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In circle ⊙O, the 

diameter AB intersects 

the chord CD at point P. 

Connect AC, AD, and 

BD. Given that ∠ACD = 

20°, ∠BPC = 70°, and 

∠ADC = 40°

Points A, B, C, D 

are on ⊙O, 

OA⊥BC, 

∠AOB=60°, 

∠ADC=30°

AB is the diameter of 

circle O, and point P is a 

point outside circle O. PA 

is tangent to circle O at 

point A. Point C is a point 

on circle O. Connect PC, 

AC, and OC. PC = PA, and 

PC is tangent to circle O at 

point C

In △ABC, point D is on 

AB, and point E is on AC. 

Given that AB = AC, CD 

⊥AB, and BE ⊥AC

In △ABC, AB ∥

CD, ∠BAC = 40°, 

point E is on the 

extension of AC, D 

is outside △ABC, 

∠EDC = 24°, and 

∠AED = 16°)

In rectangle ABCD, point 

O lies on AC and BD. 

Point E is outside the 

rectangle, with DE // AC 

and CE // BD

Figure 1: MagicGeo has the capability to generate accurate complex geometric diagrams from natural language.

Abstract001

Geometric diagrams are critical in conveying002
mathematical and scientific concepts, yet tra-003
ditional diagram generation methods are often004
manual and resource-intensive. While text-to-005
image generation has made strides in photore-006
alistic imagery, creating accurate geometric di-007
agrams remains a challenge due to the need for008
precise spatial relationships and the scarcity of009
geometry-specific datasets. This paper presents010
MagicGeo, a training-free framework for gen-011
erating geometric diagrams from textual de-012
scriptions. MagicGeo formulates the diagram013
generation process as a coordinate optimiza-014
tion problem, ensuring geometric correctness015
through a formal language solver, and then em-016
ploys coordinate-aware generation. The frame-017
work leverages the strong language transla-018
tion capability of large language models, while019
formal mathematical solving ensures geomet-020
ric correctness. We further introduce Magic-021
GeoBench, a benchmark dataset of 220 geo-022
metric diagram descriptions, and demonstrate023
that MagicGeo outperforms current methods024
in both qualitative and quantitative evaluations.025
This work provides a scalable, accurate solution026
for automated diagram generation, with signifi-027
cant implications for educational and academic028
applications.029

1 Introduction 030

"A picture is worth a thousand words" is a widely 031

recognized proverb in literature. Specifically, di- 032

agram, as a form of picture, is essential in con- 033

veying information and have long been utilized 034

across fields such as science and engineering. Ex- 035

tensive research (Larkin and Simon, 1987; Sten- 036

ning and Oberlander, 1995) demonstrates that di- 037

agrams often outperform text in solving determi- 038

nate problems. Prominent figures like Einstein and 039

Hadamard have famously asserted that they do not 040

"think in words" (Larkin and Simon, 1987). Fur- 041

thermore, Stenning and Oberlander (1995) argues 042

that text permits expression of ambiguity in the way 043

that diagrams cannot easily accommodate. This pa- 044

per focuses on the task of converting descriptions 045

into structured diagrams, with particular empha- 046

sis on geometric diagrams, which play a critical 047

role in mathematics and science. This task serves 048

as a foundational step toward advancing diagram 049

generation for scientific textbooks. 050

Traditional geometric diagram construction is 051

closely associated with a suite of graphic draw- 052

ing tools, such as Cinderella (Yu et al., 2015), 053

Geometry Expert (Chou et al., 1996), Z+Z Su- 054
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per Sketchpad (ZHANG et al., 2007), and WinG-055

