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Abstract

Protein representation learning aims to learn infor-
mative protein embeddings capable of addressing
crucial biological questions, such as protein func-
tion prediction. Although sequence-based trans-
former models have shown promising results by
leveraging the vast amount of protein sequence
data in a self-supervised way, there is still a gap in
applying these methods to 3D protein structures.
In this work, we propose a pre-training scheme
going beyond trivial masking methods leveraging
3D and hierarchical structures of proteins. We
propose a novel self-supervised method to pre-
train 3D graph neural networks on 3D protein
structures, by predicting the distances between
local geometric centroids of protein subgraphs
and the global geometric centroid of the protein.
The motivation for this method is twofold. First,
the relative spatial arrangements and geometric
relationships among different regions of a protein
are crucial for its function. Moreover, proteins are
often organized in a hierarchical manner, where
smaller substructures, such as secondary structure
elements, assemble into larger domains. By con-
sidering subgraphs and their relationships to the
global protein structure, the model can learn to
reason about these hierarchical levels of organiza-
tion. We experimentally show that our proposed
pertaining strategy leads to significant improve-
ments in the performance of 3D GNNs in various
protein classification tasks.
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1. Introduction
Proteins are fundamental biological macromolecules, re-
sponsible for a variety of functions within living organisms,
ranging from catalyzing metabolic reactions, DNA replica-
tion, and signal transduction, to providing structural support
in cells and tissues (Conrado et al., 2008; Whitford, 2013;
Tye, 1999). Accurately predicting protein function is a cor-
nerstone in molecular biology, with extensive applications in
drug design, drug discovery and disease modeling (Rezaei
et al., 2020). However, the complexity and variability of
proteins pose significant challenges for computational pre-
diction models (Radivojac et al., 2013; Schauperl & Denny,
2022). The functionality of a protein is affected by its three-
dimensional structure, often dictating its interactions with
other molecules (Ivanisenko et al., 2005). The 3D structure
of proteins provides critical knowledge that is often much
harder to derive from their 1D amino acid sequences alone.
Therefore, understanding and predicting protein function
based purely on sequence data can be challenging without
considering the 3D structural modality (Gligorijević et al.,
2021; Ingraham et al., 2019).

In recent years, the advent of 3D graph neural networks
(GNNs) has introduced a big potential for protein represen-
tation learning. These models utilize the graph structure
of proteins, where nodes represent atoms or residues, and
edges represent the bonds or spatial relationships between
them. GNNs are particularly good at processing the non-
Euclidean data represented by 3D protein structures, en-
abling them to learn complex patterns that dictate protein
functionality (Zhang et al., 2022; Abdine et al., 2024).

Despite these advancements, a significant limitation remains
in the field: the absence of a unified approach to effectively
leverage unlabeled 3D structures for pretraining deep learn-
ing models. Most current methods depend heavily on la-
beled data, which is scarce and expensive to produce. In
contrast with transformer models, which have effectively
used element masking as a pretraining strategy and achieved
significant success in various fields (Vaswani et al., 2017),
graph models still lack a definitive, universally accepted
pretraining approach (Sun et al., 2022). Particularly for 3D
structures, graph-based models face challenges in leveraging
the extensive, unlabeled data available, while also struggling
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to manage computational demands efficiently. Most promi-
nent approaches mask node attributes or edges and then try
to predict them (Hu et al., 2020). However, they do not take
into account the hierarchical structure of proteins and the
important substructures that affect their function.

Our approach tackles these challenges by introducing a
novel pretraining strategy for 3D Graph Neural Networks
(GNNs), capitalizing on the geometric properties of protein
structures. Specifically, we predict the Euclidean distances
between the geometric centers of various protein subgraphs
and the protein’s overall geometric center. This method
offers several advantages. First, by utilizing subgraph rep-
resentations, the model can accurately learn and capture
hierarchical patterns within the 3D structure. Second, it
captures the relative distances between subgraphs, a valu-
able feature as some tasks require focusing on surface nodes,
while others may need attention on more central nodes. This
flexibility increases the model’s ability to handle different
types of protein-related tasks effectively.

We evaluate our approach, using ProNet (Wang et al., 2023),
a state-of-the-art 3D GNN model as the base architecture.
We pretrain ProNet in a large amount of 3D structures from
AlphaFold database (Varadi et al., 2022), and we demon-
strate increased performance in protein classification tasks.
Our pretraining strategy is designed to be general and adapt-
able, as it can be used with any 3D GNN architecture. We
believe our approach will lead the way and inspire more
geometric self-supervised methods on 3D protein structures.

