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Abstract
Conditional Average Treatment Effects (CATE)
estimation is one of the main challenges in causal
inference with observational data. In addition to
Machine Learning based-models, nonparametric
estimators called meta-learners have been devel-
oped to estimate the CATE with the main advan-
tage of not restraining the estimation to a specific
supervised learning method. This task becomes,
however, more complicated when the treatment is
not binary as some limitations of the naive exten-
sions emerge. This paper looks into meta-learners
for estimating the heterogeneous effects of multi-
valued treatments. We consider different meta-
learners, and we carry out a theoretical analysis
of their error upper bounds as functions of impor-
tant parameters such as the number of treatment
levels, showing that the naive extensions do not
always provide satisfactory results. We introduce
and discuss meta-learners that perform well as
the number of treatments increases. We empir-
ically confirm the strengths and weaknesses of
those methods with synthetic and semi-synthetic
datasets.

1. Introduction
With the rapid development of Machine Learning (ML)
and its efficiency in predicting outcomes, the question of
counterfactual prediction ”what would happen if ?” arises.
Engineers and specialists want to know how the outcome
would be affected after an intervention on a parameter. It
will help them personalize the parameter at efficient levels
and optimize the outcome. Recently, much effort has been
devoted to supervised ML to find the optimal intervention
strategy. Yet, the results are not always convincing. These
models cannot distinguish between correlations and causal
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relationships in the data (Pearl, 2019).

Based on the Potential Outcomes theory (Neyman, 1923;
Rubin, 1974), epidemiologists and statisticians have devel-
oped a set of tools that reduce the inference of causal effects
to statistical inference under certain assumptions about, for
example, the data-generating process. They have been suc-
cessfully applied in many fields such as medicine (Alaa &
van der Schaar, 2017), economics (Knaus et al., 2020b), pub-
lic policy (Imai & Strauss, 2011) and marketing (Diemert
et al., 2018) to infer causal effects. However, most of these
studies are limited to a binary treatment setting whereas
many causal questions in real-world cases are not binary. It
would be helpful to give an in-depth analysis of the impact
of the treatment across its possible levels instead of just
considering a binary scenario where the treatment is either
assigned or not. In addition, the heterogeneity of effects
may provide valuable information regarding this treatment’s
effectiveness and help users personalize their intervention
policies and strategies.

The problem of Causal Inference beyond binary treatment
settings is gaining attention from the Causal Inference com-
munity. There are two major challenges: Firstly, the lack of
the ground truth due to the fundamental problem of causal
inference (Holland, 1986) makes Heterogeneous Treatment
Effects estimation more challenging (Alaa & van der Schaar,
2018) as standard metrics can not be used to assess perfor-
mances. Secondly, binarizing the multi-valued treatment set-
ting leads to a violation of the Stable Unit Treatment Value
Assumption (SUTVA) as it violates the principle of ”no
hidden variations of treatment”. It may yield a bias known
as position bias in recommendation systems (Chen et al.,
2023; Wu et al., 2022). It happens when some units tend
to have/select high treatment values and, therefore, there
is a hidden variation of the treatment that is not taken into
consideration when one attempt to binarize the treatment.
From a statistical point of view, this bias was established
by Heiler & Knaus (2022) who show that the binarization
of multi-valued treatments does not disassociate the het-
erogeneity of the treatment from the heterogeneity of the
effects of each value.

The extension of the binary setting does not seem trivial as
several versions are possible and turn out to have different
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behaviours. Moreover, – to the best of our knowledge –
there is no result so far on the impact of the number of
possible treatments on the performances of heterogeneous
treatment effect (nonparametric or ML-based) estimators.

In this paper, we study the problem of nonparametric esti-
mation of Heterogeneous Treatment Effects, also known as
Conditional Average Treatment Effects (CATEs), for multi-
valued treatments. We consider nonparametric estimators,
also referred to as meta-learners (Künzel et al., 2019) or
model-agnostic algorithms (Curth & van der Schaar, 2021a).
We put our main focus on discussing the theoretical proper-
ties of meta-learners for estimating CATEs. Finally, along
the lines of Curth & van der Schaar (2021a), we consider it
significant to draw strengths and weaknesses theoretically
and compare scenarios in which some methods would per-
form better than others.

Contributions. The paper considers meta-learners for
multi-valued treatments. First, we generalize meta-learners
to the multi-treatment setting for CATE estimation. We
overview, in particular, Debiased Machine Learning (DML)
estimators in observational studies and we establish a new
version for the X-learner based on regression adjustment
for multi-valued treatments. We also highlight the multi-
treatments R-learner’s main drawbacks. Second, and this
is the major contribution of the paper, we conduct a theo-
retical analysis of the proposed meta-learners for multiple
treatments based on an asymptotic bias-variance analysis
(see Silverman (1986) for an example of this analysis for
kernel density estimation). We analyze the biases and upper
bounds on errors of the M-, DR-, X-learners as well as the
T- and naive X-learners. Thanks to this analysis, we can
identify the effect of the number of possible treatment lev-
els, in addition to other parameters such as the propensity
score lower bound and the outcome model estimation error.
This approach is different from what has been conducted in
binary treatment with the minimax approach (Künzel et al.,
2019; Curth & van der Schaar, 2021a; Kennedy, 2020) as it
allows a direct analysis of the roles of the important param-
eters (e.g. the impact of the number of possible treatments
K) instead of relying on the smoothness of treatment effects.
Following this analysis, we present some key points about
the expected performances of each meta-learner then we
present a summarizing table of our findings. We note also
that our analysis sheds new light on binary meta-learners’
performances as it also clarifies the influence of the sam-
pling probability for both T- and naive X-learners.

2. Related work
Meta-learners for CATEs estimation. The recent inter-
est in the CATE’s estimation has motivated the Causal In-
ference community to develop numerous algorithms and

methods (see Caron et al. (2022b) for a review). This in-
cludes a wide variety of statistical and ensemble methods
(Hill, 2011; Athey & Imbens, 2016; Alaa & van der Schaar,
2017; Wager & Athey, 2018; Powers et al., 2018; Hahn
et al., 2020; Caron et al., 2022a) as well as neural networks
(Johansson et al., 2016; Shalit et al., 2017; Yoon et al., 2018;
Shi et al., 2019) (see Dorie et al. (2019) for a review of
-hybrid- ML models for causal inference). In contrast, some
methods, known as meta-learners, are nonparametric and
do not require a specific ML method. The theory of meta-
learners was initially introduced and discussed by Künzel
et al. (2019) for the CATE estimation in the binary setting
with three meta-learners: the S-learner, the T-learner (which
use either a Single or Two models) and the X-learner. Later,
Kennedy (2020) proposes the DR-learner (Doubly-Robust)
to overcome the problem of model misspecifications when
estimating nuisance functions (e.g. the propensity score and
outcome models). Nie & Wager (2020) present the R-learner
that estimates the CATE by minimizing an orthogonalized
loss function. Curth & van der Schaar (2021a) consider
the PW-learner (Propensity Weighting, also known as the
M-learner) and the RA-learner (Regression-Adjustment),
which is an improved version of the X-learner. They show
that, under some conditions, the RA-, PW-, and DR-learners
can attain the oracle convergence rate.

Multiple and continuous treatments. Recently, there has
also been an increased interest in causal inference with
multi-valued and continuous treatments. The theoretical
work of Imbens (2000); Lechner (2001); Frölich (2002);
Imai & Dyk (2004) extended the potential outcome frame-
work and the propensity score to the non-binary treatment
setting, including also continuous treatments. The average
dose-response estimation was considered and successfully
applied in many domains in medicine and economics (Do-
minici et al., 2002; Flores, 2007; Kallus, 2017; Saini et al.,
2019; Lin et al., 2019; Hu et al., 2020; Knaus, 2022). Ad-
ditionally, Colangelo & Lee (2020) apply doubly debiased
machine learning methods to dose-response modelling with
continuous treatment. The CATE’s estimation, however, re-
mains less prominently studied in the literature. Hill (2011)
(briefly) and Hu et al. (2020) consider Bayesian additive re-
gression trees for the estimation of counterfactual response
and causal effects. An extension of GRF to multi-valued
treatments is developed by Tibshirani et al. (2020) (which
can be seen as an M-learner with multi-valued treatments).
Schwab et al. (2020); Harada & Kashima (2021); Nie et al.
(2021) and Kaddour et al. (2021) applied neural networks
and representations learning to estimate counterfactual re-
sponse curves for multiple continuous treatments (more
precisely for graph-structured treatments). Zhao & Harinen
(2019) naively extended binary meta-learners (X- and R-
learners) without any theoretical analysis of their behaviour.

The remainder of the paper is structured as follows. Section
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3 presents the CATE estimation for multi-treatments. In
Section 4 we introduce CATE nonparametric estimators
(meta-learners) and we discuss their consistency. In Section
5, we establish the theoretical analysis of meta-learners’
error bounds and provide some discussions. We present
numerical experiments and results in Section 6. Finally, we
present our conclusion in Section 7.

3. Problem setting
To address the problem of causal inference under multiple
treatments, we follow the Rubin-Neyman model as extended
by Imbens (2000); Lechner (2001); Imai & Dyk (2004) and
we consider the following statistical problem.

We suppose the existence of Y (t), the real-valued coun-
terfactual outcome that would have been observed under
treatment level t ∈ T = {t0, t1, . . . , tK}. We consider
(X, T, Y (t)t∈T ) ∼ P where X = (X(1), . . . , X(d)) ∈
D ⊆ Rd denotes a random vector of covariates and T de-
notes the treatment assignment random variable. We sup-
pose finally that we observe data that has the form of an
independent and identically distributed sample of n units
Dobs = (Dobs,i)

n
i=1 where Dobs,i = (Xi, Ti, Yobs,i) is

distributed as (X, T, Yobs) and Yobs = Y (T ) (consistency
assumption). We define the Generalized Propensity Score
(GPS) r(t,x) := P(T = t|X = x) (Imbens, 2000) as the
generalization of the classical Propensity Score with the
same balancing propriety (Rosenbaum & Rubin, 1983) to
remove selection bias in observational studies.

We aim to infer the effect of the treatment T on the outcome
Y . More precisely, we want to estimate the CATE between
two levels of treatment tk and t0, defined as

τk(x) = E[Y (tk)− Y (t0)|X = x], (1)

which can be interpreted as the expected treatment effect
between levels t0 (defined as the baseline treatment value)
and tk given covariates X = x. Note that other definitions
and alternatives of the CATE are possible (Kaddour et al.,
2021).

Unfortunately, it is impossible to infer this effect directly.
We observe only one potential outcome corresponding to
the treatment T (i.e. the real outcome) for every unit. All
other potential outcomes are missing (inherently unobserv-
able). Consequently, to identify the causal effects from
the observed sample data, we shall consider the following
assumptions (Assumption 3.1 is unfortunately untestable).

Assumption 3.1 (Unconfoundedness). The treatment mech-
anism is unconfounded given the observed covariates
Y (t) |= 1{T = t} | X for all t ∈ T .

Assumption 3.2 (Overlap). The probability of receiving the
treatment given the observed covariates is positive i.e. there

exists rmin > 0 such that rmin ≤ P(T = t|X = x) for all
t ∈ T and x ∈ D.

With the previous assumptions, the expected potential out-
come satisfies E(Y (t) | X = x) = E(Yobs | T = t,X =
x) and the CATE can be estimated.

The problem of the CATE estimation can be seen as a non-
parametric estimation problem. We tackle it by generalizing
the notion of meta-learners to derive consistent estimators.
This task can be achieved either by modelling the CATE
directly in one or two steps: by decomposing it into regu-
larized regression problems or by addressing a minimiza-
tion problem with respect to an appropriate loss function.
Moreover, all considered meta-learners below, except the
R-learner, have the advantage of supporting any supervised
regression method (e.g. random forest, gradient boosting
methods, neural networks).

4. Generalizing meta-learners to multi-valued
treatments

In the following, we adopt a similar taxonomy of CATEs es-
timators as Curth & van der Schaar (2021a) and Knaus et al.
(2020a). Namely, direct plug-in (one-step) meta-learners,
pseudo-outcome (two-step) meta-learners and Neyman-
Orthogonality-based learners (R-learner).

4.1. Direct plug-in meta-learners

This subsection presents direct plug-in meta-learners, also
known as one-step learners. They estimate the CATE in
(1) by targeting it directly from Dobs. They are the naive
extension of the T- and S-learners in the binary case.

T-learner with multiple treatments. T-learner is a naive
approach to estimating CATEs. It consists on estimating the
two conditional response surfaces µt(x) = E(Y (t) | X =
x) using St = {i, Ti = t} for t ∈ {tk, t0}, then estimates
the CATE as τ̂ (T)

k (x) := µ̂tk(x)− µ̂t0(x).

The T-learning approach does not account for the interaction
between T and Y and creates different models for different
treatments. Still, it may suffer from selection bias (Curth &
van der Schaar, 2021b), i.e. when the outcome models µt

are estimated with respect to the wrong distribution when
sampling (Dobs,i)i∈St

. Therefore, µ̂t should be estimated
by minimizing the expected squared error on the nominal
weighted distribution using Importance Sampling (Hassan-
pour & Greiner, 2019); see Appendix A for details.

S-learner with multiple treatments. The S-learner in
multi-valued treatments uses the identification of the CATE
and considers a single model µ(t,x) = E(Yobs | T =
t,X = x). µ is estimated using the whole dataset
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Dobs. The CATE can be computed therefore as τ̂ (S)k (x) :=
µ̂(x, tk)− µ̂(x, t0).

Including the treatment T as a feature and sharing infor-
mation between covariates X and T may provide better
predictions. However, this advantage is conditioned by the
ability of the base learner to capture and distinguish contri-
butions of both X and T on Yobs as we will see in Section
5. Note that the S-learner may also suffer from confounding
and regularization biases (Chernozhukov et al., 2018; Hahn
et al., 2020) when estimating µ̂.

4.2. Pseudo-outcome meta-learners
To overcome selection bias, a usual alternative is to con-
sider specific representations of the observed outcome Yobs,
called pseudo-outcome Zk. They incorporate nuisance com-
ponents that generally include valuable information such
as the dependence between covariates X and T (i.e. the
GPS r) and the occurrence of a particular treatment assign-
ment. Under the well-specification of nuisance components,
regressing Zk on X produces a consistent estimator i.e.
E(Zk | X = x) = τk(x) while keeping the same sample
size as Dobs. In the following, we say that an estimator
(µ̂ or r̂) is well-specified if it is based on a well-specified
statistical model, that is, the class of distributions assumed
for modelling contains the unknown probability distribution
from which the sample used for estimation is drawn.

M-learner with multiple treatments. The M-learner
(Horvitz & Thompson, 1952), where M refers to the mod-
ified learned pseudo-outcome in the algorithm, is inspired
from the Inverse Propensity Weighting (IPW). It is defined
in the multi-valued setting, for k = 1, . . . ,K, as the regres-
sion of ZM

k such that

ZM
k =

1{T = tk}
r̂(tk,X)

Yobs −
1{T = t0}
r̂(t0,X)

Yobs,

where r̂ is an estimator of the GPS r.

