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ABSTRACT

State-of-the-art Denoising Diffusion Probabilistic Models (DDPMs) rely on an
expensive sampling process with a large Number of Function Evaluations (NFEs)
to provide high-fidelity predictions. This computational bottleneck renders dif-
fusion models less appealing as surrogates for the spatio-temporal prediction of
physics-based problems with long rollout horizons. We propose Truncated Sam-
pling Models, enabling single-step and few-step sampling with elevated fidelity by
simple truncation of the diffusion process, reducing the gap between DDPMs and
deterministic single-step approaches. We also introduce a novel approach, Iterative
Refinement, to sample pre-trained DDPMs by reformulating the generative process
as a refinement process with few sampling steps. Both proposed methods enable
significant improvements in accuracy compared to DDPMs, DDIMs, and EDMs
with NFEs ≤ 10 on a diverse set of experiments, including incompressible and
compressible turbulent flow and airfoil flow uncertainty simulations. Our proposed
methods provide stable predictions for long rollout horizons in time-dependent
problems and are able to learn all modes of the data distribution in steady-state
problems with high uncertainty.

1 INTRODUCTION

Turbulent flow is prevalent in everyday phenomena ranging from natural occurrences (Sullivan and
McWilliams, 2024; Pyakurel et al., 2017) to engineering applications (Tulapurkara, 1997; Cheah et al.,
2007; Volpe et al., 2014). Computational Fluid Dynamics (CFD) is essential for understanding these
flows, with direct numerical simulations being the gold standard. However, it requires high-resolution
grids to resolve the full spectrum of turbulent spatial and temporal scales, resulting in computationally
intensive simulations (Pope, 2012). This limitation has propelled the recent surge in data-driven
approaches. Leveraging the abundance of high- and low-fidelity data, machine learning algorithms
offer various opportunities to enhance the accuracy and efficiency of turbulence simulations (Vinuesa
and Brunton, 2022), particularly for phenomena like turbulent flows, which are challenging for
traditional CFD methods.

Diffusion models (DMs) as surrogates. DMs (Hyvärinen, 2005; Sohl-Dickstein et al., 2015) have
demonstrated great potential in various domains (Dhariwal and Nichol, 2021; Wang et al.; Lugmayr
et al.; Ho et al.; Li et al., 2023); however, their application to fluid-based problems remains an
underexplored area of research. To date, applications involved inverse problems (Holzschuh et al.,
2023), high-fidelity reconstruction (Shu et al., 2023), autoregressive sampling in two-dimensional
(Yang and Sommer, 2023; Lippe et al., 2023; Kohl et al., 2024) and three-dimensional (Lienen et al.,
2024) settings, and an uncertainty-aware surrogate for airfoil simulations (Liu and Thuerey, 2024).

Motivation for using DMs. DMs have been shown to autoregressively generate videos or simulation
trajectories, which are unconditionally stable over very long time horizons (Kohl et al., 2024).
Temporal stability is difficult to accomplish using supervised loss terms, requiring memory-consuming
techniques like multi-step unrolling (Um et al., 2020). Additionally, the probabilistic nature of DMs
can deal very well with measurement noise or missing data (Huang et al., 2024), making them highly
robust and versatile. Since a prediction from the DM samples from the posterior, this allows small
variations due to uncertainty in the input to naturally evolve and amplify over time, creating diverse
predictions over many steps, while individual trajectories always remain physically accurate.
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Need for faster and more accurate sampling. The main drawback of DMs, especially evident
in fluid problems, is the long inference time due to the large Number of Function Evaluations
(NFEs) required, and the limited accuracy compared to deterministic baselines (Cachay et al., 2023).
Therefore, our objective in this study is to reduce the inference time disparity between DMs and
single-step deterministic baselines while concurrently enhancing the accuracy of their predictions.
This is achieved through our proposed straightforward training and sampling procedures.

The main contributions of this work can be summarized as follows:

1. We re-formulate the autoregressive problem to facilitate flexible sampling with extended
parallelization and enable single networks to predict not only the next timestep but also
intermediate states.

2. We introduce Truncated Sampling Models (TSMs) to enable single-step and few-step sam-
pling while preserving or even augmenting sampling fidelity. We describe how truncation of
the diffusion process, typically employed to reduce NFEs, can improve inference accuracy.
Additionally, we distinguish our proposed TSMs from related approaches and highlight their
efficiency and ease of implementation.

3. We introduce an inherently stochastic Iterative Refinement (IR) approach to enable flexible
sampling of conditional diffusion models, allowing reduced NFEs with improved accuracy
compared to ancestral sampling. We explain the intuition behind the approach and provide a
comparative analysis against existing methods throughout our experiments.

4. We empirically demonstrate the efficacy of the proposed methods in reducing inference steps
and improving the accuracy of diffusion models for fluid dynamics simulations through a
diverse set of experiments, including compressible and incompressible turbulent flows in
both time-dependent and steady-state settings.

2 BACKGROUND

2.1 DENOISING DIFFUSION PROBABILISTIC MODELS

Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al., 2020), a class of generative DMs,
convert a data distribution q(x0) to a prior distribution q(xT ) ∼ N (0, I) over T steps through a
Markovian forward diffusion process q(xt | xt−1) by gradually adding Gaussian noise with noise
schedule βt. We can sample the state xt directly from x0 through the parameterized closed form:

q(xt | x0) =
√
ᾱtx0 +

√
1− ᾱtϵ , (1)

where ᾱt =
∏t

i=1 αi and αt = 1 − βt. The forward process posterior q(xt−1 | xt) is approx-
imated using a neural network through a parameterized Gaussian distribution pθ (xt−1 | xt) =
N (xt−1;µθ (xt, t) ,Σθ (xt, t)), where µθ and Σθ are the network predicted mean and variance,
respectively. However, in this study, the variance is kept constant according to the noise schedule βt

and is chosen to be Σθ(xt, t) = σ2
t I, with σ2

t = βt.

During inference, the reverse process (i.e., ancestral sampling) begins from xT ∼ N (0, I) and
iteratively samples xt−1 ∼ pθ(xt−1 | xt) for T steps until reaching a fully denoised state x0. The
network is trained to estimate the forward process posterior by minimizing the Kullback-Leibler (KL)
divergence KL(q(xt−1 | xt)||pθ (xt−1 | xt)), which reduces to the loss function (Ho et al., 2020):

Lt−1 := Ex0,ϵ

∣∣∣∣∣∣ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)

∣∣∣∣∣∣2 , (2)

where the network only learns to predict the noise at each noise step to perform partial denoising.
The denoising step is related to Tweedie’s formula (Efron, 2011), which can be used to estimate the
posterior mean E[x̂0|xt; θ] from a noisy sample xt via

E[x̂0|xt; θ] = (xt −
√
1− ᾱtϵθ(xt, t))/

√
ᾱt. (3)
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2.2 PROBLEM DEFINITION

The Navier-Stokes (NS) Partial Differential Equations (PDEs) represent a class of problems that
epitomize the complex physics encountered in engineering and scientific disciplines. For an arbitrary
domain Ω, fluid motion is governed in space and time τ by the NS PDE, defined as:

∂u

∂τ
+ (u · ∇)u = −∇p+ 1

Re
∆u+ f,

∂ρ

∂τ
+ ρ(∇ · u) = 0, (4)

where f is external forcing, and u, p, and ρ are the velocity, pressure, and density, respectively. Re is
the non-dimensional Reynolds number, controlling the severity of diffusive to convective transport.

Reformulated autoregressive sampling. For time-dependent problems, to reach the target state
x(τf ), where x = {u, p, ρ}, and with the initial condition x0, our reformulation of autoregressive
sampling is defined as (notice that the notations x(. . .) and x... are used interchangeably):

x(τf ) = pTθ (xT , p
T
θ (. . . p

T
θ (xT ,x0, j) . . .), j), (5)

where the prediction stride j denotes how far we sample in the future based on the physical timestep
δτ . The shortened notation pTθ denotes the DDPM iterative sampling, pTθ (xT ,x0, j) = x(j · δτ) =
pθ(pθ(. . . pθ(xT ,x0, j) . . .),x0, j). In essence, pTθ maps any fluid state x(τ) to x(τ+j ·δτ), without
the need to estimate the intermediate states x(τ + i · δτ) ∀i < j, as typically required by classical
numerical solvers to satisfy the Courant–Friedrichs–Lewy (CFL) convergence conditions (de Moura
and Kubrusly, 2013). Although conditioning on j has been previously explored in the context of
multi-parameter conditioning (Gupta and Brandstetter, 2023), our contribution emphasizes the use
of j to facilitate flexible, parallelizable, and potentially more accurate diffusion sampling instead of
next-step predictions.

Flexibility in predicting future states. By conditioning a surrogate model on j for j ∈ {0, . . . , T },
we achieve two major benefits. First, the model can predict all possible intermediate states between
τ = 0 and τ = T · δτ . In comparison to methods such as DYffusion (Cachay et al., 2023) that require
independent forecaster and temporal interpolator networks to achieve this task, our formulation
enables a single network to predict the next timestep in addition to intermediate ones. Second, we
are able to balance between the accuracy of the first-step prediction and error accumulation (Lienen
et al., 2024). For instance, smaller j values would lead to first-step predictions with high accuracy;
however, they would require longer rollout steps, leading to more error accumulation and vice versa.
Thus, we will demonstrate in our experiments how an optimal value for j can lead to better accuracy
than next-step sampling.

3 RELATED WORK

DMs as flow surrogates In inverse problems involving temporal evolution, Holzschuh et al. (2023)
utilized DMs to predict a system’s state backward in time, integrating an approximate inverse
physics simulator into the sampling process. For super-resolution, Shu et al. (2023) applied DDPMs
to turbulent flows by reconstructing high-fidelity flow fields from low-fidelity inputs, achieving
remarkable results even with sparse input data. Furthermore, regarding time-dependent autoregressive
predictions, Yang and Sommer (2023) attempted to predict nonlinear fluid fields at specific points in
time based on initial conditions. Kohl et al. (2024) introduced an autoregressive conditional diffusion
model (ACDM) capable of predicting fluid states over extended time horizons while maintaining
sample quality and temporal stability, and provided benchmark results on various datasets and against
multiple baselines. Lienen et al. (2024) explored spatio-temporal predictions in three-dimensional
turbulent flows and achieved faster processing times than conventional solvers. Additionally, PDE-
refiner facilitates the enhancement of sampling precision across all frequency components inherent in
PDE solutions through a multistep refinement procedure (Lippe et al., 2023). Finally, an uncertainty-
aware surrogate for steady-state airfoil turbulence was presented by Liu and Thuerey (2024) to predict
the uncertainty of the simulations and provide samples from the learned ground truth distribution.

