
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ALPHAINTEGRATOR: TRANSFORMER ACTION
SEARCH FOR SYMBOLIC INTEGRATION PROOFS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present the first correct-by-construction learning-based system for step-by-step
mathematical integration. The key idea is to learn a policy, represented by a GPT
transformer model, which guides the search for the right mathematical integration
rule, to be carried out by a symbolic solver. Concretely, we introduce a symbolic
engine with axiomatically correct actions on mathematical expressions, as well
as the first dataset for step-by-step integration. Our GPT-style transformer model,
trained on this synthetic data, demonstrates strong generalization by surpassing its
own data generator in accuracy and efficiency, using 50% fewer search steps. Our
experimental results with SoTA LLMs also demonstrate that the standard approach
of fine-tuning LLMs on a set of question-answer pairs is insufficient for solving this
mathematical task. This motivates the importance of discovering creative methods
for combining LLMs with symbolic reasoning engines, of which our work is an
instance.

1 INTRODUCTION

Large language models (LLMs) based on the transformer architecture (Vaswani et al., 2023) have
demonstrated remarkable abilities across diverse tasks, such as language translation, code generation,
and engaging human-like conversations (OpenAI, 2024). However, applying these models to mathe-
matics presents significant challenges. Their autoregressive nature makes them prone to hallucinations
and errors during inference. Advancements such as Chain-of-Thought (CoT), self-consistency, and
process supervision help generate more accurate multi-step reasoning (Wei et al., 2023), (Wang
et al., 2023), (Lightman et al., 2023). However, unlike general language tasks, mathematics demands
absolute rigor and precision, where even minor errors are unacceptable. Mathematical correctness
relies on faultless execution of logical steps and computations. LLMs often fail to achieve this
consistently and there is no provable method which ensures the correctness of their mathematical
reasoning.

Mathematical Integration A fundamental mathematical task is one of indefinite integration of
mathematical expressions, a problem with no straightforward algorithmic solution. Existing methods
for solving this task fall into two categories: those that directly output the antiderivative, and those
that provide step-by-step proofs.

Lample and Charton (2019) proposed a learning-based approach, training a seq2seq model to generate
the antiderivative directly, without steps and with correctness verification left as a separate problem.
Welleck et al. (2021) demonstrated that such models do not generalize well, even though they
might have high test accuracy, as the neural network needs to mechanically learn how to carry out
complex operations like applying the partial fractions algorithm or dividing two large numbers. The
algorithm proposed by Risch (1969) reduces the integration problem into finding poles of certain
algebraic functions. Risch’s method is pseudo-complete for indefinite integration, but it only applies
to the restricted setting of functions with elementary antiderivatives and similarly does not produce
intermediate steps. The full description of the method is longer than 100 pages and has never been
fully implemented. Current symbolic solvers often include a simplified, heuristic version. However,
the resulting answers, while always correct, are not very illuminating. Further, in contrast to learning-
based approaches, this method does not directly generalize to similar tasks, such as non-elementary
or multidimensional integration, or general theorem proving.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

To generate step-by-step proofs, SymPy’s manualintegrate module can be used, which applies various
heuristic techniques recursively to construct a solution. However, this method is slow and prone
to failure on simple integrals due to its reliance on manual pattern matching. Another option is
leveraging state-of-the-art language models like GPT-4. However, these models lack guarantees
of correctness. Our experiments further show that, despite their vast training data and billions of
parameters, such models often perform poorly on complex integrals.

Our Work: correct-by-construction learning-based integration In this work we introduce the
first open system which combines the strengths of both symbolic engines and GPT transformer
models in order to learn to integrate mathematical expressions in a step-by-step, provable manner.
Our approach is inspired by the groundbreaking advancements of AlphaProof and AlphaGeometry
(Trinh et al., 2024), where language models interact with a symbolic engine to generate a solution
that is guaranteed to be correct. Concretely, we designed a novel symbolic engine and generated
synthetic data used to train a GPT transformer language model capable of sophisticated interaction
with this engine.

Main contributions Our key contributions are:

• The first dataset for rigorous step-by-step derivation proofs for indefinite integration.
• A versatile open-source symbolic engine to interact with mathematical expressions through

axiomatically correct actions with a novel encoding.
• A (very small) transformer model which surpasses in performance the leading open-source

step-by-step integration baseline. Our evaluation also demonstrates that our tool can effec-
tively guide search in a complicated action space and thus surpass its own dataset generator
in both completeness and efficiency, through strong generalization.

The rest of the paper is organized as follows. In Sections 2 and 3, we introduce the symbolic engine
and our representation of mathematical expressions. In Sections 4 and 5, we explain how to generate
synthetic data for integration and how we train the model. Finally, we explain how we run and
evaluate the model in Sections 6 and 7.

