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ABSTRACT

Estimating uncertainty or confidence in the responses of a model can be significant
in evaluating trust not only in the responses, but also in the model as a whole. In
this paper, we explore the problem of estimating confidence for responses of large
language models (LLMs) with simply black-box or query access to them. We
propose a simple and extensible framework where, we engineer novel features
and train a (interpretable) model (viz. logistic regression) on these features to
estimate the confidence. We empirically demonstrate that our simple framework
is effective in estimating confidence of Flan-ul2, Llama-13b and Mistral-7b on
four benchmark Q&A tasks as well as of Pegasus-large and BART-large on two
benchmark summarization tasks with it surpassing baselines by even over 10%
(on AUROC) in some cases. Additionally, our interpretable approach provides
insight into features that are predictive of confidence, leading to the interesting
and useful discovery that our confidence models built for one LLM generalize
zero-shot across others on a given dataset.

1 INTRODUCTION

Given the proliferation of deep learning over the last decade or so (Goodfellow et al., 2016), un-
certainty or confidence estimation of these models has been an active research area (Gawlikowski
et al., 2023). Predicting accurate confidences in the generations produced by a large language model
(LLM) are crucial for eliciting trust in the model and is also helpful for benchmarking and ranking
competing models (Ye et al., 2024). Moreover, LLM hallucination detection and mitigation, which
is one of the most pressing problems in artificial intelligence research today (Tonmoy et al., 2024),
can also benefit significantly from accurate confidence estimation as it would serve as a strong indi-
cator of the faithfulness of a LLM response. This applies to even settings where strategies such as
retrieval augmented generation (RAG) are used (Gao et al., 2023) to mitigate hallucinations. Meth-
ods for confidence estimation in LLMs assuming just black-box or query access have been explored
only recently (Kuhn et al., 2023; Lin et al., 2024) and this area of research is still largely in its in-
fancy. However, effective solutions here could have significant impact given their low requirement
(i.e. just query access) and consequently wide applicability.

There exists a slight difference in what is considered as uncertainty versus confidence in literature
(Lin et al., 2024) and so to be clear we now formally state the exact problem we are solving. Let
(x, y) denote an input-output pair, where x is the input prompt and y the expected ground truth
response. Let f(.) denote an LLM that takes the input x and produces a response f(x). Let λ(., .)
denote a similarity metric (viz. rouge, bertscore, etc.) that can compare two pieces of text and
output a value in [0, 1], where 0 implies the texts are very different while 1 implies they are exactly
the same. Then given some threshold θ ∈ [0, 1], we want to estimate the following probability for
an input text x:

Probability of correct = P (λ(y, f(x)) ≥ θ|x) (1)

In other words, we want to estimate the probability that the response outputted by the LLM for
some input is correct. Unlike for classification or regression where the responses can be compared
exactly, text allows for variation in response where even if they do not match exactly they might be
semantically the same. Hence, we introduce the threshold θ which will typically be tuned based on
the metric, the dataset and the LLM.
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Figure 1: Above we see our (extensible) framework to estimate confidence of LLM responses. We propose
six prompt perturbations which then can be converted to features based on semantic diversity in the responses
and lexical similarity. The input (tokenized) prompt can optionally be also passed as a feature. The output
labels for each (input) prompt are created by checking if the LLM output is correct or not. A (interpretable)
logistic regression model is then trained on these features and outputs so that for any new input prompt and
LLM response we can estimate the confidence of it being correct based on our model. Moreover, we can also
ascertain the features important in estimating these confidences.

Having black-box access to an LLM limits the strategies one could leverage to ascertain confidence,
but if the proposed strategies are effective they could be widely applied. Previous approaches (Kuhn
et al., 2023; Lin et al., 2024; Jiang et al., 2023b) predominantly exploit the variability in the outputs
for a given input prompt or based on an ensemble of prompts computing different estimators. Our
approach enhances this idea where we design different ways of manipulating the input prompt and
based on the variability of the answers produce values for each such manipulation. We aver to
these values as features. Based on these features computed for different inputs we train a model
to predict if the response was correct or incorrect. The probability of each such prediction is then
the confidence that we output. Since, the models we use to produce such predictions are simple
(viz. logistic regression) the confidence estimates are typically well calibrated (Morrison, 2012).
Moreover, being interpretable we can also see which features were more crucial in the estimation.
This general framework and the features we engineer are shown in Figure 1. The framework is
extensible, since more features or prompt perturbations can be easily added to this framework.

We observe in the experiments that we outperform state-of-art baselines for black-box LLM con-
fidence estimation on standard metrics such as Area Under the Receiver Operator Characteristic
(AUROC) and Area Under Accuracy-Rejection Curve (AUARC), where improvements in AUROC
are over 10% in some cases. The confidence model being interpretable we also analyze which
features are important for different LLM and dataset combinations. We interestingly find that for a
given dataset the important features are shared across LLMs. Intrigued by this finding we apply con-
fidence models built for one LLM to the responses of another and further find that they generalize
well across LLMs. This opens up the possibility of simply building a single (universal) confidence
model for some chosen LLM and zero shot applying it to other LLMs on a dataset.

2 RELATED WORK

The literature studying approaches for estimating the uncertainty in a machine learning model’s
prediction is large. One organization of this body of work involves dichotomizing it into post-hoc
and ab initio approaches. Post-hoc methods attempt to calibrate outputs of a pre-trained model
such that the estimate uncertainties correlate well with the accuracy of the model. These include
histogram binning Zadrozny & Elkan (2001); Naeini et al. (2015), isotonic regression Zadrozny &
Elkan (2002), and parametric mapping approaches, including matrix, vector, and temperature scal-
ing Platt et al. (1999); Guo et al. (2017); Kull et al. (2019). While variants of these approaches Shen
et al. (2024); Desai & Durrett (2020) have been adopted for LLMs they assume a white-box set-
ting where access to the LLM’s representations are available. In contrast, our approach quantifies
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a LLM’s uncertainties without requiring access to the internals of the LLM. Ab initio approaches,
including, training with mix-up augmentations Zhang et al. (2017), confidence penalties Pereyra
et al. (2017), focal loss Mukhoti et al. (2020), label-smoothing Szegedy et al. (2016), (approximate)
Bayesian procedures Izmailov et al. (2021), or those that involve ensembling over multiple models
arrived at by retraining from different random initializations Lakshminarayanan et al. (2017) require
substantial changes to the training process or severely increase computational burden, making them
difficult to use with LLMs.