DR-learner with multiple treatments. The Doubly Ro-
bust (DR) method (Robins et al., 1994; Kennedy et al., 2017;
Kennedy, 2020) is helpful in overcoming the problem of
the model’s misspecification by estimating two components,
the outcome model µ· and the GPS r, instead of relying
on the correctness of one (and the only) parameter. If µ̂
and r̂ denote arbitrary estimators of the outcome µ and the
GPS r (we assume that r̂ satisfies Assumption 3.2), then the
DR-learner regresses ZDR

µ̂,r̂,k such that:

ZDR
µ̂,r̂,k =

Yobs − µ̂T (X)

r̂(tk,X)
1{T = tk}+ µ̂tk(X)

− Yobs − µ̂T (X)

r̂(t0,X)
1{T = t0} − µ̂t0(X).

X-learner with multiple treatments. The X-learner
(Künzel et al., 2019), also known as Regression-Adjustment
(RA)-learning in a version developed by Curth & van der
Schaar (2021a), has been proposed as an alternative to T-
learning in the case where one treatment group is over-
represented. The idea consists of a cross procedure of es-
timation between observations Yobs and outcome models
when one of the treatments occurs. For k = 1, . . . ,K, we
define the Regression-Adjustment pseudo-outcome ZX

k as

ZX
k = 1{T = tk}(Yobs − µ̂t0(X)) +

∑
l ̸=k

1{T = tl}×

(µ̂tk(X)− Yobs) +
∑
l ̸=k

1{T = tl}(µ̂tl(X)− µ̂t0(X)).

For comparison purposes, we consider also the naive ex-
tension of the binary X-learner (Künzel et al., 2019) to
multi-treatments as proposed by Zhao & Harinen (2019).
This extension considers two random variables D(k) :=
Y (tk)− µ̂t0(X) and D(0) := µ̂tk(X)− Y (t0) where µ̂tk

and µ̂t0 are trained on the samples Stk and St0 . Then it
regresses (D(k)

i )i∈Stk
and (D

(0)
i )i∈St0

on X to obtain τ̂ (k)

and τ̂ (0), and estimates the CATE as:

τ̂
(X,nv)
k (x) :=

r̂(tk,x)

r̂(tk,x) + r̂(t0,x)
τ̂ (k)(x)+

r̂(t0,x)

r̂(tk,x) + r̂(t0,x)
τ̂ (0)(x).

We note that the consistency of the M- and DR-learners
is already established in the literature (Knaus, 2022). We
show it also for the extended X-learner in Appendix A. We
note also that there are three main approaches possible to
learn nuisance components (r and µ) and then estimate the
τk, namely, Full-Sample, Sample-Split and Cross-Fit meth-
ods (Okasa, 2022). This paper does not discuss estimation
procedures and adopts the Full-Sample strategy.

4.3. Neyman-Orthogonality based learner: R-learner
The R-learner is based mainly on the Robinson (1988) de-
composition and was proposed by Nie & Wager (2020)
to provide a flexible CATE estimator avoiding regular-
ization bias. It states that the potential outcome error
ϵ = Yobs − µT (X) satisfies E(ϵ | T,X) = 0 and

ϵ = Yobs −m(X)−
K∑

k=1

(
1{T = tk} − r(tk,X)

)
τk(X),

where m(x) = E(Yobs | X = x) is the observed outcome
model. Therefore, considering the mean squared error of ϵ
(the generalized R-loss function) and minimizing it estimate
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K models {τ̂ (R)
k }Kk=1 simultaneously such that

{τ̂ (R)
k }Kk=1 := argmin{τk}∈F

1

n

n∑
i=1

[
(Yobs,i − m̂(Xi))

−
K∑

k=1

(
1{Ti = tk} − r̂(tk,Xi)

)
τk(Xi)

]2
,

where m̂ (respectively, r̂) is an estimator of m (respectively,
r) and F is the space of candidate models [{τk}Kk=1].

The generalized R-learner suffers from two major lim-
itations: First, it cannot be written as weighted super-
vised learning problem with a specific pseudo-outcome.
Only parametric families F can be considered in the
multi-treatment regime. The second drawback is the non-
identifiability of the generalized R-loss described previously
in (4.3) without a regularization. Indeed, this problem does
not have a unique solution (see Appendix A for details) and
leads thus to poor estimation performance. This point is
also shown recently by Zhang et al. (2022) for continuous
treatments and our numerical results in Appendix D also
confirm that the R-learner fails to estimate CATEs (τk)Kk=1.

5. Theoretical analysis of the error upper
bound

In this section, we analyze the error’s upper bounds for
different meta-learners. The theoretical analysis will be
carried out under the following framework:

Assumption 5.1. We assume that (T,X) satisfies the over-
lap assumption 3.2 and that, for t ∈ T , the outcome Y (t) is
generated from a function f : R× Rd → R such that

Y (t) = f(t,X) + ε(t), (2)

where ε(t) are i.i.d. Gaussian N (0, σ2) and independent of
(T,X).

Assumption 5.2. We assume the existence of βt ∈ Rp such
that, for all t ∈ T and x ∈ D

f(t,x) =

p−1∑
j=0

βt,jfj(x) = f(x)⊤βt,

where fj are some bounded predefined basis functions.

The assumption of a product effect is reasonable. One can
show the universality of this representation in the Reproduc-
ing Kernel Hilbert Space (RKHS) (Proposition 1 of Kaddour
et al. (2021)) if we allow the dimension p to be large enough.

Under these two assumptions, the CATE τk can be written
as:

τk(x) =

p−1∑
j=0

β∗
k,jfj(x) = f(x)⊤β∗

k,

where β∗
k = (β∗

k,j)
p−1
j=0 = βtk

− βt0 ∈ Rp.

From a theoretical point of view, the S-learner corresponds
to the naive Ordinary Least Square (OLS) β̂k of β∗

k. The
statistical task of the CATE’s estimation holds immediately.
However, we cannot properly analyse the base-learner’s
ability to learn β∗

k under confounding effects.

Theorem 5.3. Under Assumptions (5.1-5.2), the OLS esti-
mators β̂

∗
k of the T-learner and the naive X-learner are un-

biased and have an asymptotic covariance matrix V
(
β̂
∗
k

)
=

C/n, whose terms Cij are bounded by:

ET = EX,nv = O
(

1

ρ(tk)
+

1

ρ(t0)

)
,

where P(T = t) = ρ(t) > 0 for all t ∈ T .

We consider now pseudo-outcome meta-learners (M-, DR-
and X-learners). When investigating the pseudo-outcomes
Zk, one can see that, for k = 1, . . . ,K, these pseudo-
outcomes are linear with respect to Yobs i.e.

Zk = Atk(T,X)Yobs +Btk(T,X),

whereAtk(T,X) andBtk(T,X) are given for each pseudo-
outcome meta-learner.

Theorem 5.4. Under Assumptions (5.1-5.2), the OLS esti-
mator β̂

∗
k is unbiased if the nuisance parameters (µ̂ and r̂)

are well-specified, and has an asymptotic covariance matrix
V
(
β̂
∗
k

)
= C/n, whose terms, for all ϵ > 0, are bounded

by:

EM = O
(

1

r1+ϵ
min

)
for the M-learner,

EDR = O
(
err(µ̂tk) + err(µ̂t0)

r1+ϵ
min

)
for the DR-learner,

EX = O
(
K2
∑
l ̸=k

err(µ̂tl)
)

for the X-learner,

where err(µ̂t) = EX

[(
f(t,X)− µ̂t(X)

)2]
is the expected

mean squared error of µ̂t.

Sketch of the proofs of Theorems 5.3 and 5.4. Both
proofs are similar and are structured in 3 steps: 1) Express
the OLS estimator β̂

∗
k as a function of the true β∗

k; 2) Apply
the multivariate Central Limit Theorem and the Slutsky
theorem (or the Delta method in the general case with a
biased β̂

∗
k); 3) Bound the asymptotic covariance matrix

terms. The full proofs can be found in Appendix B.

Remark 5.5. For K = 2, one recovers the error’s upper
bounds of pseudo-outcome meta-learners and the important
parameters as shown by Curth & van der Schaar (2021a).
However, the influence of the sampling probability ρ for the
T- and naive X-learners is original.
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Finally, regarding the binarized (Kaddour et al., 2021) or
generalized R-learners, they cannot be expressed as a model-
agnostic regression problem but rather as a minimization
problem of a loss function (generalized R-loss or binarized
R-loss). Therefore, the actual theoretical analysis of the
error’s upper bound cannot be conducted similarly.

Using Theorems 5.3 and 5.4, we establish the following
discussions (see Table 1 for a summary).

5.1. General comments and insights

About Theorem 5.3. The significant implication of Theo-
rem 5.3 is the ability to anticipate the performances of the
T-learner with respect to the treatment distribution when the
probability ρ(t) of sampling the treatment value t is small.
The performances of the T- and naive X-learners become
poor when the number K of treatments increases because
these learners imply learning in small samples St. Moreover,
the naive X-learner also does not seem to really differ from
the T-learner in any meaningful way (see Appendix B.2).
We note that this result is original and cannot be obtained
by the minimax approach.

About Theorem 5.4. From this theorem, one can establish
the relationship between the number of observations n and
the number of treatment values K for a given error bound.
The same theorem is also useful for an RCT setting (rmin is
known) and when the error of the outcome model is small
for all treatment levels except for one treatment value t.

Moreover, although pseudo-outcome meta-learners have the
advantage of learning on the full sample, they, unfortunately,
may lead to high error and poor performance in how nui-
sance components intervene. On the one hand, the GPS is
in the M- and DR-learners denominators. The error bound
is likely to be high when there is a lack of overlap or when
the number of treatments K increases (we have necessarily
rmin ≤ 1/K ). On the other hand, the upper bounds of the
X-and DR-learners depend on the quality of the estimated µ̂.
One can expect that the more precise the outcome models
are, the lower the error is.

5.2. Specific comments for each meta-learner

M-learner. Without surprise, the M-learner is very sensi-
tive to the estimated GPS r̂ and suffers from high variance.
This is even more critical as the number K of treatments
increases.

DR-learner. The error’s estimation term err(µ̂t) of µ̂t and
µ̂t0 in the numerator dramatically improves the DR-learner’s
performances.

X-learner. The X-learner incorporates only µ̂. and does not
imply the GPS r. Thus, the X-learner is likely to have the
smallest error compared to other meta-learners when the

overlap assumption is not sufficiently respected. However,
the consistency of (µ̂t)t ̸=tk is required to estimate CATEs
correctly.

M-learner vs DR-learner. If the outcome models µ̂t and
µ̂t0 are well-specified, the error’s upper bound is expected
to be smaller for the DR-learner than for the M-learner.
However, if they are misspecified (but the propensity score
is well-specified), then there is no guarantee that the DR-
learner would perform better than M-learner. It may perform
even worse, as we will see in Appendix D (Table 8).

M-learner vs X-learner. The X-learner is likely to have
a lower error upper bound if the expected squared error
err(µ̂t) is small and if some conditions on K and rmin hold.

X-learner vs DR-learner. Analytically, it is difficult to an-
ticipate which meta-learner would perform better. This de-
pends mainly on err(µ̂.), K and rmin, whom, in some cases,
make the X-learner have less error than the DR-learner and
the opposite in other cases. Still, our numerical results in
Appendix D show that the X-learner outperforms the DR-
learner in most cases.

X-learner vs Naive X-learner. We cannot theoretically
compare these meta-learners without knowledge about the
distribution of T . However, we can see numerically that the
X-learner clearly outperforms the naive X-learner.

We conclude this subsection with a small discussion about
the generalized and the binarized R-learners (see Appendix
C). Indeed, the binary R-loss function may be solved sepa-
rately in a low sample (instead of Dobs) and one can obtain
a unique solution, unlike the generalized R-loss. However,
the optimization procedure is two-stage iterative and com-
putationally heavy. We do not consider it in Section 6.

Table 1. Summary table of multi-treatments meta-learners.

Meta-learner Advantages Disadvantages

T-learner Simple approach Selection bias
(nv X-learner) Low samples

S-learner Simple approach Confounding effects
Regularization bias

M-learner Consistency High variance

DR-learner Consistency Possibly high
Doubly Robust variance

X-learner Consistency Non-intuitive
Low variance

R-learner Interaction Non-identifiability
effects

Bin R-learner Identifiability Computational cost

6



Meta-Learners for Multi-Valued Heterogeneous Effects

In Table 1, Bin R-learner refers to the binarized R-learner
(Kaddour et al., 2021) and nv X-learner refers to the naive
extension of the X-learner described in subsection 4.2. Pos-
sibly high variance refers to the case where the variance
can be significantly high due to the lack of overlap caused
by the inverse propensity weighting in some DGPs. Selec-
tion bias refers to the bias that occurs when sampling St

and comparing units directly, as we describe in Proposition
4.1 in Appendix A. The confounding effects represent the
statistical and intrinsic dependence between the treatment
T and the covariates X, which prevent some base-learner
(e.g. random forest) from distinguishing and disassociating
the treatment T and the covariates X. Finally, low samples
refer to cases where the samples St = {i, Ti = t} become
small for some treatment levels and the model has then few
observations to learn from.

5.3. Practical recommendations for selecting a
meta-learner

In this subsection, based on previous insights and our nu-
merical findings (see Section 6 for more detail), we provide
some instructions and recommendations for selecting meta-
learners given a dataset Dobs:

• Pseudo-outcomes meta-learners and the S-learner are
preferred in low sample regimes.

• It is recommended to examine the distribution of T to
understand at which values of t the T-learner may fail
to learn CATEs.

• The S-learner remains a simple and reasonable choice,
especially when K ≥ 10.

• The X-learner is useful to learn the CATE τt when there
is not enough information about a specific treatment
value t.

• If one is interested in quantifying uncertainties, then
the DR-learner is recommended as it allows having a
consistent estimation of the CATE.

• After estimating the GPS r, one needs to check if there
is a possible lack of overlap. If a lack of overlap is
detected, one should avoid considering the M- and
DR-learners.

6. Numerical experiments
In this section, we assess the performances of the different
meta-learners, additional numerical results are shown in
Appendix D.

In synthetic or semi-synthetic examples where the CATEs
are known, the error in estimation is given by mPEHE (re-
spectively, sdPEHE), the mean (respectively, the standard
deviation) of the Precision in Estimation of Heterogeneous

Effect (PEHE) (Hill, 2011; Shalit et al., 2017) defined as the
mean squared error in the estimation of the treatment effect
τ̂k, over all possible treatment levels tk for k = 1, . . . ,K:

mPEHE =

√√√√ 1

K

K∑
k=1

PEHE(τ̂k)2,

where PEHE(τ̂k)
2 = 1

n

∑n
i=1 (τ̂k(Xi)− τk(Xi))

2, and,

sdPEHE = 4

√√√√ 1

K − 1

K∑
k=1

(
PEHE(τ̂k)2 − mPEHE2

)2

Those metrics will be used to compare meta-learners under
different scenarios (sample size n, number of possible treat-
ments K, the correctness of nuisance parameters). We do
not consider here model-fitting of base-learners. All hyper-
parameters (e.g. the number of trees, depth etc.) are fixed
to their default values during all experiments. In addition,
we do not consider Neural Networks because it would re-
quire choosing between at least five possible architectures
(Curth & van der Schaar, 2021a) to define tasks of learning
nuisance components and estimating CATEs τk while the
main focus of the paper is on the choice of the meta-learner.