2 SYMBOLIC ENGINE WITH PARAMETRIC ACTION SPACE

We depart from the typical approach of solving mathematics problems with LLMs done by fine-tuning
on question-answer pairs (Shao et al., 2024; Yang et al., 2024). Instead, our language model interacts
with a symbolic engine exposing a parametric action space. This guarantees that every step taken by
the model is correct (or null) since rewrites of mathematical expressions are permitted only through
the symbolic engine.

In each step, the symbolic engine takes in a mathematical expression f , a subexpression g, an action
a, and action parameters p1, . . . , pn, if applicable. It returns an expression that results from applying
action a(p1, . . . , pn) to subexpression g, along with a boolean that specifies whether the expression
was modified or not. The expression is not modified if g is not a valid subexpression of f , or if the
action is not valid on this subexpression. Figure 1 shows an example of a successfully executed
action. A full list of actions can be found in Table 4 in Appendix A.1.

Figure 1: The symbolic engine takes in the subexpression
∫
x(4x + log x − 2)dx and applies the

substitution rule with y = log x. The symbolic engine will realize the rule by first differentiating
y(x) and dividing the integrand by y′. Then, it will substitute by y wherever it observes y(x) and
then solve for x = g(y) to substitute the remaining terms.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

The symbolic engine holds in its state a dictionary of pairs of expressions encountered and the
changes of variables that are active in the respective expression. The dictionary is used to backtrack
whenever we reach again a state that has already been explored. We undo via backsubstitution any
changes of variables for which there are no integrals remaining with a substituted variable.

Note that this is parallel to theorem proving by interacting with a formal language (Xin et al., 2024;
Polu and Sutskever, 2020; Lample et al., 2022), which makes our synthetic-data-based approach
applicable to a variety of tasks.

3 REPRESENTATION OF MATHEMATICAL EXPRESSIONS AND THEOREMS

We now discuss how we represent mathematical expressions and theorems in our symbolic engine,
and how we encode these as sequences for interaction with a sequence model.

We represent mathematical expressions as trees. Leaf nodes are number constants or variables, such
as 2, π, or x. Internal nodes are operators and functions, such as + or cosh. We show representations
of the expressions 1

x+3 + 2 cosh2(x) and
∫
x2exdx in Figure 2.

Figure 2: Tree representations of the expressions 1
x+3 + 2 cosh2(x) and

∫
x2exdx

We assume that each operand/function in the tree has a fixed arity. For example, addition and
multiplication have two children, while functions like sin have one. Note that there is a strict ordering
of the children. For example, for the Pow node, the first child is the base and the second child is the
exponent. Some of the operators are symmetric: for example a+ b = b+ a. In these cases, we resort
to an arbitrary canonical ordering of the children.

3.1 TREE TO SEQUENCE EQUIVALENCE AND PARSING

We turn mathematical expression trees into sequences of tokens in order to process them using
transformers. In the following, we show algorithms to construct a one-to-one correspondence
between expression trees and sequences under the assumptions above.

Tree to Sequence In order to turn a tree into a sequence, we define a recursive function:

treetoseq(v) =
{
[v] v is a leaf node
[v] + treetoseq(c1) + . . .+ treetoseq(cnchild

) otherwise

where nchild denotes the number of children of v, ci denotes the i-th child, and + denotes concate-
nation of sequences. This algorithm corresponds to doing depth-first traversal by picking the first
child and writing down all the observed values in order. Running treetoseq(r) on the root node r of
an expression f produces a sequence suitable for transformer tokenization.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Sequence to Tree To parse outputs of the model, we need a function that can unambiguously map
from sequences to trees. We achieve this using Algorithm 1, discussed in Appendix B.1. Note that
this function returns a tree as well as the remaining part of the sequence. We assert that remaining
has to be an emtpy list for the sequential representation to be valid.

3.2 TOKENIZATION

We tokenize with unique tokens typical operations such as addition, power, multiplication, as well as
all trigonometric, hyperbolic, and special functions (e.g. erf). We create 7 symbols (e.g. x,y, etc.)
that can be used as variables of integration and change of variables, and we tokenize special constants
such as e, π, and i with their unique tokens. We represent integrals with a special token INTEGRAL
and rational numbers with a token RATIONAL followed by two integers. We tokenize integers using
their base-ten representation preceded by a token INT+ or INT- , indicating whether the integer is
positive or negative. For simplicity, we do not have a dedicated representation of decimal numbers.
For example, the expression

∫
(1
x+3 + cosh2(x))dx would be tokenized as follows:

INTEGRAL + POW + INT+ 3 x INT- 1 * INT+ 2 POW cosh x INT+ 2 x

Finally, we designate a token to each theorem in the symbolic engine. This allows us to distill
mathematical expressions and theorems into an exceptionally compact formal language, achieving a
minimalist yet expressive vocabulary of just dvocab = 128 tokens.