For LLMs in particular, recent works Jiang et al. (2021); Xiao et al. (2022); Chen et al. (2022) have
empirically found evidence of miscalibration and had varying degrees of success in better calibrating
smaller LLMs using mixup Park & Caragea (2022), temperature scaling and label smoothing De-
sai & Durrett (2020). Others Lin et al. (2022) have employed supervised fine-tuning to produce
verbalized uncertainties to be better calibrated on certain tasks. However, this additionally requires
the ability to compute gradients of the LLM’s parameters. Our black-box approach has no such re-
quirement. Another body of work Kadavath et al. (2022); Mielke et al. (2022); Zhang et al. (2021),
learns an auxiliary model for predicting whether a LLM’s generation is incorrect. We also employ
an auxiliary model, but rely on only the prompts to the LLM and the generations produced by the
LLM to train it.

Similar to us, other recent works have also explored black-box approaches. For instance, in Kuhn
et al. (2023), multiple completions from an LLM are generated, grouped based on semantic content,
and uncertainty is quantified across these semantic groups. Lin et al. (2024) exploit insights from
spectral clustering to further finesse this process. In Tian et al. (2023); Xiong et al. (2024) the
authors use carefully crafted prompts for certain more capable LLMs to express better-calibrated
uncertainties. However, this approach is less effective for smaller and open-sourced LLMs Shen
et al. (2024). Others Jiang et al. (2023b) have relied on ensembles of prompts created using templates
or reordering of examples in few shot settings to quantify confidences. We on the other hand propose
dynamic variations of the prompt applicable (even) in the zero-shot setting, where for certain of our
features we only analyze the response without any variation in the prompt.

3 METHODOLOGY

We now describe our methodology to estimate confidences for individual LLM outputs.

3.1 ELICITATION OF VARIABLE LLM BEHAVIOR

We first propose six black-box strategies that can elicit variable behavior in an LLM indicative of
how trustworthy its output is likely to be. Based on this variability we construct features for our
confidence model in the next subsection. Note that all strategies may not be relevant in all cases. For
instance, some of the strategies require a context in the prompt, while others such as SRC require
longer responses (two or more sentences). For all the perturbations but for Stochastic Decoding
and Split Response Consistency, the perturbations are applied to the context if available or to the
question of the input.

Stochastic Decoding (SD): This is the simplest strategy which is also done in previous works. Here
the prompt is not varied, but rather using various decoding strategies comprising of greedy , beam
search and nucleus sampling (Holtzman et al., 2020) multiple outputs are sampled. As seen in Table
1 first row after sampling one could have four different outputs, which could be indicative of the
LLM not being confident in its response. Specifically in the experiments, we obtain one generation
using greedy and beam search decoding technique and 3 generations using nucleus sampling.

Paraphrasing (PP): In this strategy we paraphrase the context in the prompt and observe how
that changes the output. An example of this is shown in Table 1. For paraphrasing, we use back
translation, where we convert the original prompt into another language and translate it back into
English. We use machine translation models from Helsinki-NLP on huggingface and translate the
text from English to French and then back to English. This new prompt then can be used to query
the LLM. Changes to the output could indicate brittleness in the LLMs original response. One could
also prompt an LLM to paraphrase the responses, however, in our initial experiments, we observed
that when context is involved, the model does not paraphrase the entire context and parts of it were
omitted.
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Table 1: Below we see examples of different prompt perturbations for a prompt from the SQuAD
dataset. The color blue and strike outs indicate changes to the input prompt. i) SD does not change
the prompt (hence empty cell), but using a stochastic decoding scheme samples multiple responses
(four example samplings shown). PP paraphrases the prompt. SP randomly reorders some of the
sentences. EFA repeats certain sentences with entities in them. SR removes stopwords. SRC checks
for consistency in reasonable size random splits of the LLM response (again prompt is not per-
turbed). The splitting of the two sentences indicates inconsistency as depicted in red. Thus, the
perturbations test an LLM in complementary ways.

Input Prompt
context: The Normans (Norman : Nourmands ; French : Normands ; Latin : Normanni) are the people who, in the 10th and
11th centuries, gave their name to Normandy, a region of France. They descended from the Normands (”Norman” comes from
”Norseman”) of the raiders and pirates of Denmark, Iceland and Norway who, under their leader Rollo, agreed to swear allegiance to
King Charles III of France of the West. During generations of assimilation and mixing with the native French and Roman-Gaulese
populations, their descendants would gradually merge with the Carolingian cultures of West France. The distinct cultural and ethnic
identity of the Normans originally emerged in the first half of the 10th century, and it continued to evolve over the centuries that
followed.
question: In what country is Normandy located?

Prompt Perturbed Prompt Output
Pert.
SD France, Denmark, Ice-

land, Norway
PP context: Normandy, a region in France came to bear because of Normans in the 10th and 11th cen-

turies. They descended from the Normands (”Norman” comes from ”Norseman”) of the raiders
and pirates of Denmark, Iceland and Norway who, under their leader Rollo, agreed to swear al-
legiance to King Charles III of France of the West. There was generations of mixing with the
Roman-Gaulese populations and native French. The distinct cultural and ethnic identity of the
Normans originally emerged in the first half of the 10th century, and it continued to evolve over
the centuries that followed. question: In what country is Normandy located?

Iceland

SP context: The Normans (Norman : Nourmands ; French : Normands ; Latin : Normanni) are the
people who, in the 10th and 11th centuries, gave their name to Normandy, a region of France.
The distinct cultural and ethnic identity of the Normans originally emerged in the first half of
the 10th century, and it continued to evolve over the centuries that followed. They descended
from the Normands (”Norman” comes from ”Norseman”) of the raiders and pirates of Denmark,
Iceland and Norway who, under their leader Rollo, agreed to swear allegiance to King Charles
III of France of the West. During generations of assimilation and mixing with the native French
and Roman-Gaulese populations, their descendants would gradually merge with the Carolingian
cultures of West France. question: In what country is Normandy located?

Denmark

EFA context: The Normans (Norman : Nourmands ; French : Normands ; Latin : Normanni) are the
people who, in the 10th and 11th centuries, gave their name to Normandy, a region of France.
The Normans (Norman : Nourmands ; French : Normands ; Latin : Normanni) are the people
who, in the 10th and 11th centuries, gave their name to Normandy, a region of France. They
descended from the Normands (”Norman” comes from ”Norseman”) of the raiders and pirates
of Denmark, Iceland and Norway who, under their leader Rollo, agreed to swear allegiance to
King Charles III of France of the West. During generations of assimilation and mixing with the
native French and Roman-Gaulese populations, their descendants would gradually merge with
the Carolingian cultures of West France. The distinct cultural and ethnic identity of the Normans
originally emerged in the first half of the 10th century, and it continued to evolve over the centuries
that followed. question: In what country is Normandy located?