6.1. Synthetic datasets: analytical functions in
randomized and non-randomized studies

In this subsection, we begin by empirically evaluating the
performances of meta-learners when the treatment T is tak-
ingK+1 = 10 possible values in [0, 1] on a linear outcome:

Y (t) of the form (2) with
f(t,X) = (1 + t)X, and X ∼ U [0, 1],

in Randomized Controlled Trials (RCT) setting where the T
and X are independent. Second, we evaluate meta-learners
on the hazard rate outcome:

Y (t) of the form (2) with
f(t,X) = t+ ∥X∥ exp (−t∥X∥) and X ∼ N (0, I5)

in a non-randomized setting as will be described below.

To simulate observational data, instead of removing some
rows, we create a selection bias in the data by selecting
preferentially only observations with specific characteristics
(see subsection D.1 in Appendix D). This strategy comes in
line with the findings and recommendations of Curth et al.
(2021) about creating a biased sub-sample and evaluating
CATEs’ estimators.

The GPS is estimated using the XGBoost model, and the
outcome models µt are either estimated by the T- or S-
learning approaches. In Tables 2 and 3 and Appendix D,
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Table 2. mPEHE and sdPEHE for XGBoost and RandomForest; linear model in a RCT setting with n = 2000 units.

Meta-learner XGBoost RandomForest

T-Learner 0.065 (0.019) 0.041 (0.016)
S-Learner 0.033 (0.018) 0.032 (0.028)

NvX-Learner 0.060 (0.019) 0.037 (0.016)

M-Learner 1.25 (0.610) 1.22 (0.621)
DR-Learner 0.068 (0.019) – 0.063 (0.020) 0.068 (0.018) – 0.068 (0.018)
X-Learner 0.063 (0.020) – 0.033 (0.017) 0.045 (0.016) – 0.061 (0.040)

RLin-Learner 0.135 (0.130) 0.137 (0.128)
For the DR- and X-learners: µt are estimated by T- (left value) or S- (right value). The bold font indicates the best meta-learner (row) per base-learner (column).

Table 3. mPEHE and sdPEHE for XGBoost and RandomForest. Hazard rate model in an observational setting with n = 10000 units.

Meta-learner XGboost RandomForest

T-Learner 0.183 (0.039) 0.286 (0.155)
RegT-Learner 0.176 (0.044) 0.286 (0.155)

S-Learner 0.176 (0.056) 0.306 (0.153)
NvX-Learner 0.190 (0.096) 0.336 (0.200)

M-Learner 1.61 (0.505) 1.58 (0.472)
DR-Learner 0.168 (0.045) - 0.178 (0.048) 0.304 (0.158) – 0.322 (0.162)
X-Learner 0.167 (0.053) – 0.172 (0.057) 0.302 (0.169) – 0.332 (0.167)

RLin-Learner 0.231 (0.081) 0.186 (0.123)
For the DR- and X-learners: µt are estimated by T- (left value) or S- (right value). The bold font indicates the best meta-learner (row) per base-learner (column).

RLin-learner denotes the generalized R-learner with linear
regression models in (4.3) with p = 2. For each meta-
learner (row) and base-learner (column), we indicate the
mPEHE followed by the sdPEHE between brackets.

In Tables 2 and 3, we find that, as expected, the M-learner
predicts poorly. The T- and naive X-learners give better
predictions for Random Forest, whereas the S-learner gives
better results for XGBoost. Regularizing T-learner (RegT-
Learner) against selection bias increases its performance.
The X- and DR-learners improve the predictions of the S-
learner for XGBoost, but this improvement is not always
observable for Random Forests. Unfortunately, the actual
results (and also additional numerical experiments in Ap-
pendix D) confirm the claim: The RLin-learner generally
fails to identify CATEs correctly.

Despite these satisfying results, we highlight the problem of
over-fitted gradient boosting models and Random Forest by
comparing them with the linear model in Appendix D. This
problem should be taken further while estimating CATEs.
We think that using out-sample prediction supervised mod-
els might solve this problem.

We consider now the effect of increasing K on the hazard
rate function with XGBoost. The results are shown in Figure

1 in Appendix D.3. On the one hand, the performances of
the T- and the naive X-learners become compromised. The
regularized T-learner suffers also from the same issue (with a
linear effect with respect toK), which can be also quantified
on the DR- and X-learners when applying the regularized
T-learning. For K ≥ 20, the T- and the naive X-learners
perform better than the previous meta-learners. Regarding
the M-learner, it has poor performances in all cases as can
be expected with Theorem 5.4. On the other hand, the S-
learner stabilises once K is large enough and, consequently,
the DR- and X-learners also stabilize when applying the
S-learning for large K. Therefore, we recommend the S-
learner’s estimated potential outcome model when K ≥
10 for pseudo-outcome meta-learners. To conclude, two-
step meta-learners are robust. In particular, the X-learner
improves the quality of plug-in meta-learners; when it does
not, the differences are very small.

6.2. Semi-synthetic dataset: estimating heterogeneous
treatment effects on a non-randomized dataset.

In this subsection, we consider a multistage fracturing En-
hanced Geothermal System (EGS) (Olasolo et al., 2016).
We assume that the heat extraction performance satisfies the
physical model: Qwell(ℓL) = Qfracture×ℓL/d×ηd, where
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Table 4. mPEHE and sdPEHE for XGBoost and RandomForest. Heat Extraction model in an observational setting.

Meta-learner XGBoost RandomForest

T-learner 0.172 (0.052) 0.157 (0.067)
RegT-Learner 0.156 (0.042) 0.154 (0.067)

S-learner 0.101 (0.040) 0.218 (0.129)
NvX-Learner 0.102 (0.042) 0.143 (0.067)

M-learner 1.04 (0.423) 0.898 (0.417)
DR-learner 0.148 (0.042) – 0.097 (0.029) 0.164 (0.068) – 0.203 (0.108)
X-learner 0.142 (0.041) – 0.094 (0.034) 0.173 (0.077) – 0.211 (0.120)

RLin-learner 0.357 (0.274) 0.362 (0.278)
For the DR- and X-learners: µt are estimated by T- (left value) or S- (right value). The bold font indicates the best meta-learner (row) per base-learner (column).

Qfracture is the unknown heat extraction performance from
a single fracture, that can be generated using a numerical
model with eight input parameters including reservoir char-
acteristics and fracture design. ℓL is the Lateral Length of
the well, d is the average spacing between two fractures and
ηd is the stage efficiency penalizing the individual contri-
bution when fractures are close to each other. We refer to
Appendix E for a detailed description of the model and the
semi-synthetic dataset.

We consider the Lateral Length as treatment T withK+1 =
13 possible values and the covariates X ∈ R11 are the re-
maining variables. We also consider a logarithmic transfor-
mation of the heat performance for a meaningful mPEHE,
and we normalize the treatment T . Following the preferen-
tial selection, we sample n = 10000 units such that wells
with high lateral length are likely to have larger fractures
and vice versa. The GPS is estimated using gradient boost-
ing models. Table 4 resumes the mPEHE and sdPEHE
in brackets for different meta-learners. Most findings of
subsection 6.1 remain valid: XGBoost model is generally a
better choice than Random Forests (except for T-learning);
the X-learner, followed by the DR-learner, outperforms all
other learners.

7. Conclusion
We have investigated heterogeneous treatment effects esti-
mation with multi-valued treatments. In addition to standard
plug-in meta-learners, we have considered representations
to build pseudo-outcome meta-learners, and we have pro-
posed the generalized Robinson decomposition to build the
R-learner. Using the bias-variance analysis, we have con-
ducted an in-depth analysis of the error’s upper bounds of
pseudo-outcomes meta-learners. Thanks to this analysis,
we could discuss the advantages and limitations of each
pseudo-outcome meta-learner. In particular, we have identi-
fied the impacts of the number of treatment levels and the
lower bound rmin on the M-, DR and X-learners. Through

synthetic and semi-synthetic industrial datasets, we have
illustrated the performances of different meta-learners in a
non-randomized case where some covariates are confounded
with the treatment. We have demonstrated the ability of the
X-learner to reconstruct the ground truth model. We have
also highlighted how the choice of base-learner can affect
the quality of CATEs estimation.

8. Software and Data
The code and the semi-synthetic dataset in subsection 6.2
are available at https://github.com/nacharki/
multipleT-MetaLearners.
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Meta-Learners for Multi-Valued Heterogeneous Effects

The Appendix of the paper is divided into the following sections:

• Appendix A contains the proofs of the main propositions in Sections 3: Regularization of the T-learner, the consistency
of the naive and extended X-learners, and the generalization of the Robinson decomposition. It also includes a solution
for the generalized R-learner with linear regression models.

• Appendix B is divided into two parts: The first part B.1 establishes the bias-variance analysis of pseudo-outcome
meta-learners (proof of Theorem 5.4). It provides the main framework for the proof based on the Delta Method and
Slutsky’s theorem, which will then be applied to the M-, DR-, and X-learners to show their error’s upper bound. The
second part B.2 establishes the bias-variance of the T- and the naive X-learners (proof of Theorem 5.3). This appendix
follows the same logic as Appendix B.1’s main proof.

• Appendix C discusses further the comparison of the generalized R-learner and the binarized R-learner.

• Appendix D concerns Section 6.1 with more insights about the numerical experiments and results.

• Appendix E describes the Semi-synthetic dataset used in subsection 6.2

A. Proofs of propositions of Section 4
Proposition A.1 (Regularizing the T-learner against selection bias). For a treatment level t ∈ T , the expected squared error
of the estimator µ̂t on the outcome surface µt satisfies:

EX∼P(·)
[
(µ̂t(X)− µt(X))2

]
=

EX∼P(·|T=t)

[
P(T = t)

r(t,X)

(
µ̂t(X)− µt(X)

)2]
.

(3)

where P(·) is the marginal distribution of X and P(· | T = t) is the conditional distribution of X given T = t.

A.1. Proof of Proposition A.1
This proof is similar to the proof of equation (5) in supplementary of Curth & van der Schaar (2021a). For simplicity, we
assume that the distribution of X and the conditional distribution of X given T = t are absolutely continuous with respect
to the Lebesgue measure over Rd. Let pX(x) denote the probability distribution function of X , let p(x | T = t) denote the
probability distribution function of X given T = t and let Rt =

∫
(µ̂t(x)− µt(x))

2p(x | T = t)dx.
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EX∼P(·)
[
(µ̂t(X)− µt(X))2

]
=

∫
(µ̂t(x)− µt(x))

2p(x)dx

= P(T = t)

∫
(µ̂t(x)− µt(x))

2p(x | T = t)dx+
∑
t′ ̸=t

P(T = t′)

∫
(µ̂t(x)− µt(x))

2p(x | T = t′)dx

= P(T = t)Rt +
∑
t′ ̸=t

P(T = t′)

∫
(µ̂t(x)− µt(x))

2 p(x | T = t′)

p(x | T = t)
p(x | T = t)dx

= P(T = t)Rt +
∑
t′ ̸=t

P(T = t′)

∫
(µ̂t(x)− µt(x))

2

P(T=t′|x)p(x)
P(T=t′)

P(T=t|x)p(x)
P(T=t)

p(x | T = t)dx (Bayes rule)

= P(T = t)Rt + P(T = t)
∑
t′ ̸=t

∫
(µ̂t(x)− µt(x))

2P(T = t′ | x)
P(T = t | x)

p(x | T = t)dx

= P(T = t)Rt + P(T = t)

∫
(µ̂t(x)− µt(x))

2

∑
t′ ̸=t P(T = t′ | x)
P(T = t | x)

p(x | T = t)dx

= P(T = t)Rt + P(T = t)

∫
1− r(t,x)

r(t,x)
(µ̂t(x)− µt(x))

2p(x | T = t)dx

= P(T = t)

∫ (
1 +

1− r(t,x)

r(t,x)

)
(µ̂t(x)− µt(x))

2p(x | T = t)dx

= EX∼p(·|T=t)

[
P(T = t)

r(t,X)
(µ̂t(X)− µt(X))2

]
.

(4)

A.2. Consistency of the X-learner
By direct calculations, we show that

E(ZX
k | X = x) = E [1{T = tk}Y (tk) | X = x]− r(tk,x)µt0(x) +

∑
l ̸=k

r(tl,x)
(
µtk(x) (5)

− E [1{T = tl}Y (tl) | X = x]
)
+
∑
l ̸=k

r(tl,x)(µtl(x)− µt0(x)) (6)

= r(tk,x)µtk(x)− r(t,x)µt0(x) +
∑
l ̸=k

(
r(tl,x)µt(x)− r(tl,x)µt′(x)

)
(7)

+
∑
l ̸=k

r(tl,x)(µtl(x)− µt0(x)) (by Assumption 3.1) (8)

= r(tk,x)µtk(x)− r(tk,x)µt0(x) +
∑
l ̸=k

r(tl,x)µtk(x)−
∑
l ̸=k

r(tl,x)µt0(x) (9)

= (µtk(x)− µt0(x))
(
r(tk,x) +

∑
l ̸=k

r(tl,x)
)

(10)

= µtk(x)− µt0(x) = τk(x). (11)

A.3. Consistency of the naive extension of the X-learner
Let us consider the two random variables D(k) := Y (tk)− µt0(X) and D(0) := µtk(X)− Y (t0). We have

τ (k)(x) = E(D(k) | X = x) = E(Y (tk)− µt0(X) | X = x)

= E[Y (tk) | X = x]− µt0(x)

= µtk(x)− µt0(x) = τk(x),

(12)

and
τ (0)(x) = E(D(0) | X = x) = E(µtk(X)− Y (tk) | X = x)

= µtk(x)− E[E(Y (tk) | X = x]

= µtk(x)− µt0(x) = τk(x).

(13)
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Therefore,

τ
(X,nv)
k (x) =

r(tk,x)

r(tk,x) + r(t0,x)
τ (k)(x) +

r(t0,x)

r(tk,x) + r(t0,x)
τ (0)(x) = τk(x). (14)

A.4. Generalizing the Robinson decomposition
We show first the Neyman-Orthogonality propriety, i.e. E (ϵ | T,X) = 0. Indeed, for t ∈ T and x ∈ D, we have

E
[
ϵ | T = t,X = x

]
= E

[
Yobs − µT (X) | T = t,X = x

]
= E

[
Y (t)− µT (X) | T = t,X = x

]
= µt(x)− µt(x) = 0.

