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Abstract

Geometric diagrams are critical in conveying
mathematical and scientific concepts, yet tra-
ditional diagram generation methods are often
manual and resource-intensive. While text-to-
image generation has made strides in photore-
alistic imagery, creating accurate geometric di-
agrams remains a challenge due to the need for
precise spatial relationships and the scarcity of
geometry-specific datasets. This paper presents
MagicGeo, a training-free framework for gen-
erating geometric diagrams from textual de-
scriptions. MagicGeo formulates the diagram
generation process as a coordinate optimiza-
tion problem, ensuring geometric correctness
through a formal language solver, and then em-
ploys coordinate-aware generation. The frame-
work leverages the strong language transla-
tion capability of large language models, while
formal mathematical solving ensures geomet-
ric correctness. We further introduce Magic-
GeoBench, a benchmark dataset of 220 geo-
metric diagram descriptions, and demonstrate
that MagicGeo outperforms current methods
in both qualitative and quantitative evaluations.
This work provides a scalable, accurate solution
for automated diagram generation, with signifi-
cant implications for educational and academic
applications.

and CE // BD

Figure 1: MagicGeo has the capability to generate accurate complex geometric diagrams from natural language.

1 Introduction

"A picture is worth a thousand words" is a widely
recognized proverb in literature. Specifically, di-
agram, as a form of picture, is essential in con-
veying information and have long been utilized
across fields such as science and engineering. Ex-
tensive research (Larkin and Simon, 1987; Sten-
ning and Oberlander, 1995) demonstrates that di-
agrams often outperform text in solving determi-
nate problems. Prominent figures like Einstein and
Hadamard have famously asserted that they do not
"think in words" (Larkin and Simon, 1987). Fur-
thermore, Stenning and Oberlander (1995) argues
that text permits expression of ambiguity in the way
that diagrams cannot easily accommodate. This pa-
per focuses on the task of converting descriptions
into structured diagrams, with particular empha-
sis on geometric diagrams, which play a critical
role in mathematics and science. This task serves
as a foundational step toward advancing diagram
generation for scientific textbooks.

Traditional geometric diagram construction is
closely associated with a suite of graphic draw-
ing tools, such as Cinderella (Yu et al., 2015),
Geometry Expert (Chou et al., 1996), Z+Z Su-



per Sketchpad (ZHANG et al., 2007), and WinG-
CLC (Jani¢i¢ and Trajkovi¢, 2003; Szirmay-Kalos,
2003). These tools offer interactive platforms for
drawing geometric figures. However, they are bur-
dened by the need for manual input, which is both
time-consuming and resource-intensive. This pa-
per presents the development of an automatic, text-
guided geometric diagram generation system, elim-
inating the manual effort typically involved. Such a
system holds significant potential for streamlining
diagram creation, offering considerable utility in
the preparation of educational resources.

Recent advancements in text-to-image genera-
tion have achieved notable progress in synthesizing
photorealistic images (Cao et al., 2024; Zhou and
Shimada, 2023). However, these methods, trained
on large datasets of natural image-text pairs, often
struggle with diagram generation. Efforts to ad-
dress this challenge include DiagrammerGPT (Zala
et al., 2023), which proposes a two-stage frame-
work using layout as an intermediary to enable
spatial control, and AutomaTikZ (Belouadi et al.,
2023), which leverages the TikZ graphic language
to autonomously generate scientific figures from
captions. Despite these advances, both approaches
rely on supervised training data, which limits
their generalizability. Furthermore, the scarcity
of geometry-specific image-text pairs relative to
general image-text corpora makes it difficult to
learn the semantic and structural logic of geometric
layouts directly from natural language inputs.

In this paper, we introduce MagicGeo, a frame-
work for the automatic generation of text-to-
geometric diagrams in a training-free manner,
thereby sidestepping the need for paired geometry-
text datasets. We focus on geometric diagram as
it stands out due to its stringent precision require-
ment, that is, properties such as parallelism, orthog-
onality, and degree constraint must be rigorously
maintained. Given that even minor inaccuracies are
immediately noticeable, this task poses significant
challenges within image generation.

Our key insight is that correctness hinges on
the precise placement of points. Once the point
locations are accurate, constructing the geometry
becomes straightforward, such as connecting points
with lines or drawing circles. Drawing inspiration
from computational geometry methods used in ge-
ometry theorem provers (Wu, 2008), we model dia-
gram generation as a set of polynomial equations
based on point coordinates.

While large language models (LLMs) exhibit

impressive capabilities in language understanding
and reasoning, they are not inherently equipped to
solve complex multi-constraint tasks (Kambham-
pati et al., 2024). As a result, directly using LLMs
to solve for point coordinates leads to errors and
hallucinations. Instead, we turn to leverage LLM’s
strengths in translation to convert geometry texts
into key formal information. This information is
then used to formulate an optimization problem,
which is solved algorithmically to ensure that the
geometric constraints are satisfied.