CLC (Janičić and Trajković, 2003; Szirmay-Kalos,056

2003). These tools offer interactive platforms for057

drawing geometric figures. However, they are bur-058

dened by the need for manual input, which is both059

time-consuming and resource-intensive. This pa-060

per presents the development of an automatic, text-061

guided geometric diagram generation system, elim-062

inating the manual effort typically involved. Such a063

system holds significant potential for streamlining064

diagram creation, offering considerable utility in065

the preparation of educational resources.066

Recent advancements in text-to-image genera-067

tion have achieved notable progress in synthesizing068

photorealistic images (Cao et al., 2024; Zhou and069

Shimada, 2023). However, these methods, trained070

on large datasets of natural image-text pairs, often071

struggle with diagram generation. Efforts to ad-072

dress this challenge include DiagrammerGPT (Zala073

et al., 2023), which proposes a two-stage frame-074

work using layout as an intermediary to enable075

spatial control, and AutomaTikZ (Belouadi et al.,076

2023), which leverages the TikZ graphic language077

to autonomously generate scientific figures from078

captions. Despite these advances, both approaches079

rely on supervised training data, which limits080

their generalizability. Furthermore, the scarcity081

of geometry-specific image-text pairs relative to082

general image-text corpora makes it difficult to083

learn the semantic and structural logic of geometric084

layouts directly from natural language inputs.085

In this paper, we introduce MagicGeo, a frame-086

work for the automatic generation of text-to-087

geometric diagrams in a training-free manner,088

thereby sidestepping the need for paired geometry-089

text datasets. We focus on geometric diagram as090

it stands out due to its stringent precision require-091

ment, that is, properties such as parallelism, orthog-092

onality, and degree constraint must be rigorously093

maintained. Given that even minor inaccuracies are094

immediately noticeable, this task poses significant095

challenges within image generation.096

Our key insight is that correctness hinges on097

the precise placement of points. Once the point098

locations are accurate, constructing the geometry099

becomes straightforward, such as connecting points100

with lines or drawing circles. Drawing inspiration101

from computational geometry methods used in ge-102

ometry theorem provers (Wu, 2008), we model dia-103

gram generation as a set of polynomial equations104

based on point coordinates.105

While large language models (LLMs) exhibit106

impressive capabilities in language understanding 107

and reasoning, they are not inherently equipped to 108

solve complex multi-constraint tasks (Kambham- 109

pati et al., 2024). As a result, directly using LLMs 110

to solve for point coordinates leads to errors and 111

hallucinations. Instead, we turn to leverage LLM’s 112

strengths in translation to convert geometry texts 113

into key formal information. This information is 114

then used to formulate an optimization problem, 115

which is solved algorithmically to ensure that the 116

geometric constraints are satisfied. 117

To this end, MagicGeo operates in three distinct 118

stages: 1) Autoformalization with LLM: LLMs 119

interpret the geometry description and translate it 120

into an optimization problem, defining a set of con- 121

straints with respect to the point coordinates. 2) 122

Solving with Verification: Computational geome- 123

try principles are applied to search for one solu- 124

tion that satisfies all constraints; if no solution is 125

found, the system reverts to the autoformalization 126

step to re-extract the necessary information. 3) 127

Coordinate-aware generation: We employ point co- 128

ordinates to generate TikZ language, which serves 129

as an intermediary representation for the creation 130

of the corresponding geometric diagram. 131

To advance the evaluation of text-to-geometric 132

diagram generation and promote further re- 133

search, we present MagicGeoBench, a real-world 134

dataset containing 220 plane geometry descriptions 135

sourced from middle school math exams. Empiri- 136

cal results demonstrate that MagicGeo significantly 137

outperforms state-of-the-art baselines, both qual- 138

itatively and quantitatively. Figure 1 illustrates 139

several examples. We also explore its potential 140

for diagram editing, showcasing how the diagrams 141

can be tailored to user preferences, thereby enhanc- 142

ing practical utility. While our experiments focus 143

on plane geometry, the underlying methodology 144

is highly extensible to other geometric branches, 145

such as analytical and solid geometry. Our current 146

goal is to demonstrate the efficacy of the propose 147

concept, which we believe will foster broader ex- 148

ploration and inspire further innovation in the field. 149

In summary, our key contributions are: 150

• We propose a novel perspective that frames ge- 151

ometric diagram generation as a well-defined 152

optimization problem, enhancing its tractabil- 153

ity within the zero-shot capabilities of LLMs. 154

• We present MagicGeo, a training-free frame- 155

work for high-quality geometric diagram gen- 156

eration. Integrating LLMs with formal solvers 157
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for diagram generation, MagicGeo achieves158