Expedited sampling. The slow sampling time of DMs is a major drawback, prompting extensive
research to reduce the computational cost without compromising quality. Early endeavors included
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learning the variances of the reverse process and optimizing the noise schedule (Nichol and Dhariwal,
2021). In tandem, Song et al. (2021) presented Denoising Diffusion Implicit Models (DDIMs)
that generalize DDPMs via a class of non-Markovian diffusion processes instead of the Markovian
diffusion process of DDPMs, leading to shorter deterministic generative processes. By expressing
DMs in a common framework known as elucidated DMs (EDMs), Karras et al. (2022) introduce a
design space featuring separable design choices that can be optimized to attain expedited sampling
with state-of-the-art accuracy. Further, introducing Bespoke solvers represents a novel framework
for crafting custom ordinary differential equation solvers tailored to pre-trained models, yielding
parameter-efficient solvers with negligible training overhead (Shaul et al., 2024). Moreover, distilla-
tion techniques (Luhman and Luhman, 2021; Salimans and Ho, 2022; Meng et al., 2022; Sauer et al.)
offer promising avenues for achieving high-fidelity image synthesis with diminished computation
overhead through few steps and one-step inference, albeit at the cost of accuracy (Salimans and Ho,
2022; Meng et al., 2022). Analogously, Song et al. (2023) propose consistency models, trained via
distillation or in isolation, to directly map noise to data and facilitate both single-step and few-step
sampling. Finally, other endeavors include latent diffusion models (LDMs) (Rombach et al., 2022)
and Truncated Diffusion Probabilistic Models (TDPMs) (Zheng et al., 2023). LDMs compress input
states into latent spaces of reduced degrees of freedom through an additional encoder-decoder network,
consequently reducing computational costs associated with DDPM sampling for the same/reduced
NFEs. TDPMs truncate the last steps of the forward diffusion process, leading to a shorter generative
process starting from a hidden noisy distribution by leveraging an additional generative adversarial
network (GAN)-based implicit generator to match the prior to the aggregated posterior.

These diverse approaches collectively contribute to augmenting the generative process of DMs,
addressing computational challenges, and enhancing sample quality. The two approaches that we
introduce offer complementary solutions, particularly in the domain of physics-based simulations,
and provide insights for the development of DMs in general.

4 NOVEL TRAINING AND SAMPLING APPROACHES

4.1 TSM: TRUNCATED SAMPLING MODEL

Motivation. An interesting phenomenon of DDPMs, particularly when trained with a linear βt, is
the ability to skip a small percentage (i.e., ≤ 20%) of the reverse diffusion process while maintaining
the sampling quality (Nichol and Dhariwal, 2021). Furthermore, approaches have been devised to
target a relevant range of noise levels during training by prioritizing intermediate noise levels (Karras
et al., 2022; Choi et al., 2022), thereby enhancing the loss per noise level.

We re-visit these approaches with a new perspective: We truncate a significant part from the last steps
of the reverse Markov chain with a high skip percentage s to reduce NFEs and focus the training on
noise steps preceding the truncation. We refer to a model trained for a limited part of the diffusion
process and sampled with truncated ancestral sampling as Truncated Sampling Model (TSM). Focused
training by restricting the sampling window for t parallels approaches by Karras et al. (2022) and
Choi et al. (2022) to improve the loss per noise level (see Eq. 2), with our main objective to achieve
enhanced sampling accuracy. Hence, we expect s≫ 0 to lead to better accuracy and reduced NFEs.

Sampling. Algorithm 1 summarizes the sampling procedure for conditional TSMs, with differences
from ancestral sampling highlighted in blue. TSM sampling follows ancestral sampling until xts , i.e.,
pθ(xts:T ) := p(xT )

∏T
t=ts+1 pθ(xt−1|xt) , where ts = ⌊s · T ⌋ and s ∈ (0, 1]. At t = ts, instead of

sampling xts−1 ∼ pθ(xts−1|xts), we estimate x̂0 using the posterior mean E[x̂0|xt; θ], see Eq. 3.

Training. The TSM training procedure involves the choice of the hyperparameter s (skip percentage)
and its use as a lower bound for sampling diffusion steps. Hence, the sole adjustment to the DDPM
training algorithm from Ho et al. (2020) is defined as t ∼ Uniform({ts, . . . , T}). Based on the skip
percentage s, typically > 0.2 for more pronounced outcomes, a balance between NFEs, sampling
accuracy, and stochasticity can be achieved. Extreme skip percentages (e.g., s ≈ 1) are feasible,
resulting in unprecedented high-accuracy single-step diffusion sampling, albeit at the cost of reduced
stochasticity. Hence, relatively lower s values are optimal for problems of stochastic nature to enable
learning all modes of the data distribution.

4
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Algorithm 1 Truncated Ancestral Sampling for conditional TSMs

Require: ϵθ (TSM), s (skip percentage), c (condition)
1: xT ∼ N (0, I)
2: for t = T, ..., ts + 1 do
3: z ∼ N (0, I) if t > 1, else z = 0

4: xt−1 = 1√
αt

(
xt − βt√

1−ᾱt
ϵθ(xt, t, c)

)
+ σtz ▷ DDPM sampling pθ(xt−1 | xt).

5: end for
6: if s > 0 then x̂0 = (xts −

√
1− ᾱtsϵθ(xts , ts, c))/

√
ᾱts

7: ▷ Tweedie’s formula E[x̂0|xt; θ] (see Eq. 3).
8: return x̂0

TSMs vs TDPMs. We highlight the main differences between TDPMs (Zheng et al., 2023) and our
proposed TSMs. First, TDPMs apply the truncation to the last steps of the diffusion process, whereas
our approach focuses on these last steps and conversely truncates the first steps. Second, TDPMs rely
on an additional implicit generator network (GAN) to match the prior with the aggregated posterior.
This implicit generator requires joint training with the DDPM, thus adding extra complexity to the
training process. On the other hand, our training procedure closely resembles the straightforward
DDPM training procedure and doesn’t add complexity, thus rendering TSMs an appealing approach
for enhancing sampling efficiency. Finally, while the sample quality of TDPMs is adversely impacted
by large truncations, TSMs enable one-step inference with the same or improved sampling quality,
relying on characteristics specific to fluid dynamics datasets as we explain in Section 5..

4.2 IR: ITERATIVE REFINEMENT

Motivation. A fundamental characteristic of DMs is their iterative sampling process, which sys-
tematically reduces noise from a pure Gaussian noise xT to a noise-free state x0 over successive
iterations. This ancestral sampling procedure is performed by gradually estimating all intermediate
states xT−1:1 until reaching a fully denoised state x0, matching the training data distribution q(x0).
Nevertheless, during training, a DDPM network learns to only predict the noise field at each noise
level of a predetermined βt independent of any adjacent states (see Eq. 2). Therefore, for a pre-trained
DDPM model, various sampling methods can be employed without re-training, as long as they pertain
to βt originally used for training.

We leverage this property of DMs to introduce an intuitive refinement algorithm as a novel sampling
method for DDPMs, which we refer to as Iterative Refinement (IR). In IR sampling, we consider a
much shorter noise schedule γ = {tr, . . . , te} ⊂ {T, . . . , 1} and interpret the different noise levels to
essentially correspond to different levels of detail for a given state. We believe that, for any provided
initial state xinit, there exists a sequence γ that defines the minimal number of noise levels (or levels
of detail) sufficient to augment the accuracy of xinit. Hence, we optimize γ to ensure that the accuracy
of the final prediction closely matches all levels of detail present in the ground truth state x0.

Algorithm 2 IR sampling procedure

Require: ϵθ (DDPM model), xinit (initial state),
γ = {tr, . . . , te} (refinement schedule)

1: x̂0 ← xinit
2: for Each t in γ do
3: ϵ ∼ N (0, I)
4: xt =

√
ᾱtx̂0 +

√
1− ᾱtϵ

5: ▷ Forward diffusion q(xt|x0) using Eq. 1.
6: x̂0 = 1√

ᾱt

(
xt −

√
1− ᾱtϵθ(xt, t, c)

)
7: ▷ Tweedie’s formula E[x̂0|xt; θ] from Eq. 3.
8: end for
9: return x̂0

Sampling. Algorithm 2 summarizes the gen-
erative process for IR. Given an initial state xinit
(assumed to be a noise-free, low-order approx-
imation of x0) and a refinement schedule γ, we
iteratively apply forward diffusion followed by
an estimation of the posterior mean to predict
a series of gradually enhanced approximations
of the noise-free state x̂i

0,∀i = 1, . . . , N , where
N = |γ|, at distinct noise levels. Conversely,
ancestral sampling pθ(xt − 1|xt) gradually re-
moves noise for the same schedule (assuming
γ = {T, . . . , 1}) leading to intermediate states
that are partially noisy. IR allows for a flexible
choice of the length and distribution of γ to fit
the problem under consideration and ensures higher accuracy of predictions using fewer NFEs
compared to ancestral sampling. We also argue that xinit can be a (partially) noisy state obtained
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through truncation of ancestral sampling, for example, or even sampled from the prior distribution
q(xT ), further relaxing the computational overhead before IR sampling.

Optimizing the refinement schedule γ. The most critical component of IR sampling is γ, balancing
between inference quality and NFEs. Hence, an optimized γ should consider the initial state xinit, the
model’s accuracy Lt−1 at each noise step (defined as in Eq. 2), and the nature of the problem. All our
proposed γ schedules are optimized using a greedy algorithm, which we found to easily lead to highly
satisfactory results with minimal effort and computational cost. More details regarding γ optimization
are presented in Appendix B. A direct consequence of using this greeding algorithm is that the final
output x̂N

0 provides a better approximation of x0 than xinit and all preceding approximations:

E[∥x̂N
0 − x0∥2] < E[∥x̂N−1

0 − x0∥2] < . . . < E[∥x̂1
0 − x0∥2] < E[∥xinit − x0∥2]. (6)

We believe that better results could be achieved through more sophisticated optimization of γ,
although this will incur additional training overhead.