4 GENERATING A SYNTHETIC MATHEMATICAL INTEGRATION DATASET

We will train a model to derive step-by-step integrals by predicting single-step rule applications. To
this end, we generate fully synthetic step-by-step integration data, described in this section. Note that
such a rigorous step-by-step integration dataset, based on a well-defined space of possible actions
and on such a broad variety of mathematical expression data, was lacking prior to this work.

4.1 RANDOM MATHEMATICAL EXPRESSIONS

To create a large-scale dataset of mathematical expressions, we adopt an algorithm from Lample and
Charton (2019), which samples random unary-binary trees and fills the nodes with operators and
operands. We generate ∼5M unique expressions with this algorithm described in Appendix C.1.

4.2 STEPS OF INTEGRATION

Once we have generated a dataset of random mathematical expressions, we pass them through the
manualintegrate module of SymPy (Meurer et al., 2017), in order to get a step-by-step solution. Then,
we map the solution into a sequence of actions and parameters in our symbolic engine. This results in
a sequence of tuples of expression, subexpression, action, and action parameter for each expression.
An example of a full solution in this format, generated by our model, is given in Figure 4. There are,
of course, many expressions SymPy cannot integrate as it enumeratively tries heuristic methods. Our
hypothesis is that transformers are able to generalize to cases not covered by SymPy.

4.2.1 DATA AUGMENTATION WITH INTEGRATION BY PARTS

Let Φ, Ψ be two random functions generated by the method above, with derivatives ϕ, ψ. By the rule
of integration by parts, we have

∫
Φ(x)ψ(x)dx = Φ(x)Ψ(x)−

∫
ϕ(x)Ψ(x)dx

Then, if we know a step-by-step integration of ϕ(x)Ψ(x), we can find the steps for Φ(x)ψ(x) by
applying integration by parts with the right parameters and applying the steps of ϕ(x)Ψ(x) to the
relevant subexpression of the resulting expression. We augment our dataset with this technique by
searching for such instances in the previous dataset. Our final dataset consists of 42.5M integration
steps and we report further statistics in Table 5.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

5 MODEL ARCHITECTURE AND TRAINING OBJECTIVE

In this section, we describe our transformer model architecture and the objective we used for training.

5.1 ARCHITECTURE AND HYPERPARAMETERS

We use a decoder-only transformer architecture with 6 layers of multi-head attention with 6 heads
and a hidden dimension of 384 (Radford et al., 2019). This results in a tiny model with only 10M
parameters. We use the AdamW optimizer with β1 = 0.9, β2 = 0.99, dropout of β = 0.2, and
weight decay of λ = 0.1 (Loshchilov and Hutter, 2017). We decay the learning rate linearly from
10−3 to 10−4 throughout training, with batch size 256. We use a single A100 GPU for training. We
choose this simple setting as we observed no performance improvements with larger architectures.

5.2 TRAINING OBJECTIVE

We would like our model to propose a subexpression, action, and parameters of the action given a
mathematical expression to integrate. Then, the model will be repeatedly fed back with the result
obtained through the symbolic engine to find solutions for new expressions. To train our model for
this, we shuffle all integration steps into lines structured as follows:

START [EXPR] SUBEXPR [SUBEXPR] RULE [RULE] PARAM [PARAM] END

Here, terms in parentheses are tokenized mathematical expressions (e.g. x2+sinh(x)) or actions (e.g.
PartsRule). We use the standard Cross Entropy Loss objective, where the model predicts extensions
of START [EXPR] SUBEXPR. An example from the training dataset looks as follows:

START Integral cos + E + x tan INT+ 2 x SUBEXPR Integral cos + E +
x tan INT+ 2 x RULE URule PARAM1 y PARAM2 + E + x tan INT+ 2 END

This step corresponds to transforming the integral
∫
cos(x+tan(2)+ e)dx using change of variables

y = x+ tan(2) + e. Applying this with the symbolic engine would result in the integral
∫
cos(y)dy

while storing the change of variable y = x+ tan(2) + e in its memory.

6 ACTION SEARCH

In this section, we describe how we run our model, interacting with the symbolic engine, to solve an
integral.

Figure 3: Inference Loop for Integration

Given an expression f , we tokenize it and feed it to the transformer. We decode the transformer using
beam search with N candidates until we reach the END token, i.e., we heuristically search for the
sequence with maximum log-probability (Freitag and Al-Onaizan, 2017). Then, we find all valid
generated actions (with parameters). We independently run them on the current expression using the
symbolic engine. We obtain new expressions, ordered by decreasing log-probability of the proposed
action that generated them. We greedily explore the tree resulting from feeding the expressions back
into the transformer, until the integral sign disappears. This loop is illustrated in Figure 3.