To this end, MagicGeo operates in three distinct
stages: 1) Autoformalization with LLM: LLMs
interpret the geometry description and translate it
into an optimization problem, defining a set of con-
straints with respect to the point coordinates. 2)
Solving with Verification: Computational geome-
try principles are applied to search for one solu-
tion that satisfies all constraints; if no solution is
found, the system reverts to the autoformalization
step to re-extract the necessary information. 3)
Coordinate-aware generation: We employ point co-
ordinates to generate TikZ language, which serves
as an intermediary representation for the creation
of the corresponding geometric diagram.

To advance the evaluation of text-to-geometric
diagram generation and promote further re-
search, we present MagicGeoBench, a real-world
dataset containing 220 plane geometry descriptions
sourced from middle school math exams. Empiri-
cal results demonstrate that MagicGeo significantly
outperforms state-of-the-art baselines, both qual-
itatively and quantitatively. Figure 1 illustrates
several examples. We also explore its potential
for diagram editing, showcasing how the diagrams
can be tailored to user preferences, thereby enhanc-
ing practical utility. While our experiments focus
on plane geometry, the underlying methodology
is highly extensible to other geometric branches,
such as analytical and solid geometry. Our current
goal is to demonstrate the efficacy of the propose
concept, which we believe will foster broader ex-
ploration and inspire further innovation in the field.

In summary, our key contributions are:

* We propose a novel perspective that frames ge-
ometric diagram generation as a well-defined
optimization problem, enhancing its tractabil-
ity within the zero-shot capabilities of LLMs.

* We present MagicGeo, a training-free frame-
work for high-quality geometric diagram gen-
eration. Integrating LLMs with formal solvers



for diagram generation, MagicGeo achieves
both generalizability and correctness.

* We introduce a test benchmark to foster re-
search in this area. Empirically, MagicGeo
delivers highly accurate geometric diagrams,
surpassing the performance of the baseline
models, without requiring training data.

2 Related Work

Text-to-Image Generation. Text-to-image genera-
tion (Zhang et al., 2023; Bie et al., 2024; Jia et al.,
2024) has become a rapidly growing field in com-
puter vision and machine learning. This progress
traced back to the emergence of Generative Adver-
sarial Networks (GANs) (Goodfellow et al., 2020),
which paved the way for research focused on gen-
erating images from textual prompts (Reed et al.,
2016; Tao et al., 2022; Xu et al., 2018; Zhang et al.,
2021, 2017, 2018). Transformer-based autoregres-
sive models (Ding et al., 2021; Gafni et al., 2022;
Ramesh et al., 2021; Yu et al., 2022) have attracted
significant attention due to their strong capabilities
in modeling text-image alignment, as demonstrated
by typical models such as DALL-E (Ramesh et al.,
2021) and STAR (Ma et al., 2024). In parallel, dif-
fusion models (Gu et al., 2022; Nichol et al., 2021;
Ramesh et al., 2022; Rombach et al., 2022; Saharia
et al., 2022) have emerged as a prominent type of
generative model for image generation, achieved
through the gradual introduction of noise in itera-
tive steps. Notable examples include Imagen (Sa-
haria et al., 2022) and others focus on improving
compositionality, e.g., attribute binding (Chefer
et al., 2023; Feng et al., 2022).

Although these approaches have advanced the
generation of realistic scene imagery and propelled
text-to-image generation into the spotlight of ma-
chine learning research, they struggle with tasks
that demand precise control over complex struc-
tures and intricate relationships. This includes the
generation of diagrams in fields like geometry, ar-
chitecture, or other technical domains.
Text-to-Diagram Generation. Generating dia-
grams from text has long been an intriguing area
of research and has recently garnered considerable
attention, driven by the success of text-to-image
generation. Early efforts (Ghosh et al., 2018; Shah-
baz et al., 2011; Btoush and Hammad, 2015) pri-
marily focused on generating entity-relationship
diagrams, utilizing semantic heuristics to identify

entities, attributes, and relationships from natural
language specifications. With the rise of LLMs in
various language generation tasks (Touvron et al.,
2023a,b; OpenAl et al., 2024; Chung et al., 2024;
Mann et al., 2020; Chowdhery et al., 2023), re-
cent work has also leveraged LLMs to facilitate
spatial control in diagram generation. These meth-
ods can be generally classified into two categories:
layout-guided models and code-guided methods.
Layout-guided approaches, exemplified by Dia-
grammerGPT (Zala et al., 2023), employ a two-
stage framework that first leverages LLMs to plan
layout, then applies layout-guided diffusion models.
Code-guided methods, such as AutomaTikZ (Be-
louadi et al., 2023), fine-tune LLMs on large TikZ
datasets to generate code for scientific vector graph-
ics, while DiagramAgent (Wei et al., 2024) intro-
duces a four-agent framework leveraging code for
text-to-diagram generation and editing.

