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ABSTRACT

Large Vision-Language Models (LVLMs) have achieved remarkable success but
continue to struggle with object hallucination (OH), generating outputs inconsistent
with visual inputs. While previous work has proposed methods to reduce OH,
the visual decision-making mechanisms that lead to hallucinations remain poorly
understood. In this paper, we propose VaLSe, a Vision-aware Latent Steering
framework that adopts an interpretation-then-mitigation strategy to address OH
in LVLMs. By tackling dual challenges of modeling complex vision-language
interactions and eliminating spurious activation artifacts, VaLSe can generate visual
contribution maps that trace how specific visual inputs influence individual output
tokens. These maps reveal the model’s vision-aware focus regions, which are then
used to perform latent space steering, realigning internal representations toward
semantically relevant content and reducing hallucinated outputs. Extensive experi-
ments demonstrate that VaLSe is a powerful interpretability tool and an effective
method for enhancing model robustness against OH across multiple benchmarks.
Furthermore, our analysis uncovers limitations in existing OH evaluation metrics,
underscoring the need for more nuanced, interpretable, and visually grounded OH
benchmarks in future work.

1 INTRODUCTION

Recent advances in large language models (LLMs) (Bai et al., 2023b; Touvron et al., 2023a;b) have
accelerated the development of Large Vision-Language Models (LVLMs), such as LLaVA (Liu et al.,
2024a; 2023b), InstructBLIP (Dai et al., 2023), MiniGPT-4 (Zhu et al., 2023), and Qwen2-VL (Bai
et al., 2023a; Wang et al., 2024). However, LVLMs are prone to object hallucination (Bai et al.,
2024; Yang et al., 2025; Duan et al., 2025; Zhou et al., 2024), often generating outputs that are
inconsistent with visual inputs, which raises serious concerns about the reliability and safety of
LVLMs. Recent efforts to mitigate hallucinations have explored a range of strategies, including
end-to-end fine-tuning (Liu et al., 2023a; Jiang et al., 2024; Kim et al., 2023), post-processing of
model outputs (Leng et al., 2024; Zhang et al., 2024b; Zhou et al., 2024; Chen et al., 2024c), and
latent feature steering (Yang et al., 2025; Chen et al., 2024a; Liu et al., 2025), all of which have
shown promising results on open-source LVLMs. Nevertheless, a critical limitation remains (Bai
et al., 2024): there still lacks an effective method to trace how visual inputs influence the decision-
making processes of LVLMs. As a result, the underlying mechanisms of hallucination and the factors
triggering it remain poorly understood.

Interpreting open-ended responses from LVLMs introduces several key challenges. (1) Complex
vision-language interaction: The intricate alignment between vision encoders and LLMs creates
difficulty in disentangling modality contributions and leads to poor interpretable results (Xing
et al., 2025; Stan et al., 2024b). (2) Activation artifacts: Recent studies (Kang et al., 2025; Darcet
et al., 2023; Sun et al., 2024a) reveal that some neurons produce disproportionately high activations
regardless of the input, which distort visualization results (see Figure 1(a)). These challenges hinder
the development of reliable interpretation methods for LVLMs, making it difficult to explore why a
hallucinated word is generated and to determine whether a correct prediction is a correct answer or a
“guessing one”.
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Figure 1: The proposed VaLSe can effectively (a) eliminate artifacts and provide high quality
visualization results, and then (b) mitigate OH by vision-aware latent steering. With the ability of
mitigating OH, VaLSe can further provide in-depth analysis of (c) how a word token is generated
based on visual information and (d) inferring why a hallucinated word is generated.

To address these issues, we propose VaLSe, a novel Vision-aware Latent Steering framework for
LVLMs. Figure 1 provides an overview of VaLSe. To trace the influence of visual inputs on
output tokens, VaLSe models complex vision-language interactions via visual contribution maps
and eliminates artifact activations by contrasting targeted tokens with non-semantic special tokens,
resulting in a higher-quality, interpretable visualization of LVLM’s output. Moreover, with the
interpretable results, VaLSe can reinforce the LVLM’s attention to semantically relevant regions in
the image by latent feature steering using the generated visual contribution maps, enhancing its visual
grounding and effectively mitigating OH (shown in Figure 1 (b)).