(15)

Thus, the observed outcome model satisfies:

E(Yobs | X = x) = E
[
ϵ+

K∑
k=0

1{T = tk}µtk(X) | X = x
]

= E
[
E[ϵ | T,X] | X = x

]
+

K∑
k=0

E
[
1{T = tk} | X = x

]
µtk(x)

=

K∑
k=0

µtk(x)r(tk,x) = µt0(x)r(t0,x) +

K∑
k=1

µtk(x)r(tk,x)

= µt0(x)
[
1−

K∑
k=1

r(tk,x)
]
+

K∑
k=1

µtk(x)r(tk,x)

= µt0(x) +

K∑
k=1

r(t,x) [µtk(x)− µt0(x)]

= µt0(x) +

K∑
k=1

r(tk,x)τk(x) = m(x).

(16)

By gathering both quantities :

Yobs −m(X) =

K∑
k=0

1{T = tk}µtk(X)− µt0(X)−
K∑

k=1

r(tk,X)τk(X) + ϵ

= 1{T = t0}µt0(X) +

K∑
k=1

1{T = tk}µtk(X)− µt0(X)−
K∑

k=1

r(tk,X)τk(X) + ϵ

=
(
1{T = t0} − 1

)
µt0(X) +

K∑
k=1

(1{T = tk}µtk(X)− r(tk,X)τk(X)) + ϵ

=

K∑
k=1

(1{T = tk}µtk(X)− r(tk,X)τk(X))−
K∑

k=1

1{T = tk}µt0(X) + ϵ

=

K∑
k=1

(1{T = tk}µtk(X)− 1{T = tk}µt0(X)− r(tk,X)τk(X)) + ϵ

=

K∑
k=1

[
1{T = tk} − r(tk,X)

]
τk(X) + ϵ.

(17)

Therefore, we obtain the generalized Robinson decomposition for the multi-treatment regime.
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A.5. Solving the generalized R-learner for linear models
For k = 1, . . . ,K, we assume that τk belongs to the family of linear regression models such that:

F =
{{
τk(x) := βk,0 +

p−1∑
j=1

βk,jfj(x)
}K
k=1

/ βk = (βk,0, . . . , βk,p−1)
⊤ ∈ Rp

}
. (18)

fj are predefined functions (e.g. polynomial functions). It is also possible to use a matrix notation and write τk(X) = Hβk

where H = (fj(Xi)) ∈ Rn×p assumed to be full rank matrix rank(H) = p ≤ n.

Let Y = (Y i)
n
i=1 and T k = (T i,k)

n
i=1 such that Y i = Yobs,i−m̂(Xi) and T i,k = 1{ti = tk}− r̂(tk,Xi). Let ϵ = (ϵi)

n
i=1

denote the vector of errors obtained for the generalized Robinson (1988) decomposition in Proposition 3.3.

We show immediately that L, the generalized R-loss function associated with the mean squared error of ϵ in (2) in the paper,
is quadratic with respect to β. Indeed,

L({τk}t̸=t(0)) =
1

n
ϵ⊤ϵ =

1

n

(
Y −

K∑
k=1

T k ⊙ (Hβk)
)⊤(

Y −
K∑

k=1

T k ⊙ (Hβk)
)

=
1

n

Y ⊤
Y − 2

K∑
k=1

Y
⊤(
T k ⊙ (Hβk)

)
+

K∑
k,k′=1

(
T k ⊙ (Hβk)

)⊤ (
T k′ ⊙ (Hβk′)

)
=

1

n

(
Y

⊤
Y − 2

K∑
k=1

Y
⊤
DTk

Hβk +

K∑
k,k′=1

β⊤
k H

⊤DTk
DTk′Hβk′

)
,

(19)

where ⊙ is the Hadamard product (element-wise product). The last line holds because T k ⊙ (Hβk) = DTk
Hβk with DTk

is the diagonal matrix of the vector T k = (T i,k)
n
i=1

By differentiating ∂L/∂βk = 0 for k = 1, . . . ,K :
−a1 +B1β̂1 +

∑K
k=2 C1kβ̂k = 0

...
...

... = 0

−aK +
∑K

k=1 CKkβ̂k +BK β̂K = 0

(20)

⇐⇒


B1 C12 · · · C1K

C21 B2 · · · C2K

...
...

. . .
...

CK1 CK2 · · · BK



β̂1

β̂2
...

β̂K

 =


a1

a2

...
aK

 , (21)

where

aj =
1

n
H⊤DT j

Y ∈ Rp, (22)

Bj =
1

n
H⊤D2

T j
H ∈ Rp×p, (23)

Cij =
1

n
H⊤DT i

DT j
H ∈ Rp×p. (24)

Let β =
(
β⊤
1 , . . . ,β

⊤
K

)⊤
∈ RK×p and consider the block matrix A defined as

A =


B1 C12 · · · C1K

C21 B2 · · · C2K

...
...

. . .
...

CK1 CK2 · · · BK

 . (25)
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The matrix A is real symmetric and satisfies:

β⊤Aβ =
∑

1≤k,l≤K

β⊤
k H

⊤DTk
DT l

Hβl

=

∥∥∥∥ K∑
k=1

DTk
Hβk

∥∥∥∥2 ≥ 0.

(26)

This result shows that A is positive semi-definite, all its eigenvalues are nonnegative and also proves the existence of a
minimizer β̂ to the loss function L. However, this is not sufficient to prove the uniqueness of the solution as one cannot
prove all eigenvalues are positive.

The solution β̂ to Problem (4.3) in the main paper with the minimal norm is given by

β̂ = A+a, (27)

where A+ is the Moore–Penrose inverse of A and a =
(
a⊤
1 , . . . ,a

⊤
K

)⊤
.

B. Theoretical analysis of the error bounds.

B.1. Error estimation of pseudo-outcome meta-learners.

Step 0. Set-up of the theorem
In the following subsection, we will analyze the error estimation of each two-step meta-learner. Given Assumption 5.1
stating that the observations are generated from a function f respecting the two causal assumptions (3.1-3.2), each unit i has
the following observed and potential outcomes

Yi(tk) = f(tk,Xi) + εi(tk),

Yi(t0) = f(t0,Xi) + εi(t0).
(28)

where εi(t) are i.i.d. Gaussian N (0, σ2) and independent of (Ti,Xi)
n
i=1. As a consequence, the noise (ϵi)ni=1 = (εi(Ti))

n
i=1

is also Gaussian N (0, σ2) and is independent of (Ti,Xi)
n
i=1.

The CATE model τk for each k = 1, . . . ,K can be written as:

τk(x) = E(Y (tk)− Y (t0) | X = x)

= E(f(tk,X)− f(t0,X) + ϵ∗ | X = x)

= f(tk,x)− f(t0,x)

(29)

where ϵ∗ is a noise independent of X (and T ) and satisfying E(ϵ∗) = 0.

Under the assumption 5.2, we write τk(X) = f(tk,X)−f(t0,X) = Hβ∗
k where β∗

k = βtk
−βt0 and H = (Hij) ∈ Rn×p

is the regression matrix, assumed to be full rank matrix, such that Hij = fj(Xi) for i = 1, . . . , n and j = 0, . . . , p − 1.
With pseudo-outcome meta-learners, we consider a random variable Zk for a fixed tk such that

Zk,i = Atk(Ti,Xi)Yobs,i +Btk(Ti,Xi), i = 1, . . . , n,

where the functions Atk(T,X) and Btk(T,X) are given for each pseudo-outcome meta-learner.

Step 1. Identification of β̂k and β∗
k

The regression coefficients β̂k are given by the Ordinary Least Squares (OLS) method

β̂k =
(
H⊤H

)−1
H⊤zk, (30)
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where zk = (Zk,i)1≤i≤n. Thus,

β̂k =
(
H⊤H

)−1
H⊤zk

=
(
H⊤H

)−1
H⊤(Atk(Ti,Xi)Yobs,i +Btk(Ti,Xi)

)n
i=1

=
(
H⊤H

)−1
H⊤(Atk(Ti,Xi)f(Ti,Xi) +Btk(Ti,Xi) +Atk(Ti,Xi)ϵi

)n
i=1

=
(
H⊤H

)−1
H⊤(τk(x) +Atk(Ti,Xi)f(Ti,Xi)− τk(x) +Btk(Ti,Xi) +Atk(Ti,Xi)ϵi

)n
i=1

=
(
H⊤H

)−1
H⊤(Hβ∗

k +Atk(Ti,Xi)f(Ti,Xi)− τk(x) +Btk(Ti,Xi) +Atk(Ti,Xi)ϵi
)n
i=1

= β∗
k +

(
H⊤H

)−1
H⊤(Atk(Ti,Xi)f(Ti,Xi)− τk(x) +Btk(Ti,Xi) +Atk(Ti,Xi)ϵi

)n
i=1

= β∗
k +

(
H⊤H

)−1
H⊤ϵ̃k

where ϵ̃k,i = ψk(Ti,Xi) +Atk(Ti,Xi)ϵi and ψk(Ti,Xi) = Atk(Ti,Xi)f(Ti,Xi)− τk(Xi) +Btk(Ti,Xi) to simplify
notations.

Let us consider the random vector Z(n)
k such that

Z
(n)
k =

( 1
n
(H⊤ϵ̃k)1, . . . ,

1

n
(H⊤ϵ̃k)p,

1

n
(H⊤H)11, . . . ,

1

n
(H⊤H)pp

)⊤ ∈ Rp+p2

, (31)

that allows us to write β̂k as

β̂k = β∗
k +

(
H⊤H

)−1
H⊤ϵ̃k

= β∗
k +

( 1
n
H⊤H

)−1( 1
n
H⊤ϵ̃k

)
= β∗

k + ϕ(Z
(n)
k ),

(32)

where ϕ : Rp+p2 −→ Rp is a C1-function.

Step 2. The asymptotic behaviour of the OLS estimator’s mean and covariance
In order to apply the Central Limit Theorem (CLT) later, we show that the vector Z(n)

k can be written as sum of i.i.d. random
vectors Zk,i.

Z
(n)
k =

( 1
n
(H⊤ϵ̃k)1, . . . ,

1

n
(H⊤ϵ̃k)p,

1

n
(H⊤H)11, . . . ,

1

n
(H⊤H)pp

)⊤ ∈ Rp+p2

=
( 1
n

n∑
i=1

Hi1ϵ̃k,i, . . . ,Hipϵ̃k,i,
1

n

n∑
i=1

Hi1Hi1, . . . ,
1

n

n∑
i=1

HipHip

)⊤
=

1

n

n∑
i=1

(
Hi1ϵ̃k,i, . . . ,Hipϵ̃k,i,Hi1Hi1, . . . ,HipHip

)⊤
=

1

n

n∑
i=1

Zk,i.

(33)

The mean m of the vector Z(n)
k satisfies

m = E(Z(n)
k ) =

1

n

n∑
i=1

E(Zk,i) = E(Zk,i)

=
(
h1, . . . , hp, F11, . . . , Fpp

)⊤
,

(34)

where, for j, j′ = 1, . . . , p,

hj = E
[
fj−1(X)

(
ψk(T,X) +Atk(T,X)ϵ

)]
= E

(
fj−1(X)ψk(T,X)

)
Fjj′ = E

(
fj−1(X)fj′−1(X)

)
.

(35)
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The covariance matrix C of Z(n)
k has entries

Cjj′ = Cov
(
Z

(k)
j ,Z

(k)
j′

)
= E(Z(k)

j ,Z
(k)
j′ )− E(Z(k)

j )E(Z(k)
j′ )

=


E
(
fj−1(X)fj′−1(X)

(
ψk(T,X) +Atk(T,X)ϵ

)2)− hjhj′ if j, j′ ∈ {1, . . . , p}
E
(
fk̃−1(X)fk̃′−1(X)fl−1(X)fl′−1(X)

)
− Fkk′Fll′ if j, j′ ∈ {p+ 1, . . . , p2}

E
(
fk̃−1(X)fk̃′−1(X)fj−1(X)

(
ψk(T,X) +Atk(T,X)ϵ

))
− hjFkk′ otherwise.

=


E
(
fj−1(X)fj′−1(X)ψ2

k(T,X)
)
+ σ2E

(
fj−1(X)fj′−1(X)A2

tk
(T,X)

)
− hjhj′ if j, j′ ∈ {1, . . . , p}

E
(
fk̃−1(X)fk̃′−1(X)fl−1(X)fl′−1(X)

)
− Fk̃k̃′Fll′ if j, j′ ∈ {p+ 1, . . . , p2}

E
(
fk̃−1(X)fk̃′−1(X)fj−1(X)ψk(T,X)

)
− hjFk̃k̃′ otherwise,

(36)
where k̃, k̃′ = η−1(j) (respectively, l, l′ = η−1(j′)) such that η is the correspondence indexes map between m and F in
mj = Fk̃k̃′ (respectively, mj′ = Fll′ ) when j ≥ p+ 1 (respectively, when j′ ≥ p+ 1).

By considering now the vector

S(n) =
√
n
(
Z

(n)
k −m

)
=

1√
n

n∑
i=1

(
Zk,i −m

)
, (37)

one can show by the multivariate CLT that

S(n) =
√
n
(
Z

(n)
k −m

) L−→ N (0,C). (38)

This allows us to write β̂k as function of S(n) and m. Indeed,

β̂k = β∗
k +

(
H⊤H

)−1
H⊤ϵ̃

= β∗
k + ϕ(Z(n))

= β∗
k + ϕ

(
m+ S(n)/

√
n
)

= β∗
k +Φ(S(n),m),

(39)

where Φ : Rp+p2 × Rp+p2 −→ Rp is also C1-function.

Since
√
n
(
S(n) − 0

) L−→ N (0,C), one obtains by the Delta method

√
n
[
Φ(S(n),m)− Φ(0,m)

]
L−→ N

(
0, J

(1)
Φ (0,m)⊤CJ

(1)
Φ (0,m)

)
, (40)

where J (1)
Φ (0,m) is the Jacobian matrix at the first p+ p2 coordinates of Φ at (0,m).

By denoting gn, a Gaussian noise with zero-mean and covariance matrix C′ = J
(1)
Φ (0,m)⊤CJ

(1)
Φ (0,m), the previous

equation is equivalent to
β̂k = β∗

k +Φ(Sn,m) ≈ β∗
k +Φ(0,m) + gn/

√
n. (41)

For n large, the expansions of the first moments is of the form:

E(β̂k) ≈ β∗
k +Φ(0,m). (42)

and, the asymptotic variance is also of the form:

V(β̂k) ≈
1

n
J
(1)
Φ (0,m)⊤CJ

(1)
Φ (0,m). (43)

This result holds whether the nuisance parameters in At and Bt are well-specified or not, so there is no guarantee that
Φ(0,m) = 0 and the estimator β̂k may be biased.
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In the following, we assume that the nuisance parameters in At and Bt are well-specified i.e. E
(
ψk(T,X)) | X = x

)
= 0

in such way that E(Zk | X = x) = τk(x), or equivalently, E
(
H⊤ϵ̃k

)
= 0. Consequently, the estimator of β̂k is unbiased.