2. Methods
2.1. 3D Graph Neural Networks

Notation. A 3D graph representing a protein is formally
denoted as G = (V,E, P ), where V represents the set
of nodes, E denotes the edges, and P denotes the spatial
coordinates of each node in the graph. In this work, we
represent each amino acid as a node, using the position
p ∈ R3 of the Cα atom as the position of the amino acid. We
construct the edges between nodes using a threshold radius
t, such that each pair of nodes is connected if their distance
is smaller than the threshold t. We encode the aminoacid
types as node features and the sequential distances as edge
features. We denote as hl

u the node features of node u at
layer l, and euv the edge feature vector for the edge uv. We
denote as N the total number of nodes and Ni the set of
neighbors of node i.

GNN model. In our study, we utilize Graph Neural Net-
works (GNNs) that are specifically adapted for analyzing
(3D) protein structures. 3D GNNs are deployed to process
these graphs, utilizing layers of graph convolutions that ag-

gregate information from a node’s local neighborhood to
capture global structural features. The convolutions in 3D
GNNs are designed to take into account the Euclidean dis-
tances and other spatial relationships. We use ProNet (Wang
et al., 2023) as the base model for our experiments, a recent
3D GNN model that achieves state-of-the-art performance
in protein classification tasks. In each layer of ProNet, the
representations of the nodes are updated using the following
equation:

hl+1
i = f1

hl
i,
∑
j∈Ni

f2
(
vlj , eji,F (dji, θji, ϕji, τji)

) ,

(1)
where f1 and f2 functions are parameterized using neural
networks and F is a geometric transformation at the amino
acid level. Here (dji, θji, ϕji) is the spherical coordinate of
node j in the local coordinate system of node i to determine
the relative position of j, and τji is the rotation angle of
edge ji. The final protein representation hG is computed
by applying a sum pooling layer in the node representations
from the last layer L:

hG =

N∑
i=1

hL
i (2)

2.2. Geometric Self-Supervised Pretraining

Pretraining plays a crucial role in enhancing the perfor-
mance of deep neural networks, particularly in domains
where labeled data is scarce or expensive to obtain. In this
work, we leverage the large amount of available unlabeled
3D protein structures. Specifically, we train the model to
predict the distance between the centroid of a subgraph S
and the geometric centroid of the entire protein G. The self-
supervised objective is to minimize the difference between
the predicted and actual Euclidean distances. An overview
of the proposed pipeline is illustrated in Figure 1.

Subgraph Computation. While our approach is compati-
ble with any subgraph selection method, for our implementa-
tion, we chose 2-hop ego networks centered around 10% of
the amino acids in each protein. Therefore, for each protein
G, we obtain a set of different subgraphs SG , where each
subgraph corresponds to a 2-hop ego network.

Firstly, we compute the geometric centroid of the protein
and the subgraphs. The geometric centroid cG of the protein
is calculated by averaging the coordinates of all aminoacids
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Figure 1. Visualization of the Geometric Centroid Pretraining Strategy for Protein Graph Neural Networks. This diagram illustrates the
methodology employed to predict the Euclidean distances between the centroids of various subgraphs (cS) and the overall protein centroid
(cG).

in the protein:

cG =
1

|V |
∑
i∈V

pi

cG =

(
1

|V |
∑
i∈V

xi,
1

N

∑
i∈V

yi,
1

|V |
∑
i∈V

zi

) (3)

where (xi, yi, zi) are the coordinates of each node i. Simi-
larly, the centroid cS for each subgraph S ∈ SG is calculated
by averaging the coordinates of the nodes within the sub-
graph:

cS =

 1

|S|
∑
j∈S

xj ,
1

|S|
∑
j∈S

yj ,
1

|S|
∑
j∈S

zj

 , (4)

where |S| is the number of nodes in subgraph S. Then the
label yS,G is computed by taking the Euclidean distance
between the centroid of the protein and the centroid of
subgraph S

yS,G = d(cS , cG) = ∥cS − cG∥ (5)

Distance Prediction. We calculate the embedding for a
subgraph S by aggregating the node representations within
this subgraph:

hS =
∑
i∈S

hL
i (6)

This summation operation merges the features of the nodes
in the subgraph from the final layer L of ProNet into a uni-
fied vector that represents the entire subgraph. The predicted
distance, denoted as ˆyS,G, is derived from the embeddings
hG and hS , using a parameterized function f :

ŷS,G = f(hS∥hG). (7)

In our experiments, we use a two-layer multilayer percep-
tron (MLP) to parameterize the function f . The loss func-
tion L is then defined as the mean squared error (MSE)

between the actual and predicted distances across all pro-
teins and their respective subgraphs:

Lpretraining =
1

N

∑
G∈D

∑
S∈SG

(yS,G − ŷS,G)
2
, (8)

where D is the collection of training protein graphs.