In geometric diagram generation, both exist-
ing approaches face significant limitations. First,
image generators suffer from limited spatial fi-
delity (Gokhale et al., 2022; Chatterjee et al.,
2024a,b), despite extensive research in the layout-
to-image field (Li et al., 2023; Yang et al., 2023;
Balaji et al., 2022; Singh et al., 2023; Couairon
et al., 2023; Xie et al., 2023). This limitation pre-
vents these methods from fulfilling precise geomet-
ric constraints. Second, code-guided models for
diagram generation are restricted by the capabilities
of text-to-code models (Roziere et al., 2023; Fried
et al., 2022; Li et al., 2022; Hui et al., 2024; Guo
et al., 2024), which rely on large, data-intensive
datasets for effective performance.

In contrast, we propose a training-free method
that avoids the need for supervised data, leverag-
ing precise point coordinates to enforce stringent
geometric constraints. Our approach shares sim-
ilarities with Zhengyu and Xiuqin (2023), which
also utilizes point coordinates, but diverges in three
key aspects. 1) We leverage the zero-shot capa-
bilities of LLMs to extract points and constraints,
bypassing the labor-intensive process of building
entity relationship extractors. 2) We introduce a
self-verification module to correct LLM-extracted
information when the optimization problem is un-
solvable. 3) We leverage text-to-code LL.Ms for
TikZ code generation, enabling richer textual in-
sights such as point connections, a capability not
fully explored in Zhengyu and Xiuqin (2023). Fi-
nally, empirical results demonstrate our system’s
ability of generating complex geometric diagrams.
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Figure 2: The overall framework of MagicGeo consists of three stages: Autoformalization with LLM, Solver with

Verification, and Coordinate-aware Generation.

3 Method

In the task of text-to-geometric diagram generation,
given a textual description 7, the objective is to
generate a corresponding geometric diagram D that
adheres to the geometric constraints outlined in 7.
To realize this objective, we introduce MagicGeo,
as depicted in Figure 2.

3.1 Autoformalization with LLM

We observe that a geometric diagram can be effi-
ciently represented by the coordinates of points and
the relationships between them. To formalize this
process, we propose a specialized formal language
that encapsulates the geometric structure through
a set of points and associated constraints, defin-
ing their interrelationships. The objective of auto-
formalization is to convert natural language input,
often ambiguous or imprecise, into a precise, unam-
biguous formal representation that accurately cap-
tures geometric relationships and configurations.
Building on the success that LLMs can trans-
late between formal and informal mathematical
statements to some extent (Wu et al., 2022), we in-
vestigate their potential to convert natural language
mathematics into our customized formal language,
suitable for the solver we introduce. By providing
these models with a predefined prompt, we guide
their generation, ensuring the output aligns with
the requirements of the subsequent solver.
Specifically, we prompt the LLM to generate
two key pieces of information: coordinates Points

represented by variables Vars and the required
geometric constraints C'ons based on these coor-
dinates Points. Figure 2 shown an example of
autoformalization with LLM. The prompt consists
of a structured database containing a wide range of
geometric constraints, along with corresponding in-
structions that elucidate their precise meanings. By
leveraging this structured representation, the LLM
interprets the prompt as a comprehensive reference
manual, and processes user input in accordance
with the specifications outlined in the manual, sys-
tematically translating the given descriptions into
customized formal languages.

Surprisingly, we find that LLMs exhibit a decent
proficiency in formalizing mathematical concepts
in our scenario. Notably, the LLM demonstrates
the ability to employ intricate reasoning to adapt
and generalize beyond explicitly stated rules. This
capability allows the model to infer implicit rela-
tionships and make logical extensions where neces-
sary. For instance, if the input contains the phrase
"triangle ABC is inscribed in circle O", the LLM
recognizes that this implies the distances from O
to points A, B, and C are equal to the radius of the
circle. This inference is made despite the absence
of explicit instructions in the manual, highlighting
the model’s capacity to apply intuitive geometric
principles autonomously.

Furthermore, in our approach, we utilize the sec-
ond phase, namely the solver, to rigorously ver-
ify the accuracy of the generated translation. In
instances where the candidate autoformalization



fails to produce a valid solution, we incorporate the
feedback derived from this failure into the process.
Specifically, this feedback is treated as a new con-
textual input, which is then fed into the subsequent
iterations of the generation process. This itera-
tive refinement mechanism enables continuous im-
provement of the formalization output. Our results
demonstrate that by including such a verification
step within the framework, the autoformalization
accuracy of LLMs is significantly enhanced.

3.2 Solver with Verification

Solver. We recognize the existence of numerous
interactive theorem provers, such as Isabelle (Wen-
zel et al., 2008), Coq (Huet et al., 1997), HOL
Light (Harrison, 1996; Srivas and Camilleri, 1996),
and Lean (De Moura et al., 2015; Felty and Middel-
dorp, 2015). These systems function as specialized
programming languages, allowing users to formal-
ize statements and construct proofs, which are then
automatically verified for correctness. However,
these tools are inherently tailored for mathematical
proof problems and thus ill-suited for numerical
computation tasks. Additionally, when the solver
fails, debugging is challenging due to its lack of
interpretability, making it ineffective in guiding the
conversational autoformalization process.