In this case, computing the variance V(β̂k) becomes much easier and more explicit.

On the one hand, by the multivariate Central Theorem Limit (CTL)

1√
n
H⊤ϵ̃k

L−→ N (0,Σ) (44)

which is equivalent to
1√
n
H⊤ϵ̃k ≈ gn, (45)

where gn is a Gaussian noise with zero-mean and covariance matrix of Σ with entries

Σjj′ = E
[
fj(X)fj′(X)

(
ψk(T,X) +Atk(T,X)ϵ

)2]
= E

(
fj(X)fj′(X)ψ2

k(T,X)
)
+ σ2E

(
fj(X)fj′(X)A2

tk
(T,X)

)
.

(46)

On the other hand, by the law of large numbers (LLN), we have 1/n
(
H⊤H

) a.s−→ F, thus 1/n
(
H⊤H

) P−→ F. Since F is
invertible, then

n
(
H⊤H

)−1 P−→ F−1, (47)

where F = (Fjj′)0≤j,j′≤p−1 and Fjj′ = E
(
fj(X)fj′(X)

)
.

By Slutsky’s theorem, √
n
(
β̂k − β∗

k

)
= n

(
H⊤H

)−1 · 1/
√
nH⊤ϵ̃

L−→ N (0,F−1ΣF−1).
(48)

We can deduce that the asymptotic mean and variance are of the form

E(β̂k) = β∗
k,

V(β̂k) ≈
1

n
F−1ΣF−1.

(49)

Step 3. Obtaining the error upper bound
The determinant of the variance matrix, also known as the generalized variance by Wilks (1932; 1967) is usually used as a
scalar measure of overall multidimensional scatter and can be useful to compare the variance of each meta-learner.

In our case, comparing the generalized variance is equivalent to comparing det
(

1
nΣ
)

of each pseudo-outcome meta-learner
since

det
(
V(β̂k)

)
=
(
detF−1

)2
det
( 1
n
Σ
)
=

1(
detF

)2 det
( 1
n
Σ
)
, (50)

with, obviously, det (Σ) > 0 because Σ is symmetric positive definite.

In some cases, the polynomials fj are chosen to be orthonormal with respect to the distribution of X (e.g. Polynomials
Chaos (Sudret, 2008)). A consequence of this choice implies that F is the identity matrix. Therefore, in the following,
we focus on computing and bounding Σ terms. The assumptions (3.1-5.2) and the following lemma will be used for this
purpose.

Lemma B.1. If X1, . . . , Xm is a sequence of random variables and b > 1, then∣∣∣∣E[( m∑
i=1

Xi

)2]∣∣∣∣ ≤ m

m∑
i=1

E
[∣∣X2

i

∣∣],
∣∣∣∣E[( m∑

i=1

Xi

)b]∣∣∣∣ ≤ m(b−1)
m∑
i=1

E
[∣∣Xb

i

∣∣]. (51)
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Proof. The first inequality is obtained by Cauchy-Schwarz, whereas the second inequality can be proved by Jensen inequality.
Indeed, for b > 1, the function x 7→ xb is convex for x > 0 and∣∣∣∣∑m

i=1Xi

m

∣∣∣∣b ≤ ∑m
i=1 |Xi|b

m
. (52)

Therefore, ∣∣∣∣E[( m∑
i=1

Xi

)b]∣∣∣∣ ≤ E
[∣∣∣ m∑

i=1

Xi

∣∣∣b] ≤ m(b−1)
m∑
i=1

E
[∣∣Xb

i

∣∣]. (53)

In the following and by Assumption 5.1, fj(X) ∈ La i.e. fj(X) has all possible finite moments for all j ∈ {0, . . . , p− 1}.
Moreover, there exists C > 0 such that:

∀t ∈ T ,∀x ∈ D : |f(t,x)| ≤ C. (54)

B.1.1. ERROR ESTIMATION OF THE M-LEARNER

Let a, b > 1 such that 1/a+ 1/b = 1. We denote δ(a)jj′ =
∣∣E(faj (X)faj′(X)

)∣∣1/a. By Hölder inequality we show that for
the M-learner:∣∣E(fj(X)fj′(X)ψ2

k(T,X)
)∣∣ ≤ ∣∣E(faj (X)faj′(X)

)∣∣1/a · ∣∣E(ψ2b
k (T,X)

)∣∣1/b (Hölder)

≤ δ
(a)
jj′

(
22b−1 E

[(1{T = tk}
r(tk,X)

− 1
)2b

f2b(tk,X)

+
(1{T = tk}
r(tk,X)

− 1
)2b

f2b(tk,X)
])1/b

(Lemma B.1 with m = 2)

≤ 2(2b−1)/b δ
(a)
jj′

(
E
[
22b−1

(1{T = tk}
r2b(t,X)

+ 1
)
f2b(tk,X)

]
+ E

[
22b−1

(1{T = tk}
r2b(tk,X)

+ 1
)
f2b(tk,X)

])1/b
(Lemma B.1)

≤ 22(2b−1)/b δ
(a)
jj′

(
E
[
E
(1{T = tk}
r2b(t,X)

+ 1
)
| X
)
f2b(tk,X)

]
+ E

[
E
(1{T = tk}
r2b(tk,X)

+ 1
)
| X
)
f2b(tk,X)

])1/b
≤ 22(2b−1)/b δ

(a)
jj′

(
E
[( 1

r2b−1(t,X)
+ 1
)
f2b(tk,X)

]
+ E

[( 1

r2b−1(tk,X)
+ 1
)
f2b(tk,X)

])1/b
≤ 22(2b−1)/b δ

(a)
jj′

( 1

r2b−1
min

+ 1
)1/b(

C2b + C2b
)1/b

(Bounding r and f )

≤ 22(2b−1)/b δ
(a)
jj′

( 1

r2b−1
min

+
1

r2b−1
min

)1/b
21/bCb

≤ 22(2b−1)/b δ
(a)
jj′

21/b

r
(2b−1)/b
min

21/bCb

≤ 24 δ
(a)
jj′

1

r
(2b−1)/b
min

Cb =
16

r
(2b−1)/b
min

δ
(a)
jj′C

b.

(55)
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On the other term, one obtains similarly:∣∣E(fj(X)fj′(X)A2
tk
(T,X)

)∣∣ ≤ ∣∣E(faj (X)faj′(X)
∣∣1/a · ∣∣E(A2b

tk
(T,X)

)∣∣1/b (Hölder)

≤ δ
(a)
jj′

∣∣E(A2b
tk
(T,X)

)∣∣1/b
≤ δ

(a)
jj′

(
22b−1 E

(1{T = tk}
r(tk,X)

)2b
+ E

(1{T = tk}
r(tk,X)

)2b)1/b

(Lemma B.1)

≤ 2(2b−1)/bσ2δ
(a)
jj′

(
E
(1{T = tk}
r2b(tk,X)

)
+ E

(1{T = tk}
r2b(tk,X)

))1/b

≤ 2(2b−1)/bσ2δ
(a)
jj′

( 2

r2b−1
min

)1/b
=

4

r
(2b−1)/b
min

σ2δ
(a)
jj′ .

(56)

Thus, by combining the two terms, one gets:∣∣∣Σ(M)
jj′

∣∣∣ ≤ ∣∣E(fj(X)fj′(X)ψ2
k(T,X)

)∣∣+ σ2
∣∣E(fj(X)fj′(X)A2

tk
(T,X)

)∣∣
≤ 16

r
(2b−1)/b
min

δ
(a)
jj′C

b +
4

r
(2b−1)/b
min

σ2δ
(a)
jj′

≤ 1

r
(2b−1)/b
min

(
16 Cb + 4σ2

)
δ
(b)
∗ ,

(57)

where δ(b)∗ = maxj,j′
∣∣∣E(f b/(b−1)

j (X)f
b/(b−1)
j′ (X)

)∣∣∣(b−1)/b

= maxj,j′ δ
(a)
jj′ .

Therefore, for all ϵ = b− 1 > 0, there exists CM = 4C + σ2 such that∣∣∣Σ(M)
jj′

∣∣∣ ≤ 4r
1/(1+ϵ)−2
min δ

(1+ϵ)
∗ CM . (58)

In particular, if ϵ≪ 1 then 1/(1 + ϵ)− 2 ≈ −(1 + ϵ) and∣∣∣Σ(M)
jj′

∣∣∣ ≤ 4

r1+ϵ
min

δ
(1+ϵ)
∗ CM (59)

B.1.2. ERROR ESTIMATION OF THE DR-LEARNER.
In this case, we have

Atk(T,X) =
1{T = tk}
r(tk,X)

− 1{T = tk}
r(tk,X)

, (60)

Btk(T,X) = µtk(X)− µtk(X)−
(
1{T = tk}
r(tk,X)

− 1{T = tk}
r(tk,X)

)
µT (X). (61)

We need just to compute the upper bound of E
(
fj(X)fj′(X)ψ2

k(T,X)
)

such that

ψk(T,X) = Atk(T,X)f(T,X)− τk(x) +Btk(T,X)

=
(1{T = tk}
r(tk,X)

− 1
)
f(tk,X)−

(1{T = tk}
r(tk,X)

− 1
)
f(tk,X) + µtk(X)

(
1− 1{T = tk}

r(tk,X)

)
− µtk(X)

(
1− 1{T = tk}

r(tk,X)

)
=
(1{T = tk}
r(tk,X)

− 1
)(
f(tk,X)− µtk(X)

)
−
(1{T = tk}
r(tk,X)

− 1
)(
f(tk,X)− µtk(X)

)
(62)
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Similarly to the previous calculus, we show that for the DR-learner

∣∣E(fj(X)fj′(X)ψ2
k(T,X)

)∣∣ ≤ ∣∣E(faj (X)faj′(X)
)∣∣1/a · ∣∣E(ψ2b

k (T,X)
)∣∣1/b (Hölder)

≤ δ
(a)
jj′

(
22b−1 E

[(1{T = tk}
r(tk,X)

− 1
)2b(

f(tk,X)− µtk(X)
)2b

+
(1{T = tk}
r(tk,X)

− 1
)2b(

f(tk,X)− µtk(X)
)2b])1/b

(Lemma B.1)

≤ 2(2b−1)/b δ
(a)
jj′

(
E
[(1{T = tk}

r(tk,X)
− 1
)2b(

f(tk,X)− µtk(X)
)2b]

+ E
[(1{T = tk}

r(tk,X)
− 1
)2b(

f(tk,X)− µtk(X)
)2b])1/b

≤ 2(2b−1)/b δ
(a)
jj′

(
E
[
22b−1

(1{T = tk}
r2b(t,X)

+ 1
)(
f(tk,X)− µtk(X)

)2b]
+ E

[
22b−1

(1{T = tk}
r2b(tk,X)

+ 1
)(
f(tk,X)− µtk(X)

)2b])1/b
(Lemma B.1)

≤ 22(2b−1)/b δ
(a)
jj′

(
E
[ ( 1

r2b−1(t,X)
+ 1
)(
f(tk,X)− µtk(X)

)2b]
+ E

[( 1

r2b−1(tk,X)
+ 1
)(
f(tk,X)− µtk(X)

)2b])1/b
≤ 22(2b−1)/b δ

(a)
jj′

( 1

r
(2b−1)/b
min

+ 1
)(

E
[ (
f(tk,X)− µtk(X)

)2b]
+ E

[(
f(tk,X)− µtk(X)

)2b])1/b
≤ 22(2b−1)/b δ

(a)
jj′

( 1

r
(2b−1)/b
min

+ 1
)[(

E
(
f(tk,X)− µtk(X)

)2b)1/b
+ E

(
f(tk,X)− µtk(X)

)2b)1/b]
(Subadditivity of | X|1/b)

(63)

Hence, ∣∣∣Σ(DR)
jj′

∣∣∣ ≤ 22(2b−1)/b δ
(a)
jj′

( 1

r
(2b−1)/b
min

+ 1
)[(

E
(
f(tk,X)− µtk(X)

)2b)1/b
+
(
E
(
f(tk,X)− µtk(X)

)2b)1/b]
+

4

r
(2b−1)/b
min

σ2δ
(a)
jj′

≤ 22(2b−1)/b δ
(b)
∗

( 1

r
(2b−1)/b
min

+ 1
)[(

E
(
f(tk,X)− µtk(X)

)2b)1/b
+
(
E
(
f(tk,X)− µtk(X)

)2b)1/b]
+

4

r
(2b−1)/b
min

σ2δ
(b)
∗

(64)

We consider now ϵ = b− 1 > 0, and we assume that ϵ≪ 1, then

22(2b−1)/b δ
(b)
∗

( 1

r
(2b−1)/b
min

+ 1
)[(

E
(
f(tk,X)− µtk(X)

)2b)1/b
+
(
E
(
f(tk,X)− µtk(X)

)2b)1/b]
+

4

r
(2b−1)/b
min

σ2δ
(b)
∗ ≈ 4 δ

(1+ϵ)
∗

( 1

r1+ϵ
min

+ 1
)(

E
(
f(tk,X)− µtk(X)

)2
+ E

(
f(tk,X)− µtk(X)

)2)
+ 4 σ2δ

(1+ϵ)
∗

1

r1+ϵ
min

.

(65)
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Consequently,

∣∣∣Σ(DR)
jj′

∣∣∣ ≤ 4
(C∗

DR + σ2

r1+ϵ
min

+ C∗
DR

)
δ
(1+ϵ)
∗ , (66)

where C∗
DR = E

(
f(tk,X)− µtk(X)

)2
+ E

(
f(tk,X)− µtk(X)

)2
= err(µtk) + err(µtk).

B.1.3. ERROR ESTIMATION OF THE X-LEARNER.
In this case, we have

Atk(T,X) = 2× 1{T = tk} − 1, (67)

Btk(T,X) = (1− 1{T = tk})µtk(X)− µtk(X) +
∑
l ̸=k

1{T = tl}µtl(X). (68)

One can write ψk as

ψk(T,X) = Atk(T,X)f(T,X)− τk(x) +Btk(T,X)

=
(
2 1{T = tk} − 1

)
f(T,X)− (f(tk,X)− f(tk,X)) +

(
1− 1{T = tk}

)
µtk(X)− µtk(X) +

∑
l ̸=k

1{T = tl}µtl(X)

=
(
1− 1{T = tk}

)
(µtk(X)− f(tk,X))− (µtk(X)− f(tk,X))

+
∑
l ̸=k

1{T = tl}
(
µtl(X)− f(tl,X)

)
= ak +

∑
l ̸=k

bl.

