, and (3) exact values.
Figure 3c shows the Shapley model’s loss over cumulative training updates, reflecting characteristic
and Shapley model training. The model-based curve starts later because its initial updates are
dedicated to learning the characteristic model (indicated by the dashed line), and it converges to a
higher loss, reflecting approximation errors in the characteristic. In contrast, sampling converges
before the model-based setup begins its Shapley updates, matching the performance of using exact
characteristic values. Interestingly, the model trained with exact values converges slightly slower. As
observed in prior work [7], the noise from the single-sample approximations may act as a stochastic
regulariser, encouraging more efficient learning by preventing the model from overfitting to a single
batch. These results show how replacing characteristic models with sampling can improve Shapley
model efficiency and accuracy: halving total training time and eliminating error propagation.

6 Related work

Shapley values have been applied to explain behaviour [21, 4, 10, 32, 13, 14, 20, 31] and prediction
[34, 23, 35] in reinforcement learning. Beechey et al. [1, 2] studied the theoretical validity of Shapley
values in reinforcement learning. Their analysis revealed outcomes as a missing explanatory element,
unifying behaviour, outcomes, and prediction under a single theoretical framework, SVERL. We
build on this earlier foundation to develop scalable approximation techniques, which make it possible
to use SVERL in practical settings.

In supervised learning, Shapley values were initially approximated through sampling [29, 27, 28, 15].
More recent approaches improve efficiency by amortising computation across inputs with parametric
models [8, 12] that incorporate noisy Shapley targets during training [7]. Our work incorporates the
use of these amortised methods into reinforcement learning, addressing practical constraints such as
off-policy data and continual learning. In addition, we introduce a single-sample noisy target that can
eliminate the need for characteristic models, substantially improving training efficiency.

7 Discussion

We introduced FastSVERL, a scalable parametric framework for Shapley-based explanations of
reinforcement learning. FastSVERL estimates Shapley values in a single forward pass, without
relying on costly Monte Carlo samples. We addressed two practical challenges: (i) off-policy
learning, to enable explanations with minimal environment interaction, and (ii) continual learning, to
allow explanations of non-stationary policies in real time. We showed that replacing characteristic
models with single-sampled approximations can substantially improve efficiency and explanation
quality; this approach also directly extends to supervised learning. These contributions position
FastSVERL as a scalable solution for interpretability in practical reinforcement learning problems.

The proposed methods are broadly applicable to episodic and continuous tasks, as well as partially
observable settings. Although this work focuses on discrete action spaces, the underlying theoretical
framework supports continuous actions, and FastSVERL’s parametric approach readily adapts. Ap-
plying the framework to continuous state spaces, however, highlights a key challenge: approximating
the steady-state distribution. In high-dimensional settings, experience buffers provide only a sparse
approximation of the true distribution. One promising direction is to learn a parametric model of this
distribution [8], which could generalise across sparsely sampled regions.

Our work focused on the significant computational challenges of approximating Shapley values.
Formal user studies and practical deployment in real-world systems are essential to evaluate how these
explanations aid human understanding and decision-making. While our qualitative results suggest
the framework can produce plausibly interpretable insights, user studies can rigorously evaluate
robustness, identify use cases, and reveal the conditions under which the approximations become
unreliable. This next step is critical for establishing best practices and strengthening FastSVERL’s
capacity for scalable, real-time interpretability in complex reinforcement learning environments.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our experiments are intended to illustrate the potential of the proposed frame-
work, not to provide absolute guarantees, aligning with the claims made in the abstract and
introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Due to space constraints, we do not have a dedicated section, but we discuss
limitations throughout.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes] .

Justification: Provided in the appendices.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Full details are provided in the appendicies.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code is publicly available on GitHub.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Provided in the appendices.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Where standard error is not reported or visible, it is because it was negligible.
Full details on experiments are provided in the appendices.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: This was not recorded when the experiments were run. The full research project
required more compute than the experiments reported in the paper because of preliminary
and failed experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read the NeurIPS code of ethics and confirm that our work conforms.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper discusses positive societal impacts; we foresee no negative societal
impacts of this work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: None of our publicly available code has a high risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: No existing assets used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No existing assets used.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This work’s core method does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Shapley models

This section presents the learning objectives used to train the Shapley models for all three explanation
types: behaviour, outcomes, and prediction. For each case, we adopt the characterisation of Shapley
values as the solution to a weighted least squares problem (see Equation 5) and construct a corre-
sponding loss function. A general convergence result applicable to all three is provided at the end of
the section.

Behaviour. We train a parametric model ϕ̂(s, a; θ) : S × A → R|F| to predict the Shapley
contributions of each feature of state s to the agent’s probability of selecting action a. The model is
trained to minimise the following loss:

L(θ) = E
pπ(s)

E
Unif(a)

E
p(C)

∣∣∣π̃a
s (C)− π̃a

s (∅)−
∑
i∈C

ϕ̂i(s, a; θ)
∣∣∣2. (19)

After training, the model output is corrected to enforce the efficiency constraint:

ϕi(π̃a
s ) ≈ ϕ̂i(s, a; θ) +

1

|F|

π(s, a)− π̃a
s (∅)−

∑
j∈F

ϕ̂j(s, a; θ)

 . (20)

With a sufficiently expressive model class and exact optimisation, the corrected output of the global
optimum ϕ̂(s, a; θ∗) recovers exact Shapley values for all state-action pairs (s, a) such that pπ(s) > 0
and a ∈ A.