Through comprehensive experiments, we demonstrate that VaLSe effectively mitigates OH without
compromising general ability. More importantly, VaLSe offers a new perspective for studying OH
by providing fine-grained interpretability into the model’s decision-making process. As illustrated
in the visualization results in Figure 1, which highlight the focus regions of LLaVA-1.5 during
response generation, benchmark ground-truth answers alone are insufficient for determining whether
hallucination has occurred. On one hand, a model may produce a correct response while attending
to irrelevant image regions, indicating it relied on language priors rather than visual cues. For
example, in the bottom-left panel of Figure 1 (c), the model correctly predicts the word “two” without
attending to the correct relevant visual evidence. On the other hand, as revealed through visualization
(Figure 1 (d)), a word flagged as hallucinated by metrics (e.g., the CHAIR metric (Rohrbach et al.,
2018)) may actually be a visually grounded and accurate description. These findings highlight not
only the importance of understanding the internal mechanisms behind hallucinated outputs but also
the need for more sophisticated and comprehensive benchmarks to evaluate OH in LVLMs.

The main contributions are summarized as follows:

• We propose a novel vision-aware latent steering method that follows an interpretation-then-
mitigation strategy, enabling internal analysis of the generation process behind hallucinated words
and effectively reducing OH in LVLMs.

• VaLSe generates high-quality visual contribution maps across different LVLMs, enabling deeper
analysis of their decision-making processes. Our analysis reveals limitations in existing OH
evaluation metrics, highlighting the need for more nuanced visually grounded assessment methods.

• Experiments demonstrate the effectiveness of VaLSe in OH mitigation. Moreover, both qualitative
and quantitative evaluations demonstrate the superiority of our method in visualization for LVLMs.
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2 RELATED WORK

Large Visual-Language Models (LVLMs) Based on the successes of LLMs, large vision-language
models (LVLMs) have made significant progress in recent years. These models typically integrate
a vision encoder with an LLM via fusion modules, such as a linear projection layer (Liu et al.,
2024a) or a Q-former (Zhu et al., 2023). Recent LVLMs, such as LLaVA (Liu et al., 2024a; 2023b),
MiniGPT-4 (Zhu et al., 2023), mPLUG-Owl (Ye et al., 2024b;a), Qwen-VL (Bai et al., 2023b;a),
LLaVA-Phi (Zhu et al., 2024b) and DeepSeek-VL (Lu et al., 2024) have been shown to be capable of
complex image understanding and reasoning. Despite these advancements, modern LVLMs continue
to face significant security and robustness challenges, notably object hallucination (Bai et al., 2024).

Mitigation of Object Hallucination Various approaches have been proposed to address this issue.
Given that hallucinations may stem from data biases and the knowledge gap between visual and
linguistic information, recent studies have explored fine-tuning LVLMs for robustness (Liu et al.,
2023a; Gunjal et al., 2024), cross-modality matching (Jiang et al., 2024; Kim et al., 2023), and
preference alignment (Sun et al., 2023; Chen et al., 2024b).

To avoid the high cost of fine-tuning, post-processing strategies have been developed to revise model
outputs using external tools, such as LURE (Zhou et al., 2024) and visual-guided refiners (Yin et al.,
2023; Zhao et al., 2024; Chen et al., 2024c). Other approaches aim to debias strong language priors
during decoding (Leng et al., 2024; Liu et al., 2024b; Zhang et al., 2024b; Zhu et al., 2024a; Huang
et al., 2024; Favero et al., 2024), while feature-steering methods (Yang et al., 2025; Liu et al., 2025;
Fang et al., 2024) learn latent shift directions to adjust internal features for OH mitigation. In contrast,
VaLSe not only mitigates OH but also interprets the LVLM’s internal generation process, providing
insight into the root causes of hallucination. Although ALGA (An et al., 2024) also leverages
Grad-CAM to generate saliency-based prompts, it relies on an external multimodal model, making
it incapable of explaining the LVLM’s own decision-making. VaLSe, by contrast, operates entirely
within the LVLM and utilizes its interpretability to directly and effectively reduce OH.