both generalizability and correctness.159

• We introduce a test benchmark to foster re-160

search in this area. Empirically, MagicGeo161

delivers highly accurate geometric diagrams,162

surpassing the performance of the baseline163

models, without requiring training data.164

2 Related Work165

Text-to-Image Generation. Text-to-image genera-166

tion (Zhang et al., 2023; Bie et al., 2024; Jia et al.,167

2024) has become a rapidly growing field in com-168

puter vision and machine learning. This progress169

traced back to the emergence of Generative Adver-170

sarial Networks (GANs) (Goodfellow et al., 2020),171

which paved the way for research focused on gen-172

erating images from textual prompts (Reed et al.,173

2016; Tao et al., 2022; Xu et al., 2018; Zhang et al.,174

2021, 2017, 2018). Transformer-based autoregres-175

sive models (Ding et al., 2021; Gafni et al., 2022;176

Ramesh et al., 2021; Yu et al., 2022) have attracted177

significant attention due to their strong capabilities178

in modeling text-image alignment, as demonstrated179

by typical models such as DALL-E (Ramesh et al.,180

2021) and STAR (Ma et al., 2024). In parallel, dif-181

fusion models (Gu et al., 2022; Nichol et al., 2021;182

Ramesh et al., 2022; Rombach et al., 2022; Saharia183

et al., 2022) have emerged as a prominent type of184

generative model for image generation, achieved185

through the gradual introduction of noise in itera-186

tive steps. Notable examples include Imagen (Sa-187

haria et al., 2022) and others focus on improving188

compositionality, e.g., attribute binding (Chefer189

et al., 2023; Feng et al., 2022).190

Although these approaches have advanced the191

generation of realistic scene imagery and propelled192

text-to-image generation into the spotlight of ma-193

chine learning research, they struggle with tasks194

that demand precise control over complex struc-195

tures and intricate relationships. This includes the196

generation of diagrams in fields like geometry, ar-197

chitecture, or other technical domains.198

Text-to-Diagram Generation. Generating dia-199

grams from text has long been an intriguing area200

of research and has recently garnered considerable201

attention, driven by the success of text-to-image202

generation. Early efforts (Ghosh et al., 2018; Shah-203

baz et al., 2011; Btoush and Hammad, 2015) pri-204

marily focused on generating entity-relationship205

diagrams, utilizing semantic heuristics to identify206

entities, attributes, and relationships from natural 207

language specifications. With the rise of LLMs in 208

various language generation tasks (Touvron et al., 209

2023a,b; OpenAI et al., 2024; Chung et al., 2024; 210

Mann et al., 2020; Chowdhery et al., 2023), re- 211

cent work has also leveraged LLMs to facilitate 212

spatial control in diagram generation. These meth- 213

ods can be generally classified into two categories: 214

layout-guided models and code-guided methods. 215

Layout-guided approaches, exemplified by Dia- 216

grammerGPT (Zala et al., 2023), employ a two- 217

stage framework that first leverages LLMs to plan 218

layout, then applies layout-guided diffusion models. 219

Code-guided methods, such as AutomaTikZ (Be- 220

louadi et al., 2023), fine-tune LLMs on large TikZ 221

datasets to generate code for scientific vector graph- 222

ics, while DiagramAgent (Wei et al., 2024) intro- 223

duces a four-agent framework leveraging code for 224

text-to-diagram generation and editing. 225

In geometric diagram generation, both exist- 226

ing approaches face significant limitations. First, 227

image generators suffer from limited spatial fi- 228

delity (Gokhale et al., 2022; Chatterjee et al., 229

2024a,b), despite extensive research in the layout- 230

to-image field (Li et al., 2023; Yang et al., 2023; 231

Balaji et al., 2022; Singh et al., 2023; Couairon 232

et al., 2023; Xie et al., 2023). This limitation pre- 233

vents these methods from fulfilling precise geomet- 234

ric constraints. Second, code-guided models for 235

diagram generation are restricted by the capabilities 236

of text-to-code models (Roziere et al., 2023; Fried 237

et al., 2022; Li et al., 2022; Hui et al., 2024; Guo 238

et al., 2024), which rely on large, data-intensive 239

datasets for effective performance. 240

In contrast, we propose a training-free method 241

that avoids the need for supervised data, leverag- 242

ing precise point coordinates to enforce stringent 243

geometric constraints. Our approach shares sim- 244

ilarities with Zhengyu and Xiuqin (2023), which 245

also utilizes point coordinates, but diverges in three 246

key aspects. 1) We leverage the zero-shot capa- 247

bilities of LLMs to extract points and constraints, 248

bypassing the labor-intensive process of building 249

entity relationship extractors. 2) We introduce a 250

self-verification module to correct LLM-extracted 251

information when the optimization problem is un- 252

solvable. 3) We leverage text-to-code LLMs for 253

TikZ code generation, enabling richer textual in- 254

sights such as point connections, a capability not 255

fully explored in Zhengyu and Xiuqin (2023). Fi- 256

nally, empirical results demonstrate our system’s 257

ability of generating complex geometric diagrams. 258
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Prompt LLM

Solver

LLM

Solver with VerificationAutoformalization with LLM Coordinate-aware Generation

Prompt

‘O’: (0.0 ,  0.0)
‘A’: (1.0 ,  0.0)
‘B’: (-1.0,  0.0)
‘C’: (x    ,     y)

dist(O,C,1)

angle(B,O,C,66)

angle(C,A,B,33)

Input

AB is the diameter of ⊙O, C is a point on 
circle O, ∠BOC=66°, ∠CAB=33°

Points               Constraints

‘x’,      ‘y’

Variables

Extract

Parameter Type Mismatch
Function Type Mismatch
…

Feedback
‘O’: (0.0,0.0)
‘A’: (1.0,0.0)
‘B’: (-1.0,0.0)
‘C’: (-0.41,-0.91)

Coordinates

SolvableUnsolvable

\coordinate (A) at (1,0);
...

\draw (A) -- (B);
...

\node[below right] at (O) {O};

TikZ code

Render

Figure 2: The overall framework of MagicGeo consists of three stages: Autoformalization with LLM, Solver with
Verification, and Coordinate-aware Generation.

3 Method259

In the task of text-to-geometric diagram generation,260

given a textual description T , the objective is to261

generate a corresponding geometric diagram D that262

adheres to the geometric constraints outlined in T .263

To realize this objective, we introduce MagicGeo,264

as depicted in Figure 2.265

3.1 Autoformalization with LLM266

We observe that a geometric diagram can be effi-267

ciently represented by the coordinates of points and268

the relationships between them. To formalize this269

process, we propose a specialized formal language270

that encapsulates the geometric structure through271

a set of points and associated constraints, defin-272

ing their interrelationships. The objective of auto-273

formalization is to convert natural language input,274

often ambiguous or imprecise, into a precise, unam-275

biguous formal representation that accurately cap-276

tures geometric relationships and configurations.277

Building on the success that LLMs can trans-278

late between formal and informal mathematical279

statements to some extent (Wu et al., 2022), we in-280

vestigate their potential to convert natural language281

mathematics into our customized formal language,282

suitable for the solver we introduce. By providing283

these models with a predefined prompt, we guide284

their generation, ensuring the output aligns with285

the requirements of the subsequent solver.286

Specifically, we prompt the LLM to generate287

two key pieces of information: coordinates Points288

represented by variables V ars and the required 289

geometric constraints Cons based on these coor- 290

dinates Points. Figure 2 shown an example of 291

autoformalization with LLM. The prompt consists 292

of a structured database containing a wide range of 293

geometric constraints, along with corresponding in- 294

structions that elucidate their precise meanings. By 295

leveraging this structured representation, the LLM 296

interprets the prompt as a comprehensive reference 297

manual, and processes user input in accordance 298

with the specifications outlined in the manual, sys- 299

tematically translating the given descriptions into 300

customized formal languages. 301

Surprisingly, we find that LLMs exhibit a decent 302

proficiency in formalizing mathematical concepts 303

in our scenario. Notably, the LLM demonstrates 304

the ability to employ intricate reasoning to adapt 305

and generalize beyond explicitly stated rules. This 306

capability allows the model to infer implicit rela- 307

tionships and make logical extensions where neces- 308

sary. For instance, if the input contains the phrase 309

"triangle ABC is inscribed in circle O", the LLM 310

recognizes that this implies the distances from O 311

to points A, B, and C are equal to the radius of the 312

circle. This inference is made despite the absence 313

of explicit instructions in the manual, highlighting 314

the model’s capacity to apply intuitive geometric 315

principles autonomously. 316

Furthermore, in our approach, we utilize the sec- 317

ond phase, namely the solver, to rigorously ver- 318

ify the accuracy of the generated translation. In 319

instances where the candidate autoformalization 320
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fails to produce a valid solution, we incorporate the321