Outcome. We train a parametric model ϕ̂(s; θ) : S → R|F| to predict the Shapley contributions
of each feature of state s to the agent’s expected return vπ(s). The model is trained to minimise the
following loss:

L(θ) = E
pπ(s)

E
p(C)

∣∣∣ṽπs (C)− ṽπs (∅)−
∑
i∈C

ϕ̂i(s; θ)
∣∣∣2. (21)

After training, the model output is corrected to enforce the efficiency constraint:

ϕi(ṽπs ) ≈ ϕ̂i(s; θ) +
1

|F|

vπ(s)− ṽπs (∅)−
∑
j∈F

ϕ̂j(s; θ)

 . (22)

With a sufficiently expressive model class, the corrected output of the global optimum ϕ̂(s; θ∗)
recovers exact Shapley values for all states s such that pπ(s) > 0.

Prediction. We train a parametric model ϕ̂(s; θ) : S → R|F| to estimate the Shapley contributions
of each feature of state s to a prediction of the agent’s expected return v̂π(s). The model is trained to
minimise the following loss:

L(θ) = E
pπ(s)

E
p(C)

∣∣∣v̂πs (C)− v̂πs (∅)−
∑
i∈C

ϕ̂i(s; θ)
∣∣∣2. (23)

After training, the model output is corrected to enforce the efficiency constraint:

ϕi(v̂πs ) ≈ ϕ̂i(s; θ) +
1

|F|

v̂π(s)− v̂πs (∅)−
∑
j∈F

ϕ̂j(s; θ)

 . (24)

With a sufficiently expressive model class, the corrected output of the global optimum ϕ̂(s; θ∗)
recovers exact Shapley values for all states s such that pπ(s) > 0.

Convergence proof. We now prove that the learning objective in Equation 19 recovers exact Shapley
values at the global optimum. This result generalises to the prediction and outcome objectives because
they share the same structure.

We make the following assumptions:

1. The model ϕ̂(s, a; θ) is selected from a function class expressive enough to represent the
true Shapley value function ϕ(π̃a

s ) for all state-action pairs (s, a) such that pπ(s) > 0.
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2. The global minimum of the loss L(θ) exists and is attained.

3. States s are sampled from the steady-state distribution pπ(s), and actions are sampled
uniformly from A.

Fix a state-action pair (s, a) such that pπ(s) > 0. The learning objective for this pair reduces to the
following expected loss:

E
p(C)

(π̃a
s (C)− π̃a

s (∅)−
∑
i∈C

ϕi

)2
 , (25)

where ϕ ∈ R|F| denotes the predicted attribution vector produced by the model for this fixed (s, a).

If the following efficiency constraint is imposed:∑
i∈F

ϕi = π̃a
s (F)− π̃a

s (∅), (26)

then this becomes a constrained weighted least-squares problem with a unique global minimiser
given by the Shapley values ϕ(π̃a

s ) [5].

This constraint can be satisfied by applying an additive correction to the model output:

ϕi(π̃a
s ) := ϕ̂i(s, a; θ) +

1

|F|

π(s, a)− π̃a
s (∅)−

∑
j∈F

ϕ̂j(s, a; θ)

 , (27)

which adjusts the model output by a constant shift that distributes the residual error uniformly across
features [22]. This correction preserves the minimiser of the original unconstrained loss because
the transformation is linear and orthogonal to the residual, and ensures the efficiency constraint is
satisfied.

Since the model class contains the exact solution and the loss is minimised exactly, the globally
optimal parameters θ∗ yield a model ϕ̂(s, a; θ∗) that recovers the Shapley values for all (s, a) such
that pπ(s) > 0 and a ∈ A. ■

Remark. All of the Shapley models are trained to solve a weighted least-squares problem whose
unique solution is the true Shapley value vector for the given characteristic function. Therefore, these
estimators are asymptotically unbiased.

B Characteristic models

This section presents the learning objectives and convergence results for training the characteristic
models for behaviour, prediction, and outcome explanations.

Behaviour. We train a parametric model π̂(s, a | C;β) to approximate the characteristic function
π̃a
s (C): the expected action-probability π(s, a) when only the features in C are known. The model

receives as input a state-action pair (s, a), where features of s not in C are replaced by a fixed masking
value outside the support of S. It is trained to minimise the following loss:

L(β) = E
pπ(s)

E
Unif(a)

E
p(C)

|π(s, a)− π̂(s, a |C;β)|2 . (28)

With a sufficiently expressive model class and exact optimisation, the global optimum π̂(s, a | C;β∗)
recovers the exact characteristic value for all triples (s, a,C) such that pπ(s) > 0, a ∈ A and
p(C) > 0:

π̂(s, a | C;β∗) = E
[
π(S, a) | SC = sC

]
= π̃a

s (C). (29)