(69)

where

ak =
(
1− 1{T = tk}

)
(µtk(X)− f(tk,X))− (µtk(X)− f(tk,X)), (70)

bl = 1{T = tl}
(
µtl(X)− f(tl,X)

)
. (71)
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Similarly to the M- and DR-learners calculus, and using lemma B.1:

∣∣E(fj(X)fj′(X)ψ2
k(T,X)

)∣∣ ≤ ∣∣E(faj (X)faj′(X)
)∣∣1/a · ∣∣E(ψ2b

k (T,X)
)∣∣1/b

≤ δ
(a)
jj′

∣∣∣E(at +∑
l ̸=k

bl
)2b∣∣∣1/b (Hölder)

≤ δ
(a)
jj′

(
22b−1

(
E
(
a2bt
)
+ E

(∑
l ̸=k

bl
)2b))1/b

(Lemma B.1 with m = 2)

≤ 2(2b−1)/b δ
(a)
jj′

(
E
(
a2bt
)
+ E

(∑
l ̸=k

bl
)2b)1/b

≤ 2(2b−1)/b δ
(a)
jj′

[
22b−1

(
E
((
1− 1{T = tk}

)2b
(µtk(X)− f(tk,X)

)2b)
+ E

(
µtk(X)− f(tk,X)

)2b)
+ (K − 1)2b−1

×
∑
l ̸=k

E
(
1{T = tl}

(
µtl(X)− f(tl,X)

)2b]1/b
(Lemma B.1 with m = 2 on the 1st term, and m = (K − 1) on the 2nd term)

≤ 2(2b−1)/b δ
(a)
jj′

[
22b−1

(
E
(
µtk(X)− f(tk,X)

)2b
+ E

(
µtk(X)− f(tk,X)

)2b)
+ (K − 1)2b−1

∑
l ̸=k

E
(
µtl(X)− f(tl,X)

)2b]1/b
≤ 2(2b−1)/b δ

(a)
jj′

[
2(2b−1)/b

(
E
(
µtk(X)− f(tk,X)

)2b)1/b
+ 2(2b−1)/b

(
E
(
µtk(X)

− f(tk,X)
)2b)1/b

+ (K − 1)(2b−1)/b
∑
l ̸=k

(
E
(
µtl(X)− f(tl,X)

)2b)1/b]
≤ 22(2b−1)/b δ

(a)
jj′

[(
E
(
µtk(X)− f(tk,X)

)2b)1/b
+
(
E
(
µtk(X)− f(tk,X)

)2b)1/b
+
(K − 1

2

)(2b−1)/b∑
l ̸=k

(
E
(
µtl(X)− f(tl,X)

)2b)1/b]
.

(72)

Given that E
(
fj(X)fj′(X)A2

tk
(T,X)

)
= E

(
fj(X)fj′(X)

)
= δ

(1)
jj′ , we deduce finally

∣∣∣Σ(X)
jj′

∣∣∣ ≤ ∣∣E(fj(X)fj′(X)ψ2
k(T,X)

)∣∣+ σ2
∣∣E(fj(X)fj′(X)A2

tk
(T,X)

)∣∣
≤ 22(2b−1)/b δ

(a)
jj′

[(
E
(
µtk(X)− f(tk,X)

)2b)1/b
+
(
E
(
µtk(X)− f(tk,X)

)2b)1/b
+
(K − 1

2

)(2b−1)/b∑
l ̸=k

(
E
(
µtl(X)− f(tl,X)

)2b)1/b]
+ σ2δ

(1)
jj′

≤ 22(2b−1)/b δ
(b)
∗

[(
E
(
µtk(X)− f(tk,X)

)2b)1/b
+
(
E
(
µtk(X)− f(tk,X)

)2b)1/b
+
(K − 1

2

)(2b−1)/b∑
l ̸=k

(
E
(
µtl(X)− f(tl,X)

)2b)1/b]
+ σ2δ

(1)
∗

(73)

where δ(1)∗ = maxj,j′ E
(
fj(X)fj′(X)

)
.
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As in the previous cases, we consider now ϵ = b− 1 > 0 with ϵ≪ 1, then

22(2b−1)/b δ
(b)
∗

[(
E
(
µtk(X)− f(tk,X)

)2b)1/b
+
(
E
(
µtk(X)− f(tk,X)

)2b)1/b
+
(K − 1

2

)(2b−1)/b∑
l ̸=k

(
E
(
µtl(X)− f(tl,X)

)2b)1/b]
+ σ2δ

(1)
∗

≈ 4 δ
(1+ϵ)
∗

(
E
(
f(tk,X)− µtk(X)

)2
+ E

(
f(tk,X)− µtk(X)

)2
+

(K − 1)2

4

∑
l ̸=k

E
(
µtl(X)− f(tl,X)

)2
+ σ2δ

(1)
∗ .

(74)

Therefore, ∣∣∣Σ(X)
jj′

∣∣∣ ≤ 4δ
(1+ϵ)
∗ CX + σ2δ

(1)
∗ . (75)

where CX = err(µtk) + err(µtk) +
(K−1)2

4

∑
l ̸=k err(µtl).

B.2. Error estimation of the T- and naive X-learners.

In this subsection, we propose to conduct the bias-variance analysis of the T-learner and the naive extension of the X-learner.
Some steps of this proof are quite similar to the proof of Appendix B.1.

B.2.1. ERROR ESTIMATION OF THE T-LEARNER.

STEP 0. SET-UP

For all t ∈ T , we define the set St = {i, Ti = t} with nt =
∣∣St

∣∣. Under Assumptions (3.1-5.2), the T-learner of the CATE
can be defined as

τ̂
(T)
k (x) = f(x)⊤β̂tk

− f(x)⊤β̂t0 = f(x)⊤(β̂tk
− β̂t0), (76)

where β̂tk
and β̂t0 are the OLS estimators of βtk

and βt0 such that:

β̂tk
=
(
H⊤

k Hk

)−1
H⊤

k yk, (77)

β̂t0 =
(
H⊤

0 H0

)−1
H⊤

0 y0, (78)

where Hk = (fj(Xi))i∈Stk
,j ∈ Rnk×p (respectively, H0 = (fj(Xi))i∈St0 ,j

∈ Rn0×p) is the regression matrix and
yk = (Yobs,i)i∈Stk

(respectively, y0 = (Yobs,i)i∈St0
).

STEP 1. IDENTIFICATION OF β̂k

By similar calculus, we show that:

β̂tk
=
(
H⊤

k Hk

)−1
H⊤

k yk

=
(
H⊤

k Hk

)−1
H⊤

k

(
f(tk,Xi) + εi(tk)

)
i∈Stk

= βtk
+
(
H⊤

k Hk

)−1
H⊤

k ϵk

= βtk
+

1
√
nk

( 1

nk
H⊤

k Hk

)−1( 1
√
nk

H⊤
k ϵk

)
.

(79)

where ϵk = (εi(tk))
n
i=1 are i.i.d. Gaussian N (0, σ2) and independent of (Ti,Xi)

n
i=1.

Thus,
√
n
(
β̂tk

− βtk

)
=

√
n

nk

( 1

nk
H⊤

k Hk

)−1( 1
√
nk

H⊤
k ϵk

)
. (80)

By similar calculus
√
n
(
β̂t0 − βt0

)
=

√
n

n0

( 1

n0
H⊤

0 H0

)−1( 1
√
n0

H⊤
0 ϵ0

)
. (81)
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Therefore, by considering β̂k = β̂tk
− β̂t0 ,

√
n
(
β̂k − β∗

k

)
=

√
n
(
β̂tk

− βtk

)
+
√
n
(
β̂t0 − βt0

)
=

√
n

nk

( 1

nk
H⊤

k Hk

)−1( 1
√
nk

H⊤
k ϵk

)
+

√
n

n0

( 1

n0
H⊤

0 H0

)−1( 1
√
n0

H⊤
0 ϵ0

)
.

(82)

STEP 2. THE ASYMPTOTIC BEHAVIOUR OF THE OLS ESTIMATOR’S MEAN AND COVARIANCE

Let a = (ak,a0) ∈ R2p and let ϕn denote the characteristic function of the vector
(

1√
nk

H⊤
k ϵk,

1√
n0

H⊤
0 ϵ0

)
. We have

ϕn(a) = E
[
exp ia⊤( 1

√
nk

H⊤
k ϵk,

1
√
n0

H⊤
0 ϵ0

)]
= E

[
exp i

(
a⊤
k

1
√
nk

H⊤
k ϵk + a⊤

0

1
√
n0

H⊤
0 ϵ0

)]
= E

[
exp i

( 1
√
nk

nk∑
m=1

a⊤
k

(
Hmjεm(tk)

)p−1

j=0
+

1
√
n0

n0∑
m=1

a⊤
0

(
Hmjεm(t0)

)p−1

j=0

)]
= E

[
exp i

( 1√
n

n∑
m=1

a⊤
k

(
Hmj

)p−1

j=0
εm(tk)1{Tm = tk} ×

√
n

√
nk

)
+

1√
n

n∑
m=1

a⊤
0

(
Hmj

)p−1

j=0
εm(t0)1{Tm = t0} ×

√
n

√
n0

)]
.

(83)

Now, let us consider the vector Z(n) =
(
Z

(n)
k ,Z

(n)
0

)
∈ R2p such that

Z(n) =
( 1
n

n∑
m=1

Hm1εm(tk)1{Tm = tk}, . . . ,
1

n

n∑
m=1

Hmpεm(tk)1{Tm = tk},

1

n

n∑
m=1

(
Hm1εm(t0)1{Tm = t0}, . . . ,

1

n

n∑
m=1

Hmpεm(t0)1{Tm = t0}
)

=
1

n

n∑
m=1

(
Hm1εm(tk)1{Tm = tk}, . . . , Hmpεm(tk)1{Tm = tk},

Hm1εm(t0)1{Tm = t0}, . . . , Hmpεm(t0)1{Tm = t0}
)

=
1

n

n∑
m=1

Zm.

(84)

The mean m = (mk,m0) of the vector Zm satisfies, for j = 0, . . . , p− 1,

mk,j = E
[
fj(X)ε(tk)1{T = tk}

]
= 0, (85)

m0,j = E
[
fj(X)ε(t0)1{T = t0}

]
= 0, (86)
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and its covariance matrix that satisfies, for j, j′ = 1, . . . , 2p,

Cov
(
Zm,j ,Zm,j′

)
=


E
[
fj−1(X)fj′−1(X)ε2(tk)1{T = tk}

]
if j, j′ ∈ {1, . . . , p}

E
[
fj−1(X)fj′−1(X)ε2(t0)1{T = t0}

]
if j, j′ ∈ {p+ 1, . . . , 2p}

E
[
fj−1(X)fj′−1(X)ε(tk)ε(t0)1{T = tk}1{T = t0}

]
otherwise.

=


σ2E

[
fj−1(X)fj′−1(X)1{T = tk}

]
if j, j′ ∈ {1, . . . , p}

σ2E
[
fj−1(X)fj′−1(X)1{T = t0}

]
if j, j′ ∈ {p+ 1, . . . , 2p}

0 otherwise,

=


σ2ρ(tk)Fk,jj′ if j, j′ ∈ {1, . . . , p},
σ2ρ(t0)F0,jj′ if j, j′ ∈ {p+ 1, . . . , 2p},

0 otherwise,

(87)

where the matrices Fk =
(
E
[
fj−1(X)fj′−1(X) | T = tk

])
j,j′

∈ Rp and F0 =
(
E
[
fj−1(X)fj′−1(X) | T = t0

])
j,j′

∈
Rp are supposed to be invertible. Note that, for a integrable function h, E

[
h(X)1{T = t}

]
= P(T = t)E

[
h(X) | T = t

]
.

Therefore, using the multivariate CLT on Z(n), we get( √
n a⊤

k Z
(n)
k√

n a⊤
0 Z

(n)
0

)
=

(
1√
n

∑n
m=1 a

⊤
k

(
Hmj

)p−1

j=0
εm(tk)1{Tm = tk}

1√
n

∑n
m=1 a

⊤
0

(
Hmj

)p−1

j=0
εm(t0)1{Tm = t0}

)

L−→ N
((

0
0

)
,

(
σ2ρ(tk)a

⊤
k Fkak 0

0 σ2ρ(t0)a
⊤
0 F0a0

))
.

(88)

On the other hand,( √
n

√
nk
,

√
n

√
n0

)
=

( √
n√∑n

m=1 1{Tm = tk}
,

√
n√∑n

m=1 1{Tm = t0}

)
a.s−→

(
1√
ρ(tk)

,
1√
ρ(t0)

)
, (89)

where ρ(t) = P(T = t).

Thus, by the Slutsky theorem:

1√
n

n∑
m=1

(
a⊤
k

(
Hmj

)p−1

j=0
εm(tk)1{Tm = tk}

√
n

√
nk

+ a⊤
0

(
Hmj

)p−1

j=0
εm(t0)1{Tm = t0}

√
n

√
n0

)
L−→ N (0, σ2a⊤

k Fkak + σ2a⊤
0 F0a0).

(90)

Therefore,
ϕn(a)

n→+∞−→ E
[
exp i

(
a⊤
k σ

2ρ(tk)Fkak + a⊤
0 σ

2ρ(t0)F0a0

)]
= ϕ(Zk,Z0)(a), (91)

where Zk and Z0 are two independent zero-mean random vectors with covariance matrices σ2Fk and σ2F0 respectively.

As shown previously in Appendix B.1, we can prove immediately that
(
1/nk H⊤

k Hk

)−1 P−→ F−1
k . Moreover, nk/n

a.s−→
ρ(tk) so nk/n

P−→ ρ(tk). Thus √
n

nk

( 1

nk
H⊤

k Hk

)−1 P−→ 1√
ρ(tk)

F−1
k . (92)

Finally, given Equation (82) and using the Slutsky theorem, we get

√
n
(
β̂k − β∗

k

) L−→ N
(
0,

1

ρ(tk)
F−1

k σ2FkF
−1
k +

1

ρ(t0)
F−1

0 σ2F0F
−1
0

)
= N

(
0,

σ2

ρ(tk)
F−1

k +
σ2

ρ(t0)
F−1

0

)
.

(93)
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Here also, we can deduce that the asymptotic mean and covariance matrix are of the form

E(β̂k) = βtk
− βt0 = β∗

k,

V(β̂k) ≈
1

n

( 1

ρ(tk)
F−1

k +
1

ρ(t0)
F−1

0

)
σ2.

(94)

STEP 3. OBTAINING THE ERROR UPPER BOUND

The asymptotic covariance matrix is given by the matrices F−1
k and F−1

0 . We assume that the polynomials fj are chosen to
be orthonormal, and that, conditionally to T , their distribution is not significantly different. One can anticipate, therefore,
that Fk,F0 ≈ F and easily identify the error’s upper bound of the T-learner as:

1

ρ(tk)
+

1

ρ(t0)
. (95)

B.3. Error estimation of the naive X-learner.

Let r denote a fixed arbitrary estimator of the GPS (see remark 3.3) and respecting the assumption 3.2, that is, rmin ≤ r(t,x).
Let µ̂tk denote the estimator of µtk . The model µ̂tk is trained using the sample Stk , the OLS estimator β̂tk

satisfies

β̂tk
=
(
H⊤

k Hk

)−1
H⊤

k yk

= βtk
+
(
H⊤

k Hk

)−1
H⊤

k ϵk
(96)

where yk = (Yobs,i)i∈Stk
and ϵk = (εi(tk))i∈Stk

.