France

SR context: The Normans (Norman : Nourmands ; French : Normands ; Latin : Normanni) are the
people who, in the 10th and 11th centuries, gave their name to Normandy, a region of France.
They descended from the Normands (”Norman” comes from ”Norseman”) of the raiders and
pirates of Denmark, Iceland and Norway who, under their leader Rollo, agreed to swear allegiance
to King Charles III of France of the West. During generations of assimilation and mixing with
the native French and Roman-Gaulese populations, their descendants would gradually merge
with the Carolingian cultures of West France. The distinct cultural and ethnic identity of the
Normans originally emerged in the first half of the 10th century, and it continued to evolve over
the centuries that followed. question: In what country is Normandy located?

Norway

SRC Normandy is located in
Denmark. Normandy is
located in Iceland.

Sentence Permutation (SP): If the input has several named entities, we noticed that when the order
of the named entities is changed without changing the meaning of the sentence, the output of the
LLM also varied. We first use named entity detector to identify the named entities and then randomly
reorder certain number of these sentences. An example of this is seen in Table 1 third row, where
the last sentence in the prompt is now the second sentence. As such, if the number of sentences with
named entities is less than five, we reorder all of them. If it is greater than five, then we randomly
select five and reorder them. Most such reorderings do not affect the LLM output if it is confident.
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Entity Frequency Amplification (EFA): Similar to above, repeating sentences with named entities
could also throw off the model’s outputs. We sample a sentence from all the sentences with named
entities and repeat it three times. Again, here too the output of the LLM should be maintained if
the LLM is confident. An example of this is seen in Table 1 fourth row, where the first sentence is
repeated twice.

Stopword Removal (SR): We remove stopwords from the context as specified by the NLTK library.
Stopwords are commonly occurring words (viz. ”the”, ”are”, ”to”, etc.) that are assumed to have
limited context specific information. Removal of such words should ideally not alter the response of
an LLM if the LLM is certain of the answer. An example of this is seen in Table 1 fifth row, where
the stopwords are striked out. We ensured that the negative words were not removed as they would
change the meaning of the sentence.

Split Response Consistency (SRC): In this case like in the SD case the prompt is not perturbed.
Rather the output is analyzed where it is randomly split such that each part is at least a single sen-
tence. Semantic inconsistency between the two parts is measured using an NLI models contradiction
probability, where one part is taken as the premise and the other the hypothesis. An example of this
is seen in Table 1 last row, where the two sentences are clearly at odds with each other. This strategy
though requires that the response is at least a couple of sentences long.

As seen in Table 7, the four perturbations above (PP, SP, EFA and SR) that alter the original prompt
still maintain the semantics as intended in almost all cases.

3.2 FEATURIZATION

Now based on the above strategies we can construct features to train our confidence model. For each
of the first five strategies above we create two types of features: i) based on semantics of the outputs
and ii) based on lexical overlap. For the SRC these are not relevant so we create a different feature
as seen below.

Semantic Set: Based on the responses of the first strategies (run multiple times) we create semanti-
cally equivalent sets for each. A semantically equivalent set consists of outputs that are semantically
the same. If a response entails another response and vice-versa, then they both are grouped under the
same semantic set. The number of such sets is a feature for our model. As such, more the number
of sets lower the confidence estimate. For example, if from five paraphrasings we get responses ex-
cellent, great, bad, subpar and fantastic, then the number of semantic sets would be two as excellent,
great and fantastic would form one semantic set, while bad and subpar would form the other.

Lexical Similarity: We compute the average lexical similarity for outputs of each of the first five
strategies (run multiple times). The similarity can be measured using standard NLP metrics such
as rouge, blue score etc. The higher the lexical similarity higher the estimated confidence. We
use rouge score to quantify the lexical similarity. Considering the same five paraphrasings example
described above we would compute the average rouge score considering pairs of the responses and
use it as a feature.

SRC Minimum Value: As mentioned above, semantic inconsistency between the two parts is mea-
sured using an NLI models contradiction probability, where one part is taken as the premise and
the other the hypothesis. The highest contradiction probability amongst multiple such partitions is
the feature value for this strategy. In Table 1 last row, there are only two sentences so only one
split would be done and since the sentences contradict each other the NLI contradiction probability
would be high or consistency would be low.

Note that optionally one can also pass the entire prompt as a feature in addition to the above. In
the experiments, we saw minimal improvement with such an addition. Semantic set and lexical
similarity were first used by (Kuhn et al., 2023) where they applied it only for SD perturbation
discussed in the previous section.

3.3 LABEL CREATION AND CONFIDENCE ESTIMATION

Once we have the input features to our confidence model we now need to determine labels for these
inputs. For training the model we compute labels by matching the LLM output to the ground truth
response in the dataset, where a match corresponds to the label 1, while a mismatch corresponds to
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Table 2: AUROCs on four Q&A and two summarization datasets (CNN, XSUM) using a total of five
LLMs (Llama, Flan-ul2, Mistral, Pegasus, BART). Higher values are better. Best results bolded.

Dataset(LLM) # of Lexical EigenValue Eccentricity Degree SE AVC OursSS Similarity
TriviaQA(Llama) 0.73 0.76 0.77 0.76 0.77 0.75 0.79 0.88

TriviaQA(Flan-ul2) 0.83 0.8 0.86 0.86 0.87 0.85 0.81 0.95
TriviaQA(Mistral) 0.65 0.72 0.76 0.75 0.75 0.68 0.73 0.81 ±.003

SQuAD(Llama) 0.65 0.72 0.74 0.58 0.72 0.61 0.61 0.83 ±.004

SQuAD(Flan-ul2) 0.6 0.7 0.67 0.65 0.67 0.63 0.66 0.8 ±.007

SQuAD(Mistral) 0.59 0.7 0.67 0.65 0.67 0.62 0.64 0.84 ±.003

CoQA(Llama) 0.61 0.74 0.76 0.76 0.77 0.64 0.78 0.92
CoQA(Flan-ul2) 0.61 0.76 0.78 0.78 0.79 0.63 0.76 0.87 ±.001

CoQA(Mistral) 0.56 0.74 0.79 0.77 0.79 0.59 0.75 0.81 ±.002

NQ(Llama) 0.65 0.75 0.75 0.73 0.74 0.68 0.74 0.85 ±.003

NQ(Flan-ul2) 0.76 0.76 0.86 0.86 0.86 0.81 0.84 0.93 ±.002

NQ(Mistral) 0.66 0.73 0.77 0.77 0.78 0.68 0.75 0.83 ±.003

CNN (Pegasus) 0.51 0.67 0.73 0.72 0.72 0.55 0.73 0.77
CNN (BART) 0.51 0.60 0.52 0.48 0.54 0.53 0.5 0.57

XSUM (Pegasus) 0.51 0.58 0.69 0.70 0.71 0.54 0.71 0.73
XSUM (BART) 0.51 0.59 0.53 0.51 0.52 0.52 0.53 0.57

a label 0. In particular, we use the rouge score to compute the similarity between the output and the
ground truth and if the score is greater than a threshold of 0.3, it corresponds to label 1, otherwise it
is deemed incorrect and is labeled 0 similar to previous works (Lin et al., 2024). With the described
features and their labels we train a logistic regression model and use it for predicting confidence
scores for out-of-sample outputs.