Prediction. We train a parametric model v̂(s | C;β) to approximate the characteristic function
v̂πs (C): the predicted expected return v̂π(s) when only the features in C are known. The model
receives as input a state s, where features not in C are replaced by a fixed masking value outside the
support of S. It is trained to minimise the following loss:

L(β) = E
pπ(s)

E
p(C)

|v̂(s)− v̂(s | C;β)|2 . (30)
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With a sufficiently expressive model class and exact optimisation, the global optimum v̂(s | C;β∗)
recovers the exact characteristic value for all pairs (s,C) such that pπ(s) > 0 and p(C) > 0:

v̂(s | C;β∗) = E
[
v̂(S) | SC = sC

]
= v̂s(C). (31)

Behaviour convergence proof. We now prove that the learning objective in Equation 28 recovers
exact characteristic values at the global optimum. This result generalises to the prediction objective
in Equation 30 because they share the same structure.

We make the following assumptions:

1. The model π̂(s, a | C;β) is selected from a function class expressive enough to represent
π̃a
s (C) for all masked inputs corresponding to (sC, a) such that pπ(s) > 0 and p(C) > 0.

2. The global minimum of the loss L(β) exists and is attained.
3. States s are sampled from the steady-state distribution pπ(s), actions from the uniform

distribution over A, and subsets from a fixed distribution over all subsets of F.

We consider the contribution to the loss from a fixed subset C and action a. The full loss is an
expectation over such terms. Under this conditioning, the loss reduces to:

E
pπ(s)

[
|π(s, a)− π̂(s, a | C;β)|2

]
, (32)

where C and a are fixed. Because the model receives masked inputs in which features outside C are
replaced by a fixed value, it produces the same output for all states s that share the same values sC on
C. As a result, the loss decomposes into disjoint terms over equivalence classes of sC:∑

sC

pπ(sC) E
pπ(s|sC)

[
|π(s, a)− π̂(s, a | C;β)|2

]
, (33)

where pπ(sC) denotes the marginal distribution over observed feature subsets under pπ(s). Each term
is a squared-error regression problem in which the model output is constant across the equivalence
class. Therefore, the unique minimiser of each such term is the conditional expectation:

π̂(s, a | C;β∗) = E
[
π(S, a) | SC = sC

]
= π̃a

s (C), (34)

for all s such that pπ(sC) > 0.

Since both the subset C and action a were arbitrary, and the result holds for all equivalence classes
sC with pπ(sC) > 0, the global minimiser of the full loss recovers exact characteristic values for all
(s, a,C) such that pπ(s) > 0 and p(C) > 0. ■

Remark. The characteristic models for behaviour and prediction are trained to minimise an expected
squared-error loss. The unique global minimiser of this objective is the true conditional expectation.
An estimator that converges to this true mean is, by definition, asymptotically unbiased.

Outcome characteristic convergence. We do not provide a convergence proof for the outcome
characteristic model. This component is trained as a value function using standard reinforcement
learning techniques, including bootstrapping and temporal-difference updates. In our case, the
implementation is based on the DQN algorithm. While convergence guarantees exist for value-
based learning in the tabular setting [33], convergence results are generally not known for deep
reinforcement learning methods with function approximation. This remains a long-standing open
problem in the field. As such, the convergence behaviour of the outcome characteristic model cannot
be formally established. Nonetheless, we empirically observe reliable learning across all domains
this work considers.

C Empirical illustrations of FastSVERL’s explanation models
In this section, we extend the empirical illustration of FastSVERL presented in Figures 1 and 2 by
providing results for the complete set of explanation types—behaviour, outcomes, and prediction.

Accuracy. Figure 4 on the following page shows approximation accuracy as a function of batch
updates of gradient descent (training updates) for characteristic and Shapley models applied to a DQN
agent across three domains: Mastermind-222 (8 features, 53 states), Mastermind-333 (15 features,
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over 100,000 states), and Gridworld (2 features, 7 states). Complete domain descriptions are
provided in Appendix G. Notably, Mastermind-333 represents the practical limit of exact Shapley
value computation for behaviour and prediction explanations, highlighting FastSVERL’s ability to
approximate these explanations in substantially larger state spaces.

Each experimental run is seeded for reproducibility, with variability primarily stemming from sources
typical to PyTorch-based training, including weight initialisation and batch sampling. Characteristic
models are trained using a single agent instance across all runs. Likewise, Shapley models are always
trained with the same agent and characteristic models for each run, avoiding variability introduced by
retraining upstream components.

Consistent with the findings in Section 3.3, all models converge to low approximation error and
exhibit clear error propagation from characteristic models to Shapley values.
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Figure 4: How approximation accuracy improves over training updates for FastSVERL’s explanation
models across Mastermind-222 (left), Mastermind-333 (middle), and Gridworld (right). Each
line shows the mean squared error (MSE) between predicted and exact values, averaged over all
states and features. Shaded regions, which are negligible, indicate standard error over 20 runs.
As you move down through the rows, downstream models (e.g. the behaviour Shapley model)
use exact or approximate upstream models from earlier plots (e.g. the behaviour characteristic).
Empty slots correspond to the outcome explanations that cannot feasibly be computed exactly in
Mastermind-333.
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(b) Prediction

Figure 5: Training batches required to reach a fixed target loss (0.01) when approximating charac-
teristic and Shapley values for behaviour and prediction in Hypercube; standard error over 20 runs.
Each subplot fixes the number of features n (i.e. dimensions). Bar colour indicates cube side length l.