Interpretation of LVLM. Interpreting computer vision algorithms often involves generating
heatmaps that highlight the relevance of different image regions to the model’s decisions. Classical
approaches such as Grad-CAM (Selvaraju et al., 2017) and Grad-CAM++(Chattopadhay et al.,
2018) achieve this by combining input feature maps with class-specific gradients from the upper
layers of convolutional networks. More recently, transformer interpretability has gained growing
attention (Chefer et al., 2021a;b; Aflalo et al., 2022), motivating deeper insights into model behavior
for interpreting modern LVLMs (Stan et al., 2024b; Xing et al., 2025; Stan et al., 2024a; Giulivi
& Boracchi, 2024; Zhang et al., 2024a; Pan et al., 2023). In contrast to these interpretability
techniques Stan et al. (2024b); Xing et al. (2025), our method not only provides clearer visual
explanations but also leverages them in a feature steering framework, leading to more accurate and
reliable outputs by mitigating object hallucinations.

3 METHOD

We first present the preliminaries for our method, then introduce the main components of the proposed
VaLSe and, finally, provide a brief discussion of VaLSe.

3.1 PRELIMINARIES AND NOTATIONS

Suppose we have an LVLM consisting of an image encoder, an alignment module and an LLM with
L layers. In the LLM, the hidden states hl at layer l can then be calculated as

hl = xl + al, where xl = Wout
l σ

(
Win

l (al + hl−1)
)
, al =

H∑
h=1

Qh
l (A

h
l V

h
l ). (1)

Here, al and xl represent the outputs of the multi-head attention (MHA) and the multi-layer percep-
tron (MLP), respectively. The MLP consists of two linear layers with weights Win

l and Wout
l , and an

activation function σ. The attention output al is computed by aggregating H attention heads. Each
head applies an attention map Ah

l to its corresponding value matrix Vh
l , followed by a projection

using Qh
l . For simplicity, layer normalization is omitted from Eq. 1.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

[                                ]

The image captures a lively

beach scene with a man 

flying a kite on the sandy 

shore. The kite is soaring …

Describe this image.

LVLM
[                                ]

…lively beach scene… …with a man… …flying a kite on…

𝐂𝒃𝒆𝒂𝒄𝒉 𝐂𝒎𝒂𝒏 𝐂𝒌𝒊𝒕𝒆

𝐀𝑙 = ෍
𝒉=𝟏

𝑯 𝝏𝓛𝒚s

𝝏𝐀𝑙
h

⨀𝐀𝑙
h 

+

𝐂𝒚𝒔
𝑙+1  = 𝐈 + 𝐀𝑙 ∙ 𝐂𝒚s

𝑙

Given target 𝒚𝒕, we have:

෠𝐂𝒚𝒔
≜ 𝐂𝒚𝒔

𝐿:[−1,∶𝑁𝑖]

Large Language Model

… …Multi-head

Attention
MHA

Multi-layer

perceptron

𝑙 𝑙 𝑙+1

Responses

Response

Response

The image captures a 
lively beach scene with a 
man flying a kite on the 
sandy shore. The kite is 
soaring …

The image captures a 
lively beach scene with a 
man flying a kite on the 
sandy shore. The kite is 
soaring …

𝑙 = 0,1, … , 𝐿 − 1. 

N
e

g
a

ti
v
e

 s
a

m
p

le

P
o

s
it

iv
e

 s
a

m
p

le
s

Positive samples

Negative sample

𝒚𝒔𝟏
 ⟺ “beach” 𝒚𝒔𝟐

 ⟺ “man” 𝒚𝒔𝟑
 ⟺  “kite”

Large Vision-Language Model

V
is

io
n

 

E
n

c
o

d
e
r

Shifting

with 𝒗𝒍−𝟏
𝒆𝒅𝒊𝒕

MHA MLP

𝑙-1 𝑙-1

Hidden features

𝒙𝒍
− …… 𝒙𝒍

+

Finding

𝒗𝒍−𝟏
𝒆𝒅𝒊𝒕

𝐼⨀𝑴 ( መ𝐂𝒌𝒊𝒕𝒆)
 ⨀𝑴 ( መ𝐂𝒎𝒂𝒏)

 ⨀𝑴 ( መ𝐂𝒃𝒆𝒂𝒄𝒉)

Semantic mask generation

Original 
image

(a) Generating visual token contribution maps for visual-based tokens.