Method novelty. While IR makes use of Tweedie’s formula to obtain an intermediate approximation
of the posterior mean x̂0, it differs from the various resampling methods for posterior sampling (Song
et al., 2024; Zhang et al., 2024) in the following aspects. (1) Freedom to choose xinit and optimize
a refinement schedule γ. While all sampling methods begin the inference procedure by sampling
xT ∼ N (0, I), IR is more flexible as it enables the starting point xinit to be xT , a low-fidelity
prediction, or a partially noisy output. (2) IR efficiently samples fluid states using a pre-trained model
without the need for an auxiliary neural network or an optimization task to enforce data consistency
to x̂0. This reduces the computational cost during sampling and introduces flexibility in choosing γ
without restrictions on requiring the estimates of x̂0 to be evaluated at noise steps close to 0 to ensure
a meaningful prediction (Yu et al., 2023). Further, while PDE-Refiner (Lippe et al., 2023) shares
similarities with DDPMs and IR, our method differs in key aspects. Unlike training from scratch
with a fixed schedule, IR is a sampling algorithm for pre-trained DDPMs. This enables flexibility in
choosing an optimal combination of γ and xinit, making it both a standalone sampling algorithm
(when xinit ∼ N (0, I)) and a refinement strategy for noisy or low-fidelity inputs.

Relation to DDIMs. The general recursive sampling formula is defined by Song et al. (2021):

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtϵ

(t)
θ (xt)√

ᾱt

)
︸ ︷︷ ︸

predicting x0

+
√
1− ᾱt−1 − σ2

t · ϵ
(t)
θ (xt)︸ ︷︷ ︸

direction pointing to xt

+σtϵt, (7)

with σt = 0 resulting in a deterministic forward process. One can see that Eq. 7 consists of two main
components, a prediction of x0 and a direction pointing to xt, exactly matching IR sampling from
Algorithm 2 with a reversed order. For deterministic DDIMs, the predicted noise ϵθ in Eq. 7 is used
to define the forward process instead of a randomly sampled Gaussian noise. This directly results
from their choice of the mean function for the inference distribution q (xt−1 | xt, x0) (refer to Song
et al. (2021) for more details). Despite the similarity, our results demonstrate that IR consistently
outperforms deterministic DDIM sampling. We hypothesize that the stochastic nature of IR aids in
rectifying errors incurred in earlier sampling steps. However, the dynamics of stochastic sampling
are complicated in practice and might introduce additional errors (Karras et al., 2022). Consequently,
this observation may not generalize to other datasets and domains.

5 EXPERIMENTS

5.1 TEST CASES

We consider two-dimensional (2D) fluid flow test scenarios, including compressible transonic flow
(Tra), incompressible forced turbulence (Fturb), and steady-state airfoil turbulence uncertainty
(Air), as shown in Fig. 1. Details regarding all datasets can be found in Appendix A. These
cases were selected to ensure diversity (similar to PDEBench (Takamoto et al., 2022)) and facilitate
the assessment of various method aspects, such as temporal stability and stochasiticity. For the
transient (i.e. time-dependent) cases, the prediction stride is defined as j ∈ {0, 1, . . . , 10}, i.e.,
T = 10, and is provided as an additional input channel to the network. Details regarding training and
diffusion-related hyperparameters for all test cases can be found in Appendix C.
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Figure 1: Showcasing diverse flow fields from our test cases. p∗ is the dimensionless pressure.

Transonic flow (Tra). Benchmark dataset by Kohl et al. (2024) for compressible transonic flow
over a cylinder on a 128×64 grid including ux, uy , p, and ρ flow fields. The case becomes particularly
challenging at high Mach Numbers Ma due to the presence of shock waves. Interpolation int and
extrapolation ext datasets for evaluation involve R = 60 timesteps with Ma ∈ {0.66, 0.67, 0.68}
and Ma ∈ {0.50, 0.51, 0.52}, respectively. Temporal stability is tested on Tralong with R = 240.

Forced turbulence (Fturb). We generate the dataset by solving the incompressible NS PDE with
a sinusoidal forcing term to obtain forced turbulence, i.e., Kolmogorov flow. We consider a range
of Re values with Re = {200, 1000, 2500, 4000} for training, while testing is split into interpolation
(int: Re = {1750}) and extrapolation (ext: Re = {100, 5000}) regions. The dataset comprises
includes ux and uy flow fields with 64 × 64 resolution. Autoregressive sampling is employed for
R = 30 timesteps for two sequences per Re. An additional dataset Fturblong with R = 120 is
considered to assess temporal stability of the models (see Appendix A for more details). We train a
deterministic single-step baseline for comparison, using the same architecture as DDPMs without
conditioning on xt or t, while using identical training parameters (see Appendix C).

Airfoil turbulence uncertainty (Air). The benchmark dataset by Liu and Thuerey (2024) models
the inherent uncertainty of steady-state airfoil flow simulations with various airfoil profiles, Re values,
and angles of attack. For each combination of parameters, 25 solutions are obtained through different
solver settings (e.g., number of iterations), representing the data uncertainty. Two main studies are
considered. (1) AirOne considers the uncertainty due to Re only while keeping other parameters
fixed (2) AirMulti considers the uncertainty arising from all parameters. AirMulti is limited to
1250 different configurations and both studies are restricted to a 32× 32 resolution.

5.2 RESULTS

Evaluation metrics. We evaluate the accuracy of DMs against the ground truth data through various
metrics. For the Fturb and Tra cases, we consider the temporal-average MSE (TA-MSE), turbulent
kinetic energy spectrum (TKE), domain-wide kinetic energy (DWKE), temporal correlation ρ for
the absolute velocity |u|, and temporal stability for significantly long rollout horizons. For results
obtained with j > 1, we restrict the analysis in this section to sampling with the stride j without
sampling the intermediate states (i.e., we only make ⌈R/j⌉ predictions to reach the target timestep).
Details regarding the sampling of the intermediate states are presented in Appendix D. In the Air
case, the focus is on evaluating how accurately the data distribution, characterized by the mean µ and
standard deviation σ for each channel y, is captured by the surrogates by evaluating (MSEµy

)a and
(MSEσy

)a, where (·)a denotes the average of a field.

We focus our evaluation on the speedup obtained via a reduction in NFEs, relying on the fact that we
utilize the same architectures with almost the same number of parameters for all models. Training and
sampling for all test cases were carried out using NVIDIA GeForce RTX 2080 Ti GPU. This section is
solely dedicated to quantitative analysis of the top-performing models. We provide our comprehensive
set of results as well as other baselines (such as ResNet, Fourier neural operators (FNO), PDE-Refiner,
latent-space transformers (TF), and Heteroscedastic models) in Appendix E.1. Qualitative samples
are provided in Appendix E.2. Moreover, we compare our methods against DDPMs, DDIMs, and
EDMs and exclude other expedited sampling methods outlined in Section 3 based on the following
considerations. Distillation techniques require extensive retraining without yielding significant
accuracy improvements over the teacher model. Bespoke solvers introduce excessive complexity and
resource demands to manage varying strides j in our autoregressive formulation.
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Top performing models for transient cases. We present TA-MSE results for the Tra and Fturb
cases in Table 1. Using j = 1, our approaches significantly surpass DDPMs and DDIMs accuracy
while requiring only a fraction of the NFEs, as low as single-step inference, whereas EDM exhibits
variable performance. In Tra (see Table 1, left), our approaches transcend the benchmark ACDM
(Kohl et al., 2024) with×4 and×20 (i.e., single-step inference) speedup for IR and TSM, respectively.
Additionally, the single-step TSM outperforms the best baseline from Kohl et al. (2024), while IR
yields marginally lower accuracy. The most accurate EDM is reported here, with comprehensive tests
for various samplers detailed in Fig. 7 (Appendix E.1), demonstrating marginal increase in accuracy
compared to TSM, albeit requiring 4× the NFEs.

Regarding the Fturb case (see right of Table 1), while single-step TSMs demonstrate sufficient ac-
curacy compared to expensive DDPMs and DDIMs, they prove suboptimal to the baseline. Although
the model “TSM T80 s =0.75” with 20 NFEs (see Table 8 in Appendix E.1) marginally outperforms
the baseline, its increased computational cost renders it less favorable for our objective. In contrast to
Tra, IR sampling with 10 NFEs provides the most accurate results, superseding the baseline, 80-step
DDPM, 40-step DDIM, 10-step EDM, and 20-step TSM. Also, EDM is found to be on par with the
single-step TSM in terms of accuracy but is ten times slower.

Optimal j. For optimal j values greater than 1 in both test cases (see Appendix E.1), all models,
except EDMs, reduce the TA-MSE significantly compared to values obtained by j = 1. While this
improvement is seen only when sampling with the main stride j, we demonstrate in Appendix D how
sampling the intermediate states could further reduce the TA-MSE, especially for large j.

Temporal stability and physics-based metrics. In addition to TA-MSE, we examine the correlation
between the predicted |u| to the ground truth over time for both Tra and Fturb cases. As shown in
Fig. 8, top TSM and IR models with the lowest TA-MSE consistently exhibit high correlation to the
ground truth across all timesteps, further confirming the superiority of our approaches in improving
over DDPMs. Also, in Fig. 9, we showcase the temporal stability of the models over extended
rollouts as they maintain physically-consistent results even after the predictions have decorrelated
from the ground truth. Furthermore, as shown in Fig. 2, the TKE and DWKE plots indicate that both
physics-based metrics are consistent with the TA-MSE results presented in Table 1, demonstrating
agreement in models accuracy, except for the top performance by EDM for the DWKE metric.

Foundations of our method’s performance. Our methods deliver superior results due to the
effective use of Tweedie’s formula in conjunction with the characteristics of the data distribution.
While Tweedie’s formula introduces biases for multimodal distributions, we demonstrated their
applicability to predominantly unimodal distributions in fluid dynamics (Shu et al., 2023; Yang and
Sommer, 2023). As a result, its application in our work does not lead to any bias, leading to single-
and few-step sampling with the same or improved accuracy. Moreover, since typical fluid datasets
are limited to relatively coarse resolutions, they inherently lack high-frequency details, allowing the
truncation of the last steps in the reverse process without loss of information, see Fig. 2a.

Air top performing models. Table 2 summarizes the top results for (MSEµy )a and (MSEσy )a
in both One and Multi cases. In the One case, our enhancement over the benchmark from Liu
and Thuerey (2024) is achieved by using a DDPM with a linear βt and normalizing the dataset.

Table 1: TA-MSE values for the top performing models in the Tra (left) and Fturb (right) cases.
The table shows how our TSMs and IR sampling can yield highly accurate results with NFEs ≤ 5 for
Tra and NFEs ≤ 10 for Fturb. UNetut refers to UNet with unrolled training. In IR, T100/T80 is
the base model, N is Gaussian noise used as xinit, and the absence of γ implies linear sampling steps.
Standard deviation values are estimated over all timesteps and multiple samples.