To address this, we develop a custom solver,
utilizing the constraints of the formal language
as function names and leveraging computational
analytical geometry methods to examine the con-
straints and solve the coordinates. Specifically, in
order to determine point coordinates, we first iden-
tify the relevant variables and extract them into a
structured list. We then implement an iterative ap-
proach to traverse each variable, simultaneously
validating geometric constraints through the de-
rived function names. A precise solution for the
coordinates is obtained once a value set is identified
for the variables that satisfies all the constraints.
Verification. Verification plays a crucial role in
bridging the Solver and Autoformalization pro-
cesses, enabling the provision of immediate and
actionable feedback for newly generated formaliza-
tions. By offering insights into the nature of errors,
verification empowers LLLMs to refine their under-
standing and improve the quality of subsequent
formalization outputs. Our experimental analysis
highlights two primary failure modes that often re-
quire the autoformalization phase to be restarted:
(1) detection of non-compliant characters, where
symbols or elements violate established syntax or

Origin text Origin diagram
As shown in the figure, quadrilateral ABCD is an B
inscribed quadrilateral of circle ©O, and E is a
point on the extension of AD. Given that ZAOC
128° , what is the value of ZCDE?
Modified text C

T'he quadrilateral ABCD is inscribed in circle O, 4 \ /
with E being a point on the extension of AD. ZAOC

128° , and £CDE = 64 D E

Figure 3: Illustrating an example of modifying the orig-
inal text to include necessary information during Mag-
icGeoBench construction.

formal language rules, and (2) errors in parame-
ter specifications, including incorrect value assign-
ments or misalignment of parameter numbers.

3.3 Coordinate-aware Generation

While directly inputting precise coordinates and
textual descriptions into generative models may
seem intuitive, it often leads to disorganized visual
elements (e.g., misaligned points and lines) that
fail to faithfully represent the intended structure.
To overcome this limitation, we introduce a more
disciplined approach, employing TikZ as an inter-
mediate representation, similar to AutomaTikZ (Be-
louadi et al., 2023). However differently, we cap-
italize on precise point coordinates to harness the
zero-shot code generation capabilities of LLMs,
eliminating the need for finetuning. This enables
the generation of figures that not only maintain
structural clarity but also exhibit high fidelity to the
original textual descriptions.

4 Experiments

4.1 MagicGeoBench

To rigorously evaluate the performance of text-to-
geometric diagram models, we introduce the Mag-
icGeoBench Dataset, a meticulously curated collec-
tion of 220 plane geometry questions drawn from
high school entrance examinations. In constructing
this dataset, we retain the original text for self-
contained questions. For questions where essential
information is embedded in diagrams rather than
explicitly stated in text, we augment the textual de-
scriptions so that diagram can be generated solely
from textual input. Figure 3 illustrates such an ex-
ample. The evaluation dataset covers fundamental
geometric shapes, and is systematically categorized
into three groups: 70 questions on circles, 70 on
triangles, and 80 on quadrangles.
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Figure 4: Qualitative comparison with other approaches. Our method generates results that rigorously adhere to
geometric constraints while maintaining high perceptual quality.

Method Img-Txt Img-Img
Circle Triangle Quadrangle Avg | Circle Triangle Quadrangle Avg
SD3.5-Large (Sauer et al., 2024) | 33.25  34.72 34.02 33.99 | 80.85  83.65 82.01 82.17
AutomaTikZ (Belouadi et al., 2023) | 30.89  29.95 29.97 30.27 | 84.66  83.82 87.61 85.36
MagicGeo (ours) 33.93 31.89 32.13 32.65| 9149  88.16 89.90 89.85

Table 1: Quantitative comparison in terms of CLIP score. Higher values indicate better performance (7).

4.2 Settings

Baselines. There is a lack of extensive research
focusing on the automatic generation of geometric
diagrams. Hence we compare our proposed ap-
proach with two established baselines. The first
baseline, Stable Diffusion 3.5 (SD3.5) (Sauer et al.,
2024), is a robust model known for its prowess in
generating photorealistic images across a variety of
domains. Its ability to synthesize high-quality, real-
istic images positions it as a strong competitor in
the image generation space. The second baseline,
AutomaTikZ (Belouadi et al., 2023), utilizes the
TikZ language as an intermediate step for creating
high-quality graphical representations, which is a
relevant benchmark for our work in the domain of
geometric diagram generation.

Evaluation Metrics. Our goal is to ensure that the
diagrams both adhere to textual instructions and
conform to typical visual characteristics of geomet-
ric illustrations, distinguishing them from photore-
alistic images. To evaluate these two aspects, we

Input wlo Solver MagicGeo (ours)

wlo Coordinates

Figure 5: Illustrating that the solver effectively ensures
precise alignment with the accompanying text.

utilize CLIP (Radford et al., 2021) to calculate co-
sine similarity. Given that CLIP is designed for
general images, we also conduct a user study to
validate the effectiveness of our model.