(b) Paired-samples generation. (c) Strengthen direction steering.

Visual-based token selection

𝒙 = 𝒙 +  𝒗𝒍−𝟏
𝒆𝒅𝒊𝒕

Learning the Steering Vector 𝒗𝒍
𝒆𝒅𝒊𝒕

Contribution maps

෠𝐂𝒚𝒔
, 𝒚𝒔 ∈ 𝓢 

Contribution maps of
Tokens in 𝓢

𝒗𝒍
𝒆𝒅𝒊𝒕

Latent feature space

Original
features

Strengthen direction

𝒙𝟏
+ 𝒙𝑳

+𝒙𝑳-𝟏
+𝒙𝟐

+ …

𝒙𝟏
− 𝒙𝟐

− 𝒙𝑳−𝟏
−  𝒙𝑳

− 

… …

…

Principle   direction

from PCA

Figure 2: VaLSe mainly contains three modules: (a) A visualization module that generates visual
token contribution maps for each selected token; (b) A vision-aware masking module creating masked
images while preserving the main semantic contents; (c) A latent steering mechanism.

During autoregressive text generation, words are tokenized and sequentially predicted conditioned
on previous tokens. Suppose the answer y consists of Nr tokens, represented as a sequence y =
[y1, y2 · · · yNr

]. At each step t, the model samples the next token yt according to:

yt ∼ P (yt|y1, y2 · · · yt−1; I, T ), (2)

where I and T are the input image and text, respectively.

3.2 VALSE

Overview. Figure 2 illustrates the main components of VaLSe: (a) Visual-based token selection and
contribution map generation, (b) Steering sample construction, and (c) Vision-aware latent steering.
The overall procedure is as follows: Given an input image I and a text prompt T , the LVLM first
generates a response y. VaLSe then selects visual-based tokens whose predictions are strongly
influenced by visual inputs. For each selected token, VaLSe computes a visual token contribution
map, highlighting the image regions the model attends to during token prediction. These maps are
then used to construct positive and negative samples for latent steering. The original image and
response serve as the negative sample, while positive ones are created by masking obscure, visually
irrelevant regions while preserving core vision-aware objects. Finally, VaLSe performs latent steering
by computing the directional difference between positive and negative features, adjusting internal
representations to reinforce focus on semantically relevant objects and reduce OH.

Visual-based Token Selection. A visual-based token is defined as one whose prediction is highly
sensitive to the presence of visual information. Following (Xing et al., 2025; Favero et al., 2024), we
use the log-likelihood ratio (LLR) between the token’s prediction with and without visual context.

Given I , T , and the generated responses y<t, the probability of token yt is P (yt|y<t, I, T ). To isolate
the influence of the image, we can replace I with a noise image Ĩ that lacks useful visual information,
and compute the probability P (yt|y<t, Ĩ, T ). This can be obtained through a single forward pass by
concatenating T and y<t as the textual input. The LLR for token yt is then defined as:

LLR(yt) = logP (yt|y<t, I, T )− logP (yt|y<t, Ĩ, T ). (3)
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A higher value of LLR(yt) represents that the token yt is generated more highly based on visual
inputs. We select tokens with high LLR values, those most influenced by the image. Specifically, we
define the set of S visual-sensitive tokens as:

S = {ys | LLR(ys) > α, s ̸= 1}, (4)

where α is a predefined threshold and |S| = S. The resulting token set S represents the word
tokens in the generated response that are strongly grounded in visual content, which is suitable for
visualization1. For each of the selected visual-based tokens, we compute the corresponding visual
token contribution maps to analyze how the image influences the model’s predictions.

Visual Token Contribution Maps. Following Chefer et al. (2021a), we compute contribution maps
that estimate the relevance of each image token to a specific text token, using the attention mechanisms
within the LLM. Let Nt

2 and Ni denote the number of text and image tokens, respectively. The
attention map at layer l is represented as Al ∈ R(Ni+Nt)×(Ni+Nt).