Tra (10−3) Fturb (10−2)

Model NFEs ext int Model NFEs ext int

ACDM T20 (Kohl et al., 2024) 20 2.3 ± 1.4 2.7 ± 2.1
UNetut (Kohl et al., 2024) 1 1.6 ± 0.7 1.5 ± 1.5 Baseline 1 3.95 ± 3.84 4.82 ± 5.23

DDPM T100 100 3.0 ± 2.7 4.1 ± 3.7 DDPM T80 80 6.16 ± 6.54 5.27 ± 5.55
EDM - Deterministic Euler 4 1.3 ± 1.3 1.1 ± 1.0 EDM - Stochastic Euler 10 4.75 ± 4.53 4.78 ± 4.26
DDIM T20 10 3.2 ± 2.7 4.2 ± 3.9 DDIM T80 40 4.31 ± 4.62 6.97 ± 6.84
IR T100 - N γ1 (Ours) 5 1.6 ± 1.3 2.0 ± 1.7 IR T80 - N (Ours) 10 2.93 ± 3.34 1.70 ± 1.63
TSM T100 s =1 (Ours) 1 1.2 ± 1.1 1.5 ± 1.5 TSM T100 s =1 (Ours) 1 5.00 ± 5.52 4.39 ± 4.76
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Figure 2: (a) TKE = E(κ) = |ũ(κ)|2/N , where N is the total number of nodes in the domain and
ũ = F(u), i.e., the Fourier transform of the velocity u. (b) Correlation coefficient ρ for the time
evolution of the DWKE, which describes the total kinetic energy of the system as DWKE(u) =
1
N

∑N
i=1 |ui|2/2. High ρ means the predicted states highly-correlate with the ground truth with

respect to the temporal evolution of the DWKE. Both plots are based on the entire test dataset.

Table 2: Air test case results for the top-performing models. Our proposed models (TSM and IR)
for AirOne (left) provide highly accurate estimation of the data distribution for both µ and σ with
up to ×20 speedup. In AirMulti (right), only the TSM supersedes the benchmark model in both
parameters. In IR, s =0.6 refers to xinit obtained by truncated sampling. ∗Model uses cosine βt.

AirOne (10−4) AirMulti (10−3)

Model NFEs (MSEµy
)a (MSEσy

)a Model NFEs (MSEµy
)a (MSEσy

)a

DDPM T200C∗ (Liu and Thuerey, 2024) 200 3.79 ± 0.27 8.40 ± 0.69 DDPM T200C∗ (Liu and Thuerey, 2024) 200 1.76 ± 0.23 0.89 ± 0.12

DDPM T200 200 2.88 ± 0.26 7.05 ± 0.22 DDPM T100 100 2.34 ± 1.11 0.57 ± 0.03
EDM - Deterministic Heun 20 8.13 ± 1.28 10.1 ± 1.67
DDIM T200 100 3.68 ± 0.44 7.24 ± 0.25 DDIM T100 50 2.12 ± 0.99 0.64 ± 0.05
IR T100 - s =0.6 γ5 (Ours) 41 2.87 ± 0.32 6.76 ± 0.20 IR T100 - s =0.6 γ5 (Ours) 41 2.07 ± 0.99 0.59 ± 0.04
TSM T100 s =0.9 (Ours) 10 3.30 ± 0.39 5.89 ± 0.33 TSM T100 s =0.75 (Ours) 25 1.66 ± 0.53 0.64 ± 0.04

Comparable accuracy is obtained using 10 NFEs (i.e., ×20 speedup) by our TSM, whereas the best
results are achieved by IR with 41 NFEs followed by suboptimal results from DDIM with 100 NFEs.
Furthermore, Fig. 4a depicts the data distribution over increasing Re, backing up our claims regarding
the accuracy of the low-NFEs models. EDMs perform poorly on this dataset, and exhibit difficulties
converging to smooth target states. Similar trends are observed for the Multi case. Notably,
TSM requires at least 25 NFEs (×2.5 more than in One) to learn the full data distribution with high
accuracy, while DDPM and DDIM models yield optimal results with 1/2 the NFEs used in One. We
believe further hyperparameter tuning could potentially improve the TSM results with less NFEs.

Further analysis of TSMs. We analyze the effect of s on the accuracy of TSMs compared to
ancestral sampling without truncation for all test cases. As shown in Fig. 3, TSMs unconditionally
outperform or at least match the accuracy of DDPMs with much fewer NFEs, depending on s.
Substantial enhancement in accuracy with few-step sampling (i.e., high s) is made possible in the
Tra and Fturb cases; however, in the Air test case, for the top performing linear βt-based models
with s > 0.5, we are only able to reduce NFEs for the same accuracy of DDPM. Noteworthy, for s =
1 in the Air case, the output is slightly noisy regardless of the satisfactory accuracy. For the cosine
βt-based model, we evidently see significant improvement to DDPM, which performs quite poorly
and, accordingly, even the best TSM results for this case exhibit inadequate accuracy.

Further analysis of IR. In Fig. 4b, we compare IR against DDIMs with varying NFEs for identical
sampling schedules in transient cases. Besides IR’s consistency in transcending DDIMs across
various base DDPMs, we notice a discernible correlation between NFEs and accuracy for DDIMs,
whereas IR does not manifest a noticeable trend. The stochastic nature of IR makes it difficult to find
clear relations across different datasets and NFEs as it is case-by-case tuned (Karras et al., 2022).

Limitations. In TSMs, since the training was focused on a limited part of the diffusion process,
they exhibit inflexible sampling; neither DDIMs nor IR could be applied unless the sampling steps
t = {tstart, . . . , tend} ⊂ {T, . . . , ts}, which is not the case for high s values. Also, while IR and
TSMs enable single- and few-step sampling with increased accuracy compared to ancestral sampling,
they are not guaranteed to supersede the accuracy of deterministic baselines. However, we have
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Figure 3: Effect of s on TSMs performance for all test cases using j = 1 (for transient problems).
Evaluation metrics are normalized by the s = 0 value; hence, values lower than 1 demonstrate higher
accuracy of TSM compared to DDPM with no truncation. The shaded regions represent the standard
deviation from both ext and int regions, and multiple samples.
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Figure 4: (a) Comparing the average σy of the models presented in Table 2 for the AirOne case with
increasing Re. Ground truth and Benchmark plots are obtained from Liu and Thuerey (2024). (b)
Comparing the sampling accuracy of IR against DDIM for the Tra (left) and Fturb (right) cases
using j = 1 and the same linear sampling schedule. The plot shows consistency by IR to provide
better estimations than DDIM for both base DDPMs. The shaded regions represent the standard
deviation from both ext and int regions, and multiple samples.

empirically shown that our methods improve over DDPMs, DDIMs, and EDMs in terms of speed
and/or accuracy across our diverse datasets.

6 CONCLUSION

We have introduced two novel training and sampling approaches to enable single- and few-step
sampling of DDPMs without compromising inference quality. Our first contribution is a Truncated
Sampling Model (TSM), capable of achieving single-step inference while maintaining or even
enhancing accuracy through early truncation of the reverse process. Additionally, our second
contribution, Iterative Refinement (IR), targets pre-trained DDPMs by formulating the sampling
process as a refinement endeavor to facilitate high-fidelity inference with reduced NFEs compared
to existing sampling methods, such as DDIMs. We have showcased the efficacy of TSMs and IR
in minimizing the disparity between DDPMs and deterministic baselines across a diverse set of
experiments, assessing various facets of our approaches. Our proposed methods significantly enhance
sampling speed and quality in fluid dynamics simulations and we posit their potential applicability in
other domains for which diffusion models are considered state-of-the-art.

Future work. For TSMs, transfer learning is a desirable alternative to aid in reducing the computa-
tional burden of training from scratch. Additionally, integrating TSMs and IR together and with other
enhancement methods holds promise in further improving the accuracy of DMs, relying on their
flexibility for seamless integration with various techniques such as guidance (Dhariwal and Nichol,
2021; Ho and Salimans, 2021; Hong et al., 2023), distillation (Luhman and Luhman, 2021; Salimans
and Ho, 2022), and latent diffusion models (Rombach et al., 2022). Finally, through our proposed
formulation of the spatio-temporal prediction task, flexible sampling with novel sampling schemes
(similar to Harvey et al. (2022)) is another interesting venue of future research.
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A EXPERIMENTAL SETUP

We summarize the details for all our datasets in Table 3. For detailed informatioon regarding the
generation of these datasets, please refer to the corresponding papers for Tra (Kohl et al., 2024)
and Air (Liu and Thuerey, 2024). For the Tra and Fturb cases, only a single parameter is varied,
namely Re, and is provided as an input channel to all models. While in Tra we consider velocity
(ux and uy), pressure (p), and density (ρ) fields as input and output fields, the velocity fields are only
considered in Fturb. Additionally, for both datasets, the models are conditioned on the prediction
stride j, provided as an additional input channel to the network.

In the Air case, there are three main parameters being changed: airfoil shape S, angle of attack
(AoA), and Re. These parameters are provided as three input fields/channels to the network and the
model outputs the velocity and pressure dimensionless fields. The number of outputs obtained from
the different solver settings (referred to as "Sequences per Param" in Table 3) are fixed to 25 solutions
for every parameter configuration. For the AirOne case, S is fixed to the raf30 airfoil shape and an
AoA of 20◦, while in AirMulti, the three parameters are varied.

Generating the Fturb dataset. We solve the incompressible form of the NS PDE (Eq. 4 with
∂ρ/∂τ = 0) using a spatially varying sinusoidal forcing term f = sin(4y)̂i − 0.1u (similar to
Kochkov et al. (2021)) for a range of Re values for training and testing. Using Φflow (Holl et al.,
2020), we discretize a square domain Ω = [0, 2π]× [0, 2π] on a 128×128 cartesian grid. Both spatial
derivative terms (i.e., the advection and diffusion terms) are discretized using a 6th-order implicit
finite difference method and are solved iteratively using the Conjugate Gradient (CG) solver. The time
advancement scheme uses a 4th-order Runge–Kutta scheme, which also handles the pressure gradient
term with 4th-order accuracy using the CG solver. In addition, this step ensures a divergence-free
flow velocity. Each RK-4 step consists of 25 iterations to ensure convergence at each timestep. The
outputs are then downsampled to 64× 64 resolution. To augment the difficulty of the problem, we
record each snapshot after 25 timesteps from the solver (i.e., we consider a temporal stride of 25
frames) with CFL = 0.7 and variable δτ . Details regarding the number of sequences generated per
Re and the total number of frames used for training and testing can be found in Table 3. The only
difference between the sequences for each Re is the initial condition, defined as a random noise
based on a distinct random seed. To ensure fully convergent flow fields, each simulation is run for 20
timesteps as a warmup before the outputs are recorded.