Similarly, the OLS estimator of µt0 satisfies also

β̂t0 = βt0 +
(
H⊤

0 H0

)−1
H⊤

0 ϵ0, (97)

where y0 = (Yobs,i)i∈St0
and ϵ0 = (εi(t0))i∈St0

.

We recall now the definition of the naive extension of the X-learner:

τ̂
(X,nv)
k (x) =

r(tk,x)

r(tk,x) + r(t0,x)
τ̂ (k)(x) +

r(t0,x)

r(tk,x) + r(t0,x)
τ̂ (0)(x). (98)

where the estimators τ̂ (k) and τ̂ (0) are built respectively on Stk and St0 by regressing (D
(k)
i )i∈Stk

= (Yi(tk) −

µ̂t0(Xi))i∈Stk
and (D

(0)
i )i∈St0

= (µ̂tk(Xi)− Yi(t0))i∈St0
on X . In the following, we denote τ̂ (k)(x) = f(x)⊤β̂

(k)
and

τ̂ (0)(x) = f(x)⊤β̂
(0)

. Here, β̂
(k)

denotes the OLS estimator of τ̂ (k) and is given by:

β̂
(k)

=
(
H⊤

k Hk

)−1
H⊤

k

(
Yobs,i − µ̂t0(Xi)

)
i∈Stk

=
(
H⊤

k Hk

)−1
H⊤

k

(
Yobs,i − f(Xi)

⊤β̂t0

)
i∈Stk

=
(
H⊤

k Hk

)−1
H⊤

k yk −
(
H⊤

k Hk

)−1
H⊤

k Hkβ̂t0

= β̂tk
− β̂t0 = β̂k,

(99)

where β̂k = β̂tk
− β̂t0 is the T-learner OLS estimator as given in (93).

By similar calculus, we show that

β̂
(0)

=
(
H⊤

0 H0

)−1
H⊤

0

(
µ̂tk(Xi)− Yobs,i

)
i∈St0

=
(
H⊤

0 H0

)−1
H⊤

0

(
f(Xi)

⊤β̂tk
− Yobs,i

)
i∈St0

=
(
H⊤

0 H0

)−1
H⊤

0 H0β̂tk
−
(
H⊤

0 H0

)−1
H⊤

0 y0

= β̂tk
− β̂t0 = β̂k.

(100)
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It results that

τ̂
(X,nv)
k (x) =

r(tk,x)

r(tk,x) + r(t0,x)
f(x)⊤β̂

(k)
+

r(t0,x)

r(tk,x) + r(t0,x)
f(x)⊤β̂

(0)

=
( r(tk,x)

r(tk,x) + r(t0,x)
+

r(t0,x)

r(tk,x) + r(t0,x)

)
f(x)⊤β̂k = f(x)⊤β̂k

(101)

In the end, the naive X-learner is no more than a simple T-learner, the error’s upper bound of the naive X-learner is given
therefore by:

σ2
( 1

ρ(tk)
+

1

ρ(t0)

)
. (102)

C. Discussion about the binarized R-learner.

Another alternative to R-learning to continuous treatments is proposed by (Kaddour et al., 2021). The approach considers
both Assumptions 5.1 and 5.2 on the outcome Y (t) = f(X)⊤βt + ε(t), then establishes the binarized (Robinson, 1988)
decomposition such that

Yobs −m(X) = f(X)⊤(βT − eβ(X)) + ϵ, (103)

where ϵ = ε(T ), m(x) = E(Yobs | X = x) and eβ(x) = E(βT | X = x).

Considering the mean squared error of ϵ as a loss function and minimizing it allows us to identify the optimal β̂ and therefore
CATEs. Given two nuisance estimators m̂ and êβ of m and eβ, one needs to solve the following problem:

β̂ = argminβ∈F
1

n

n∑
i=1

[
(Yobs,i − m̂(Xi))− f(Xi)

⊤(βTi
− êβ(Xi)

)]2
, (104)

where F is the space of candidate models β. The previous problem corresponds to a classical OLS estimator and has,
therefore, a unique solution.

If the space of candidate models F is separable, then the optimization problem can be divided into the following sub-
problems:

β̂t0 = argmin
1

nk

∑
i∈St0

[
(Yobs,i − m̂(Xi))− f(Xi)

⊤(βt0 − êβ(Xi)
)]2

...

β̂tK = argmin
1

nK

∑
i∈StK

[
(Yobs,i − m̂(Xi))− f(Xi)

⊤(βtK − êβ(Xi)
)]2

.

However, this approach does not consider the interactions between different β̂t and is computationally heavy when the
number of possible treatments K becomes larger. It also requires specifying the family of models F and precise the
dimension p for Assumption 5.2.

There are two main differences between the generalized R-learner and the binarized: 1) In the binarized R-learner, (β̂tk
)Kk=1

may be solved separately but using a small sample (Stk instead of Dobs); 2) The solution (β̂tk
)Kk=1 of the binarized R-learner

is unique and is given by the OLS estimator of the binarized R-loss function.
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D. Additional details about simulated analytical functions in section 6.1

In this section, we consider a treatment T with K + 1 = 10 possible values in T = {tk := k
K , k ∈ {0, . . . ,K}}, drawn

from a uniform distribution, and the following outcome functions.

The linear model outcome for X ∈ R:
Y (t) | X ∼ N

(
(1 + t)X,σ2

)
. (105)

The multivariate hazard rate (Imbens, 2000) outcome satisfies for X ∈ R5:

Y (t) | X ∼ N
(
t+ ∥X∥ exp (−t∥X∥) , σ2

)
. (106)

We compute the exact components of each model in the following subsections: the GPS r, the potential outcome models µt

and the observed outcome model m.

D.1. Computing nuisance components

THE GENERALIZED PROPENSITY SCORE (GPS).
In the first design (RCT), we sample n units such that T and X are independent. The true propensity score is known

r(t,X) = P(T = t) = 1/(K + 1) for t ∈ T . (107)

In the second design (observational studies), we combineK+2 samples in a single sample of n units. The first sample DK+1

contains nK+1 = n/2 units where the treatment is assigned randomly: X and T are independent, P(T = t) = 1/(K + 1),
X ∼ N (0, I5) when the hazard rate model is applied and X ∼ U(0, 1) when the linear model is applied. For k = 0, . . . ,K,
the sample Dk contains nk = n/(2(K + 1)) units and the distribution of (X, T ) does not respect a RCT setting. For the
linear model, the joint distribution of (X,T ) is given by:

T =
k

K
and X follows a uniform distribution U(Ik) with Ik =

[ k

K + 1
,
k + 1

K + 1

)
. (108)

For the hazard rate model, the joint distribution of (X, T ) is given by:

T =
k

K
, X1 follows a truncated standardized normal distribution on Ik =

[
q k

K+1
, q k+1

K+1

)
and Xj follow a standardized normal distribution N (0, 1) for 2 ≤ j ≤ 5,

(109)

where qα is the α-quantile of the standardized normal distribution with q0 = −∞ and q1 = +∞ . This strategy of selecting
preferentially only observations with certain characteristics is called preferential selection sampling and creates thus a
selection bias on observed data.

For all k ∈ {0, . . . ,K}, the true propensity score satisfies for the linear model:

r(tk, x) =

{ K+2
2(K+1) if x ∈ Ik,

1
2(K+1) otherwise.

(110)

and, for the hazard rate model, it satisfies for x ∈ R5:

r(tk,x) =

{ K+2
2(K+1) if x1 ∈ Ik,

1
2(K+1) otherwise.

(111)

Proof. We show proof for the hazard rate model with normal distribution. The proof remains the same for the linear model
in a non-randomized setting.
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Let A be a given event, and then

P(A) =
K+1∑
k=0

nk
n
Pk(A), (112)

where P is the observed probability distribution of the combined sample and Pk denotes the probability measure induced by
(107), (109) and the unconfoundedness assumption 3.1.

Given the treatment T = tj and covariate vector x = (x, x2, . . . , x5), we have

r(tj ,x) = P(T = tj | X1 = x)

= lim
δ→0

P(T = tj | X1 ∈ [x, x+ δ])

= lim
δ→0

P (T = tj , X1 ∈ [x, x+ δ])

P (X1 ∈ [x, x+ δ])
.

(113)

On the one hand,

P(T = tj , X1 ∈[x, x+ δ]) =

K+1∑
k=0

nk
n
Pk(T = tj , X1 ∈ [x, x+ δ])

=
nj
n

Pj(T = tj , X1 ∈ [x, x+ δ]) +
nK+1

n
PK+1(T = tj , X1 ∈ [x, x+ δ])

=
nj
n

Pj(X1 ∈ [x, x+ δ]) +
nK+1

n
PK+1(T = tj)PK+1(X1 ∈ [x, x+ δ])

=
1

2(K + 1)
Pj(X1 ∈ [x, x+ δ]) +

1

2(K + 1)
PK+1(X1 ∈ [x, x+ δ]).

(114)

For x ∈ R, there exists a unique j0 such that x ∈ Ij0 . For δ small enough, we have [x, x + δ] ⊂ Ij0 and, consequently,
[x, x+ δ] ∩ Ij = ∅ for all j ̸= j0. This implies:

Pj(X1 ∈ [x, x+ δ]) =
PK+1 (X1 ∈ [x, x+ δ], X1 ∈ Ij)

PK+1 (X1 ∈ Ij)
=

PK+1 (X1 ∈ [x, x+ δ])

PK+1 (X1 ∈ Ij)
1{j = j0}. (115)

Therefore,

P(T = tj , X1 ∈ [x, x+ δ]) =
1

2(K + 1)
PK+1(X1 ∈ [x, x+ δ]) (

1{j = j0}
PK+1(X1 ∈ Ij0)

+ 1)

=
(1
2
1{j = j0}+

1

2(K + 1)

)
PK+1(X1 ∈ [x, x+ δ]).

(116)

On the other hand,

P(X1 ∈ [x, x+ δ]) =

K+1∑
k=0

nk
n
Pk(X1 ∈ [x, x+ δ])

=
1

2(K + 1)

K∑
k=0

PK+1 (X1 ∈ [x, x+ δ], X1 ∈ Ik)

PK+1 (X1 ∈ Ik)
+

1

2
PK+1(X1 ∈ [x, x+ δ])

=
1

2(K + 1)

PK+1(X1 ∈ [x, x+ δ])

PK+1(X1 ∈ Ij0)
+

1

2
PK+1(X1 ∈ [x, x+ δ])

=
1

2
PK+1(X1 ∈ [x, x+ δ]) +

1

2
PK+1(X1 ∈ [x, x+ δ])

= PK+1(X1 ∈ [x, x+ δ])

(117)
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Finally,

r(tj ,x) = lim
δ→0

P (T = tj , X1 ∈ [x, x+ δ])

P (X1 ∈ [x, x+ δ])

= lim
δ→0

(
1
21{j = j0}+ 1

2(K+1)

)
PK+1(X1 ∈ [x, x+ δ])

PK+1(X1 ∈ [x, x+ δ])

=
1

2
1{j = j0}+

1

2(K + 1)

=
(K + 1)1{j = j0}+ 1

2(K + 1)

=

{ K+2
2(K+1) if x ∈ Ij ,

1
2(K+1) otherwise.

(118)

THE POTENTIAL OUTCOME MODELS.
The potential outcome models are given directly by the conditional mean. For the linear model, µt satisfies for all t ∈ T and
x ∈ [0, 1]:

µt(x) = (1 + t)x. (119)

For the hazard rate model, µt is given by:

µt(x) = t+ ∥x∥ exp (−t∥x∥). (120)

THE OBSERVED OUTCOME MODELS.
For the linear model, the observed outcome model m can be computed as:

m(x) = E(Yobs | X = x)

= E((1 + T )X | X = x)

= (1 + E(T | X = x))x

=
(
1 +

K∑
k=0

r(tk, x)tk
)
x,

(121)

where r is given by (110).

and, for the hazard rate model, m can be computed as:

m(x) = E(E(Yobs | X, T ) | X = x)

= E(T + ∥X∥ exp (−T∥X∥) | X = x)

= E(T | X = x) + ∥x∥ E(exp (−T∥X∥) | X = x)

=

K∑
k=0

r(tk,x)tk +

K∑
k=0

∥x∥ r(tk,x) exp (−tk∥x∥),

(122)

where r is given by (111).
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D.2. Additional numerical results and plots.

In this section, we present the results of different simulations and scenarios for linear and hazard rate models withK+1 = 10,
n = 2000 for the linear model, and n = 10000 for the Hazard rate model. In the randomized setting, the sample Dobs is
sampled randomly, and the propensity score is given by (107). In a non-randomized setting, the sample Dobs is given by
preferential selection as described in Section D and the GPS is given by (110). When we say that ”the models’ nuisance
components are exact”, we replace the expression of the estimators µ̂t, m̂ or r̂ with the expressions obtained in Section D.

Linear model in a randomized setting.

Table 5. mPEHE and sdPEHE for three different ML base-learners; Case where nuisance components are exact.

Meta-learner XGBoost RandomForest Linear Model

M-Learner 2.23 (1.20) 2.09 (1.08) 0.087 (0.096)
DR-Learner 0.165 (0.034) 0.140 (0.033) 9.65 (7.84) 10−3

X-Learner 0.022 (0.004) 0.029 (0.004) 1.42 (1.46) 10−3

RLin-Learner 10.2 (8.42) 10−3

Table 6. mPEHE and sdPEHE for three different ML base-learners; Case where nuisance components are well-specified.

Meta-learner XGBoost RandomForest Linear Model

T-Learner 0.065 (0.019) 0.041 (0.016) 10.0 (8.37) 10−3

S-Learner 0.033 (0.018) 0.032 (0.028) 3.03 (2.42) 10−3

NvX-Learner 0.060 (0.019) 0.037 (0.016) 10.0 (8.37) 10−3

M-Learner 1.25 (0.610) 1.22 (0.621) 0.201 (0.191)
DR-Learner 0.068 (0.019) – 0.063 (0.020) 0.068 (0.018) – 0.068 (0.018) 10.0 (9.14) – 5.27 (4.36) 10−3

X-Learner 0.063 (0.020) – 0.033 (0.017) 0.045 (0.016) – 0.061 (0.040) 10.0 (8.37) – 3.28 (2.98) 10−3

RLin-Learner 0.135 (0.130) 0.137 (0.128) 0.073 (0.063)
For the DR- and X-learners: µt are estimated by T-learning (left value) or S-learning (right value).

Table 7. mPEHE and sdPEHE for three different ML base-learners; Case where the propensity score is misspecified.

Meta-learner XGBoost RandomForest Linear Model

M-Learner 3.86 (2.95) 3.68 (2.80) 1.45 (0.99)
DR-Learner 0.145 (0.108) 0.245 (0.179) 0.014 (0.015)
X-Learner 0.033 (0.017) 0.061 (0.040) 3.28 (2.98) 10−3

RLin-Learner 0.336 (0.272) 0.338 (0.277) 0.338 (0.215)

Table 8. mPEHE and sdPEHE for three different ML base-learners; Case where the outcome models are misspecified.