Motivation. The motivation behind our proposed approach
is to overcome the limitations of existing pretraining meth-
ods for protein representation learning, which often rely on
simplistic masking strategies that fail to capture the com-
plex 3D structural patterns crucial for understanding protein
function. Our method leverages the geometric and hierar-
chical properties of protein structures to pretrain 3D GNNs.
Specifically, we predict the Euclidean distances between
the geometric centers of protein subgraphs and the global
geometric center. This strategy is motivated by the impor-
tance of spatial arrangements and hierarchical organization
within proteins. The relative spatial relationships among
protein regions are important for function, and proteins of-
ten exhibit hierarchical structures where smaller elements
assemble into larger domains. By incorporating subgraph
representations and focusing on their distances from the
global centroid, our model captures these patterns.

3. Experiments and results

Pretraining Dataset For the pertaining, we used up to
434K proteins from the AlphaFold Database. This decision
was driven by the database’s extensive collection compu-
tationally predicted protein structures, which cover a wide
range of known proteins across numerous species. The
AlphaFold Database is renowned for its accuracy and the
detailed resolution of its protein models, which closely ap-
proximate experimental structures.

Fold Classification. Protein fold classification is essential
for understanding the relationships between protein struc-
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ture and function. We followed the dataset and experimental
protocols from (Wang et al., 2023). The dataset encom-
passes a total of 16,712 proteins categorized into 1,195
different folds. Our evaluation spans three distinct test sets:
Fold, Superfamily, and Family. For the Fold Dataset, we
used the same dataset as in previous studies (Hermosilla
et al., 2020; Wang et al., 2023). To assess the model’s ability
to generalize, three test sets are used: Fold, where proteins
from the same superfamily are not seen during training;
Superfamily, where proteins from the same family are ex-
cluded from training; and Family, where proteins from the
same family are included in the training data. Among these,
the Fold test set presents the highest challenge due to its
significant divergence from the training set’s conditions. For
this task, the dataset is divided into 12,312 proteins for train-
ing, 736 for validation, and additional subsets for testing:
718 proteins for the Fold test, 1,254 for Superfamily, and
1,272 for Family.

React Classification. An Enzyme Commission (EC) num-
ber is a numerical classification scheme for enzymes, based
on the chemical reactions they catalyze. Each protein in the
dataset is associated with an EC number, with annotations
for these numbers obtained from the SIFTS database (Dana
et al., 2019). The dataset encompasses a total of 37,428
proteins representing 384 distinct EC numbers. We utilized
a dataset comprised of 3D protein structures sourced from
the Protein Data Bank (PDB) (Berman et al., 2000). Follow-
ing the experimental setup of (Wang et al., 2023), 29,215
proteins were used for training, 2,562 for validation, and
5,651 for testing. Every EC number is represented across all
three dataset splits. Proteins with more than 50% similarity
were grouped together in the same split. This setup aids in
evaluating the model’s ability to generalize across different
protein structures.

Setup. We use ProNet as the base architecture. Following
(Wang et al., 2023), we also apply Gaussian noise to the
input data and to the hidden states to improve the robustness
of the model, and we denote this model as ProNet Aug-
mented. We use the best hyperparameters from (Wang et al.,
2023) and we pretrain the models for 10 epochs. Then we
fine-tune the models for the classification tasks, initialized
with the pretrained weights.

Results. We report the results in Table 1. We observe
that our pretrained models outperform the baselines in both
the base architecture and the augmented one. Additionally,
we conduct an ablation study by varying the number of
pretraining samples from 33K to 434K. The results indicate
that the size of the pretraining dataset significantly affects
downstream task performance, with larger datasets leading
to higher accuracy.

Table 1. Accuracy (%) on fold and reaction classification tasks.

Method Pretraining Size React Fold

Fold Sup. Fam. Avg.

ProNet - 81.04 44.29 58.37 96.23 66.30
ProNet Pretrained 33K 81.05 46.80 63.56 97.64 69.33
ProNet Pretrained 100K 81.07 49.44 62.84 97.56 69.95
ProNet Pretrained 434K 81.51 49.72 64.51 97.56 70.60
ProNet Augmented - 84.23 51.50 66.75 98.19 72.15
ProNet Augmented Pretrained 434K 84.50 52.23 68.42 98.27 72.97

4. Conclusion and Future work
In this work, we proposed a new self-supervised learning
method to learn accurate protein representations from 3D
structures. By capitalizing on the extensive collection of
3D protein structures available, we pre-trained a 3D GNN
model to predict the distance between the geometric centroid
of the entire protein and various subgraphs within the pro-
tein. We experimentally show that our pretraining strategy
leads to improved performance in downstream classification
tasks, such as protein fold and reaction classification. For
future work, we aim to study the impact of different sub-
graph selection methods and experimentally test our method
on more 3D GNNs.
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