Table 3: Parameter values for all datasets. ∗Using 1387 airfoil shapes. ∗∗Using 30 airfoil shapes.

Dataset Param Purpose Values Sequences
per Param

Total
Sequences

R Total
Frames

Tra
(128× 64)

Ma training {0.53, 0.54, . . . , 0.63} ∪ {0.69, 0.70, . . . , 0.90} 1 33 501 16533
test ext: {0.50, 0.51, 0.52} 2 6 60 360

int: {0.66, 0.67, 0.68} 2 6 60 360
long: {0.64, 0.65} 2 4 240 960

Fturb
(64× 64)

Re training {200, 1000, 2500, 4000} 240 960 51 48960
test ext: {100, 5000} 2 4 30 120

int: {1750} 2 2 30 60
long: {100, 1750, 5000} 2 6 120 720

AirOne
(32× 32)

Re training {1.5×106, 3.5×106, 5.5×106, 7.5×106, 9.5×106} 25 - - 125
test ext: {5×105, 10.5×106} 25 - - 50

int: {2.5×106, 4.5×106, 6.5×106, 8.5×106} 25 - - 100

AirMulti
(32× 32)

Re &
AoA
& S

training* Re: (106, 107), AoA: (−22.5, 22.5) 25 - - 31250
test** Re: (5×105, 106) ∪ (107, 1.1×107) 25 - - 3250AoA: (−25,−22.5) ∪ (22.5, 25)

B REFINEMENT SCHEDULES FOR IR

As mentioned in Section 4.2, optimization of the IR schedules γ is limited to a straightforward greedy
optimization, presented in Algorithm 3. We start the optimization by choosing the max possible
length of γ (N ) and a value for the first refinement step (K). If K is not provided, the default starting
value is T (i.e., the number of noise steps of the pre-trained DDPM). For the first step, we consider
K possible options for refinement, i.e., {x ∈ Z | 1 ≤ x ≤ K}. As long as the validation loss L
is decreasing, we keep looping over all K values. However, if the loss does not improve after tol
steps (i.e., a tolerance set by the user to achieve early stopping for non-promising optimizations), we
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continue to the next refinement step. The starting point for the next timestep is defined to be one step
smaller the current optimized step to further reduce the computational cost. If for the current step no
value was found to reduce the current best loss Lbest, the entire optimization is terminated, leading to
the loss in Eq. 6, even if |γ| < N . These restrictions are imposed to reduce the computational cost
of optimization, though they might lead to non-optimal results. More expensive gradient-based and
gradient-free optimization algorithms offer the potential to yield better results; however, we believe
that the accuracy gain would not compensate for the concomitant computational cost.

Algorithm 3 Greedy optimization of γ with early stopping

Require: N (Max length of γ), K (starting value)
Require: tol (tolerance value), xinit (Initial state, ϵθ (pre-trained DDPM)

1: γ ← {}
2: for i = 1 to N do
3: Lbest ←∞
4: topt ← −1
5: counter← 0
6: for j = K to 1 do ▷ Go over all possible values.
7: γtemp ← append(γ, j) ▷ Update γtemp by appending step j to γ (unchanged).
8: L = recursive_sampling(xinit, γtemp, ϵθ) ▷ Evaluate γtemp on the validation dataset.
9: if L < Lbest then ▷ Update the current step if accuracy is higher.

10: Lbest ← L
11: topt ← j
12: counter← 0
13: else
14: counter← counter +1
15: if counter > tol then
16: break ▷ Terminate current step: failed to improve Lbest after tol trials.
17: end if
18: end if
19: end for
20: if topt = −1 then
21: break ▷ Terminate optimization: no improvement found.
22: end if
23: append(γ, topt)
24: K ← topt − 1 ▷ Consider only smaller values for the next refinement step.
25: end for
26: return γ

Using the greedy algorithm, the optimization schedules utilized in all our experiments are summarized
as follows (and visualized in Figure 5):

γ1,i = 0.805− 0.2i, ∀i = 0, 1, 2, 3, 4,

γ2,i = 0.805− 0.1i, ∀i = 0, 1, 2, . . . , 8,

γ3,i = 0.655− 0.05i, ∀i = 0, 1, 2, . . . , 13,

γ4,i = 0.905− 0.05i, ∀i = 0, 1, 2, . . . , 18.

(8)

Also, γ5 = {1/T}. When no γ schedule is provided, we use a linear sampling schedule by default:

γlinear(N) = {x ∈ N | 0 ≤ x < T, for N ∈ N}. (9)

0 0.2 0.4 0.6 0.8 1

t/T

γ1
γ2
γ3
γ4

Figure 5: Illustration for the refinement schedules defined in Equation 8. Each node represents a
noise step. All schedules start from the node with the largest t/T .
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C SIMULATION PARAMETERS

The training hyperparameters used for all test cases are presented in Table 4. Our training is limited
to the L2 loss for DDPMs, TSMs, EDMs and any baselines. We employ an overlap by one frame
(see Appendix F for details regarding dataset overlapping) for the Fturb case, except for the case of
s = 1 in TSMs where we overlap 6 frames, since the training procedure was unstable for the first few
epochs, leading to suboptimal results. However, we stop the training at half the number of epochs
reported in Table 4 to maintain the same number of training iterations for a fair comparison. In Tra,
all models were trained with max overlap (i.e., 10 frames overlapping) but with early stop once the
validation loss stabilizes, typically much earlier than the number of epochs presented in Table 4.

Table 4: Summary of the training hyperparameters employed in all test cases.

Parameter Fturb Tra AirOne AirMulti

Data size (frames) 48960 16533 150 31250
Resolution 64×64 128×64 32×32 32×32
Batch size 64 32 25 128
Epochs 300 3000 12000 3000
Learning rate (start, end) 10−4, 10−5 10−4 10−4, 10−5 10−4, 10−5

Learning rate schedule Cosine None Cosine Cosine
Optimizer AdamW AdamW AdamW AdamW
Weight decay 10−2 10−2 10−2 10−2

EMA decay 0.999 0.999 0.999 0.999
Early stop? No Yes Yes No

The utilized network architectures and the diffusion-related hyperparameters are summarized in Table
5. We use the exact same network architectures as provided in benchmark papers for fair comparison
and to demonstrate the applicability of our approaches on diverse settings and architectures. For the
baseline method trained in the Fturb case, we use cin = 4 instead of 6 as the state variable xt is
ignored and the network is not conditioned on the noise step t. Also, the baseline is trained to directly
predict the fluid state xτ+jδτ instead of the noise ϵθ as in DDPMs. Apart from these modifications,
the training of the baseline and DDPMs is identical.

EDM training and sampling. Our implementation of EDMs is based on the work by Karras et al.
(2022). We implement their Algorithm 1 (deterministic sampler) and Algorithm 2 (stochastic sampler)
using 1st-order Euler and 2nd-order Heun’s methods with design choices from the last column of
Table 1 (Karras et al., 2022). Additionally, we consider preconditioning and a weighted loss function
using the parameters recommended by the authors. For each case, we ran the model using different
combination of deterministic/stochastic samplers and Euler’s/Heun’s methods. For the stochastic
sampler, the parameters {Schurn, Stmin, Stmax, Snoise} were non-comprehensively tuned to attain
the best possible results. We found the values 10, 0,∞, and 1 for Schurn, Stmin, Stmax, and Snoise,
respectively, to generally yield satisfactory results across datasets. Noteworthy, EDMs introduce
more hyperparameters for tuning compared to DDPMs, DDIMs, and our approaches.

Table 5: Network architecture and diffusion-related hyperparameters used in all test cases. cin and
cout refer to the network’s number of input and output channels, respectively. βstart and βend of the
noise schedule βt are similar to Ho et al. (2020) but are scaled by a factor depending on the chosen
noise steps T, as defined in Nichol and Dhariwal (2021) and Kohl et al. (2024).

Parameter Fturb Tra AirOne AirMulti

Architecture Kohl et al. (2024) Kohl et al. (2024) Liu and Thuerey (2024) Liu and Thuerey (2024)
cin 6 10 6 6
cout 2 4 3 3
βstart 10−4 · (400/T) 10−4 · (500/T) 10−4 · (1000/T) 10−4 · (1000/T)
βend 0.02 · (400/T) 0.02 · (500/T) 0.02 · (1000/T) 0.02 · (1000/T)
Schedule Linear Linear Linear / Cosine Linear
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D PARALLEL RECURSIVE SAMPLING

Speedup through parallel sampling. One of the benefits of conditioning a surrogate model on
the prediction stride j is to enable parallel sampling of transient test cases. To date, related work
concerned with physics-based simulations of transient nature focus on autoregressive sampling only
(refer to Section 3 for more details). Nonetheless, we posit that our formulation of the problem
definition (see Section 2.2), combined with our proposed improvement approaches (i.e., TSMs and
IR), would enable parallel sampling with reduced inference time for the same computational budget.

Inspired by the progress in video diffusion models (Ho et al.; 2022; Ni et al., 2023; Wu et al., 2023;
Harvey et al., 2022), we present two examples of sampling schemes that allow for parallel sampling
of diffusion models in transient test cases. As demonstrated in Fig. 6 for a sample problem with R =
10 states, while autoregressive sampling (see Fig. 6a) requires 10 successive predictions to sample
the entire simulation, it only requires 5 steps for parallel sampling with a batch size n = 2 (cf. Fig.
6b). With n = 5, max parallelism can be achieved to sample the entire simulation in 2 steps only
(cf. Fig. 6c). This corresponds to a speedup factor ≈ n, assuming that T ≥ n. For the two parallel
sampling schemes, we assume that sampling with j = 5 will lead to lower TA-MSE compared to
sampling with j = 1 for the entire simulation.

(a) Autoregressive sampling (n = 1). (b) Parallel sampling with n = 2. (c) Max parallelism with n = 5.

Figure 6: Parallel sampling of a time-dependent simulation with R = 10, enabled through models
conditioned on the prediction stride j. n is the batch size used for sampling. Each row represents
the state of the entire simulation, where the states evolve in time going downwards through the rows.
Numbers within blue cells (cells to predict) correspond to the value of j used to sample from the
nearest initial condition (green cell). Gray cells are states already sampled and are not needed for
current or subsequent predictions. For (b) and (c), we assume that j = 5 leads to highest prediction
accuracy compared to other j values.