We tried other decoding techniques, such as top-k and nucleus sampling, but we did not observe any
significant improvements in performance (Holtzman et al., 2019). Note that nothing prevents the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

model from generating invalid mathematical expressions or invalid actions. However, we observed
that the model almost always outputs valid expressions and actions, so we simply discard proposed
actions whenever they are invalid.

7 EXPERIMENTAL EVALUATION

We explore a number of different directions to evaluate our model. We aim to demonstrate that
our method not only significantly outperforms existing step-by-step benchmarks, but is also more
efficient and generalizes well, unlike existing learning-based approaches. To illustrate the capability
of our model, we present an example solution that it generated, in Figure 4. For this example, SymPy
failed to figure out that we can apply the substitution u = sin(2x). We show further examples in
Appendix D.

∫ (
1 + 2 cos(2x)√

sin2(2x)+1

)
dx

∫
1 dx +

∫ 2 cos(2x)√
sin2(2x)+1

dx

x +
∫ 2 cos(2x)√

sin2(2x)+1
dx

x +
∫

du√
u2+1

x + sinh−1 u + C

x + sinh−1(sin(2x)) + C

AddRule on entire expression

Apply ConstantRule on
∫
1 dx

Apply URule u = sin(2x)
on the integral part

Apply ArcSinh rule for
∫

du√
u2+1

Substitute u = sin(2x) back

Figure 4: Step-by-step solution generated by AlphaIntegrator.

7.1 TEST SET ACCURACY

We hold out a test set of 10k expressions with integration steps, unseen during training. We compare
our model, SymPy, and GPT-4o-mini. We run SymPy and our own model with timeouts of 120 and
10 seconds, respectively. We use N = 5 for beam search decoding. We observe that this beam search
results in correct steps in the proposed actions for > 99% of the test set, on a step-by-step level. More
precisely, this means that if we predict a single step, there is almost always an exact match of the
step in the test set within one of the five recommendations resulting from beam search. We prompt
GPT-4o-mini with zero-shot CoT and we only check correctness of the result, ignoring any wrong
intermediate steps, for a random subset of 1000 expressions. We present accuracy results in Table 1.

Our model significantly outperforms both SymPy and GPT-4o-mini, a state-of-the-art language model.
Of particular interest is that our model generalizes beyond its data generator SymPy. We observe that
GPT-4o-mini generally fails on long chains of computations, or when expressions are not sufficiently

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Comparison of model accuracies on the integration task.

Model Accuracy Error Margin
AlphaIntegrator 87.3% ± 0.3%
SymPy 83.3% ± 0.4%
GPT-4o-mini 65.5% ± 1.5%

similar to what is typical. During manual inspection, we observed that the model usually has the right
methods in mind, but then cannot execute operations accurately. Typical mistakes include sign errors
while doing integration-by-parts or simple errors in arithmetic. For SymPy, it is more often the case
that the system is unable to find solutions rather than making mistakes, as some cases are missed by
the software. We explore this further in Section 7.4, where we show some of the bugs and limitations
we found in SymPy.

7.2 EFFICIENT TREE EXPLORATION

To understand how well the transformer model guides us in the tree search, we measure the number
of tree nodes explored during integration for both SymPy and our model, on the test set. We find
that on average, our model explores Nt = 12.9 nodes for each successful integration whereas SymPy
explores Ns = 25.6. This demonstrates that our model is not only more powerful but also more
efficient, as it explores roughly 50% fewer nodes to find solutions. We present the full distribution in
Figure 5.

Figure 5: Distribution of number of nodes explored in tree search for AlphaIntegrator vs SymPy.

7.3 ROBUSTNESS AGAINST SYMBOLIC BRITTLENESS

Recently, Welleck et al. (2021) introduced the concept of ’symbolic brittleness’, where they investigate
the seq2seq model by Lample and Charton (2019) that directly predicts the antiderivative of an
expression. Their findings showed that while the model performs well on in-distribution problems, it

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

struggles with robustness to small input variations, fails to generalize compositional patterns, and
exhibits poor out-of-distribution performance.

In particular, they manually search for perturbations of expressions that the model can integrate to test
its robustness. They introduce the metric Fail@N, defined as the percentage of times a model fails to
find the correct integral within its top N predictions, as determined by beam search. For instance,
Fail@1 represents the failure rate when only the top prediction is considered, while Fail@50 reflects
the failure rate when the top 50 predictions are evaluated. For our model, we similarly define Fail@N
as the percentage of failures using a beam search of size N .