4.3 Results

Quantitative Evaluation. Table 1 presents a com-
parison between our approach and competitive
baselines in terms of CLIP score. When com-
pared to the dedicated image model SD3.5 (Sauer



Method Textual alignment Image quality
Circle Triangle Quadrangle Avg | Circle Triangle Quadrangle Avg
SD3.5-Large (Sauer et al., 2024) 2.50 2.20 2.72 247 | 242 2.11 2.11 2.21
AutomaTikZ (Belouadi et al., 2023) | 2.28 2.08 2.12 2.16 | 2.28 2.08 2.15 2.17
MagicGeo (ours) 1.22 1.12 1.06 1.13 | 1.30 1.20 1.20 1.23

Table 2: Average user ranking score of textual alignment and image quality. 1 is the best, 3 is the worst. It is evident
that users prefer our results more than others given the superior quality of ours.

Circle Triangle Quadrangle Avg
w/o Verification | 92.0 95.7 96.3 94.7
w Verification 97.3 100 98.8 98.7

Table 3: Illustrating the pivotal role of the verification
mechanism in enhancing the autoformalization process.

et al., 2024), our model exhibits a higher similar-
ity to the reference image, as suggested by the
image-to-image score. However, we notice that in
terms of image-text alignment, our model achieves
a lower CLIP score. This discrepancy is likely
due to the CLIP model’s broad training on general
image-text pairs, which may bias towards general
image generation models. More importantly, our
model surpasses the text-to-diagram baseline Au-
tomaTikZ (Belouadi et al., 2023) in both image-text
alignment and image quality, demonstrating the ef-
fectiveness of our approach.

Qualitative Evaluation. In addition to quanti-
tative metrics, qualitative evaluation plays a cru-
cial role in assessing generation task. We provide
the qualitative visual comparison of these methods
in Figure 4. The baseline method SD3.5 (Sauer
et al., 2024) generally succeeds in generating sim-
ple geometric shapes such as circles and triangles,
but it struggles to accurately produce more com-
plex geometric configurations, such as a triangle
inscribed within a circle. On the other hand, Au-
tomaTikZ (Belouadi et al., 2023) is capable of gen-
erating visually appealing diagrams owing to its
use of the TikZ language. However, both methods
fail to consistently adhere to underlying geomet-
ric constraints, resulting in diagrams that exhibit
noticeable inconsistencies upon inspection. In con-
trast, our proposed method rigorously adheres to
geometric constraints while simultaneously main-
taining a high level of perceptual quality.

User Study. In order to obtain the user’s subjective
evaluation of the generated image, we conduct a
user study involving 20 participants. In the study,
we use 60 samples with 20 in each category. Each
sample is consisted of a text input paired with three
corresponding output images. Participants were
instructed to independently rank each image (1 is

the best, 3 is the worst) on two distinct aspects:
(i) image quality and (ii) adherence to the textual
description. We report the average ranking score in
Table 2. It is evident that users prefer our results
more than others given the superior quality of ours.

4.4 Ablations

The Effect of Verification. In our framework,
when the solver fails to find a solution, feedback
is provided to the LLM for re-autoformalization,
a process we refer to as verification. This process
allows for a maximum of five feedback iterations,
aiming to iteratively correct errors identified by the
solver. Here we compare its performance against
a baseline system that excludes verification. The
evaluation criterion focuses on the accuracy of out-
put points and constraints, which are manually ver-
ified. As shown in Table 3, the incorporation of
verification results in a substantial improvement in
autoformalization accuracy, increasing from 94.7%
to 98.7%. This highlights the pivotal role of the
solver’s feedback mechanism in enhancing the aut-
oformalization process.

The Effect of Solver. We propose the use of analyt-
ical geometry methods to develop a custom solver
designed for precise point location determination,
which is subsequently leveraged for diagram gen-
eration. To evaluate the effectiveness of our solver,
we compare our approach against two alternative
methods: (1) w/o Coordinates: this approach uti-
lize LLMs to directly generate TikZ code without
incorporating explicit point coordinates, akin to the
approach used in AutomaTikZ; (2) w/o Solver: this
variant first ask the LLM to infer the point coordi-
nates and then use these coordinates for coordinate-
aware TikZ generation. We compare their results
in terms of the CLIP score in Table 4. To provide
a clearer understanding, we present several visual
examples in Figure 5. The incorporation of explicit
coordinates significantly enhances the quality of
diagram generation. However, some issues persist,
such as the failure to satisfy the constraint "angle
ABC equals 49 degrees" in the first example and
the constraint "angle ADC equals 120 degrees" in



Img-Txt Img-Img
Method
Circle Triangle Quadrangle Avg |Circle Triangle Quadrangle Avg
w/o Coordinates | 31.25 31.31 30.44 31.00| 86.31 88.46 88.90 87.89
w/o Solver 3225 31.52 30.77 31.51|87.37 88.51 90.84 88.91
MagicGeo (ours) | 33.93  31.89 32.13 32.65|91.49 88.16 89.90 89.85

Table 4: The effect of solver in terms of CLIP score. Using LLM to directly generate TikZ code is denoted as w/o
Coordinates. Asking LLM to infer coordinates followed by coordinate-aware generation is denoted as w/o Solver.