Given that logistic regression is also an interpretable model we can also study which of our features
turn out to be most beneficial and if our model trained on one LLM is transferable to other LLMs for
the same dataset. Transfer across datasets can be more challenging as some datasets have contexts
(viz. SQuAD), while others do not (viz. NQ) amongst other factors such as difference in domains.

Table 3: AUARCs on four Q&A and two summarization datasets (CNN, XSUM) using a total of five
LLMs (Llama, Flan-ul2, Mistral, Pegasus, BART). Higher values are better. Best results bolded.

Dataset(LLM) # of Lexical EigenValue Eccentricity Degree SE AVC OursSS Similarity
TriviaQA(Llama) 0.77 0.8 0.8 0.8 0.8 0.79 0.8 0.83 ±.01

TriviaQA(Flan-ul2) 0.69 0.72 0.73 0.73 0.73 0.71 0.72 0.74 ±.002

TriviaQA(Mistral) 0.55 0.63 0.64 0.64 0.64 0.58 0.63 0.64 ±.006

SQuAD(Llama) 0.3 0.36 0.37 0.28 0.36 0.36 0.31 0.68 ±.004

SQuAD(Flan-ul2) 0.73 0.95 0.83 0.82 0.83 0.78 0.83 0.96 ±.003

SQuAD(Mistral) 0.72 0.93 0.82 0.82 0.82 0.76 0.83 0.96 ±.004

CoQA(Llama) 0.56 0.67 0.67 0.67 0.67 0.61 0.66 0.71 ±.002

CoQA(Flan-ul2) 0.7 0.79 0.8 0.79 0.79 0.73 0.77 0.8 ±.005

CoQA(Mistral) 0.46 0.62 0.64 0.63 0.64 0.51 0.62 0.61 ±.003

NQ(Llama) 0.37 0.41 0.42 0.41 0.41 0.39 0.42 0.45 ±.006

NQ(Flan-ul2) 0.41 0.44 0.47 0.46 0.45 0.44 0.45 0.47 ±.007

NQ(Mistral) 0.32 0.38 0.40 0.40 0.39 0.36 0.39 0.42 ±.007

CNN (Pegasus) 0.45 0.51 0.53 0.43 0.52 0.48 0.47 0.74 ±.004

CNN (BART) 0.21 0.22 0.21 0.21 0.21 0.23 0.23 0.34
XSUM (Pegasus) 0.16 0.17 0.19 0.17 0.17 0.21 0.19 0.27
XSUM (BART) 0.21 0.22 0.20 0.21 0.22 0.23 0.22 0.35

4 EXPERIMENTS

We demonstrate the efficacy of our method on question answering and summarization tasks. For
summarization, we used BART-large (Lewis et al., 2019) and Pegasus-large (Zhang et al., 2019) and
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for question answering, we used Mistral-7B-Instruct-v0.2 (Jiang et al., 2023a), Llama-2-13b chat
version (Touvron et al., 2023), and Flan-ul2 models (Tay et al., 2023). For question answering we
elicited responses from these models on four datasets, namely, CoQA (Reddy et al., 2019), SQuAD
(Rajpurkar et al., 2016), TriviaQA (Joshi et al., 2017) and Natural Questions (NQ) (Kwiatkowski
et al., 2019). CoQA and SQuAD provide the context and expect the model to respond to the question
based on the context, while TriviaQA and NQ do not have a context and require the model to tap into
its learnt knowledge. For our experiments, we use the validation splits for all the datasets as done
previously (Lin et al., 2024). CoQA has 7983 datapoints, TriviaQA has 9960 datapoints, SQuAD
has 10,600 datapoints and NQ has 7830 datapoints. For summarization, we used CNN Daily Mail
(See et al., 2017) and (Hermann et al., 2015) and XSUM (Narayan et al., 2018) datasets. We use
a subset of the validation splits of both the datasets comprising of 4000 datapoints. For detecting
entailment, we use deberta-large-nli model which is specialized for NLI tasks (He et al., 2021).

Table 4: Up to four important features (absolute coefficient value > 1e−4) ranked based on our
logistic regression model for the different dataset and LLM combinations. Rank 1 indicates the
most important feature, while Rank 4 is the least important amongst the four.

Dataset(LLM) Rank 1 Rank 2 Rank 3 Rank 4
TriviaQA(Llama) SD lexical SD semantic SR lexical PP lexical

similarity set similarity similarity
TriviaQA(Flan-ul2) SD lexical SD semantic PP semantic PP lexical

similarity set set similarity
TriviaQA(Mistral) SD lexical PP lexical SP semantic SD semantic

similarity similarity set set
SQuAD(Llama) SP lexical EFA semantic - -

similarity set
SQuAD(Flan-ul2) SP lexical - - -

similarity
SQuAD(Mistral) SP lexical EFA semantic - -

similarity set
CoQA(Llama) SD lexical EFA semantic SD semantic SR lexical

similarity set set similarity
CoQA(Flan-ul2) SD lexical EFA semantic SD semantic SP lexical

similarity set set similarity
CoQA(Mistral) SD lexical SD semantic EFA semantic EFA lexical

similarity set set similarity
NQ(Llama) PP lexical SD semantic SD lexical SP lexical

similarity set similarity similarity
NQ(Flan-ul2) SR semantic SD lexical SP lexical PP lexical

set similarity similarity similarity
NQ(Mistral) PP lexical SD semantic SD lexical SP lexical

similarity set similarity similarity
CNN(Pegasus) SD lexical EFA lexical SR lexical SP lexical

similarity similarity similarity similarity
CNN(BART) SR lexical SP lexical EFA lexical SP semantic

similarity similarity similarity set
XSUM(Pegasus) SD lexical EFA semantic PP lexical SD semantic

similarity set similarity set
XSUM(BART) SR lexical SP lexical EFA lexical SP semantic

similarity similarity similarity set

We follow previous works (Lin et al., 2024), which used 1000 datapoints for hyperparameter tuning,
to train our Logistic Regression Classifier and the rest of them were used for evaluation. As such,
in Table 8 in the appendix, we show that our method is quite performant even with fewer training
datapoints. For each of the prompt perturbations specified above, we use five generations for each
perturbation for more robust evaluation. All results are averaged over five runs and we report stan-
dard deviations rounded to three decimal places for our method. We use zero-shot prompting for the
datasets with context. For TriviaQA, Flan-ul2 and Mistral-7B-Instruct-v0.2 also worked well with
zero shot prompting while Llama-2-13b chat was performant with a two-shot prompt. For NQ, we
used a five shot prompt. The details about the prompts used are provided in the Appendix A. We
used internally hosted models to generate the responses. Thus, we used V100s GPUs for the feature
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extraction step once the responses were generated. The logistic regression model was trained on an
intel core CPU.