Meta-learner XGBoost RandomForest Linear Model

M-Learner 1.25 (0.610) 1.22 (0.621) 0.201 (0.191)
DR-Learner 0.811 (0.386) 0.888 (0.378) 0.308 (0.362)
X-Learner 0.304 (0.330) 0.303 (0.330) 0.275 (0.328)

RLin-Learner 0.073 (0.062)
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Table 9. mPEHE and sdPEHE for three different ML base-learners; Case where nuisance components are misspecified.

Meta-learner XGBoost RandomForest Linear Model

M-Learner 3.86 (2.95) 3.68 (2.80) 1.45 (0.99)
DR-Learner 1.87 (1.31) 2.09 (1.48) 0.828 (0.496)
X-Learner 0.304 (0.330) 0.303 (0.330) 0.275 (0.328)

RLin-Learner 0.277 (0.178)

Linear model in non-randomized setting

Table 10. mPEHE and sdPEHE for three different ML base-learners; Case where nuisance components are exact.

Meta-learner XGBoost RandomForest Linear Model

M-Learner 3.69 (1.80) 2.96 (1.47) 0.153 (0.177)
DR-Learner 0.276 (0.081) 0.206 (0.056) 10.9 (8.47) 10−3

X-Learner 0.022 (0.004) 0.028 (0.004) 1.69 (1.11) 10−3

RLin-Learner 11.0 (11.1) 10−3

Table 11. mPEHE and sdPEHE for three different ML base-learners; Case where nuisance components are well-specified.

Meta-learner XGBoost RandomForest Linear Model

T-Learner 0.067 (0.023) 0.043 (0.016) 10.5 (10.0) 10−3

RegT-Learner 0.059 (0.021) 0.042 (0.016) 13.0 (11.1) 10−3

S-Learner 0.033 (0.018) 0.060 (0.055) 6.46 (5.11) 10−3

NvX-Learner 0.062 (0.023) 0.039 (0.017) 9.56 (10.0) 10−3

M-Learner 1.35 (0.82) 1.14 (0.72) 0.196 (0.153)
DR-Learner 0.065 (0.022) – 0.065 (0.027) 0.069 (0.026) – 0.096 (0.056) 13.0 (11.1) – 8.17 (6.30) 10−3

X-Learner 0.059 (0.021) – 0.034 (0.017) 0.046 (0.016) – 0.084 (0.058) 14.7 (11.6) – 6.49 (5.23) 10−3

RLin-Learner 0.155 (0.137) 0.124 (0.114) 0.108 (0.097)
For the DR- and X-learners: µt are estimated by T-learning (left value) or S-learning (right value).

Hazard rate model in randomized setting

Table 12. mPEHE and sdPEHE for three different ML base-learners; Case where nuisance components are exact.

Meta-learner XGBoost RandomForest Linear Model

M-Learner 4.27 (1.45) 4.21 (1.28) 0.529 (0.188)
DR-Learner 0.127 (0.022) 0.144 (0.044) 0.106 (0.094)
X-Learner 0.045 (0.025) 0.087 (0.049) 0.106 (0.094)

RLin-Learner 0.107 (0.094)
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Table 13. mPEHE and sdPEHE for three different ML base-learners; Case where nuisance components are well-specified.

Meta-learner XGBoost RandomForest Linear Model

T-Learner 0.175 (0.046) 0.263 (0.144) 0.113 (0.091)
S-Learner 0.159 (0.048) 0.260 (0.130) 0.662 (0.421)

NvX-Learner 0.176 (0.091) 0.313 (0.188) 0.113 (0.092)

M-Learner 1.57 (0.471) 1.79 (0.453) 0.824 (0.522)
DR-Learner 0.165 (0.049) – 0.159 (0.047) 0.281 (0.144) – 0.275 (0.137) 0.114 (0.094) – 0.464 (0.286)
X-Learner 0.163 (0.057) – 0.154 (0.051) 0.279 (0.157) – 0.279 (0.146) 0.113 (0.092) – 0.644 (0.380)

RLin-Learner 0.245 (0.136) 0.241 (0.136) 0.717 (0.450)
For the DR- and X-learners: µt are estimated by T-learning (left value) or S-learning (right value).

Hazard rate model in non-randomized setting

Table 14. mPEHE and sdPEHE for three different ML base-learners; Case where nuisance components are exact.

Meta-learner XGBoost RandomForest Linear Model

M-Learner 6.28 (1.88) 5.74 (1.60) 3.72 (1.42)
DR-Learner 0.138 (0.029) 0.139 (0.044) 0.110 (0.097)
X-Learner 0.044 (0.025) 0.087 (0.050) 0.110 (0.097)

RLin-Learner 0.299 (0.176)

Table 15. mPEHE and sdPEHE for three different ML base-learners; Case where nuisance components are well-specified.

Meta-learner XGboost RandomForest Linear Model

T-Learner 0.183 (0.039) 0.286 (0.155) 0.129 (0.094)
RegT-Learner 0.176 (0.044) 0.286 (0.155) 0.121 (0.098)

S-Learner 0.176 (0.056) 0.306 (0.153) 0.671 (0.428)
NvX-Learner 0.190 (0.096) 0.336 (0.200) 0.129 (0.094)

M-Learner 1.61 (0.505) 1.58 (0.472) 0.906 (0.557)
DR-Learner 0.168 (0.045) - 0.178 (0.048) 0.304 (0.158) – 0.322 (0.162) 0.121 (0.098) – 0.518 (0.327)
X-Learner 0.167 (0.053) – 0.172 (0.057) 0.302 (0.169) – 0.332 (0.167) 0.120 (0.094) – 0.652 (0.388)

RLin-Learner 0.231 (0.081) 0.186 (0.123) 1.05 (0.651)
For the DR- and X-learners: µt are estimated by T-learning (left value) or S-learning (right value).
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D.3. Asymptotic performances when K increases.

In this subsection, we consider the effect of increasing K on the hazard rate function with XGBoost. For each value K, we
sample J = 10 different non-randomized samples following the preferential selection as defined previously in Appendix
D.1. The mPEHE is then computed by averaging the mPEHE over the J = 10 samples. The results are drawn in the figure
below.
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Figure 1. Variation of meta-learners’ performances as functions of the number of possible treatment values K for the hazard rate function
in an observational design setting. (a): All meta-learners; (b): Without the M-learner

When we consider the effect of increasing K on the hazard rate function with a linear model (with p = 2), we notice
the expected effect of K on the M-learner: The error bound is increasing with K. This means that the behaviour of the
M-learner with XGBoost can be explained by the over-fitting of the base-learner.
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Figure 2. Variation of meta-learner’s performances when the number of possible treatment values K for the hazard rate function in
observational design setting with a linear model. (a): All meta-learners; (b): Focus on the T-learning methods.

E. Description of the semi-synthetic dataset.

Motivation
The difficulty in evaluating a causal model’s performance in real-world applications motivates the need to create a semi-
synthetic dataset. In this subsection, we consider a multistage fracturing Enhanced Geothermal System (EGS).

Enhanced Geothermal Systems (EGS) are geothermal wells that generate geothermal energy by creating fluid connectivity
in low-permeability conductive rocks through hydraulic, thermal, or chemical stimulation. The EGS concept involves
extracting heat by constructing a subsurface fracture system to which water can be added via injection wells. Indeed, rocks
are permeable due to slight fractures and pore spaces between mineral grains, and the injected water is heated by contact
with the rock and returns to the surface through production wells. Moreover, Enhanced geothermal systems (EGS) have a
high potential for developing and supplying renewable energy sources that are more efficient and cheaper than traditional
hydrocarbon resources.

For energy companies, the goal is to optimize the design of the geothermal well (fracture spacing, Lateral Length etc.) to
generate the maximum geothermal energy. However, some economic and operational problems present challenges: On the
one hand, if the fractures are too small or too few, rocks will not be exploited sufficiently. On the other hand, if the number
of fractures in a given rock is too high, the fractures may cool down faster. We would have a costly design that will not

38



Meta-Learners for Multi-Valued Heterogeneous Effects

maximize the extracted heat.

We assume that the heat extraction performance of the EGS satisfies the following physical model:

Qwell = Qfracture × ℓL/d× ηd, (123)

where Qwell is the heat extraction performance delivered by the well (output), Qfracture is the unknown heat extraction
performance from a single fracture that can be generated using a complex seven-parameter model, including reservoir
characteristics and fracture design, ℓL is the Lateral Length of the well, d is the average spacing between two fractures and
ηd is the stage efficiency penalizing the individual contribution when fractures are close to each other. We refer to Figure 3
for a graphical description of the EGS and its inputs/output.

Finally, the model in (123) respects the unconfoundedness assumption 3.1, and we can control all its variables in the
simulations. We note that, in practice, all inputs are continuous with a given density. However, we discretize these variables
in their input space to create a full factorial design.

Description of the data-set
This section describes the data-generating process of our semi-synthetic dataset simulating the heat delivered by a multistage
fracturing EGS. The process involved the creation of a conceptual reservoir model and the modelling of multiple wells’
completion scenarios. The output (heat extraction performance) obtained from physics-based simulation experiments was
tabulated with inputs in the semi-synthetic dataset.

The input data for the model were fabricated to ease confidentiality and non-disclosure information issues. However, data
has been selected from reliable sources such as field observations, journals and books to be within the range of interest.
Doing so allowed the building of a plain but representative reservoir model that would provide realistic results of an EGS.

The heat extraction performance from a single fracture (Qfracture) is determined using fracture length, fracture height,
fracture width, fracture permeability, reservoir porosity, reservoir permeability and pore pressure. Modelling and simulation
work were done using preprocessor and reservoir simulation tools PETREL and ECLIPSE.

The four physical parameters of the fracture were investigated, and the list of values used for each parameter can be observed
in Table 16. In the end, 10× 10× 2× 3 = 600 fracture’s simulation cases have been realized.

Table 16. Fracture parameters and their range of variation for simulations.

Variable Range of variation

Fracture length (ft) [100, 1000] by a step of 100 ft
Fracture height (ft) [50, 500] by a step of 50 ft
Fracture width (in) {0.1, 0.2}

Fracture Permeability (md) {30000, 85000, 19000}

To emulate distinct reservoir schemes, it was decided to vary three main parameters; porosity, permeability and pore pressure.
For porosity and permeability, the simulator takes the minimum and maximum values and estimates the physical properties
across the reservoir. Three different multipliers were applied to define three (Low, Base and High) scenarios. Concerning
pore pressure, three specific values were defined to simulate under-normal, normal (base) and overpressure (high) gradient
conditions. Therefore, 3 × 3 × 3 = 27 possible scenarios were defined. Table 17 displays the range of minimum and
maximum values for the three reservoir parameters to be varied.

Table 17. Reservoir parameters and their range of variation for simulations.

Variable Range of variation

(Kmin,Kmax) (md) {(0.0054, 0.0157), (0.054, 0.157), (0.109, 0.314)}
(Pormin,Pormax) (dec) {(0.0054, 0.0157), (0.054, 0.157), (0.109, 0.314)}

Pore pressure (psi) {5000, 7000, 9000}
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Figure 3. The Causal DAG associated with the multistage EGS. Nodes in yellowish brown represent the reservoir characteristics, they can
only be simulated, but in reality, we cannot intervene in these variables. Nodes in Dark green represent the fracture design. Engineers
control them, and intervening in them is possible whenever there is a need to make a new fracture in the well. Nodes in blue represent a
well’s design and can be chosen arbitrarily by engineers or statisticians. Nodes in black denote the outputs. Qfracture is only given by
the simulator, whereas Qwell is given by the physical model in (123). Note that this graph contains nine nodes, but both Kmin and Kmax

represent the same physical parameter K, and the same remark is valid for Pormin and Pormax.

By combining different reservoir scenarios with single fracture simulations, we obtained a single dataset with 16,200 possible
cases for a fracture in a reservoir then we simulated the heat extraction performance for each experiment. Simulation’s
results were tabulated in the dataset ”Single Fracture Simulation Cases 16200.csv”.

The next step is to define well characteristics (lateral lengths and fracture spacing) to evaluate the heat extraction performance
of the well when reservoir and fracture properties are not changed.

Table 18. Well parameters and their range of variation.

Variable Range of variation

Lateral length (ft) [2000, 14000] by a step of 1000 ft
Fracture spacing (ft) [100, 500] by a step of 100 ft

Regarding the spacing efficiency coefficient, this coefficient was used to model interactions between fractures and penalize
the heat extraction performance of a single fracture in the presence of other close fractures, that is, when the spacing
between two fractures is small. Indeed, if the fractures are spaced too close, there may not be enough thermal energy in
the rock to heat the water, decreasing the heat extraction efficiency. Modelling this efficiency led to the efficiency table
”Fracture Efficency.csv” that describes what would be the well’s heat performance behaviour with respect to the fracture
spacing selected. Based on this table, one can interpolate the efficiency to draw the curve (see Figure 4) and thus obtain the
spacing efficiency coefficient for any desired value fracture spacing.
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Figure 4. Cross plot between fracture spacing efficiency and average stage spacing.

The final generation of the semi-synthetic dataset ”Main Dataset.csv” was achieved by combining two main tables created
using the R programming language. This table allows calculating the heat performance of a well for any lateral length and
fracture spacing between 500 ft and 100 ft with the associated spacing efficiency coefficient defined in the efficiency table,
following the physical model in (123).

The three datasets are available at https://github.com/nacharki/multipleT-MetaLearners.

Finally, we emphasize that this study’s design methodology focused on generating a semi-synthetic dataset using reservoir
numerical simulation and creating a new benchmarking dataset for comparing and validating causal inference methods.
Indeed, following the last step of forming the final dataset ”Main Dataset.csv”, any user can define different distributions
(with different values) on lateral lengths in the range [2000, 14000] and fracture spacing in range [100, 500], pick-up the
corresponding spacing efficiency coefficients using the curve drawn in Figure 4 and generate a new semi-synthetic dataset
by extrapolating them with ”Single Fracture Simulation Cases 16200.csv” dataset.

The creation of a non-randomized biased dataset.
The idea of this step was to create a collection of biased data from the main semi-synthetic dataset to emulate observational
data found in real-world situations. For example, geothermal wells with larger lateral lengths are likely to have more
fractures (expensive wells are located in better geological areas). The opposite is seen for smaller wells that tend to be
associated with fewer fractures. This situation creates a discrepancy between what engineers expect from physical models
and what they observe in the field data. The biased data, with 9,992 observations, was generated by following the preferential
selection strategy from the main dataset. Figure 5 shows the difference between the real heat extraction performance of the
EGS and the observed heat extraction performance on the field: low (under-estimated) heat performance for small wells and
high (over-estimated) heat performance for large wells.
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Figure 5. An illustration of selection bias on the heat performance. Red line: The heat extraction performance on the main dataset (i.e.
Ground Truth Model). Blue line: The heat performance on the biased dataset (i.e. observed response).
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