Scalability. We extend the illustration of FastSVERL’s scalability presented in Figure 2 by applying
it to prediction explanations in the Hypercube domain. Outcome explanations were not included
because exact Shapley values were infeasible to compute for the larger cubes. Variability across runs
is limited to randomness in training, with all experimental conditions fixed and the entire process
fully seeded for controlled reproducibility. Figure 5 shows the training updates required to reach a
fixed target loss (0.01) for both behaviour and prediction explanations. Consistent with the findings
from behaviour explanations, the number of training updates scales approximately polynomially with
the number of states, while remaining relatively insensitive to the number of features.

Large-scale convergence results. We now extend the large-scale domain analysis from Table 1 to
the prediction and performance explanation models. As with the behaviour explanations, direct accu-
racy validation is infeasible in these domains. We therefore examine the same three key properties:
(1) if the models converge, (2) the stability of that convergence, and (3) if the computational cost
remains manageable as domain complexity grows.

Table 3 presents the convergence results for the prediction models. Consistent with the findings for
the behaviour models, both the characteristic and Shapley models converge to a stable loss, and the
number of training updates required remains consistent across the domains.

Next, Table 4 presents the results for the performance models. For the performance explanation, we
present results only for the Shapley model. The associated characteristic model uses a bootstrapped
reinforcement learning objective that does not converge to a fixed value and was instead trained for
a fixed number of updates—the same number of updates required to train the agent. The Shapley
models were trained using only the off-policy performance characteristic. The results again show
stable and efficient convergence, consistent with the findings in the main body.

To complement the results in the tables above, Figure 6 visualises the full training curves for each
model, illustrating the rates of convergence.
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Table 3: Convergence of prediction models in large-scale Mastermind domains over 10 runs.

Domain Model Updates to Converge Final Loss
(Mean ± Std. Err.) (Mean ± Std. Err.)

Mastermind-443 Characteristic (1.08± 0.06)× 106 (2.54± 0.04)× 10−1

Shapley (6.01± 0.51)× 105 (1.57± 0.07)× 10−1

Mastermind-453 Characteristic (1.07± 0.11)× 106 (2.74± 0.04)× 10−1

Shapley (5.93± 0.46)× 105 (1.77± 0.10)× 10−1

Mastermind-463 Characteristic (9.88± 0.34)× 105 (3.27± 0.04)× 10−2

Shapley (9.18± 0.63)× 105 (1.70± 0.06)× 10−1

Table 4: Convergence of performance Shapley models in large-scale Mastermind domains over 10
runs.

Domain Model Updates to Converge Final Loss
(Mean ± Std. Err.) (Mean ± Std. Err.)

Mastermind-443 Shapley (6.79± 0.63)× 105 (1.58± 0.07)× 10−1

Mastermind-453 Shapley (5.70± 0.44)× 105 (6.33± 0.30)× 10−1

Mastermind-463 Shapley (5.56± 0.34)× 105 (7.57± 0.26)× 10−1

Full qualitative results. We extend the qualitative illustration of the framework’s behaviour insights
in Table 2 by providing the full set of visual explanations in our project’s code repository.2 This
extends the single illustrative example by presenting the behaviour, prediction, and performance
explanations for all states encountered by an optimal policy in each of the large-scale Mastermind
domains.

D Off-policy learning for explanation models

This section presents the full derivation of the off-policy importance sampling approach introduced in
Section 4, along with a complete set of empirical illustrations.

D.1 Theory and derivation

FastSVERL trains characteristic and Shapley models using samples from the steady-state distribution
pπ(s) of the policy being explained. But what if the agent cannot interact with the environment
to collect this data, for example, when further interaction is costly? In such settings, we propose
sampling from a replay buffer B containing transitions gathered during training.

Because the buffer B aggregates data from a sequence of past policies {πt}Tt=0, its marginal state
distribution pB(s) differs from the target distribution pπ(s). To correct the distributional mismatch,
we apply importance sampling [18], reweighting each sample drawn from B. For any loss of the form

L(β) = E
s∼pπ

[ℓ(s;β)] , (35)

we rewrite the expectation under pπ(s) using samples from pB(s):

L(β) = E
s∼pB

[
pπ(s)

pB(s)
· ℓ(s;β)

]
. (36)

This yields an unbiased estimate of the original loss. However, neither pπ(s) nor pB(s) is known
explicitly, so we approximate the density ratio using action probabilities. Since each transition
(st, at) ∈ B was generated by a known behaviour policy πt, we propose estimating the importance

2The complete results are available at: https://github.com/djeb20/fastsverl.
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Figure 6: Training loss curves for the characteristic (top row) and Shapley (bottom row) models in
the large-scale Mastermind domains. Each line represents the mean loss over training updates, aver-
aged across all three domain sizes (Mastermind-443, Mastermind-453, and Mastermind-463).
Shaded regions indicate standard error over 10 runs. The empty slot corresponds to the performance
characteristic model.

weight as:

L(β) ≈ E
(st,at)∼B

[
π(st, at)

πt(st, at)
· ℓ(st;β)

]
. (37)

The reweighting in Equation 37 estimates the loss by weighting each sample in proportion to its
relevance under π.