We test both models by perturbing the set of functions that includes sin, cos, exp, tan, by multiplying
their arguments and return values by random integers. We report the results in Table 2. The
experiments show that AlphaIntegrator is significantly less brittle in almost all cases.

Table 2: Robustness results with simple primitives (top) and validation problems (bottom). Coeffi-
cients are sampled from [1, 50].

Test Fail@10 Seq2Seq Fail@5 AlphaIntegrator
k1 ln(k2x) 0.0 0.0
k1x 0.0 0.0
k1x

42 6.1 0.4
k1 exp(k2x) 20.8 6.2
k1 sin(k2x) 19.6 0.2
k1 cos(k2x) 20.7 0.0
k1 tan(k2x) 17.4 14.1
1
k · f 12.0 0.2
k · f 5.8 0.1

Welleck et al. (2021) claim that the seq2seq model learns how to copy patterns, however, does not
generalize well in primitives that require dividing coefficients (e.g.

∫
k1 cos(k2)xdx = k1

k2
sin(k2x)).

Our model does not need to learn how to perform arithmetic operations, but rather has to recognize
the pattern, copy a subexpression, and choose what action to apply. We believe that this is the main
reason why we manage to obtain a more robust model than direct antiderivative prediction by Lample
and Charton (2019). We also note that our method is more general in the sense that it can be applied
to any step-by-step computation task with no way of verifying the correctness of the result.

7.4 EXPLORING BUGS IN SYMPY

As our method generalizes over SymPy’s module, studying examples where SymPy fails and our
method succeeds is very useful to find bugs or limitations in the heuristic of the symbolic solver
software. Following this method, we found simple bugs in SymPy and reported them as GitHub
issues. We show examples of such bugs and failure modes in Table 3.

Table 3: Bugs/Failure Modes in Sympy

Expression Description∫
1

cos(x)dx Not covered by the enumerative search for simple trig. integrals.∫
x cosh(x)dx Heuristic that does integration by parts fails to try this case.∫
cos(2x) tan(x)dx Manages to rewrite cos(2x) = cos2(x) − sin2(x) and integrates

the second term but fails to rewrite tan(x) = sin(x)
cos(x) to obtain∫

sin(x) cos(x)dx for simple integration by parts.

8 RELATED WORK

Deep Learning for Theorem Proving Deep learning applied to theorem proving has seen significant
advancements, particularly in premise selection and proof guidance. Early work such as DeepMath

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

used CNNs and RNNs to predict the relevance of premises for proving conjectures (Alemi et al.,
2016). Later, various papers leveraged decoder-only transformer architectures or pre-trained LLMs
to guide proofs through recommending premises and next steps (Polu and Sutskever, 2020) (Yang
and Deng, 2019) (Song et al., 2024). These models usually interact with Interactive Theorem Provers
(ITPs) such as Lean, Isabelle, or Coq. This usually requires large-scale pre-training data to be
successful. On the contrary, we develop a compact language for interaction between the symbolic
engine and generative model. This allows us to easily generate synthetic data and circumvent the
pre-training required to learn the syntax of the language.

Tree Structured Neural Networks A recent body of work has employed neural network structures
that have inductive biases for processing tree-structured inputs which is the case when dealing with
mathematical expressions or abstract syntax trees. For example, Tai et al. (2015) proposes TreeLSTM,
a generalization of LSTMs to tree-structured network topologies. (Huang et al., 2018) uses this
architecture to train baseline models for the formalization of the Feit-Thompson Theorem. (Arabshahi
et al., 2018) trains the same architecture to model mathematical equations and verify their correctness.
In this work, we focus on decoder-only architectures, as they have become more standard, and we
aim to build a system that is not only efficient but also easily transferable to other tasks. This allows
for greater flexibility and adaptability across various problem domains.

9 CONCLUSION AND FUTURE WORK

We introduced a novel approach for step-by-step integration using a transformer model guided
by a custom symbolic engine. The policy captured by the transformer model is learned from
a synthetically generated dataset of integration rules. A major advantage of our work is that it
guarantees the final expression is always sound. This follows from the fact that the policy always
applies a correct-by-construction integration rule, realized by the symbolic solver. Our experimental
evaluation demonstrates strong generalization, surpassing its data generator in accuracy and efficiency.
Interestingly, it also provides insights into potential errors found in modern heuristic solvers. We
demonstrated significant improvements compared to direct approaches using LLMs, which typically
fine-tune an LLM on a dataset of question-answer pairs. We exhibit better robustness compared
to other learning-based approaches and our method naturally generalizes to other settings, where
results without intermediate steps may be hard to verify. Limitations include reliance on synthetic
data and the scope of integration techniques that we handle. Future work will focus on more general
approaches to training such as reinforcement learning, expanding the action space, and extending the
model to other mathematical tasks.