Higher accuracy when sampling intermediate timesteps. For models that allow sampling using
j > 1, we not only enable flexible parallel sampling to reduce inference time as discussed, but also
we improve the overall prediction accuracy. Typically when intermediate states are sampled with a
stride jsec smaller than the primary sampling stride j, we gain (marginally) higher overall accuracy
compared to ignoring intermediate states for sampling (using j only). In Table 6, we demonstrate
this by sampling the best IR and TSM models for the Tra and Fturb test cases. In both test cases,
we see marginal improvement in the mean TA-MSE for small j; however, the improvement is more
pronounced for higher j values. This is primarily attributed to the argument discussed by Lienen et al.
(2024) pertaining to higher accuracy of predicting with small timestep sizes for a short rollout horizon
(R = j for sampling the intermediate states) before error accumulation predominates, leading to
lower accuracy for longer rollout horizons. This greatly motivates future research in flexible sampling
of time-dependent physics-based simulations similar to Harvey et al. (2022).
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Table 6: Mean TA-MSE results for transient cases for predictions with j > 1, and with and without
sampling the intermediate states. For the former, the model names include “(all)”. TA-MSE is
averaged over ext and int regions. Standard deviation values are calculated over all timesteps,
both regions, and multiple samples. The results show consistent improvement when sampling the
intermediate states with jsec = 1 over sampling with the primary prediction stride j only.

j

Model 2 4 6 8 10

Tra (10−3)

IR T100 - N γ1 2.06 ± 1.91 2.73 ± 2.61 3.15 ± 2.93 4.18 ± 3.39 3.54 ± 2.98
IR T100 - N γ1 (all) 1.94 ± 1.82 2.33 ± 2.27 2.75 ± 2.83 3.06 ± 2.82 2.72 ± 3.39
TSM T100 s =1 1.46 ± 1.55 1.78 ± 1.82 2.17 ± 2.11 2.35 ± 2.07 2.32 ± 2.12
TSM T100 s =1 (all) 1.36 ± 1.47 1.59 ± 1.68 1.93 ± 2.22 1.74 ± 1.74 2.09 ± 3.22

Fturb (10−2)

IR T80 - N γ4 2.18 ± 0.88 2.97 ± 0.95 2.28 ± 0.81 4.18 ± 1.91 2.97 ± 0.55
IR T80 - N γ4 (all) 1.89 ± 0.77 2.09 ± 0.75 2.58 ± 3.40 3.36 ± 4.23 3.47 ± 6.47
TSM T80 s =0.75 3.63 ± 1.95 5.46 ± 2.57 6.61 ± 2.84 10.14 ± 4.42 5.48 ± 0.62
TSM T80 s =0.75 (all) 3.22 ± 1.77 4.07 ± 2.17 5.10 ± 3.29 6.19 ± 4.62 4.79 ± 7.15

E FULL RESULTS OF EXPERIMENTS

In this section, we present our full results from all test cases in addition to the top performing models
presented in Section 5. The results are split into quantitative and qualitative sections.

E.1 QUANTITATIVE RESULTS

Tra test case The results for using j = 1 and optimal j > 1 are presented in Table 7. For TA-MSE
values obtained with j = 1, several insights can be observed. First, in comparison to ACDM (Kohl
et al., 2024), we are able to provide more accurate results through IR and TSMs with single-step
and few-step sampling (NFEs ≤ 5), even though our problem formulation (defined in Section 2) is
much harder compared to ACDM for the same utilized architecture. Noteworthy, the ACDM results
are obtained by conditioning over two previous timesteps, whereas all our models are conditioned
on the previous timestep only. Second, various TSMs are capable of improving over all considered
baselines with and without advanced training mechanisms, with the most accurate model being a
single-step solver. IR only improves over the base DDPMs and surpasses DDIMs by a significant
margin for both similar and optimized sampling schedules. In our experiments, we focused on using
random Gaussian noise N (0, I) for the initial state xinit to reduce the computational overhead before
starting the refinement process and also because we found in early experiments that this setup yields
slightly more accurate results than starting from a prediction obtained through truncated sampling of
the base DDPM. Third, IR and DDIM were able to provide noise-free results even when the base
DDPM produces noisy output (e.g. DDPM T20). Fourth, in comparison to EDMs, we observe that
although using a deterministic Euler solver yields the best results for this case, with a negligible
margin over TSM, it requires 4 NFEs. In contrast, TSM is the only model that enables single-step,
high-fidelity inference. Note that we evaluate several solvers for EDM (see Fig. 7, left), but we only
report the optimal settings for each solver in Table 7. Finally, we note that PDE-Refiner performs
suboptimally with a significant gap compared to other baselines. The model was found to be highly
sensitive to its key hyperparameters (Kohl et al., 2024), rendering the hyperparameter tuning for this
model challenging and ultimately resulting in suboptimal performance.
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Figure 7: Evaluating different combinations of EDM samplers for the Tra (left), Fturb (middle),
and AirOne (right) test cases. Standard deviation regions are omitted for clarity.
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For j > 1, we observe substantial improvements in accuracy, even for low-fidelity models, except for
EDMs. Suboptimal few-steps DDIMs are able to achieve comparable accuracy to the best baselines,
which is also true for IR and TSMs. Noteworthy, the numbers reported for j > 1 are limited to
sampling with j only without considering the intermediate states. We show in Appendix D that
sampling intermediate states could further enhance the overall accuracy, particularly for large j.

Table 7: TA-MSE (10−3) values of the Tra test case for j = 1 (left) and the best results using
the optimum j (right). UNettn and UNetut refer to a UNet with training noise and unrolled training,
respectively. The reader is referred to Kohl et al. (2024) for a full description of the baselines reported.
Lowest TA-MSE values for each group of models are highlighted in bold. Standard deviation values
are obtained over all timesteps and multiple samples. ∗Model produces noisy output.

j = 1 optimum j

Model NFEs ext int j ext int

Kohl et al. (2024)
ACDM 20 2.3 ± 1.4 2.7 ± 2.1
UNettn 1 1.4 ± 0.8 1.8 ± 1.1
UNetut 1 1.6 ± 0.7 1.5 ± 1.5
ResNetdil. 1 1.7 ± 1.0 1.7 ± 1.4
FNO16 1 4.8 ± 1.2 5.5 ± 2.6
TFEnc 1 3.3 ± 1.2 6.2 ± 4.2
PDE-Refiner 4 5.4 ± 2.1 7.1 ± 2.1

DDPM
T20∗ 20 3.5 ± 3.1 2.6 ± 2.1 4 1.6 ± 1.3 2.1 ± 2.0
T100 100 3.0 ± 2.7 4.1 ± 3.7 5 1.9 ± 1.8 3.1 ± 2.7

EDM
Euler - Deterministic 4 1.3 ± 1.3 1.1 ± 1.0 1 1.3 ± 1.3 1.1 ± 1.0

Stochastic 4 1.7 ± 1.7 1.1 ± 1.0 1 1.7 ± 1.7 1.1 ± 1.0
Heun - Deterministic 40 2.7 ± 2.7 1.6 ± 1.4 2 2.2 ± 2.1 1.2 ± 1.1

Stochastic 40 2.0 ± 2.2 2.0 ± 1.8 2 1.8 ± 2.0 1.8 ± 1.6

DDIM
T20 5 4.4 ± 3.3 6.7 ± 5.4 4 1.9 ± 1.7 2.5 ± 2.2

10 3.2 ± 2.7 4.2 ± 3.9 4 1.4 ± 1.3 1.8 ± 1.7
T100 5 7.8 ± 5.2 6.1 ± 4.3 10 2.8 ± 1.9 4.1 ± 3.0

10 8.8 ± 5.5 6.7 ± 4.3 10 3.3 ± 2.2 4.5 ± 3.0
20 7.8 ± 5.2 6.1 ± 4.3 10 2.8 ± 1.9 4.1 ± 3.0
50 7.1 ± 4.7 6.0 ± 4.4 9 3.2 ± 2.2 3.3 ± 2.3

IR (Ours)
T20 5 2.8 ± 2.9 1.7 ± 1.7 4 1.3 ± 1.4 1.5 ± 1.5

10 3.2 ± 2.9 1.6 ± 1.5 4 1.2 ± 1.1 1.6 ± 1.6

T100 5 1.7 ± 1.4 2.1 ± 1.8 1 1.7 ± 1.4 2.1 ± 1.8
10 3.8 ± 3.2 3.5 ± 3.3 2 2.6 ± 2.3 2.7 ± 2.4
20 3.1 ± 3.1 3.0 ± 2.9 5 1.9 ± 1.7 3.0 ± 2.8
50 4.4 ± 4.0 3.5 ± 3.7 5 1.7 ± 1.5 4.1 ± 3.8

T20, γ1 5 2.3 ± 2.3 2.0 ± 1.9 4 1.3 ± 1.4 1.7 ± 1.8
γ2 9 3.1 ± 2.9 1.6 ± 1.6 4 1.3 ± 1.2 1.7 ± 1.7
γ3 14 1.7 ± 1.8 1.7 ± 1.8 3 1.7 ± 1.7 1.5 ± 1.6
γ4 19 2.4 ± 2.6 1.2 ± 1.1 3 1.3 ± 1.3 1.4 ± 1.4

T100, γ1 5 1.6 ± 1.3 2.0 ± 1.7 1 1.6 ± 1.3 2.0 ± 1.7
γ2 9 3.7 ± 3.0 2.7 ± 2.4 2 2.7 ± 2.4 2.7 ± 2.4
γ3 14 3.2 ± 3.0 2.9 ± 2.8 2 2.5 ± 2.8 2.7 ± 2.5
γ4 19 2.6 ± 2.6 3.1 ± 2.9 2 2.2 ± 2.4 2.6 ± 2.3

TSM (Ours)
T15, s = 0.25 11 1.8 ± 1.8 1.7 ± 1.5 2 1.2 ± 1.2 1.5 ± 1.6

s = 0.5 7 2.1 ± 2.2 1.2 ± 1.1 3 1.2 ± 1.1 1.6 ± 1.4
s = 0.75 3 1.4 ± 1.4 2.4 ± 2.3 6 1.4 ± 1.1 1.6 ± 1.4
s = 1 1 1.3 ± 1.2 1.6 ± 1.5 2 1.2 ± 1.1 1.6 ± 1.6

T100, s = 1 1 1.2 ± 1.1 1.5 ± 1.5 1 1.2 ± 1.1 1.5 ± 1.5

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30
Timestep r

0.7

0.8

0.9

1.0

(|v
|)

Fturb

Baseline
DDPM
EDM
DDIM
IR (Ours)
TSM (Ours)

0 10 20 30 40 50 60
Timestep r

0.7

0.8

0.9

1.0

(|v
|)

Tra

DDPM
EDM
DDIM
IR (Ours)
TSM (Ours)

Figure 8: Tra (left) and Fturb (right) absolute velocity |u| correlation to ground truth using j = 1
for the models reported in Table 1. Values are averaged over ext and int regions and the shaded
area represents the standard deviation from both regions and multiple samples.
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Figure 9: Time evolution for the temporal stability parameter between consecutive timesteps for
top-performing models (see Table 1) compared to the ground truth simulation (GT). Dashed lines are
obtained from Kohl et al. (2024). Standard deviation regions are omitted for clarity.