feedback derived from this failure into the process.322

Specifically, this feedback is treated as a new con-323

textual input, which is then fed into the subsequent324

iterations of the generation process. This itera-325

tive refinement mechanism enables continuous im-326

provement of the formalization output. Our results327

demonstrate that by including such a verification328

step within the framework, the autoformalization329

accuracy of LLMs is significantly enhanced.330

3.2 Solver with Verification331

Solver. We recognize the existence of numerous332

interactive theorem provers, such as Isabelle (Wen-333

zel et al., 2008), Coq (Huet et al., 1997), HOL334

Light (Harrison, 1996; Srivas and Camilleri, 1996),335

and Lean (De Moura et al., 2015; Felty and Middel-336

dorp, 2015). These systems function as specialized337

programming languages, allowing users to formal-338

ize statements and construct proofs, which are then339

automatically verified for correctness. However,340

these tools are inherently tailored for mathematical341

proof problems and thus ill-suited for numerical342

computation tasks. Additionally, when the solver343

fails, debugging is challenging due to its lack of344

interpretability, making it ineffective in guiding the345

conversational autoformalization process.346

To address this, we develop a custom solver,347

utilizing the constraints of the formal language348

as function names and leveraging computational349

analytical geometry methods to examine the con-350

straints and solve the coordinates. Specifically, in351

order to determine point coordinates, we first iden-352

tify the relevant variables and extract them into a353

structured list. We then implement an iterative ap-354

proach to traverse each variable, simultaneously355

validating geometric constraints through the de-356

rived function names. A precise solution for the357

coordinates is obtained once a value set is identified358

for the variables that satisfies all the constraints.359

Verification. Verification plays a crucial role in360

bridging the Solver and Autoformalization pro-361

cesses, enabling the provision of immediate and362

actionable feedback for newly generated formaliza-363

tions. By offering insights into the nature of errors,364

verification empowers LLMs to refine their under-365

standing and improve the quality of subsequent366

formalization outputs. Our experimental analysis367

highlights two primary failure modes that often re-368

quire the autoformalization phase to be restarted:369

(1) detection of non-compliant characters, where370

symbols or elements violate established syntax or371

Origin text Origin diagram

As shown in the figure, quadrilateral ABCD is an 

inscribed quadrilateral of circle ⊙O, and E is a 

point on the extension of AD. Given that ∠AOC = 

128°, what is the value of ∠CDE?

Modified text

The quadrilateral ABCD is inscribed in circle O, 

with E being a point on the extension of AD. ∠AOC 

= 128°, and ∠CDE = 64°

Figure 3: Illustrating an example of modifying the orig-
inal text to include necessary information during Mag-
icGeoBench construction.

formal language rules, and (2) errors in parame- 372

ter specifications, including incorrect value assign- 373

ments or misalignment of parameter numbers. 374

3.3 Coordinate-aware Generation 375

While directly inputting precise coordinates and 376

textual descriptions into generative models may 377

seem intuitive, it often leads to disorganized visual 378

elements (e.g., misaligned points and lines) that 379

fail to faithfully represent the intended structure. 380

To overcome this limitation, we introduce a more 381

disciplined approach, employing TikZ as an inter- 382

mediate representation, similar to AutomaTikZ (Be- 383

louadi et al., 2023). However differently, we cap- 384

italize on precise point coordinates to harness the 385

zero-shot code generation capabilities of LLMs, 386

eliminating the need for finetuning. This enables 387

the generation of figures that not only maintain 388

structural clarity but also exhibit high fidelity to the 389

original textual descriptions. 390

4 Experiments 391

4.1 MagicGeoBench 392

To rigorously evaluate the performance of text-to- 393

geometric diagram models, we introduce the Mag- 394

icGeoBench Dataset, a meticulously curated collec- 395

tion of 220 plane geometry questions drawn from 396

high school entrance examinations. In constructing 397

this dataset, we retain the original text for self- 398

contained questions. For questions where essential 399

information is embedded in diagrams rather than 400

explicitly stated in text, we augment the textual de- 401

scriptions so that diagram can be generated solely 402

from textual input. Figure 3 illustrates such an ex- 403

ample. The evaluation dataset covers fundamental 404

geometric shapes, and is systematically categorized 405

into three groups: 70 questions on circles, 70 on 406

triangles, and 80 on quadrangles. 407
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Input Stable Diffusion 3.5 AutomaTikZ MagicGeo (ours) Input Stable Diffusion 3.5 AutomaTikZ MagicGeo (ours)

The line AB is tangent to the 
circle ⊙O at point B. The line 

segment OA intersects the 
circle ⊙O at point C. The line 

BD is parallel to OA and 
intersects the circle ⊙O at 
point D. The line segment CD 
is drawn, with ∠OCD = 25°
and ∠OAB = 40°

In an equilateral triangle 
△ABC, AD⊥BC at point D, 

where D lies on BC. E is a 
point on segment AD (not 
coinciding with A or D), and 
BE and CE are connected. F is 
a point outside △ABC such 
that CE = CF and ∠ECF = 

60°

The line segment AB is the 

diameter of circle O. PA is 
tangent to circle O at point A. 
PO intersects circle O at point 
C. Connect BC. ∠ABC = 
28° and ∠APO = 34°

In triangle △ABC, AB = AC, 
∠CAB = 30°, M is the 

midpoint of AB, connect NB 
and N is a point on AC such 
that AN = NB

The quadrilateral ABCD is 
inscribed in circle ⊙O, with 

diagonal BD being the 
diameter of ⊙O. Connect OA 
and CA, where OA ⊥BD, and 
CA bisects ∠BCD

In parallelogram ABCD, point 

F lies on the extension of BC, 
and point E is the midpoint of 
segment CD, lying on AF. 
∠ACB = 90°, and AD = BC. 
Connect points D and F, as 
well as points C and F

△ABC is an equilateral 
triangle, and points D and E 
lie on side BC,  ∠DAE = 30°

In the diamond ABCD, point E 
lies on both BD and AC. 
∠DBC = 60°, BD = 1, and 
point F is the midpoint of BC. 
Connect EF, AC, and BD

Figure 4: Qualitative comparison with other approaches. Our method generates results that rigorously adhere to
geometric constraints while maintaining high perceptual quality.

Method
Img-Txt Img-Img

Circle Triangle Quadrangle Avg Circle Triangle Quadrangle Avg
SD3.5-Large (Sauer et al., 2024) 33.25 34.72 34.02 33.99 80.85 83.65 82.01 82.17

AutomaTikZ (Belouadi et al., 2023) 30.89 29.95 29.97 30.27 84.66 83.82 87.61 85.36
MagicGeo (ours) 33.93 31.89 32.13 32.65 91.49 88.16 89.90 89.85

Table 1: Quantitative comparison in terms of CLIP score. Higher values indicate better performance (↑).