10 ETHICS STATEMENT

This work focuses on improving symbolic integration using transformer models, which has limited
direct ethical concerns. The methods presented here aim to enhance mathematical problem-solving,
primarily for academic and educational purposes. Since the model is designed for symbolic com-
putation, the potential for misuse is minimal, and the outcomes are easily verifiable. As with all
AI systems, it is important to ensure that results are used appropriately in domains requiring high
mathematical rigor, but we see no significant ethical risks associated with this research.

11 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide a detailed explanation of the methods and
algorithms used, including the design of the symbolic engine, data generation pipeline, and model
architecture. We also share all of the source code used to obtain the results. The codebase is
well-structured, allowing researchers to replicate our experiments and build upon our work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.org/
abs/1706.03762.

OpenAI. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
URL https://arxiv.org/abs/2201.11903.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
2023. URL https://arxiv.org/abs/2203.11171.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. CoRR,
abs/1912.01412, 2019. URL http://arxiv.org/abs/1912.01412.

Sean Welleck, Peter West, Jize Cao, and Yejin Choi. Symbolic brittleness in sequence models:
on systematic generalization in symbolic mathematics. CoRR, abs/2109.13986, 2021. URL
https://arxiv.org/abs/2109.13986.

Robert H. Risch. The problem of integration in finite terms. Transactions of the American Mathemat-
ical Society, 139:167–189, 1969. doi: 10.1090/S0002-9947-1969-0237477-8.

Trieu H. Trinh, Yuhuai Wu, Quoc V. Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625:476–482, 2024. doi: 10.1038/s41586-023-06747-5.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li,
and Xiaodan Liang. Deepseek-prover: Advancing theorem proving in llms through large-scale
synthetic data, 2024. URL https://arxiv.org/abs/2405.14333.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
CoRR, abs/2009.03393, 2020. URL https://arxiv.org/abs/2009.03393.

Guillaume Lample, Marie-Anne Lachaux, Thibaut Lavril, Xavier Martinet, Amaury Hayat, Gabriel
Ebner, Aurélien Rodriguez, and Timothée Lacroix. Hypertree proof search for neural theorem
proving, 2022. URL https://arxiv.org/abs/2205.11491.

Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertı́k, Sergey B. Kirpichev, Matthew
Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh, Thilina Rathnayake, Sean
Vig, Brian E. Granger, Richard P. Muller, Francesco Bonazzi, Harsh Gupta, Shivam Vats, Fredrik
Johansson, Fabian Pedregosa, Matthew J. Curry, Andy R. Terrel, Štěpán Roučka, Ashutosh
Saboo, Isuru Fernando, Sumith Kulal, Robert Cimrman, and Anthony Scopatz. Sympy: symbolic
computing in python. PeerJ Computer Science, 3:e103, January 2017. ISSN 2376-5992. doi:
10.7717/peerj-cs.103. URL https://doi.org/10.7717/peerj-cs.103.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

10

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2305.20050
http://arxiv.org/abs/1912.01412
https://arxiv.org/abs/2109.13986
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2405.14333
https://arxiv.org/abs/2009.03393
https://arxiv.org/abs/2205.11491
https://doi.org/10.7717/peerj-cs.103

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. CoRR, abs/1711.05101,
2017. URL http://arxiv.org/abs/1711.05101.

Markus Freitag and Yaser Al-Onaizan. Beam search strategies for neural machine translation. CoRR,
abs/1702.01806, 2017. URL http://arxiv.org/abs/1702.01806.

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin Choi. The curious case of neural text degenera-
tion. CoRR, abs/1904.09751, 2019. URL http://arxiv.org/abs/1904.09751.

Alexander A. Alemi, François Chollet, Geoffrey Irving, Christian Szegedy, and Josef Urban. Deep-
math - deep sequence models for premise selection. CoRR, abs/1606.04442, 2016. URL
http://arxiv.org/abs/1606.04442.

Kaiyu Yang and Jia Deng. Learning to prove theorems via interacting with proof assistants. CoRR,
abs/1905.09381, 2019. URL http://arxiv.org/abs/1905.09381.

Peiyang Song, Kaiyu Yang, and Anima Anandkumar. Towards large language models as copilots for
theorem proving in lean, 2024. URL https://arxiv.org/abs/2404.12534.

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved semantic representations
from tree-structured long short-term memory networks. CoRR, abs/1503.00075, 2015. URL
http://arxiv.org/abs/1503.00075.

Daniel Huang, Prafulla Dhariwal, Dawn Song, and Ilya Sutskever. Gamepad: A learning environment
for theorem proving. CoRR, abs/1806.00608, 2018. URL http://arxiv.org/abs/1806.
00608.