Two practical factors may affect the stability and accuracy of the importance-weighted loss in
Equation 37. The first is the similarity between the target policy π and the past policies {πt} that
generated the buffer. The more these policies differ, the higher the variance of the importance
weights, increasing the variance of the loss estimate. The second is the buffer’s coverage of the state
distribution pπ(s). If states commonly visited by π are underrepresented, their corresponding loss
terms may be poorly estimated. In practice, transitions from later-stage policies are more likely to
resemble the final policy π, so additional interaction near the end of training may improve both policy
similarity and state coverage in the buffer.

When importance weights exhibit high variance, techniques such as weight clipping [24] or adaptive
weighting [30] can help stabilise training. We illustrate these strategies empirically in the next section.

D.2 Empirical illustrations

We present three empirical illustrations of off-policy training in FastSVERL. First, we extend the ex-
periment from Figure 3a by training prediction characteristic models off-policy in Mastermind-222.
We then investigate the impact of two variance-control strategies: adaptive weighting [30] and weight
clipping [24]. All figures report approximation accuracy over training updates, measured by mean
squared error (MSE) between predicted and exact values, averaged across states and features. Shaded
regions indicate the standard error over 20 runs. Variability across runs is limited to randomness in
the training pipeline, with all experimental conditions fixed and the entire process fully seeded for
controlled reproducibility. Standard errors are corrected to account for this variability [16].

Learning characteristics off-policy in Mastermind-222. Figure 7 extends the illustration of off-
policy training from Figure 3a to prediction. Consistent with the findings in Section 4: (1) importance
sampling reduces approximation error relative to using the training buffer without reweighting,
suggesting that correcting for distributional mismatch improves performance; and (2) approximation
error remains higher than under on-policy training, indicating that even with reweighting, off-policy
data is an imperfect substitute.
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Figure 7: Approximation accuracy of off-policy training in Mastermind-222 with models trained
using either on-policy data, or off-policy data with two configurations: (1) without importance
sampling (IS) and (2) with IS.
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Figure 8: Approximation accuracy of off-policy training in Gridworld with models trained using
either on-policy data, or off-policy data with three configurations: (1) without importance sampling
(IS), (2) with unnormalised IS, and (3) with normalised IS.

Normalising importance weights. A common strategy to reduce variance in importance sampling
is to normalise weights within each batch by dividing them by their sum [30]. We illustrate this
strategy by training behaviour and prediction characteristic models in Gridworld under three off-
policy conditions: (1) without importance sampling, (2) with unnormalised importance sampling,
and (3) with normalised importance sampling. An on-policy configuration is included as a baseline.
The results, shown in Figure 8, suggest that normalising the importance weights is crucial: using
unnormalised weights leads to worse approximation accuracy than no reweighting at all, while
normalised weights yield the best results. We therefore apply weight normalisation in all experiments
using off-policy sampling.

Clipping importance weights. Another common strategy to reduce variance in importance sam-
pling is to clip the weights to a fixed range [24]. We illustrate this strategy by training behaviour
and prediction characteristic models in Gridworld under several off-policy conditions: (1) without
importance sampling, (2) with unclipped importance sampling, and (3) with importance weights
clipped symmetrically around 1 to the range [1− c, 1+ c]. We consider thresholds of c = 0.99, 0.995,
and 0.998, selected to yield a spread of performance curves. An on-policy configuration is included
as a baseline. The results, shown in Figure 9, indicate that reducing variance through clipping may
impair performance: unclipped importance sampling achieves the highest accuracy, while tighter
clipping progressively harms approximation. The extreme case of c = 0, equivalent to no importance
sampling, performs the worst. These results suggest a bias-variance trade-off in importance sampling,
where retaining the full range of weights avoids the bias introduced by clipping and may be preferred
to mitigating variance in this setting.

E Empirical illustrations of continuously learning to explain

We extend the illustration of jointly training a DQN agent and explanation models presented in
Figure 3b to all explanation types in the domains Mastermind-222 and Gridworld. Variability
across runs is limited to randomness in the training pipeline, with all experimental conditions fixed
and the entire process fully seeded for controlled reproducibility.
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Figure 9: Approximation accuracy of off-policy training in Gridworld with models trained using
either on-policy data, or off-policy data with three configurations: (1) without importance sampling
(IS), (2) with unclipped IS, and (3) with IS clipped at thresholds of 0.99, 0.995, and 0.998.

Figure 10 presents the approximation accuracy for the Shapley models across varying update ratios
(1:1, 2:1, 10:1, and 50:1), alongside the agent’s expected return and DQN loss to track the impact
of policy changes during training. Consistent with the findings in Section 4, increasing the update
ratio mitigates error spikes during rapid policy shifts, reflecting better alignment between the agent
and the explanation models. That is, apart from the behaviour explanation for Gridworld, where
varying the update rate has minimal effect on error reduction. This may be due to the already low
error magnitudes, suggesting the bottleneck could instead be linked to another source of error, such
as the off-policy nature of the data.