4.2 Settings408

Baselines. There is a lack of extensive research409

focusing on the automatic generation of geometric410

diagrams. Hence we compare our proposed ap-411

proach with two established baselines. The first412

baseline, Stable Diffusion 3.5 (SD3.5) (Sauer et al.,413

2024), is a robust model known for its prowess in414

generating photorealistic images across a variety of415

domains. Its ability to synthesize high-quality, real-416

istic images positions it as a strong competitor in417

the image generation space. The second baseline,418

AutomaTikZ (Belouadi et al., 2023), utilizes the419

TikZ language as an intermediate step for creating420

high-quality graphical representations, which is a421

relevant benchmark for our work in the domain of422

geometric diagram generation.423

Evaluation Metrics. Our goal is to ensure that the424

diagrams both adhere to textual instructions and425

conform to typical visual characteristics of geomet-426

ric illustrations, distinguishing them from photore-427

alistic images. To evaluate these two aspects, we428

Input w/o Coordinates w/o Solver MagicGeo (ours)

Triangle ABC is inscribed in 

circle O, with CD as the 

diameter of circle O. Line 
BD is drawn, and ∠DCA = 

41°, ∠ABC = 49°

In triangle △ABC, point D 

lies outside the triangle. 

∠ABC = 60°, ∠DCB = 

90°, and ∠ADC = 120°

In the parallelogram ABCD, 

F is on the extension of BC, 

E is the midpoint of segment 
CD, E is on AF, ∠ACB = 

90°, AD = BC, and line 

segments DF and CF are 

drawn

Figure 5: Illustrating that the solver effectively ensures
precise alignment with the accompanying text.

utilize CLIP (Radford et al., 2021) to calculate co- 429

sine similarity. Given that CLIP is designed for 430

general images, we also conduct a user study to 431

validate the effectiveness of our model. 432

4.3 Results 433

Quantitative Evaluation. Table 1 presents a com- 434

parison between our approach and competitive 435

baselines in terms of CLIP score. When com- 436

pared to the dedicated image model SD3.5 (Sauer 437
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Method Textual alignment Image quality
Circle Triangle Quadrangle Avg Circle Triangle Quadrangle Avg

SD3.5-Large (Sauer et al., 2024) 2.50 2.20 2.72 2.47 2.42 2.11 2.11 2.21
AutomaTikZ (Belouadi et al., 2023) 2.28 2.08 2.12 2.16 2.28 2.08 2.15 2.17

MagicGeo (ours) 1.22 1.12 1.06 1.13 1.30 1.20 1.20 1.23

Table 2: Average user ranking score of textual alignment and image quality. 1 is the best, 3 is the worst. It is evident
that users prefer our results more than others given the superior quality of ours.

Circle Triangle Quadrangle Avg
w/o Verification 92.0 95.7 96.3 94.7
w Verification 97.3 100 98.8 98.7

Table 3: Illustrating the pivotal role of the verification
mechanism in enhancing the autoformalization process.