Forough Arabshahi, Sameer Singh, and Animashree Anandkumar. Combining symbolic and function
evaluation expressions in neural programs. CoRR, abs/1801.04342, 2018. URL http://arxiv.
org/abs/1801.04342.

11

http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1702.01806
http://arxiv.org/abs/1904.09751
http://arxiv.org/abs/1606.04442
http://arxiv.org/abs/1905.09381
https://arxiv.org/abs/2404.12534
http://arxiv.org/abs/1503.00075
http://arxiv.org/abs/1806.00608
http://arxiv.org/abs/1806.00608
http://arxiv.org/abs/1801.04342
http://arxiv.org/abs/1801.04342

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A SYMBOLIC ENGINE

A.1 LIST OF ACTIONS IN THE SYMBOLIC ENGINE

Below, we present a complete list of actions available in the symbolic engine.

Table 4: List of Actions in the Symbolic Engine

Action Description
ConstantMethod Apply when integrand is a constant.

PowerMethod Apply power rule integration when integrand is xn.

ExpMethod Apply when integrand is of the form ax.

ConstantTimesMethod Factor out constants from integrand.

ReciprocalMethod Apply when integrand is 1
x .

NestedPowMethod Handle integrals with nested powers.

ArcsinMethod Apply when integrand is 1√
1−x2

.

ArcsinhMethod Apply when integrand is 1√
x2+1

.

SinMethod Apply when integrand is sin(x).

CosMethod Apply when integrand is cos(x).

SecTanMethod Apply when integrand is sec(x) tan(x).

CscCotMethod Apply when integrand is csc(x) cot(x).

Sec2Method Apply when integrand is sec2(x).

Csc2Method Apply when integrand is csc2(x).

SinhMethod Apply when integrand is sinh(x).

CoshMethod Apply when integrand is cosh(x).

ArctanMethod Apply when integrand is of the form 1
ax2+b .

ReciprocalSqrtQuadraticMethod Apply when integrand is 1√
ax2+bx+c

.

CiMethod Apply when integrand is cos(ax+b)
x .

EiMethod Apply when integrand is exp(ax+b)
x .

UpperGammaMethod Apply when integrand is xn exp(ax).

AddMethod Rewrite integral of sum as sum of integrals.

UMethod Substitute u = f(x) and transform the integral.

PartsMethod Apply integration by parts with parameters u and dv.

PartialFractionsMethod Decompose rational integrands into partial fractions.

CancelMethod Simplify integrand by canceling terms.

ExpandMethod Expand integrand algebraically.

Tan1Method Rewrite tan(x) to sin(x)
cos(x) .

Cot1Method Rewrite cot(x) to cos(x)
sin(x) .

Cos1Method Rewrite 1
cos(x) to sec(x).

Sec1Method Rewrite sec(x) integrals using sec(x)2 and sec(x) tan(x).

Csc1Method Rewrite csc(x) integrals using csc(x)2 and csc(x) cot(x).

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Tanh1Method Rewrite tanh(x) to sinh(x)
cosh(x) .

Coth1Method Rewrite coth(x) to cosh(x)
sinh(x) .

Sech1Method Rewrite sech(x) integrals using hyperbolic identities.

Csch1Method Rewrite csch(x) integrals using hyperbolic identities.

TrigExpandMethod Expand trigonometric functions in the integrand.

SinCosEvenMethod Rewrites sinm(x) cosn(x) as (((1 −
cos(2ax))/2)m/2)((1 + cos(2bx))/2)n/2 when n
and m are even and nonnegative.

SinOddCosMethod Rewrites sinm(x) cosn(x) as (1 −
cos2(ax))(m−1)/2 sin(ax) cosn(bx) when m is odd
and m ≥ 3.

CosOddSinMethod Rewrites sinm(x) cosn(x) as (1 −
sin2(bx))(n−1)/2 cos(bx) sinm(ax) when n is odd
and n ≥ 3.

SecEvenTanMethod Rewrites secn(x) tanm(x) as (1 +
tan2(bx))(n/2−1) sec2(bx) tanm(ax) when n ≥ 4
and n is even.

TanOddSecMethod Rewrites secn(x) tanm(x) as (sec2(ax) −
1)(m−1)/2 tan(ax) secn(bx) when m is odd.

Tan2Method Rewrites tan2(ax) as sec2(ax)− 1.

CotCscEvenMethod Rewrites cotm(x) cscn(x) as (1 +
cot2(bx))(n/2−1) csc2(bx) cotm(ax) when n ≥ 4
and n is even.

CotOddCscMethod Rewrites cotm(x) cscn(x) as (csc2(ax) −
1)(m−1)/2 cot(ax) cscn(bx) when m is odd.