F Sampling-based approximation of characteristic functions

Training characteristic models is a major computational bottleneck in FastSVERL. In Section 5, we
proposed removing this cost by integrating cheap single-sample approximations of characteristic
values into the Shapley model loss, demonstrating this for the behaviour characteristic. The same
approach can be applied to the prediction characteristic, which also admits a natural sampling-based
approximation.

In this section, we complete the proposal by applying it to all explanation models that rely on either
the behaviour or prediction characteristic. We first consider their use in training Shapley models, then
turn to sampling the behaviour characteristic in training the outcome characteristic. We conclude
with the full set of empirical illustrations of the proposals.

Behaviour Shapley. We train a parametric model ϕ̂(s, a; θ) to predict the Shapley contributions
of each feature of state s to the agent’s probability of selecting action a. Instead of querying a
characteristic model, we replace the characteristic function π̃a

s (C) in the Shapley model loss with a
single-sample approximation. At each loss evaluation, a state s′ ∼ pπ(· | sC) is sampled from the
conditional steady-state distribution, and the characteristic value is approximated using π(s′, a). The
model is trained to minimise the following loss:

L(θ) = E
pπ(s)

E
Unif(a)

E
p(C)

E
s′∼pπ(·|sC)

∣∣∣∣∣π(s′, a)− π̃a
s (∅)−

∑
i∈C

ϕ̂i(s, a; θ)

∣∣∣∣∣
2

. (38)

After training, the Shapley model’s output is corrected to satisfy the efficiency constraint:

ϕi(π̃a
s ) ≈ ϕ̂i(s, a; θ) +

1

|F|

π(s, a)− π̃a
s (∅)−

∑
j∈F

ϕ̂j(s, a; θ)

 . (39)

With a sufficiently expressive model class and exact optimisation, the corrected output of the global
optimum ϕ̂(s, a; θ∗) recovers exact Shapley values for all state-action pairs (s, a) such that pπ(s) > 0
and a ∈ A.

In practice, we approximate the conditional steady-state distribution pπ(s′ | sC) by sampling from a
replay buffer containing transitions collected under π, uniformly selecting states s′ such that s′C = sC.
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Figure 10: Approximation accuracy of Shapley values trained in parallel with the agent under
explanation-to-agent update ratios of 1:1, 2:1, 10:1, and 50:1 in Mastermind-222 (left) and
Gridworld (right). Each line represents the mean squared error (MSE) between predicted and
exact values, averaged over all states and features. Shaded regions indicate the standard error over
20 runs. The agent’s expected return and DQN loss are also shown to illustrate learning dynamics
during training.

Alternatively, one could train a parametric model of this distribution [8], which may generalise better
to sparsely sampled regions but reintroduces the cost of learning an additional model.

The null characteristic value π̃a
s (∅) is similarly estimated via Monte Carlo sampling from the steady-

state distribution:
π̃a
s (∅) = E

s∼pπ(s)
[π(s, a)] . (40)

This estimate is computationally efficient: it can be computed once by passing the entire replay
buffer through the policy network in parallel and averaging the results, then reused across all loss
evaluations.

31



Prediction Shapley. We train a parametric model ϕ̂(s; θ) : S → R|F| to predict the Shapley
contributions of each feature of state s to the agent’s value estimate v̂π(s). We replace the prediction
characteristic v̂πs (C) in the Shapley model loss with a single-sample approximation. At each loss
evaluation, a state s′ ∼ pπ(· | sC) is sampled from the conditional steady-state distribution, and the
characteristic value is approximated using v̂π(s′). The model is trained to minimise the following
loss:

L(θ) = E
pπ(s)

E
p(C)

E
s′∼pπ(·|sC)

∣∣∣∣∣v̂π(s′)− v̂πs (∅)−
∑
i∈C

ϕ̂i(s; θ)

∣∣∣∣∣
2

. (41)

After training, the model output is corrected to satisfy the efficiency constraint:

ϕi(v̂πs ) ≈ ϕ̂i(s; θ) +
1

|F|

v̂π(s)− v̂πs (∅)−
∑
j∈F

ϕ̂j(s; θ)

 . (42)

With a sufficiently expressive model class and exact optimisation, the corrected output of the global
optimum ϕ̂(s; θ∗) recovers the exact Shapley values for all (s,C) such that pπ(s) > 0 and p(C) > 0.

Behaviour convergence proof. We now prove that the learning objective in Equation 38 recovers
exact Shapley values at the global optimum. This result generalises to the prediction objective in
Equation 41 because they share the same structure.

We make the following assumptions:

1. The model ϕ̂(s, a; θ) is selected from a function class expressive enough to represent the
true Shapley value function ϕ(π̃a

s ) for all state-action pairs (s, a) such that pπ(s) > 0.

2. The global minimum of the loss L(θ) exists and is attained.

3. States s are sampled from the steady-state distribution pπ(s), actions from the uniform
distribution over A, subsets C from a fixed distribution over all subsets of F, and samples
s′ ∼ pπ(· | sC) from the conditional steady-state distribution.