Stage LLM Circle Triangle Quad Avg
DeepSeek-V3 | 0.97 1.00 099 0.99
1 Qwen-plus 0.96 0.99 099 098
GPT-40 mini | 0.97 0.99 099 0098
DeepSeek-V3 | 1.00 1.00 1.00 1.00
3 Qwen-plus 1.00 1.00 097 0.99

GPT-40 mini | 0.99 1.00 1.00 1.00

Table 5: Illustrating that our framework is robust to
different LLMs, which shows negligible impact.

the second example. In contrast, the application of
solver effectively addresses all constraints, ensur-
ing precise alignment with the accompanying text
and thus superior quality.

The Effect of Using Different LLMs. We employ
the DeepSeek-V3 (Liu et al., 2024) model for both
Stage 1 and Stage 3 in our framework. To study
the impact of different LLMs, we investigate two
models: Qwen-plus (Yang et al., 2024) and GPT-40
mini (Shahriar et al., 2024) . We isolate the LLM
variation to a single stage—either Stage 1 or Stage
3—while maintaining the other stage constant. For
evaluation, we manually examine autoformaliza-
tion accuracy in Stage 1 and visually inspect the
generated diagrams in Stage 3. A sample of 60
instances was experimented, with the accuracy pre-
sented in Table 5. It is important to note that we
utilize distinct prompts for different LLMs to fully
harness their respective capabilities. Our findings
indicate that the choice of LLM has a negligible im-
pact on the final outcomes, demonstrating the suit-
ability of LLLMs for these tasks. This suggests that
our framework maintains consistent performance
regardless of the specific LLM.

4.5 Application to Diagram Editing

Our method leverages precise coordinate informa-
tion and thus is able to make effective diagram
modifications based on user intent. We present
examples of diagram editing results in Figure 6.
Simple tasks, such as adding or deleting lines, are
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Figure 6: Application to diagram editing.

accomplished by re-executing the third stage. More
complex adjustments(e.g., specify a new angle de-
gree in the first example), are handled effectively
by our framework, which quickly determines the
necessary coordinates for adjustment. This demon-
strates the potential of our framework in real-world
diagram editing applications.

5 Conclusion

In conclusion, this paper presents MagicGeo, a
novel framework for the automatic generation
of geometric diagrams from textual descriptions,
which stands out for its training-free approach and
high precision. By reframing the diagram gen-
eration task as an optimization problem, Magic-
Geo ensures the accuracy of key geometric prop-
erties—such as parallelism and orthogonality—by
leveraging analytical geometry rules. The com-
prehensive evaluation of MagicGeo, including em-
pirical comparisons with state-of-the-art baselines
and ablation studies, demonstrates its effectiveness
in producing accurate and reliable diagrams. Ulti-
mately, MagicGeo offers significant potential for
streamlining the creation of educational and aca-
demic diagrams, with broader implications for en-
hancing content generation in scientific and educa-
tional settings.



6 Limitations

While MagicGeo demonstrates notable advance-
ments in the automatic generation of geometric dia-
grams from textual descriptions, several limitations
must be acknowledged.

One limitation of our framework is its reliance
on LLMs to translate complex geometric descrip-
tions into formal representations that adhere to ge-
ometric conventions and generate accurate TikZ
code. Although current translation performance,
as shown in the ablation, is highly effective, it is
not yet flawless, with visual examples presented
in the Appendix section. We anticipate that ongo-
ing advancements in LLM research, particularly in
mathematical reasoning and code generation, will
mitigate this limitation.

The current solver exhibits extended processing
times for complex diagrams, with efficiency influ-
enced by factors such as input complexity, the num-
ber of geometric entities, and the precision required
for diagram generation. Preliminary experiments
indicate that generation times typically range in the
order of seconds; while for very intricate complex
geometric diagram, processing times can exceed
one hour. Future work will focus on enhancing
solver efficiency through parallelization, optimized
constraint-solving methods, and the development
of heuristic techniques that balance computational
cost and diagram accuracy.
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A Implementation Details

We set the maximum number of verfication to be
five. Both the generated diagram and the reference
diagram are resized to 224 x 224 pixels and fea-
tures are extracted using the CLIP image encoder,
while the textual description is encoded with the
CLIP text encoder. The time complexity of our cus-
tom solver is primarily dependent on the number
of variables that require resolution. Consequently,
we aim to leverage condition prior to reduce the
number of variables. For instance, we may assume
the origin of the circle to be at (0,0) and set the
radius to 1 if no specific length is provided. This
approach significantly accelerates the optimization
solver. Furthermore, a time constraint of 60 min-
utes is imposed; if valid results are not obtained
within this period, the problem is deemed unresolv-
able. We employ DeepSeek-V3 (Liu et al., 2024)
for LLM, which is strong in reasoning and coding,
in our experiments for both stage one and stage
three. We also experiment different LLMs and
report their effect in ablation study.