Temporal analysis. In Fig. 8 (left), we see how the |u| correlation to the ground truth evolves over
time for the most accurate models, demonstrating consistency with the TA-MSE metric. In addition,
we evaluate the temporal stability of these top-performing models on the Tralong dataset, which has
much longer sequence length (i.e., R = 240 instead of 60), to ensure that the models’ predictions
remain physically consistent even after the predicted trajectories have significantly deviated from
the ground truth. In Fig. 9 (left), we compare the time evolution of the stability parameter, defined
as the rate of change of each flow field x, by evaluating ||(xr − xr−1)/∆τ ||1. Compared to the
ground truth results, we see that stability parameter remains bounded within the range [0.015, 0.02]
for both the ground truth and all models, except for a low-fidelity PDE-Refiner model that produces
non-physical predictions beyond r ≈ 200. While DDIM, DDPM, and IR models slightly exceed the
lower bound, they maintain temporal stability.

Fturb test case The results for using j = 1 and j > 1 are presented in Table 8. Similar to the
previous test case with j =1, we observe comparable trends in accuracy for the different models.
IR sampling with DDPM T80 base model provides the most accurate results with NFEs as low as
5 steps that surpass the baseline with a significant margin. Best result is achieved by a 19-step IR
model with optimized schedule γ4. However, with much less NFEs, highly satisfactory results are
possible, such as using γ1 for the DDPM T80 base model. Single-step TSMs also provide competitive
accuracy values which are marginally below the accuracy of the baseline. By using optimum j
values, single-step TSMs are able to surpass the baseline and provide comparable results to IR, which
provides further better results than with j = 1. The most accurate EDM is achieved through a
stochastic Euler solver with 10 NFEs, delivering much better results than all 2nd-order Heun solvers
with a fraction of NFEs. The model has an optimum j = 1; hence, it is outperformed by most
DDPMs, DDIMs, IR, and TSMs at lower NFEs when the optimum j > 1. Although the most accurate
EDM solver is on par with the single-step TSM in terms of accuracy, it is 10× slower and doesn’t
provide better results when j > 1.

Temporal analysis. The time evolution of ρ(|u|) is shown in Fig. 8 (right), while the stability
parameter for long rollouts evaluated on Fturblong with R = 120 instead of 30 is presented in Fig.
9 (right). Both figures show consistent results to the TA-MSE values and demonstrate the accuracy
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of the different models over time. Noteworthy, the stability parameter (Fig. 9, right) of the ground
truth and all models remains constrained within [0.1, 0.15], with the exception of a minor deviation
observed for DDIM at r ≈ 70, which doesn’t lead to non-physical results for the remaining timesteps.

Table 8: TA-MSE (10−2) values of the Fturb test case for j = 1 (left) and the best results using
the optimum j (right). Lowest TA-MSE values for each group of models are highlighted in bold.
Standard deviation values are obtained over all timesteps and multiple samples. ∗Model produces
noisy output.

j = 1 optimum j

Model NFEs ext int j ext int

Baseline 1 3.95 ± 3.84 4.82 ± 5.23 3 3.22 ± 2.88 3.73 ± 3.55

DDPM
T20∗ 20 20.66 ± 16.71 24.01 ± 20.58 10 7.80 ± 5.22 4.51 ± 3.66
T50 50 10.60 ± 11.47 9.85 ± 8.76 3 7.31 ± 7.28 5.54 ± 5.07
T80 80 6.16 ± 6.54 5.27 ± 5.55 5 4.68 ± 4.52 2.71 ± 2.22
EDM
Euler - Deterministic 4 5.65 ± 5.58 5.67 ± 5.77 1 5.65 ± 5.58 5.67 ± 5.77

Stochastic 10 4.75 ± 4.53 4.78 ± 4.26 1 4.75 ± 4.53 4.78 ± 4.26
Heun - Deterministic 40 9.22 ± 8.93 12.06 ± 11.43 5 9.23 ± 9.10 7.48 ± 6.24

Stochastic 100 10.32 ± 9.60 9.35 ± 8.90 3 8.05 ± 8.27 8.16 ± 7.73

DDIM
T50 5 14.21 ± 12.09 26.65 ± 20.68 5 7.64 ± 6.62 13.31 ± 12.80

10 8.49 ± 8.74 14.79 ± 14.07 4 6.53 ± 5.99 8.26 ± 7.74
25 7.27 ± 7.93 11.84 ± 11.47 3 5.99 ± 6.17 7.22 ± 7.46

T80 5 9.77 ± 8.56 19.91 ± 16.50 6 4.78 ± 4.68 5.92 ± 5.37
10 5.61 ± 5.79 10.47 ± 9.90 6 4.19 ± 4.06 3.99 ± 3.67
20 4.59 ± 4.89 7.72 ± 7.46 6 4.10 ± 3.97 3.59 ± 3.27
40 4.31 ± 4.62 6.97 ± 6.84 6 4.13 ± 3.99 3.53 ± 3.20

IR (Ours)
T50 5 4.36 ± 4.65 4.05 ± 3.86 3 3.44 ± 3.15 2.89 ± 2.80

10 4.44 ± 4.99 3.24 ± 3.06 3 3.85 ± 3.79 2.64 ± 2.59
25 4.24 ± 4.69 3.52 ± 3.41 2 4.27 ± 4.54 2.56 ± 2.34

T80 5 3.21 ± 3.37 2.77 ± 2.67 6 2.89 ± 2.41 1.86 ± 1.58
10 2.93 ± 3.34 1.70 ± 1.63 2 3.36 ± 3.68 1.19 ± 1.18
20 2.61 ± 2.73 2.27 ± 2.43 6 2.88 ± 2.51 1.54 ± 1.22
40 3.19 ± 3.41 2.58 ± 2.59 2 3.63 ± 3.71 1.36 ± 1.17

T50, γ1 5 4.36 ± 4.65 4.05 ± 3.86 3 3.44 ± 3.15 2.89 ± 2.80
γ2 9 5.31 ± 6.09 2.92 ± 2.66 3 4.16 ± 4.15 2.46 ± 2.36
γ3 14 5.29 ± 5.84 4.07 ± 3.94 3 4.08 ± 4.00 3.32 ± 3.25
γ4 19 3.59 ± 3.89 4.08 ± 4.22 2 3.50 ± 3.51 3.62 ± 3.77

T80, γ1 5 3.21 ± 3.37 2.77 ± 2.67 6 2.89 ± 2.41 1.86 ± 1.58
γ2 9 3.21 ± 3.59 2.24 ± 2.13 6 3.42 ± 3.07 1.75 ± 1.52
γ3 14 2.93 ± 3.31 2.27 ± 2.08 6 2.93 ± 2.50 1.87 ± 1.66
γ4 19 2.59 ± 2.82 1.95 ± 2.02 2 2.90 ± 2.97 1.46 ± 1.45

TSM (Ours)
T20, s = 0.5 10 6.55 ± 7.30 6.64 ± 6.54 2 5.81 ± 6.30 4.57 ± 4.42

s = 0.75 3 7.54 ± 7.88 8.54 ± 7.38 3 5.85 ± 5.20 6.09 ± 5.13
s = 1 1 9.09 ± 8.92 10.96 ± 9.01 3 14.19 ± 9.87 1.36 ± 1.05

T50, s = 0.5 25 6.74 ± 7.61 5.48 ± 5.39 3 4.43 ± 4.45 5.06 ± 5.29
s = 0.75 13 5.10 ± 4.90 5.94 ± 6.01 2 3.90 ± 3.67 4.73 ± 4.56
s = 1 1 5.47 ± 6.25 5.94 ± 6.13 5 3.53 ± 3.25 2.40 ± 2.37

T80, s = 0.5 40 5.46 ± 5.80 3.68 ± 3.33 3 3.89 ± 3.61 3.58 ± 3.63
s = 0.75 20 3.84 ± 3.85 4.35 ± 3.96 2 3.43 ± 3.03 3.83 ± 3.59
s = 1 1 5.29 ± 5.33 6.32 ± 6.69 5 4.44 ± 4.13 1.93 ± 1.86

T100, s = 1 1 5.00 ± 5.52 4.39 ± 4.76 5 3.91 ± 3.59 1.20 ± 1.04

Air test case The results for the AirOne and AirMulti test cases are presented in Table 9. For
the AirOne test case, as discussed in Section 5, we were able to provide better results than the
benchmark by Liu and Thuerey (2024) with the same number of NFEs by using a linear βt, alongside
dataset normalization. Similar to the two previous test cases, DDIMs reduce NFEs by compromising
accuracy, while our IR approach leads to the most accurate results for this study. We found that using
xinit ∼ N (0, I) similar to the two previous test cases lead to suboptimal results that are not report here.
However, relying on the accurate DDPM base models, we provide xinit through truncated sampling
of the base model. This truncation of the base DDPM yields adequately accurate results but are
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dominated by noise in the output. In this case, IR simply refines the input (which is conceptually the
essence of the approach) to remove the noise in the output while maintaining or slightly improving the
accuracy. Here, only a single step of refinement was sufficient to provide the highest accuracy results.
Regarding TSMs, we observe competitive accuracy for both linear and cosine βt with moderate
NFEs (< 20), which already reduces the computational cost compared to the benchmark and the base
DDPM by a significant margin. While for linear βt single step inference is possible to learn the entire
data distribution, the output from these models were found to be slightly noisy. For the cosine βt,
single-step TSM fails to learn the data distribution (as demonstrated by the extremely high MSEσ)
and only learns the mean (as shown by the low MSEµ). Hence, this leads to the conclusion that
with the proper choice of βt and the associated diffusion-related parameters, single-step inference
through TSMs is made possible even in test cases with high uncertainty. Additionally, we evaluate
several EDM samplers for this test case and conclude that there is little variability between the
top-performing solvers in terms of accuracy. The most accurate EDM is a deterministic 2nd-order
Heun solver that fails to deliver competitive results. Even at higher NFEs, up to 200, we observe only
a minor improvement in accuracy (see Fig. 7, right). This outcome is likely attributable to suboptimal
hyperparameter configurations for both training and sampling.