We then generate the visual contribution map Cys
for ys, which is initialized as an identity matrix

and propagated layer-by-layer using Al. Since each attention layer has H heads, we follow (Chefer
et al., 2021b) and compute a weighted average of the heads using their gradients with respect to ys.
The aggregated attention map Āl at layer l and propagation of Cys

can be represented as:

Āl =

H∑
h=1

(
∂Lys

∂Ah
l

⊙Ah
l

)+

, Cl+1 = Cl + Āl ·Cl, l = 0, 1, ...L− 1, (5)

where ⊙ denotes the element-wise product and (·)+ indicates removing negative contributions.

This iterative update propagates relevance scores from the 0-th layer to the L-th layer. Since the
model typically predicts words based on the last token’s hidden state, we take the last row of CL

and retain the first Ni values, corresponding to the image tokens, Ĉys ≜ C
L[−1,:Ni]
ys . Reshaping Ĉys

yields the visual contribution map for token ys.

Artifacts Elimination. Generally, Ĉys can be significantly affected by artifact activations, which
are neurons that consistently exhibit abnormally high values regardless of the input. These artifacts
distort the accurate contribution distribution and compromise interpretability.

Following the observation in (Sun et al., 2024a) that such activations typically occur at fixed spatial
positions, we address this issue by contrasting contribution maps between target visual-based tokens
and a non-semantic system token ysys. Specifically, for ysys, we compute its contribution map Ĉsys

and identify positions P exhibiting artifacts. By suppressing these regions in Ĉys , we obtain cleaner
and more accurate visualizations, better reflecting the model’s true attention to image content.

Paired-sample Generation. For all N samples, we first select Ns vision-aware ones, whose S is
not empty, and mask while preserving key visual information indicated by the selected visual-based
tokens for each sample. Specifically, we will generate Sn masks for the n-th sample, defined as
Mn =

{
M(Ĉys

, C̃ys
)
∣∣ ys ∈ Sn}, where C̃ys

is the mean value of Ĉys
, and M(Ĉ, C̃ys

) denotes
the mask obtained by the mean value, which is calculated using different contribution maps. Applying
Mn yields the masked images Ĩn = In ⊙M(Ĉy1

)⊙ · · · ⊙M(ĈySn ).

The original image In and y can constitute the negative sample. Finally, we have Ns negative and
positive samples, all of which will be used to perform vision-aware latent steering.

Vision-aware Latent Steering. Following Liu et al. (2025), we apply a steering process to the
LLM within the LVLM. We first extract the latent states from the MLP layers for both positive and
negative samples through forward passes. For the n-th sample, let x+

n,l denote the features for the
positive samples, and x−

n,l denote the features for the negative samples; these features represent the
latent states of the last token in layer l when generating outputs. We compute the direction for each

1Note that the proposed VaLSe can be used to visualize any token in the response.
2Nt includes both the original text prompt tokens and the generated responses.
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of the samples as ∆n
l = x+

n,l − x−
n,l, then perform PCA on the concatenated directions to extract the

overall direction vision-aware directions, vedit
l , consistent with prior studies.

During inference, we apply the learned steering vectors to shift the latent state xl of LLM by
x̃l ← xl+λvedit

l . Then we normalize the resultant states to the ℓ2 norm of the original ones, ensuring
that their magnitudes remain consistent with those typically processed by subsequent modules.

x̃l = x̃l ·
∥xl∥2
∥x̃l∥2

. (6)

3.3 WHY VALSE WORKS?

We provide an analysis to understand what the model learns through the latent steering procedure.
This analysis can be conducted for each transformer layer l; for simplicity, we drop the subscript l
and analyze layers independently. Let f(x) denote the output of the LVLM given input features x,
and let A represent the attention matrix influenced by x, A(x). For simplicity, we assume a single
attention head. To approximate the model’s behavior under perturbed inputs, we apply a first-order
Taylor expansion to estimate the output for a noise input x̃, which is expressed as:

f(Ã) = f(A) + (
∂f

∂A
)⊤(Ã−A) +R ⇔ (

∂f

∂A
)⊤A = 1⊤(

∂f

∂A
⊙A) = f(A)− f(Ã), (7)

where we suppose all matrices are vectorized and use A to denote A(x), and 1 andR are the all-one
vector and higher-order infinitesimal term, respectively. Since x̃ is assumed to be ideal noise, where
tokens are independent of each other, the resulting attention matrix satisfies A(x̃) = 0.