B Algorithm Overview

MagicGeo functions through a three-stage process
designed to efficiently transform raw input into
well-structured geometric diagram problems. In
the initial stage, a LLM is employed to translate the
raw input data into standardized formal language
propositions, ensuring that the problem is repre-
sented in a consistent and clear format. The second
stage introduces an optimization solver integrated
with verification mechanisms. This solver gener-
ates the necessary point coordinates that are pivotal
for constructing accurate geometric configurations.
Finally, in the third stage, these point coordinates
are utilized to construct geometric diagram prob-
lems, ensuring that the generated diagrams are both
mathematically valid and visually representative of
the initial problem. The entire process of Magic-
Geo is comprehensively outlined in Algorithm 1,
which provides a step-by-step breakdown of the
system’s operation.

C Prompt Details

Our framework leverages the zero-shot abilities of
LLMs during the autoformalization phase, along-
side coordinate-aware TikZ code generation. To
better elucidate the details of our experimental
setup, we provide a comprehensive description
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Algorithm 1: MagicGeo

Input: Textual description (1)

Output: Geometric diagram (D)
1 while not reach the maximum number do
Stage 1:
Points, Constraints =

LLM (T, Prompt);
Stage 2:
if Type_Break(Constraints) then

‘ continue;
end
Extract Variables;
Generate Value Combinations C'ombos;
foreach combo in Combos do
Variables = combo;
find = True;
foreach cons in Constraints do

if Constraint_Break(cons) then
find = False;
break;
end

2

o X N A

10
11
12
13
14
15
16
17
end

if find then

‘ break;

end

18
19
20

21
end
if not find then
‘ continue;
end
Stage 3:
Assign combo to Points;
Code = LLM (Points, T, Prompt);
Render C'ode to PDF;
return;

22
23
24
25
26
27
28
29
30

31 end

of the prompts used to guide the LLM’s behav-
ior. Specifically, we prompt the LLM to generate
two key pieces of information: coordinates Points
represented by variables Vars and the required
geometric constraints C'ons based on these coor-
dinates Points. We show the prompt instruction
in Figure 7, which provides the LLM with clear
instructions to formalize the geometric problem. In
addition to that, our framework incorporates spe-
cific geometric constraint instructions to enhance
the LLM’s performance in this task. These instruc-
tions are designed to probe the LLLM’s capability
to understand and encode geometric constraints in
a formalized manner. The precise prompt used to



(nstruction H

Based on the given mathematical geometry diagram’s natural language
description, use the provided geometric constraint rules to output the JSON
information. The output format should match the following pattern, ensuring
correct JSON syntax without any additional language description.

Output Json format:

"points": [
"Point object declarations, listing the names of the points used, represented
by uppercase letters like “A1”, “A2”, where the coordinates of the points
are expressed as variables."

"constraints": [

"Using the provided geometric constraint rules, convert the given
mathematical geometry diagram's natural language into code that
complies with Python syntax. For example: If I want to represent that
angle CBD is 23°, the following string should be added to the constraints
list: 'angle(C,B,D,23)"

]

}

An example:
{
"points: ["A": (x, y), "B (4, ), "C": (p, ),
"constraints": ["angle(A,B,C,23)"]
L

)

Figure 7: The task instruction prompt for LLM in auto-
formalization.

guide the LLM through this process is presented
in Figure 8. The final phase of our framework in-
volves the generation of TikZ code that accurately
represents the geometric diagram. The prompt pro-
vided to the LLM for this task is succinct yet ex-
plicit: "Please provide the LaTeX code for generat-
ing the corresponding image with the given correct
coordinate positions."

D Failure Case Analysis

While MagicGeo shows significant promise, we
conduct a thorough failure case analysis to identify
areas for improvement. Our framework consists of
three phases, with an example provided for each,
as illustrated in Figure 9.

In stage 1, a key failure arises from the re-
liance on the LLM for autoformalization. Although
the LLM is designed to formalize geometric con-
straints, there are instances where the formalized
constraints may not fully adhere to necessary geo-
metric rules. This discrepancy occurs when the for-
malization introduces constraints that are logically
inconsistent with geometric principles, rendering
them incompatible with the solver in subsequent
steps.

In stage 2, as discussed in the limitations section,
the solver may experience delays when handling
complex diagrams. To improve efficiency, we pro-
vide a value range for the solver, which can lead
to scenarios where correct autoformalizations still
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fail to produce a valid solution within the speci-
fied range. Future work will focus on investigating
more efficient algorithms for handling larger ranges.
Additionally, the solver may generate a technically
correct solution that is visually suboptimal. Points
may be placed too close together, creating a clut-
tered diagram, as shown in the figure. This issue
can be addressed by the diagram editing technique
presented in this paper or by adding a constraint to
prevent excessive proximity between points.