We consider methods proposed in recent works (Kuhn et al., 2023; Lin et al., 2024; Xiong et al.,
2024) which are state-of-the-art as the baselines. (Kuhn et al., 2023) proposed computing the num-
ber of semantic sets, semantic entropy and lexical similarity metrics from the generated outputs.
(Lin et al., 2024) use eigen value, eccentricity and degree metrics inspired from spectral clustering
to estimate the uncertainty of the model. While (Xiong et al., 2024) used aggregated verbalized
confidence scores. We use average verbalized confidence (AVC) as that performed the best in the
previous work. To be consistent with our method we average over five estimates. We use the open
source code provided by the authors of (Lin et al., 2024) for comparing with the baselines 1.

Table 5: AUROC of the logistic confidence model for one LLM applied to another on a given dataset.
As can be seen our confidence models transfer quite well based on AUROC.

Dataset Source LLM AUROC Self Target LLM 1 AUROC Target LLM 2 AUROC

TriviaQA
Llama 0.88 0.94 (Flan-ul2) 0.80 (Mistral)

Flan-ul2 0.94 0.87 (Llama) 0.80 (Mistral)
Mistral 0.81 0.84 (Llama) 0.91 (Flan-ul2)

SQuAD
Llama 0.83 0.81 (Flan-ul2) 0.80 (Mistral)

Flan-ul2 0.8 0.79 (Llama) 0.78 (Mistral)
Mistral 0.84 0.82 (Llama) 0.83 (Flan-ul2)

CoQA
Llama 0.92 0.79 (Flan-ul2) 0.78 (Mistral)

Flan-ul2 0.87 0.87 (Llama) 0.81 (Mistral)
Mistral 0.81 0.88 (Llama) 0.86 (Flan-ul2)

NQ
Llama 0.85 0.91 (Flan-ul2) 0.83 (Mistral)

Flan-ul2 0.93 0.83 (Llama) 0.82 (Mistral)
Mistral 0.83 0.85 (Llama) 0.90 (Flan-ul2)

CNN Pegasus 0.77 0.57 (BART) -
BART 0.57 0.77 (Pegasus) -

XSUM Pegasus 0.73 0.58 (BART) -
BART 0.57 0.71 (Pegasus) -

4.1 CONFIDENCE ESTIMATION

We use three metrics to evaluate effectiveness of the models: i) Area under the receiver operating
characteristic (AUROC) curve which computes the model’s discrimination ability for various thresh-
olds. The curve is plotted by varying the thresholds of the prediction probabilities of the model and
the false positive rate and the true positive rate form the X and the Y axes. The area under this curve
is called the AUROC. ii) An accuracy rejection curve can also be plotted by increasing the rejection
threshold gradually and plotting the model’s average accuracy at that threshold. The area under this
curve is called AUARC (Lin et al., 2024). iii) Expected calibration error (ECE) is also reported in
Table 18 in the appendix which measures the discrepancy between accuracy and confidences.

In Table 2, we see that our method quite consistently outperforms all baselines on AUROC. This is
also seen for for ECE in Table 18. For estimating the confidence of Llama’s responses on TriviaQA,
our model is better than the best baseline by 11 percentage points. We are also able to estimate
the confidence on the SQuAD dataset using Mistral by 14 percentage points better than the closest
competitor. Qualitatively similar results are seen for the SQuAD dataset using Flan-ul2 (better by 10
percentage points) and for the CoQA and NQ datasets using Llama (better by 15 and 10 percentage
points respectively). Our results on the summarization datasets using LLMs that excel at summa-
rization (viz. Pegasus and BART) we see again that we are either better or at least competitive.

Our performance is also superior to the baselines in most cases on the AUARC metric in Table 3.
Our performance on Llama’s generations based on the SQuAD dataset exceeds the best baseline’s
performance by 31 percentage points. In the case of Mistral’s performance on TriviaQA and Flan-
ul2’s generations on CoQA, we are as good as the baseline. We are worse than the baseline on

1https://github.com/zlin7/UQ-NLG/ The results are different in some cases from those reported in their
paper possibly because of different random splits and different LLMs used, since we did run the provided code.
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Mistral’s generations of CoQA, where our AUROC was also minimally better than the best baselines.
In all other instances, our performance is better than others by 1 to 4 percentage points.

We believe these improvements can be attributed to our constructed features and our framework
in general. Hence, in the next section we try to ascertain which features for which datasets and
LLMs played an important role in predicting the confidences accurately. Note that such an analysis
with high confidence is possible because our trained model is interpretable. We also tried to pass the
tokenized input prompt as additional features (maximum length 256) to our logistic model, however,
the improvements were minimal at best and in some cases the performance even dropped possibly
because of the model overfitting given that there were now 100s of features. Hence, we do not report
these results, although passing the input prompt is still a possibility in general.

Table 6: AUARC of the logistic confidence model for one LLM applied to another on a given dataset.
As can be seen our confidence models transfer quite well based on AUARC as well.

Dataset Source LLM AUARC Self Target LLM 1 AUARC Target LLM 2 AUARC

TriviaQA
Llama 0.83 0.74 (Flan-ul2) 0.64 (Mistral)

Flan-ul2 0.74 0.83 (Llama) 0.64 (Mistral)
Mistral 0.64 0.83 (Llama) 0.73 (Flan-ul2)

SQuAD
Llama 0.68 0.62 (Flan-ul2) 0.63 (Mistral)

Flan-ul2 0.96 0.89 (Llama) 0.91 (Mistral)
Mistral 0.96 0.90 (Llama) 0.91 (Flan-ul2)

CoQA
Llama 0.71 0.79 (Flan-ul2) 0.61 (Mistral)

Flan-ul2 0.80 0.70 (Llama) 0.61 (Mistral)
Mistral 0.61 0.69 (Llama) 0.79 (Flan-ul2)

NQ
Llama 0.45 0.46 (Flan-ul2) 0.42 (Mistral)

Flan-ul2 0.47 0.45 (Llama) 0.42 (Mistral)
Mistral 0.42 0.45 (Llama) 0.46 (Flan-ul2)

CNN Pegasus 0.74 0.34 (BART) -
BART 0.34 0.74 (Pegasus) -

XSUM Pegasus 0.27 0.34 (BART) -
BART 0.35 0.25 (Pegasus) -

4.2 CONFIDENCE MODEL INTERPRETABILITY AND TRANSFERABILITY

Interpretability: We now study which features in our logistic model were instrumental for accurate
confidence estimation. In Table 4, we see the top four features for each dataset-LLM combination.
Blanks indicate that there were no features at that rank or lower where their logistic coefficient was
greater than 1e−4. As can be seen the simplest feature SD plays a role in many cases. This indicates
that variability of output for the same input prompt is a strong indicator of response correctness.
Moreover, other features such as SP and EFA are also crucial in ascertaining confidence as seen
in particular for the SQuAD dataset as well as the summarization datasets. This points to order
bias when looking at contexts and brittleness to redundant information being also strong indicators
of response accuracy. PP and SR also play a role in some cases, where they are more crucial for
datasets with no contexts such as TriviaQA and NQ. This makes sense as the specific question is
more important here in the absence of context and hence the absence of also other features such
as SP and EFA. Both the lexical similarity and semantic set featurizations seem to be important in
estimating confidence.