Table 9: AirOne (left) and AirMulti (right) test case results. Best results in each group of models
are highlighted in bold. Standard deviation values are obtained from multiple samples. ∗Model uses
cosine βt. #Model only predicts µy and σy. ∗∗Model produces slightly noisy output. ∗∗∗Model
produces too noisy output.

AirOne (10−4)

Model NFEs (MSEµy
)a (MSEσy

)a

Liu and Thuerey (2024)
DDPM T200C∗ 200 3.24 ± 0.55 7.66 ± 0.74
Heteroscedastic# 1 3.35 ± 0.60 4.47 ± 0.37
DDPM
T100 100 3.73 ± 0.34 7.73 ± 0.24
T200 200 2.88 ± 0.26 7.05 ± 0.22
T200C∗ 200 23.0 ± 0.39 6.28 ± 0.35

EDM
Euler - Determ. 20 8.28 ± 1.85 10.8 ± 1.51

Stoch. 4 9.66 ± 0.95 11.3 ± 1.94
Heun - Determ. 20 8.13 ± 1.28 10.1 ± 1.67

Stoch. 20 10.4 ± 0.75 11.8 ± 0.27

DDIM
T100 10 8.42 ± 0.27 10.80 ± 0.51

25 4.46 ± 0.31 8.09 ± 0.23
50 3.81 ± 0.27 7.71 ± 0.22

T200 10 9.12 ± 0.33 10.40 ± 0.54
25 4.67 ± 0.40 7.65 ± 0.29
50 3.98 ± 0.44 7.33 ± 0.25
100 3.68 ± 0.44 7.24 ± 0.25

IR (Ours)
T100, s =0.6, γ5 41 2.87 ± 0.32 6.76 ± 0.20
T200, s =0.6, γ5 81 2.07 ± 0.21 6.07 ± 0.26
TSM (Ours)
T100, s =0.5 50 3.26 ± 0.42 7.71 ± 0.20

s =0.75 25 3.25 ± 0.38 6.98 ± 0.18
s =0.9 10 3.30 ± 0.39 5.89 ± 0.33
s =0.95 5 4.98 ± 0.60 8.83 ± 0.42
s =1∗∗ 1 4.84 ± 0.13 5.96 ± 0.31

T200, s =0.5 100 3.59 ± 0.31 8.16 ± 0.24
s =0.75 50 3.02 ± 0.39 6.99 ± 0.34
s =0.9 20 3.92 ± 0.40 7.08 ± 0.42
s =0.95 10 4.24 ± 0.23 9.08 ± 0.15
s =1∗∗ 1 4.58 ± 0.22 8.62 ± 0.40

T200C∗, s =0.25 150 5.32 ± 0.58 8.73 ± 0.28
s =0.5 100 3.44 ± 0.30 8.03 ± 0.38
s =0.75 50 3.22 ± 0.16 8.80 ± 0.18
s =0.9 20 4.21 ± 0.30 8.24 ± 0.18
s =1∗∗∗ 1 3.69 ± 0.03 90.6 ± 0.04

AirMulti (10−3)

Model NFEs (MSEµy
)a (MSEσy

)a

Liu and Thuerey (2024)
DDPM T200C∗ 200 1.76 ± 0.23 0.89 ± 0.12
Heteroscedastic# 1 1.50 ± 0.12 1.55 ± 0.03

DDPM
T100 100 2.34 ± 1.11 0.57 ± 0.03
DDIM
T100 10 2.33 ± 1.06 0.83 ± 0.16

25 2.16 ± 1.01 0.67 ± 0.07
50 2.12 ± 0.99 0.64 ± 0.05

IR (Ours)
T100, s =0.6, γ5 41 2.07 ± 0.99 0.59 ± 0.04
TSM (Ours)
T100, s = 0.5 50 2.58 ± 1.32 0.79 ± 0.16

s = 0.75 25 1.66 ± 0.53 0.64 ± 0.04
s = 0.9 10 1.91 ± 0.71 0.70 ± 0.06
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Based on these insights, we restrict our experiments for the AirMulti case to few models only,
especially that training and sampling are considerably expensive for this study. We, therefore, only
train a DDPM with T = 100 and TSMs with different s values, excluding single-step inference
since it was unsuccessful in the previous study. We see equivalent results in this study: IR sampling
achieves the best results by refining a noisy estimation from the base DDPM, followed by TSM with
NFEs = 25 and 10. DDIMs are the least accurate even with high NFEs.

Note that heteroscedastic models only predict the data uncertainty by assuming a distribution for the
data and estimating its parameters. Consequently, samples drawn from this learned distribution are
often non-physical (e.g., see Fig. 9 in Liu and Thuerey (2024)). In contrast, DMs reconstruct the target
distribution of solutions, which is then used to estimate the uncertainty. Therefore, heteroscedastic
models cannot be directly compared to DDPMs in terms of speed. Nonetheless, they are an established
method for predicting the data uncertainty in this area and represent a strong baseline for comparison.

E.2 QUALITATIVE RESULTS

We provide sample results for all test cases in this section. Results for all flow fields of the Fturb
study are presented in Fig. 10, while results for the Tra test case are presented in Fig. 11. Finally,
sample results for AirOne and AirMulti test cases are presented in Fig. 12 and Fig. 13, respectively.
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Figure 10: Sample predictions of |u| from the Fturbext test case with Re = 5000. Results are based
on the top performing models presented in Table 1 (right).
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Figure 11: Sample predictions of the different flow fields from the Traext test case with Ma = 0.52.
Results are based on the top performing models presented in Table 1 (left).
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Figure 12: Sample predictions for the expectation µ and standard deviation σ of all flow fields for the
AirOne case with Re = 4.5×106. Results are based on the top performing models in Table 2 (left).
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Figure 13: Sample predictions for the expectation µ and standard deviation σ of all flow fields from
the AirMulti test case for the fx75141 airfoil with -18.94◦ angle of attack and Re = 10.303×106.
Results are based on the top performing models presented in Table 2 (right).
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F DATASET OVERLAPPING FOR TRANSIENT CASES

In time-dependent problems, the proposed formulation requires training the DDPM to predict T + 1
different steps with prediction stride j ∈ [0, T ]. For benchmark datasets (e.g., Tra Kohl et al. (2024))
that are sufficient to train for predicting next timesteps only, our formulation leads to overfitting and
sub-optimal results due to the limited data, especially when the dataset is iterated as demonstrated in
Figure 14a. This naïve iteration over the dataset frames means that we require a dataset that is ×T
bigger to train without overfitting. The easiest approach to increase the dataset without the need for
generating more training data is to implement overlapping, as depicted in Figure 14b. Although the
demonstrated overlapping leads to more iterations per epoch depending on the degree of overlap, we
found in our tests that training could be terminated much earlier, leading to almost a constant total
number of training iterations.

In the Fturb case, enough data was present to not require significant overlapping; however, we
apply max overlap (i.e., overlapping 10 frames, since T = 10) for the Tra test case to circumvent
overfitting issues and provide accurate results. As discussed, we usually terminated the training
procedure much earlier than the number of epochs reported in Table 4 as soon as the validation loss
reaches a plateau.

(a) Dataset without overlap.

(b) Dataset with max overlapping of frames.

Figure 14: Illustration of dataset overlapping to circumvent limited data for training. Numbers inside
cells indicate the index of the frame in the dataset, whereas the colored cells indicate one "simulation"
based on the horizon T . Each column represents a single frame but with different assigned indices
for dataset iteration. The figure shows for a horizon of 8 steps (i.e., j ∈ [0, T ] with T = 8) how max
overlapping (max overlap = T = 8 frames) can lead to increase in the considered dataset from 18 to
90 frames each with a unique label within a "simulation" (i.e., color). Frames with a bold border are
provided more than one label.

G HYPERPARAMETER TUNING

Our methods rely on hyperparameters that play a crucial role in determining their performance
in terms of accuracy and speed. Unlike DDIMs, which provide a trade-off between speed and
accuracy, our methods are tuned using a heuristics-based approach to efficiently identify near-optimal
hyperparameter configurations with minimal evaluations. This approach depends on the specific case
under consideration, whether it is a spatio-temporal deterministic dataset or a stochastic one with a
complex distribution. The hyperparameters can be determined conveniently based on the following
considerations, and are kept constant for each case during inference runs thereafter.

Deterministic test cases

• TSM: The search for the optimum s value typically begins within the range [0.5, 1], espe-
cially if a large number of diffusion steps T is chosen, to attain higher speedup. Figure
3 provides several insights for the optimal combination of s and T for both transient and
steady-state cases. First, we evaluate both extremes of s within the specified range and then
employ a standard line search approach to arrive at an optimal value of s, requiring at most
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two or three additional evaluations. Further, we also give priority for models with low T to
minimize the NFEs required for inference.

• IR: we usually start with xinit ∼ N (0, I) and run our greedy optimization algorithm
(Algorithm 3) with low N to obtain an efficient γ with as low NFEs as possible. As
demonstrated in Figure 4b, N = 5 often yields highly accurate results for our transient
cases. Then, N can be gradually increased to explore longer schedules that has the potential
to enhance the overall accuracy with little increase in NFEs.

Stochastic test cases

• TSM: We follow the same procedure as before; however, we refrain from extreme s values
as they often lead to low-fidelity, noisy outputs (see Table 9). Therefore, the search region
for s is restricted to [0.5, 0.9], with the lower bound further reduced for smaller T values.

• IR: From early tests, it is found that xinit is optimal when obtained through truncated
sampling (see Algorithm 1) of a pre-trained DDPM with s ≥ 0.5. While this approach
typically produces highly accurate initial outputs, the results often exhibit noticeable noise.
Consequently, a refinement schedule γ with N < 5 steps is utilized to eliminate the noise,
while simultaneously improving or preserving the accuracy of the noisy initial input.

Empirical results across all datasets, as presented in Tables 7, 8, and 9, demonstrate that our methods
require relatively few evaluations to arrive at hyperparameter configurations with highly competitive
results. Compared to competitive EDMs, the reduced number of associated hyperparameters in
addition to our heuristic approach provide our methods with a distinct competitive advantage,
alongside the other advantages outlined previously.
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