In stage 3, failure again stems from the LLM,
where points may receive correct coordinates, but
the generated TikZ code is incorrect, such as im-
proper labeling. For instance, the diagram in the
figure shows two O’ labels near the same point.

E Additional Visual Comparison

We provide additional qualitative visual compari-
son with baselines in Figure 10. Upon inspection, it
is evident that both baselines fail to consistently ad-
here to the underlying geometric constraints, result-
ing in diagrams that exhibit significant inconsisten-
cies. Our proposed method rigorously adheres to
geometric constraints while simultaneously main-
taining a high level of perceptual quality.



Geometric constraint instructions: \
dist(O, A, r): If point A is on a circle with radius r and center O, use this function to
represent the distance from point A to the center O as .

angle(A, B, C, 0): If LABC = 0, use this function to represent the angle as 6.
angle_relation(B, A, C, A, D, B, m): If ZBAC = m * £ADB, use this function to represent
the angle relationship, where m is the angle multiple.

online_inside(B, E, F): If point B is on the segment EF, use this function to check if B lies
inside the segment EF.

online_extension(B, E, F): If point B is on the extension of segment EF, use this function
to check if B lies on the extended line of segment EF.

ortho(A, B, E, F): If AB is perpendicular to EF, use this function to check the
perpendicularity of AB and EF.

midpoint(A, B, C): If point A is the midpoint of BC, use this function to indicate that A is
the midpoint of B and C.

arc_midpoint(A, B, C): If point A is the midpoint of arc BC, use this function to represent
A as the midpoint of arc BC.

equal_line(A, B, C, D): If line segments AB and CD are equal, use this function to check if
the lengths of AB and CD are equal.

angle_bisector(A, D, C, A, B): If AD bisects £CAB, use this function to represent AD as
the angle bisector of £CAB.

parallel(A, B, C, D): If AB is parallel to CD, use this function to check if AB and CD are
parallel.

line_ratio(D, C, B, D, m): If line segment BD is m times the length of line segment DC,
use this function to represent the ratio.

is_point_in_triangle(A, B, C, P): If point P is inside triangle ABC, use this function to
check if P lies inside triangle ABC.

is_point_out_triangle(A, B, C, P): If point P is outside triangle ABC, use this function to
check if P lies outside triangle ABC.

is_acute_triangle(A, B, C): If triangle ABC is an acute triangle, use this function to check
if triangle ABC is an acute triangle.

& Y

Figure 8: The geometric constraint instruction prompt for LLM to guide the autoformalization.
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Input textual description: Input textual description: Input textual description:
A, B, and C are on circle ©0O, £ACB = AB is the diameter of circle O, and points In the parallelogram ABCD, point E is on BC, O
24£BAC, and £AOB = 24BOC. C and D lie on circle O. OD bisects £ZAOC. is the midpoint of AC, point F is on AD, and

point O lies on EF. Additionally, AD = BC.

Output by autoformalization: Output diagram: Output diagram:

Coordinates:

{

'0": (0, 0),

‘A" (r, 0),

'B': (x1, y1),

'C': (x2,y2)

}

Conditions:

{

'dist": dist(O, A, r),
'dist": dist(O, B, r),
'dist": dist(O, C, r),

Stage 1 Stage 2
. J
Figure 9: Failure case analysis in our framework.
Input Stable Diffusion 3.5 AutomaTikZ MagicGeo (ours) Input Stable Diffusion 3.5 AutomaTikZ MagicGeo (ours)
. B N C
. " o .
A : N\ N A
In circle O, points A, B, and C Al I &\ / In triangle AABC, AB = AC, N
lie on the circle. The segments ol \ \\ Y and points M and N are the LY A
OA and OB are connected $—— x B jo C A midpoints of sides AB and BC, i M
ZACB=40° , LOAB =50 \ / \ y respectively. Connect MN / : \
g A / G W Ral
R y P / B M
B A
C
Given that points A, B, and C t In triangle AABC, point D
lie on circle OO, and Cisthe 1 s 4| ties on BC, 2ACB =90
midpoint of arc AB. ZBAC = i 2ABC=37° ,and ZADC =
35°, LAOB = 140 | 5 45
B
C A
A—f >C /.\ c
Points A, B, and C lie on the '=Bc° \ In rectangle ABCD, F is on E
circle O, and ZABC =40 = (%5 5 Al BC.Eis on CD. AF = AD. and
T>a0 K B DE = EF. Connect AE and AF
+ l D
Point D dC EF==E E B C - ——————
€lDEC Oe=DE B:
In triangle AABC, point D is A . In rectangle ABCD, E is the .
the midpoint of AB, point Eis AN . midpoint of AD, ZBEC = g
the midpoint of AC, and point — \. DA A 60° , BE=BC, and line G
F lies on the extension of DE &+ % . segments BE and EC are i
such that EF = DE. Connect N\ drawn ; = H
point C to point F AN A i i - : A E D

Figure 10: Additional qualitative comparison with other approaches. Our method generates results that rigorously
adhere to geometric constraints while maintaining high perceptual quality.
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