For a fixed state-action pair (s, a) such that pπ(s) > 0, the sampling-based loss in Equation 38
reduces to:

E
p(C)

E
s′∼pπ(·|sC)

∣∣∣∣∣π(s′, a)− π̃a
s (∅)−

∑
i∈C

ϕ̂i(s, a; θ)

∣∣∣∣∣
2

. (43)

Since π(s′, a) is the only term that depends on s′, we may equivalently write:

E
p(C)

∣∣∣∣∣ E
s′∼pπ(·|sC)

[π(s′, a)]− π̃a
s (∅)−

∑
i∈C

ϕ̂i(s, a; θ)

∣∣∣∣∣
2

. (44)

By the definition of the behaviour characteristic function, we have:

E
p(C)

∣∣∣∣∣π̃a
s (C)− π̃a

s (∅)−
∑
i∈C

ϕ̂i(s, a; θ)

∣∣∣∣∣
2

. (45)

This expression is identical to the reduced Shapley model loss in Equation 25, bringing us to the
same point as in the proof presented in Appendix A. The remainder of the proof proceeds identically.
By enforcing the efficiency constraint via an additive correction [22],

ϕi(π̃a
s ) := ϕ̂i(s, a; θ) +

1

|F|

π(s, a)− π̃a
s (∅)−

∑
j∈F

ϕ̂j(s, a; θ)

 , (46)

the unique minimiser of the loss is given by the Shapley values ϕi(π̃a
s ) [5]. Therefore, the globally

optimal parameters θ∗ recover exact Shapley values for all (s, a) such that pπ(s) > 0.

■
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Remark. The sampling-based approximations of the behaviour and prediction Shapley values are
unbiased because their objectives recover the original asymptotically unbiased model-based losses in
expectation.

Outcome characteristic. The outcome characteristic function ṽπs (C) is defined as the expected
return received from state s when the agent’s policy has access only to the features in C:

ṽπs (C) := Eµ [Gt | St = s] , (47)
where µ is a modified policy that selects actions using the behaviour characteristic function π̃a

s (C)
when features are unknown in state s, and follows the original policy π elsewhere.

To estimate ṽπs (C), FastSVERL defines a conditioned policy π̂(a | s; se,C) that follows the behaviour
characteristic model π̂(s, a | C;β) when s = se, and follows the original policy π elsewhere. A
parametric value function V (s | se,C;β) is then trained to predict the expected return under this
conditioned policy for each (se,C) pair.

Training this outcome characteristic model requires access to a pre-trained behaviour characteristic
model, introducing additional computational cost. To avoid this, we instead bypass the behaviour
characteristic model entirely by sampling a state s′ ∼ pπ(· | sCe ) and using π(s′, a) as the action
probability whenever the conditioned policy π̂(a | s; se,C) would otherwise act according to the
behaviour characteristic model—that is, when s = se.

The proposed sampling approach applies only to the on-policy formulation of the outcome charac-
teristic. In this setting, the value function V (s | se,C;β) is trained using a standard bootstrapped
DQN-style loss:

L(β) = E
(s,r,s′,se,C)∼B

∣∣r + γV ′(s′ | se,C;β−)− V (s | se,C;β)
∣∣2 , (48)

where the buffer B contains transitions collected from the conditioned policy when sampling is used
to approximate the behaviour characteristic at s = se.

An off-policy variant was also considered in Section 3.2, where a parametric state-action value
function Q(s, a | se,C;β) is trained and the outcome characteristic is recovered as

ṽπs (C) ≈
∑
a∈A

π̂(s, a | se,C) ·Q(s, a | se,C;β). (49)

Since this recovery step requires querying the behaviour characteristic model, which is no longer
available under the sampling-based approximation, the method cannot be applied in this setting.

Empirical illustrations. We extend the analysis of replacing characteristic models with sampling,
as presented in Figure 3c, to prediction Shapley models and on-policy outcome characteristic models
across Mastermind-222, Mastermind-333, and Gridworld. Variability across runs is limited to
randomness in the training process, with all experimental conditions fixed and the entire pipeline
fully seeded. Explanation models are trained using a single agent instance across all runs.

Figure 11 shows the explanation model’s losses over cumulative training updates. Consistent with the
findings in Section 5, sampling-based approximations converge faster than their model-based counter-
parts and eliminate error propagation from characteristic models. However, minimal computational
gains are observed for the outcome characteristic, as the cost of training the behaviour characteristic
is relatively small compared to the substantial cost of training the outcome characteristic itself. This
suggests that while sampling effectively reduces error propagation, its impact on computational
efficiency for outcome explanations is limited.

G Domains

This section provides descriptions of the reinforcement learning domains used in the experiments.