et al., 2024), our model exhibits a higher similar-438

ity to the reference image, as suggested by the439

image-to-image score. However, we notice that in440

terms of image-text alignment, our model achieves441

a lower CLIP score. This discrepancy is likely442

due to the CLIP model’s broad training on general443

image-text pairs, which may bias towards general444

image generation models. More importantly, our445

model surpasses the text-to-diagram baseline Au-446

tomaTikZ (Belouadi et al., 2023) in both image-text447

alignment and image quality, demonstrating the ef-448

fectiveness of our approach.449

Qualitative Evaluation. In addition to quanti-450

tative metrics, qualitative evaluation plays a cru-451

cial role in assessing generation task. We provide452

the qualitative visual comparison of these methods453

in Figure 4. The baseline method SD3.5 (Sauer454

et al., 2024) generally succeeds in generating sim-455

ple geometric shapes such as circles and triangles,456

but it struggles to accurately produce more com-457

plex geometric configurations, such as a triangle458

inscribed within a circle. On the other hand, Au-459

tomaTikZ (Belouadi et al., 2023) is capable of gen-460

erating visually appealing diagrams owing to its461

use of the TikZ language. However, both methods462

fail to consistently adhere to underlying geomet-463

ric constraints, resulting in diagrams that exhibit464

noticeable inconsistencies upon inspection. In con-465

trast, our proposed method rigorously adheres to466

geometric constraints while simultaneously main-467

taining a high level of perceptual quality.468

User Study. In order to obtain the user’s subjective469

evaluation of the generated image, we conduct a470

user study involving 20 participants. In the study,471

we use 60 samples with 20 in each category. Each472

sample is consisted of a text input paired with three473

corresponding output images. Participants were474

instructed to independently rank each image (1 is475

the best, 3 is the worst) on two distinct aspects: 476

(i) image quality and (ii) adherence to the textual 477

description. We report the average ranking score in 478

Table 2. It is evident that users prefer our results 479

more than others given the superior quality of ours. 480

4.4 Ablations 481

The Effect of Verification. In our framework, 482

when the solver fails to find a solution, feedback 483

is provided to the LLM for re-autoformalization, 484

a process we refer to as verification. This process 485

allows for a maximum of five feedback iterations, 486

aiming to iteratively correct errors identified by the 487

solver. Here we compare its performance against 488

a baseline system that excludes verification. The 489

evaluation criterion focuses on the accuracy of out- 490

put points and constraints, which are manually ver- 491

ified. As shown in Table 3, the incorporation of 492

verification results in a substantial improvement in 493

autoformalization accuracy, increasing from 94.7% 494

to 98.7%. This highlights the pivotal role of the 495

solver’s feedback mechanism in enhancing the aut- 496

oformalization process. 497

The Effect of Solver. We propose the use of analyt- 498

ical geometry methods to develop a custom solver 499

designed for precise point location determination, 500

which is subsequently leveraged for diagram gen- 501

eration. To evaluate the effectiveness of our solver, 502

we compare our approach against two alternative 503

methods: (1) w/o Coordinates: this approach uti- 504

lize LLMs to directly generate TikZ code without 505

incorporating explicit point coordinates, akin to the 506

approach used in AutomaTikZ; (2) w/o Solver: this 507

variant first ask the LLM to infer the point coordi- 508

nates and then use these coordinates for coordinate- 509

aware TikZ generation. We compare their results 510

in terms of the CLIP score in Table 4. To provide 511

a clearer understanding, we present several visual 512

examples in Figure 5. The incorporation of explicit 513

coordinates significantly enhances the quality of 514

diagram generation. However, some issues persist, 515

such as the failure to satisfy the constraint "angle 516

ABC equals 49 degrees" in the first example and 517

the constraint "angle ADC equals 120 degrees" in 518
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Method
Img-Txt Img-Img

Circle Triangle Quadrangle Avg Circle Triangle Quadrangle Avg

w/o Coordinates 31.25 31.31 30.44 31.00 86.31 88.46 88.90 87.89

w/o Solver 32.25 31.52 30.77 31.51 87.37 88.51 90.84 88.91

MagicGeo (ours) 33.93 31.89 32.13 32.65 91.49 88.16 89.90 89.85

Table 4: The effect of solver in terms of CLIP score. Using LLM to directly generate TikZ code is denoted as w/o
Coordinates. Asking LLM to infer coordinates followed by coordinate-aware generation is denoted as w/o Solver.

Stage LLM Circle Triangle Quad Avg

1

DeepSeek-V3 0.97 1.00 0.99 0.99

Qwen-plus 0.96 0.99 0.99 0.98

GPT-4o mini 0.97 0.99 0.99 0.98

3

DeepSeek-V3 1.00 1.00 1.00 1.00

Qwen-plus 1.00 1.00 0.97 0.99

GPT-4o mini 0.99 1.00 1.00 1.00

Table 5: Illustrating that our framework is robust to
different LLMs, which shows negligible impact.

the second example. In contrast, the application of519

solver effectively addresses all constraints, ensur-520

ing precise alignment with the accompanying text521

and thus superior quality.522

The Effect of Using Different LLMs. We employ523

the DeepSeek-V3 (Liu et al., 2024) model for both524

Stage 1 and Stage 3 in our framework. To study525

the impact of different LLMs, we investigate two526

models: Qwen-plus (Yang et al., 2024) and GPT-4o527

mini (Shahriar et al., 2024) . We isolate the LLM528

variation to a single stage—either Stage 1 or Stage529

3—while maintaining the other stage constant. For530

evaluation, we manually examine autoformaliza-531

tion accuracy in Stage 1 and visually inspect the532

generated diagrams in Stage 3. A sample of 60533

instances was experimented, with the accuracy pre-534

sented in Table 5. It is important to note that we535

utilize distinct prompts for different LLMs to fully536

harness their respective capabilities. Our findings537

indicate that the choice of LLM has a negligible im-538

pact on the final outcomes, demonstrating the suit-539

ability of LLMs for these tasks. This suggests that540

our framework maintains consistent performance541

regardless of the specific LLM.542

4.5 Application to Diagram Editing543

Our method leverages precise coordinate informa-544

tion and thus is able to make effective diagram545

modifications based on user intent. We present546

examples of diagram editing results in Figure 6.547

Simple tasks, such as adding or deleting lines, are548

Input Output Modify Revised

Triangle ABC is inscribed in 
circle O, with CD as the 
diameter of circle O. BD is 
connected, and ∠DCA = 41°, 
∠ABC = 49°

∠DBA is 
equal to 41 
degrees

Given points A, B, and C lie on 
circle ⊙O, with C being the 
midpoint of arc AB. ∠BAC = 
35° and ∠AOB = 140°

Remove OC, 
BC

In rectangle ABCD, point E lies 
on side BC, point F lies on side 
AD, O is the midpoint of 
diagonal BD, and point O lies on 
EF. EF is perpendicular to BD, 
and lines BD and EF are drawn

Connect  CE 
and AF

Figure 6: Application to diagram editing.

accomplished by re-executing the third stage. More 549

complex adjustments(e.g., specify a new angle de- 550

gree in the first example), are handled effectively 551

by our framework, which quickly determines the 552

necessary coordinates for adjustment. This demon- 553

strates the potential of our framework in real-world 554

diagram editing applications. 555

5 Conclusion 556

In conclusion, this paper presents MagicGeo, a 557

novel framework for the automatic generation 558

of geometric diagrams from textual descriptions, 559

which stands out for its training-free approach and 560

high precision. By reframing the diagram gen- 561

eration task as an optimization problem, Magic- 562

Geo ensures the accuracy of key geometric prop- 563

erties—such as parallelism and orthogonality—by 564

leveraging analytical geometry rules. The com- 565

prehensive evaluation of MagicGeo, including em- 566

pirical comparisons with state-of-the-art baselines 567

and ablation studies, demonstrates its effectiveness 568

in producing accurate and reliable diagrams. Ulti- 569

mately, MagicGeo offers significant potential for 570

streamlining the creation of educational and aca- 571

demic diagrams, with broader implications for en- 572

hancing content generation in scientific and educa- 573

tional settings. 574
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6 Limitations575