B REPRESENTATION OF MATHEMATICAL EXPRESSIONS

B.1 ALGORITHM FOR SEQUENCE TO TREE

Algorithm 1: Function seqtotree to map from sequences to expression trees
Data: A sequence seq
Result: A tree t, and remaining part of the sequence remaining
assert len(seq) > 0;
t← Node(seq[0]);
if t ∈ {SYMBOL, CONSTANT, NUMBER} then

return parse(seq), remaining ; /* parse greedily */
else

a← arity of the operand/function t;
i← 1;
remaining ← seq[1 :];
while i ≤ a do

childi, remaining ← seqtotree(remaining);
add childi to Node t;

end
return t, remaining

end

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

C DATASET GENERATION

C.1 GENERATING RANDOM MATHEMATICAL EXPRESSIONS

The algorithm for generating random mathematical expressions consist of three steps:

1. Sample random unary-binary trees with a uniformly distributed number of nodes between 3
and N , where N = 50.

2. Fill the leaves of the tree with a symbol x with probability p = 3
4 and one of the constants π,

e or number {0, . . . , 10} uniformly at random with probability 1− p = 1
4 . This is aimed at

generating more difficult expressions effectively by incentivizing symbols as leaves.
3. Fill remaining internal nodes with random unary or binary operations. The binary operators

are +,−,×, /, and the unary operators include trigonometric, hyperbolic, their inverses,
and the exp and log functions.

When selecting binary operations, addition and multiplication are twice as likely to be chosen over
division and subtraction, as the latter can result in term cancellations and duplicate values. Unary
operations are sampled uniformly at random. We do all trivial simplifications (e.g. evaluating x+ 2x
to 3x or x+ 1 + 0 + 3 to x+ 4. All duplicates are removed during post-processing.

C.2 DATASET STATISTICS

We report statistics for the final dataset in Table 5

Table 5: Dataset Statistics

Expressions Steps Average Tokens Average Steps Min,Max Steps
4.9M 42.5M 58.6 8.7 1,53

D EXAMPLES OF SOLUTIONS GENERATED BY ALPHAINTEGRATOR

We show 2 more examples of solutions generated by AlphaIntegrator to demonstrate the tactics used
by the model. First example requires a change of variables combined with understanding that the
resulting integral is the non-elementary exponential integral, which AlphaIntegrator finds as first
candidate in its search. Second example demonstrates that the model can handle long chains of
computation where it has creatively find correct parameters for substitution and integration by parts.∫

ex
2

x
dx

1
2

∫
eu

u
du

1
2
Ei(u)

1
2
Ei(x2)

Apply URule
with u = x2

Apply UpperGam-
maRule for

∫
eu

u du

Substitute
u = x2 back

Figure 6: Step-by-step solution for
∫

ex
2

x dx.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

∫
(−12x log(x)) dx

∫
(−12ye2y) dy

−12
∫
ye2y dy

−12y
∫
e2y dy +

12
∫ ∫

e2y dy dy

−12y
∫
e2y dy + 12

∫
1
2
dzdy

−12y
∫
e2y dy + 12

∫
1
2
e2y dy

−12y
∫
e2ydy + 6

∫
e2ydy

−12y
∫

1
2
dt + 6

∫
1
2
dt

−6x2 log(x) + 3e2 log(x)

−6x2 log(x) + 3x2

Apply URule with y = log(x)

Apply ConstantTimesRule

Apply PartsRule with y and e2y

Substitute z = e2y

on second expression

Apply ConstantRule on
∫

1
2dz

Apply ConstantTimes-
Rule on second expression

Apply URule with t = e2y

Apply ConstantRule
and Backsubstitute

Simplify

Figure 7: Step-by-step solution for
∫
(−12x log(x)) dx.

15

	Introduction
	Symbolic Engine with Parametric Action Space
	Representation of Mathematical Expressions and Theorems
	Tree to Sequence Equivalence and Parsing
	Tokenization

	Generating A Synthetic Mathematical Integration Dataset
	Random Mathematical Expressions
	Steps of Integration
	Data Augmentation with Integration By Parts

	Model Architecture and Training Objective
	Architecture and Hyperparameters
	Training Objective

	Action Search
	Experimental Evaluation
	Test Set Accuracy
	Efficient Tree Exploration
	Robustness Against Symbolic Brittleness
	Exploring Bugs in Sympy

	Related Work
	Conclusion and Future Work
	Ethics Statement
	Reproducibility Statement
	Symbolic Engine
	List of Actions in the Symbolic Engine

	Representation of Mathematical Expressions
	Algorithm for Sequence to Tree

	Dataset Generation
	Generating Random Mathematical Expressions
	Dataset Statistics

	Examples of Solutions Generated by AlphaIntegrator