Gridworld [2], is a deterministic 2× 4 environment where the agent’s state is defined by its (x, y)
grid coordinates. The state space is:

S = {(1, 1), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4)}. (50)
Each episode begins in a start state sampled uniformly from (1, 1) and (2, 1). The agent can take
actions North, East, South, and West; actions that would move the agent outside the grid or into
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Figure 11: Approximation accuracy of Shapley and characteristic values trained with sampled,
exact or model-based characteristics in Mastermind-222 (left), Mastermind-333 (middle), and
Gridworld (right). The empty slot corresponds to the outcome characteristic that cannot feasibly be
computed exactly in Mastermind-333. Each line represents the mean squared error (MSE) between
predicted and exact values, averaged over all states and features. Shaded regions indicate standard
error over 20 runs. The dashed lines mark the end of pre-training for the characteristic models in the
model-based approach.

the missing state (1, 2) are treated as invalid, incurring a reward but leaving the agent’s position
unchanged.

The terminal states are (1, 4) and (2, 4). The agent receives a reward of −1 per decision stage
and an additional +10 upon reaching a terminal state, making this a shortest-path problem. The
optimal policy moves East in (1, 1) and North in all other states to minimise the number of steps to
termination.

Mastermind [2] is a reinforcement learning adaptation of the classic code-breaking game. At the
start of each episode, the environment randomly samples a hidden code consisting of a sequence of
letters. The agent must identify the code within a fixed number of guesses. After each guess, the
environment returns two types of feedback:

• Position clue: the number of letters that are both correct and in the correct position.

• Misplaced clue: the number of correct letters that are in the wrong position.

These values are computed sequentially: letters that are correct and in the correct position contribute
to the position clue and are excluded when computing the misplaced clue, which counts only the
remaining correct letters in the wrong position.

Each state encodes the agent’s current game board: a sequence of previous guesses and the cor-
responding feedback. States are feature-based, with each guess represented by a fixed number of
features: one per letter in the guess, plus two features for the position and misplaced clues. Unused
guesses are represented using a dedicated empty value.

The environment can be configured by varying the code length, the number of guesses, and the size
of the letter set (i.e. the alphabet). We consider five configurations:
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• Mastermind-222: Codes of length 2 drawn from the alphabet {A,B}, yielding 4 possible
codes. The agent is allowed up to 2 guesses. The state space contains 53 unique states, each
represented by 8 features. Each code corresponds to a unique action, giving 4 available
actions.

• Mastermind-333: Codes of length 3 drawn from the alphabet {A,B,C}, yielding 27
possible codes. The agent is allowed up to 3 guesses. The state space contains over 100,000
states, each with 15 features. There are 27 available actions.

• Mastermind-443: Codes of length 4 drawn from the alphabet {A,B,C}, yielding 81
possible codes. The agent is allowed up to 4 guesses. The state space contains over
4.3× 107 states, each with 24 features. There are 81 available actions.

• Mastermind-453: Codes of length 4 drawn from the alphabet {A,B,C}, yielding 81
possible codes. The agent is allowed up to 5 guesses. The state space contains over
3.5× 109 states, each with 30 features. There are 81 available actions.

• Mastermind-463: Codes of length 4 drawn from the alphabet {A,B,C}, yielding 81
possible codes. The agent is allowed up to 6 guesses. The state space contains over
2.8× 1011 states, each with 36 features. There are 81 available actions.

The reward function assigns −1 per guess and provides an additional reward equal to the maximum
number of guesses if the agent correctly identifies the hidden code. Episodes terminate when the
correct code is guessed or the guess limit is reached.

H Experimental setup and compute resources

All experimental configurations, including hyperparameters, training settings, and environment details,
are included in the project code’s test scripts.3 These scripts are designed to produce fully reproducible
and identical results for every experiment. The DQN agent used throughout the experiments is based
on the implementation from CleanRL [11].

The hyperparameters for all agents, characteristic models, and Shapley models were pragmatically
chosen without tuning, as the experiments are intended to illustrate FastSVERL’s properties rather
than benchmark against alternative methods. Initial values were selected, found to be sufficient
for learning, and kept constant across experiments unless they were the specific subject of study or
directly linked to design choices being evaluated. The only exception to this approach was the choice
of the masking value used in behaviour and prediction characteristic models to represent unknown
features. Although the theoretical framework permits any value outside the support of S, we found
that large magnitude values hindered training stability, possibly due to amplified gradient magnitudes.
In contrast, smaller magnitude values, closer to the support of S, resulted in smoother learning and
were adopted for all experiments.

Standard errors in all experiments are calculated using the standard error of the mean, corresponding
to 1-sigma error bars and shaded areas. To better isolate variability arising from the experimental
conditions, and not noise introduced by unrelated stochastic factors, we sometimes apply the cor-
rection method proposed by Masson and Loftus [16], which adjusts for run-specific differences that
are unrelated to the treatment effect. Specific sources of variability, such as agent initialisation, are
detailed alongside each experimental setup in the appendix sections.

All experiments were conducted on a local workstation equipped with the following specifications:

• Processor: Intel i9-14900K (24 cores, up to 6.0GHz)
• GPU: NVIDIA RTX 4090 (24GB VRAM)
• Memory: 96GB DDR5 RAM
• Storage: 2x1TB NVMe (Samsung 990 EVO) and 4TB SSD (Samsung 870 QVO)

The full research project required substantially more compute than the experiments reported here,
including preliminary testing and exploratory experiments not included in the final results.

3FastSVERL code is available at: https://github.com/djeb20/fastsverl.
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