While MagicGeo demonstrates notable advance-576

ments in the automatic generation of geometric dia-577

grams from textual descriptions, several limitations578

must be acknowledged.579

One limitation of our framework is its reliance580

on LLMs to translate complex geometric descrip-581

tions into formal representations that adhere to ge-582

ometric conventions and generate accurate TikZ583

code. Although current translation performance,584

as shown in the ablation, is highly effective, it is585

not yet flawless, with visual examples presented586

in the Appendix section. We anticipate that ongo-587

ing advancements in LLM research, particularly in588

mathematical reasoning and code generation, will589

mitigate this limitation.590

The current solver exhibits extended processing591

times for complex diagrams, with efficiency influ-592

enced by factors such as input complexity, the num-593

ber of geometric entities, and the precision required594

for diagram generation. Preliminary experiments595

indicate that generation times typically range in the596

order of seconds; while for very intricate complex597

geometric diagram, processing times can exceed598

one hour. Future work will focus on enhancing599

solver efficiency through parallelization, optimized600

constraint-solving methods, and the development601

of heuristic techniques that balance computational602

cost and diagram accuracy.603
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A Implementation Details973

We set the maximum number of verfication to be974

five. Both the generated diagram and the reference975

diagram are resized to 224 × 224 pixels and fea-976

tures are extracted using the CLIP image encoder,977

while the textual description is encoded with the978

CLIP text encoder. The time complexity of our cus-979

tom solver is primarily dependent on the number980

of variables that require resolution. Consequently,981

we aim to leverage condition prior to reduce the982

number of variables. For instance, we may assume983

the origin of the circle to be at (0,0) and set the984

radius to 1 if no specific length is provided. This985

approach significantly accelerates the optimization986

solver. Furthermore, a time constraint of 60 min-987

utes is imposed; if valid results are not obtained988

within this period, the problem is deemed unresolv-989

able. We employ DeepSeek-V3 (Liu et al., 2024)990

for LLM, which is strong in reasoning and coding,991

in our experiments for both stage one and stage992

three. We also experiment different LLMs and993

report their effect in ablation study.994

B Algorithm Overview995

MagicGeo functions through a three-stage process996

designed to efficiently transform raw input into997

well-structured geometric diagram problems. In998

the initial stage, a LLM is employed to translate the999

raw input data into standardized formal language1000

propositions, ensuring that the problem is repre-1001

sented in a consistent and clear format. The second1002

stage introduces an optimization solver integrated1003

with verification mechanisms. This solver gener-1004

ates the necessary point coordinates that are pivotal1005

for constructing accurate geometric configurations.1006

Finally, in the third stage, these point coordinates1007

are utilized to construct geometric diagram prob-1008

lems, ensuring that the generated diagrams are both1009

mathematically valid and visually representative of1010

the initial problem. The entire process of Magic-1011

Geo is comprehensively outlined in Algorithm 1,1012

which provides a step-by-step breakdown of the1013

system’s operation.1014

C Prompt Details1015

Our framework leverages the zero-shot abilities of1016

LLMs during the autoformalization phase, along-1017

side coordinate-aware TikZ code generation. To1018

better elucidate the details of our experimental1019

setup, we provide a comprehensive description1020

Algorithm 1: MagicGeo
Input: Textual description (T )
Output: Geometric diagram (D)

1 while not reach the maximum number do
2 Stage 1:
3 Points, Constraints =

LLM(T, Prompt);
4 Stage 2:
5 if Type_Break(Constraints) then
6 continue;
7 end
8 Extract V ariables;
9 Generate Value Combinations Combos;

10 foreach combo in Combos do
11 V ariables = combo;
12 find = True;
13 foreach cons in Constraints do
14 if Constraint_Break(cons) then
15 find = False;
16 break;
17 end
18 end
19 if find then
20 break;
21 end
22 end
23 if not find then
24 continue;
25 end
26 Stage 3:
27 Assign combo to Points;
28 Code = LLM(Points, T, Prompt);
29 Render Code to PDF;
30 return;
31 end

of the prompts used to guide the LLM’s behav- 1021

ior. Specifically, we prompt the LLM to generate 1022

two key pieces of information: coordinates Points 1023

represented by variables V ars and the required 1024

geometric constraints Cons based on these coor- 1025

dinates Points. We show the prompt instruction 1026

in Figure 7, which provides the LLM with clear 1027

instructions to formalize the geometric problem. In 1028

addition to that, our framework incorporates spe- 1029

cific geometric constraint instructions to enhance 1030

the LLM’s performance in this task. These instruc- 1031

tions are designed to probe the LLM’s capability 1032

to understand and encode geometric constraints in 1033

a formalized manner. The precise prompt used to 1034
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Instruction：
Based on the given mathematical geometry diagram‘s natural language 
description, use the provided geometric constraint rules to output the JSON 
information. The output format should match the following pattern, ensuring 
correct JSON syntax without any additional language description.

Output Json format:
{

"points": [ 
"Point object declarations, listing the names of the points used, represented     
by uppercase letters like “A1”, “A2”, where the coordinates of the points 
are expressed as variables."

],
"constraints": [

"Using the provided geometric constraint rules, convert the given 
mathematical geometry diagram's natural language into code that
complies with Python syntax. For example: If I want to represent that 
angle CBD is 23°, the following string should be added to the constraints 
list: 'angle(C,B,D,23)'"

]
}

An example:
{

"points": ["A": (x, y), "B": (u, v), "C": (p, q)],
"constraints": ["angle(A,B,C,23)"]

}

Figure 7: The task instruction prompt for LLM in auto-
formalization.