Looking across the datasets and LLMs we see an interesting trend. It seems that for a given dataset
different LLMs have similar features that appear to be important. For instance, SP lexical similarity
is the top feature for all three LLMs on SQuAD, while EFA based feature also appears for Llama
and Mistral. For TriviaQA, SD and PP appear for all three models. For CoQA, SD and EFA appear.
While for NQ, PP and SD appear as important for all the models. This trend points towards an
interesting prospect of applying a confidence estimator of one LLM to other LLMs on a given
dataset. As such, we could have a universal confidence estimator just built for one of the LLMs that
we could apply across others with reasonable assurance. We explore this exciting possibility in the
next part.

Transferability: Given the commonality between the important features across LLMs for a dataset
we now try to test how well does our logistic confidence model for one LLM perform in estimating

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

confidences of another LLM. As seen in Tables 5 and 6 our confidence models are actually quite
transferable as they perform comparably or even sometimes better on the other LLMs than the LLM
they were built for. This is particularly true for Mistral where, its confidence model performs better
for the other two LLMs than itself even coming close in performance to their own confidence models
in many cases.

This suggests that we could apply our approach to one LLM and then use the same confidence
model to evaluate responses of other LLMs without having to build individual models for them. It
would be interesting to further stress test this hypothesis in the future with more LLMs and datasets.
Nonetheless, even in the current setup – of five LLMs and six datasets – this observation is interesting
and useful.

5 DISCUSSION

In summary, we have provided an extensible framework for black-box confidence estimation of LLM
responses by proposing novel features that are indicative of response correctness. By building an
interpretable logistic regression model based on these features we were able to obtain state-of-the-art
performance in estimating confidence on six benchmark datasets (CoQA, SQuAD, NQ, TriviaQA,
CNN Daily and XSUM) and using five powerful open source LLMs (Llama-2-13b-chat, Mistral-
7B-Instruct-v0.2, Flan-ul2, Pegasus-large and BART-large). The interpretability of our confidence
model aided in identifying features (viz. SD, SP, EFA,PP) that were instrumental in driving its
performance for different LLM-dataset combinations. This led to the interesting realization that
many of the features crucial for performance were shared across the confidence models of different
LLMs for a dataset. We thus tested if the confidence models generalized across LLMs for a dataset
and found that it indeed was the case leading to the interesting possibility of having an universal
confidence model trained on just a single LLMs responses, but applied across many others.

Owing to the supervised nature of training the confidence model, one limitation of our approach is
that at least some of the model’s generations must be close to the ground truth for us to obtain a rea-
sonable confidence estimator. Another limitation is that the results and insights were obtained based
on datasets in English, but these insights might vary when looking at datasets in other languages.
More varied tasks and models could be tested upon in the future. We used rouge to test accuracy of
generations consistent with previous works, however, rouge, like also other NLP metrics, can be er-
ror prone. In terms of broader impact, our approach can be widely applied as it is simple and works
with just black-box access to the LLM. Access to logits or internals of the model are not required.
However, our estimates although accurate can be imperfect and this should be taken into account
when using our approach in high stakes applications involving LLMs. One should also be cognizant
of adversaries aware of our features trying to induce misplaced trust in LLMs they create or prefer.

Given the extensibility of our framework, in the future, it would be interesting to add more features
as LLMs evolve. One class of such features might be those where the correctness of a response is
checked through creating questions that are (causally) related to the original question and context,
and seeing how the response varies by asking this question by itself as opposed to in conjunction
with the original question and response. Such and other strategies may help in generalizing these
confidence estimators also across datasets something that has been seen when we have additional
access to logits of LLMs. Moreover, ideas from selective classification (Bartlett & Wegkamp, 2008;
Geifman & El-Yaniv, 2017) could also be adapted for learning a better confidence model.
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A PROMPT DESIGN

Prompts for TriviaQA:

• Flan-ul2 model and GPT-4: Answer the following question in less than 5 words
Q: {question}
A:

• Llama-2-13b-chat model Answer these following question as succinctly as possible in
less than 5 words
Q: In Scotland a bothy/bothie is a?
A: House
Q: Who is Posh Spice in the spice girls pop band?
A: Victoria Beckham
Q: {question}
A:

• Mistral-7B-Instruct-v0.2 model ¡s¿[INST] Answer the following question as succinctly
as possible in plain text and in less than 5 words. question [/INST]

Prompts for CoQA

• Flan-ul2 model, Llama-2-13b-chat model and GPT-4: Provide an answer in less than 5
words for the following question based on the context below: context: {context} Question:
{question} Answer:

• Mistral-7B-Instruct-v0.2 model ¡s¿[INST] Provide an answer in less than 5 words for the
following question based on the context below:
context: {context}
Question: {question}
Answer: [/INST]

Prompts for SQuAD

• Flan-ul2 model, Llama-2-13b-chat model and GPT-4: Provide an answer for the follow-
ing question based on the context below, in less than 5 words:

• Mistral-7B-Instruct-v0.2 model ¡s¿[INST] Provide an answer for the following question
based on the context below, in less than 5 words:
context: {context}
Question: {question}
Answer: [/INST]
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Prompts for NQ: For all the models we used the following prompt:
Here are 5 Example Question Answer pairs:
Question: who makes up the state council in russia
Answer: governors and presidents
Question: when does real time with bill maher come back
Answer: November 9, 2018
Question: where did the phrase american dream come from
Answer: the mystique regarding frontier life
Question: what do you call a group of eels
Answer: bed
Question: who wrote the score for mission impossible fallout
Answer: Lorne Balfe
Now answer the following Question succinctly, similar to the above examples:
Question: {question}
Answer:

Prompt for GPT-4 as-a-judge: Please provide a score between 0 and 1 of how similar the sum-
maries are. 1 indicating very similar and 0 indicating very different.

Table 7: Percentage of prompt perturbations entailed by the original prompt for the SQuAD dataset.
This dataset also has context unlike some of the other Q&A datasets and hence, is a more challenging
case of our features to maintain semantics. As can be seen our perturbations produce the intended
effect of maintaining the semantics of the original prompt in most cases.