guide the LLM through this process is presented1035

in Figure 8. The final phase of our framework in-1036

volves the generation of TikZ code that accurately1037

represents the geometric diagram. The prompt pro-1038

vided to the LLM for this task is succinct yet ex-1039

plicit: "Please provide the LaTeX code for generat-1040

ing the corresponding image with the given correct1041

coordinate positions."1042

D Failure Case Analysis1043

While MagicGeo shows significant promise, we1044

conduct a thorough failure case analysis to identify1045

areas for improvement. Our framework consists of1046

three phases, with an example provided for each,1047

as illustrated in Figure 9.1048

In stage 1, a key failure arises from the re-1049

liance on the LLM for autoformalization. Although1050

the LLM is designed to formalize geometric con-1051

straints, there are instances where the formalized1052

constraints may not fully adhere to necessary geo-1053

metric rules. This discrepancy occurs when the for-1054

malization introduces constraints that are logically1055

inconsistent with geometric principles, rendering1056

them incompatible with the solver in subsequent1057

steps.1058

In stage 2, as discussed in the limitations section,1059

the solver may experience delays when handling1060

complex diagrams. To improve efficiency, we pro-1061

vide a value range for the solver, which can lead1062

to scenarios where correct autoformalizations still1063

fail to produce a valid solution within the speci- 1064

fied range. Future work will focus on investigating 1065

more efficient algorithms for handling larger ranges. 1066

Additionally, the solver may generate a technically 1067

correct solution that is visually suboptimal. Points 1068

may be placed too close together, creating a clut- 1069

tered diagram, as shown in the figure. This issue 1070

can be addressed by the diagram editing technique 1071

presented in this paper or by adding a constraint to 1072

prevent excessive proximity between points. 1073

In stage 3, failure again stems from the LLM, 1074

where points may receive correct coordinates, but 1075

the generated TikZ code is incorrect, such as im- 1076

proper labeling. For instance, the diagram in the 1077

figure shows two ’O’ labels near the same point. 1078

E Additional Visual Comparison 1079

We provide additional qualitative visual compari- 1080

son with baselines in Figure 10. Upon inspection, it 1081

is evident that both baselines fail to consistently ad- 1082

here to the underlying geometric constraints, result- 1083

ing in diagrams that exhibit significant inconsisten- 1084

cies. Our proposed method rigorously adheres to 1085

geometric constraints while simultaneously main- 1086

taining a high level of perceptual quality. 1087
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Geometric constraint instructions：

dist(O, A, r): If point A is on a circle with radius r and center O, use this function to 

represent the distance from point A to the center O as r.

angle(A, B, C, θ): If ∠ABC = θ, use this function to represent the angle as θ.

angle_relation(B, A, C, A, D, B, m): If ∠BAC = m * ∠ADB, use this function to represent 

the angle relationship, where m is the angle multiple.

online_inside(B, E, F): If point B is on the segment EF, use this function to check if B lies 

inside the segment EF.

online_extension(B, E, F): If point B is on the extension of segment EF, use this function 

to check if B lies on the extended line of segment EF.

ortho(A, B, E, F): If AB is perpendicular to EF, use this function to check the 

perpendicularity of AB and EF.

midpoint(A, B, C): If point A is the midpoint of BC, use this function to indicate that A is 

the midpoint of B and C.

arc_midpoint(A, B, C): If point A is the midpoint of arc BC, use this function to represent 

A as the midpoint of arc BC.

equal_line(A, B, C, D): If line segments AB and CD are equal, use this function to check if 

the lengths of AB and CD are equal.

angle_bisector(A, D, C, A, B): If AD bisects ∠CAB, use this function to represent AD as 

the angle bisector of ∠CAB.

parallel(A, B, C, D): If AB is parallel to CD, use this function to check if AB and CD are 

parallel.

line_ratio(D, C, B, D, m): If line segment BD is m times the length of line segment DC, 

use this function to represent the ratio.

is_point_in_triangle(A, B, C, P): If point P is inside triangle ABC, use this function to 

check if P lies inside triangle ABC.

is_point_out_triangle(A, B, C, P): If point P is outside triangle ABC, use this function to 

check if P lies outside triangle ABC.

is_acute_triangle(A, B, C): If triangle ABC is an acute triangle, use this function to check 

if triangle ABC is an acute triangle.

…

Figure 8: The geometric constraint instruction prompt for LLM to guide the autoformalization.
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A, B, and C are on circle ⊙O, ∠ACB = 
2∠BAC, and ∠AOB = 2∠BOC.

Input textual description:

Output by autoformalization: 
Coordinates:
{
'O': (0, 0),
'A': (r, 0),
'B': (x1, y1),
'C': (x2, y2)
}
Conditions:
{
'dist': dist(O, A, r),
'dist': dist(O, B, r),
'dist': dist(O, C, r),
'angle': angle(A, C, B, 2 * angle(B, A, C)),
'angle': angle(A, O, B, 2 * angle(B, O, C))
}

Stage 1

AB is the diameter of circle O, and points 
C and D lie on circle O. OD bisects ∠AOC.

Input textual description:

Output diagram: 

Stage 2

In the parallelogram ABCD, point E is on BC, O 
is the midpoint of AC, point F is on AD, and 
point O lies on EF. Additionally, AD = BC.

Input textual description:

Output diagram: 

Stage 3

Figure 9: Failure case analysis in our framework.

Input Stable Diffusion 3.5 AutomaTikZ MagicGeo (ours) Input Stable Diffusion 3.5 AutomaTikZ MagicGeo (ours)

In circle O, points A, B, and C 
lie on the circle. The segments 
OA and OB are connected. 
∠ACB = 40°, ∠OAB = 50°

In triangle △ABC, AB = AC, 
and points M and N are the 
midpoints of sides AB and BC, 
respectively. Connect MN

Given that points A, B, and C 
lie on circle ⊙O, and C is the 
midpoint of arc AB. ∠BAC = 
35°, ∠AOB = 140°

In triangle △ABC, point D 
lies on BC, ∠ACB = 90°, 
∠ABC = 37°, and ∠ADC = 
45°

Points A, B, and C lie on the 
circle ⊙O, and ∠ABC = 40°

In rectangle ABCD, F is on 
BC, E is on CD, AF = AD, and 
DE = EF. Connect AE and AF

In triangle △ABC, point D is 
the midpoint of AB, point E is 
the midpoint of AC, and point 
F lies on the extension of DE 
such that EF = DE. Connect 
point C to point F

In rectangle ABCD, E is the 
midpoint of AD, ∠BEC = 
60°, BE = BC, and line 
segments BE and EC are 
drawn

Figure 10: Additional qualitative comparison with other approaches. Our method generates results that rigorously
adhere to geometric constraints while maintaining high perceptual quality.
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