Paraphrasing Sentence Permutation Entity Frequency Amplification Stopword Removal
99.81% 99.23% 99.66% 99.12%

Table 8: Below we see how the AUROC, AUARC values vary with different number of samples
used to train our logistic regression model for some of our datasets. As can be seen our uncertainty
estimation procedure is performant even with fewer samples for training.

Dataset LLM 250 samples 500 samples 1000 samples (results in main paper)

TriviaQA
Llama 0.83, 0.80 0.86, 0.81 0.88, 0.83

Flan-ul2 0.95, 0.73 0.95, 0.74 0.95, 0.74
Mistral 0.80, 0.63 0.80, 0.63 0.81, 0.64

SQuAD
Llama 0.8, 0.65 0.81, 0.66 0.83, 0.68

Flan-ul2 0.76, 0.91 0.78, 0.94 0.8, 0.96
Mistral 0.79, 0.90 0.81, 0.93 0.84, 0.96

CoQA
Llama 0.91, 0.70 0.92, 0.71 0.92, 0.71

Flan-ul2 0.86, 0.79 0.87, 0.80 0.87, 0.80
Mistral 0.80, 0.60 0.81, 0.61 0.81, 0.61

NQ
Llama 0.81, 0.4 0.82, 0.41 0.85, 0.45

Flan-ul2 0.86, 0.43 0.87, 0.45 0.93, 0.47
Mistral 0.80, 0.37 0.81, 0.39 0.83, 0.42
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Table 9: ECEs on four Q&A and two summarization datasets (CNN, XSUM) using a total of five
LLMs (Llama, Flan-ul2, Mistral, Pegasus, BART). Lower values are better. Best results bolded.

Dataset(LLM) # of Lexical EigenValue Eccentricity Degree SE AVC OursSS Similarity
TriviaQA(Llama) 0.13 0.12 0.11 0.11 0.1 0.12 0.09 0.04

TriviaQA(Flan-ul2) 0.06 0.07 0.05 0.05 0.05 0.07 0.06 0.01
TriviaQA(Mistral) 0.17 0.12 0.1 0.1 0.11 0.16 0.11 0.05
SQuAD(Llama) 0.15 0.12 0.1 0.24 0.13 0.18 0.18 0.04

SQuAD(Flan-ul2) 0.17 0.09 0.13 0.14 0.14 0.17 0.16 0.06
SQuAD(Mistral) 0.2 0.12 0.14 0.15 0.14 0.17 0.15 0.04
CoQA(Llama) 0.16 0.1 0.08 0.09 0.09 0.18 0.09 0.02

CoQA(Flan-ul2) 0.15 0.11 0.09 0.09 0.09 0.17 0.08 0.03
CoQA(Mistral) 0.18 0.1 0.07 0.09 0.07 0.21 0.09 0.05

NQ(Llama) 0.13 0.08 0.08 0.09 0.09 0.12 0.08 0.04
NQ(Flan-ul2) 0.1 0.09 0.06 0.06 0.06 0.06 0.05 0.02
NQ(Mistral) 0.15 0.09 0.11 0.1 0.09 0.12 0.09 0.05

CNN (Pegasus) 0.19 0.16 0.11 0.12 0.12 0.19 0.09 0.07
CNN (BART) 0.51 0.19 0.26 0.29 0.25 0.26 0.24 0.19

XSUM (Pegasus) 0.21 0.2 0.15 0.13 0.11 0.21 0.11 0.09
XSUM (BART) 0.26 0.22 0.24 0.27 0.26 0.25 0.23 0.2

Table 10: AUROCs on four Q&A datasets using GPT-4. Higher values are better. Best results
bolded.

Dataset(LLM) # of Lexical EigenValue Eccentricity Degree SE AVC OursSS Similarity
TriviaQA(GPT-4) 0.89 0.91 0.91 0.92 0.91 0.92 0.94 0.96±.007

SQuAD(GPT-4) 0.79 0.82 0.84 0.79 0.83 0.81 0.86 0.91±.004

CoQA(GPT-4) 0.81 0.86 0.88 0.87 0.88 0.89 0.91 0.95±.005

NQ(GPT-4) 0.81 0.85 0.85 0.85 0.88 0.89 0.9 0.93±.003

Table 11: AUARCs on four Q&A datasets using GPT-4. Higher values are better. Best results
bolded.

Dataset(LLM) # of Lexical EigenValue Eccentricity Degree SE AVC OursSS Similarity
TriviaQA(GPT-4) 0.8 0.84 0.84 0.84 0.82 0.84 0.85 0.89±.004

SQuAD(GPT-4) 0.7 0.72 0.72 0.63 0.66 0.69 0.71 0.83±.006

CoQA(GPT-4) 0.68 0.73 0.72 0.73 0.74 0.72 0.76 0.86±.011

NQ(GPT-4) 0.69 0.73 0.74 0.74 0.74 0.73 0.72 0.79±.007

Table 12: ECEs on four Q&A datasets using GPT-4. Lower values are better. Best results bolded.

Dataset(LLM) # of Lexical EigenValue Eccentricity Degree SE AVC OursSS Similarity
TriviaQA(GPT-4) 0.07 0.08 0.09 0.09 0.08 0.09 0.03 0.01
SQuAD(GPT-4) 0.11 0.09 0.08 0.19 0.07 0.1 0.11 0.02
CoQA(GPT-4) 0.11 0.09 0.08 0.08 0.08 0.06 0.05 0.02

NQ(GPT-4) 0.1 0.05 0.05 0.06 0.06 0.09 0.06 0.02
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Table 13: AUROCs on four Q&A and two summarization datasets (CNN, XSUM) using a total of
five LLMs (Llama, Flan-ul2, Mistral, Pegasus, BART), where the number of queries to the LLMs is
the same for the baselines and our method. Higher values are better. Best results bolded.

Dataset(LLM) # of Lexical EigenValue Eccentricity Degree SE AVC OursSS Similarity
TriviaQA(Llama) 0.74 0.76 0.76 0.77 0.77 0.76 0.79 0.88

TriviaQA(Flan-ul2) 0.82 0.81 0.87 0.86 0.86 0.85 0.81 0.95
TriviaQA(Mistral) 0.65 0.72 0.76 0.75 0.75 0.68 0.73 0.81
SQuAD(Llama) 0.65 0.72 0.74 0.58 0.72 0.61 0.61 0.83

SQuAD(Flan-ul2) 0.6 0.7 0.67 0.65 0.67 0.63 0.66 0.8
SQuAD(Mistral) 0.59 0.7 0.67 0.65 0.67 0.62 0.64 0.84
CoQA(Llama) 0.61 0.74 0.76 0.76 0.77 0.64 0.78 0.92

CoQA(Flan-ul2) 0.61 0.76 0.78 0.78 0.79 0.63 0.76 0.87
CoQA(Mistral) 0.56 0.74 0.79 0.77 0.79 0.59 0.75 0.81

NQ(Llama) 0.65 0.75 0.75 0.73 0.74 0.68 0.74 0.85
NQ(Flan-ul2) 0.76 0.76 0.86 0.86 0.86 0.81 0.84 0.93
NQ(Mistral) 0.66 0.73 0.77 0.77 0.78 0.68 0.75 0.83

CNN (Pegasus) 0.51 0.67 0.73 0.72 0.72 0.55 0.73 0.77
CNN (BART) 0.51 0.59 0.52 0.48 0.54 0.53 0.5 0.57

XSUM (Pegasus) 0.51 0.58 0.69 0.70 0.71 0.54 0.71 0.73
XSUM (BART) 0.51 0.59 0.54 0.52 0.52 0.52 0.53 0.57

Table 14: AUARCs on four Q&A and two summarization datasets (CNN, XSUM) using a total of
five LLMs (Llama, Flan-ul2, Mistral, Pegasus, BART), where the number of queries to the LLMs is
the same for the baselines and our method. Higher values are better. Best results bolded.

Dataset(LLM) # of Lexical EigenValue Eccentricity Degree SE AVC OursSS Similarity
TriviaQA(Llama) 0.76 0.8 0.81 0.8 0.8 0.79 0.8 0.83

TriviaQA(Flan-ul2) 0.7 0.72 0.73 0.73 0.73 0.71 0.72 0.74
TriviaQA(Mistral) 0.55 0.63 0.64 0.64 0.64 0.58 0.63 0.64
SQuAD(Llama) 0.3 0.36 0.37 0.28 0.36 0.36 0.31 0.68

SQuAD(Flan-ul2) 0.73 0.95 0.83 0.82 0.83 0.78 0.83 0.96
SQuAD(Mistral) 0.72 0.93 0.82 0.82 0.82 0.76 0.83 0.96
CoQA(Llama) 0.56 0.67 0.67 0.67 0.67 0.61 0.66 0.71

CoQA(Flan-ul2) 0.7 0.79 0.8 0.79 0.79 0.73 0.77 0.8
CoQA(Mistral) 0.46 0.62 0.64 0.63 0.64 0.51 0.62 0.61

NQ(Llama) 0.37 0.41 0.42 0.41 0.41 0.39 0.42 0.45
NQ(Flan-ul2) 0.41 0.44 0.47 0.46 0.45 0.44 0.45 0.47
NQ(Mistral) 0.32 0.38 0.40 0.40 0.39 0.36 0.39 0.42

CNN (Pegasus) 0.45 0.51 0.53 0.43 0.52 0.48 0.47 0.74
CNN (BART) 0.21 0.22 0.21 0.21 0.21 0.23 0.23 0.34

XSUM (Pegasus) 0.16 0.17 0.19 0.17 0.17 0.21 0.19 0.27
XSUM (BART) 0.21 0.22 0.20 0.21 0.22 0.23 0.22 0.35
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Table 15: Results with different number of decodings (for each of the features) using our method.
Five decodings correspond to results in the paper. As can be seen reducing to three decodings our
approach still maintains performance.

Dataset(LLM) Our AUROC Our AUROC Our AUARC Our AUARC Our ECE Our ECE
5 decodings 3 decodings 5 decodings 3 decodings 5 decodings 3 decodings

TriviaQA(Llama) 0.88 0.86 0.83 0.81 0.04 0.05
TriviaQA(Flan-ul2) 0.95 0.94 0.74 0.72 0.01 0.02
TriviaQA(Mistral) 0.81 0.81 0.64 0.65 0.05 0.05
SQuAD(Llama) 0.83 0.81 0.68 0.65 0.04 0.06

SQuAD(Flan-ul2) 0.8 0.8 0.96 0.94 0.06 0.08
SQuAD(Mistral) 0.84 0.82 0.96 0.93 0.04 0.05
CoQA(Llama) 0.92 0.91 0.71 0.69 0.02 0.03

CoQA(Flan-ul2) 0.87 0.85 0.8 0.78 0.03 0.05
CoQA(Mistral) 0.81 0.8 0.61 0.6 0.05 0.06

NQ(Llama) 0.85 0.83 0.45 0.44 0.04 0.06
NQ(Flan-ul2) 0.93 0.91 0.47 0.45 0.02 0.03
NQ(Mistral) 0.83 0.81 0.42 0.4 0.05 0.06

CNN (Pegasus) 0.77 0.75 0.74 0.72 0.07 0.09
CNN (BART) 0.57 0.55 0.34 0.33 0.19 0.21

XSUM (Pegasus) 0.73 0.71 0.27 0.25 0.09 0.11
XSUM (BART) 0.57 0.55 0.35 0.33 0.2 0.22

Table 16: AUROCs on two summarization datasets (CNN, XSUM) with GPT-4 as a judge. Higher
values are better. Best results bolded.

Dataset(LLM) # of Lexical EigenValue Eccentricity Degree SE AVC OursSS Similarity
CNN (Pegasus) 0.54 0.65 0.76 0.77 0.75 0.61 0.75 0.81
CNN (BART) 0.55 0.64 0.55 0.52 0.58 0.56 0.54 0.64

XSUM (Pegasus) 0.56 0.62 0.72 0.74 0.73 0.6 0.75 0.79
XSUM (BART) 0.55 0.63 0.56 0.54 0.55 0.56 0.59 0.61

Table 17: AUARCs two summarization datasets (CNN, XSUM) with GPT-4 as a judge. Higher
values are better. Best results bolded.

Dataset(LLM) # of Lexical EigenValue Eccentricity Degree SE AVC OursSS Similarity
CNN (Pegasus) 0.49 0.55 0.58 0.49 0.57 0.52 0.53 0.77
CNN (BART) 0.25 0.26 0.27 0.26 0.26 0.27 0.29 0.35

XSUM (Pegasus) 0.19 0.22 0.23 0.2 0.21 0.23 0.21 0.29
XSUM (BART) 0.26 0.26 0.25 0.27 0.27 0.27 0.26 0.37

Table 18: ECEs two summarization datasets (CNN, XSUM) with GPT-4 as a judge. Lower values
are better. Best results bolded.

Dataset(LLM) # of Lexical EigenValue Eccentricity Degree SE AVC OursSS Similarity
CNN (Pegasus) 0.18 0.14 0.11 0.1 0.09 0.15 0.07 0.05
CNN (BART) 0.48 0.17 0.24 0.25 0.22 0.22 0.22 0.14

XSUM (Pegasus) 0.18 0.18 0.13 0.11 0.09 0.17 0.1 0.06
XSUM (BART) 0.23 0.19 0.21 0.23 0.23 0.22 0.2 0.16
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