The blue components in Eq. 7 share the same formulation as the visual contribution maps computed
by VaLSe in Eq. 5. Additionally, we observe that the red term closely resembles recent decoding
strategies for OH mitigation, such as VCD (Leng et al., 2024) ((1 + α)f(x)− αf(x̃)) debiasing the
model’s prior-driven predictions. Based on this connection, we infer that applying the vision-aware
masking via the visual contribution maps enables the resulting latent steering to eliminate model bias
at the feature level, similar to the decoding-level as in VCD, and potentially mitigate OH.

4 EXPERIMENTS

This section first evaluates the proposed VaLSe in OH mitigation tasks and then conducts a series
of visualization experiments to reveal several limitations of existing OH benchmarks. Finally, we
further conduct an ablation and analysis experiment.

Datasets. We evaluate VaLSe on different popular datasets for hallucination mitigation and general
ability evaluation. For OH benchmark, we use CHAIR (Rohrbach et al., 2018), AMBER (Wang et al.,
2023), POPE (Li et al., 2023), MMHal (Sun et al., 2024b) and MMVP (Tong et al., 2022) to test the
performance of VaLSe in OH mitigation. Moreover, we implement Multi-modal Large Language
Model Evaluation benchmark (MME) (Fu et al., 2023), Visual Reasoning and Compositional Question
Answering (GQA) (Hudson & Manning, 2019) and LLaVA-Bench (Liu et al., 2023b) to test the
general ability of the LVLMs.

Implementation Details. To evaluate the effectiveness of VaLSe, we implement VaLSe on three
mainstream large vision-language models, including LLaVA-1.5 (Liu et al., 2024a), MiniGPT-4 (Zhu
et al., 2023) and Qwen2-VL (Wang et al., 2024). More details are provided in the supplementary
materials.

4.1 OH MITIGATION RESULTS

Compared to Existing Methods. Table 1 summarizes the performance of VaLSe when incorporated
into LLaVA-1.5 and MiniGPT-4, in comparison with existing OH mitigation approaches. LLaVA
enhanced with VaLSe outperforms all compared methods, while MiniGPT-4 combined with VaLSe
achieves performance comparable to most decoding-based baselines. Among the metrics, CS is
particularly critical, as a caption containing multiple correct objects but a single hallucinated one
is still considered erroneous. A substantial improvement in CS indicates that VaLSe effectively
eliminates the remaining hallucinated objects. We also report BLEU, F1, and Length (Len) metrics
to ensure that VaLSe does not compromise response quality or object coverage. We provide more
comparisons in the supplementary materials.
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Table 1: CHAIR evaluation results. We use 64 as the max token number in this experiment.

Method LLaVA-1.5 MiniGPT-4

CS ↓ CI ↓ BLEU↑ F1 Len CS ↓ CI ↓ BLEU↑ F1 Len

Greedy 20.4±2.8 7.1±0.3 15.7±0.1 73.2 54.7 32.4±2.2 12.2±0.4 14.6±0.1 67.9 55.4
Beam Search 19.5±2.3 6.8±0.8 16.0±0.1 71.7 50.0 30.1±0.3 11.9±0.4 15.4±0.2 67.4 54.3
DoLa (Chuang et al., 2023) 20.2±2.8 6.8±0.5 15.7±0.1 72.5 52.1 31.9±3.3 12.2±0.9 14.5±0.1 68.1 55.8
OPERA (Huang et al., 2024) 17.5±0.5 6.1±0.3 16.0±0.1 72.6 53.1 29.7±0.3 12.0±0.3 14.8±0.1 67.1 54.6
VCD (Leng et al., 2024) 20.3±1.1 7.3±0.1 14.5±0.0 71.0 51.6 29.0±2.8 12.6±1.2 14.4±0.0 66.2 53.1
HALC (Chen et al., 2024c) 16.9±2.1 5.7±0.6 16.0±0.1 71.2 51.0 25.2±2.0 9.4±0.4 14.9±0.1 67.4 53.8
VTI-v (Liu et al., 2025) 17.4±2.0 6.0±0.6 15.5±0.1 73.3 54.8 30.4±1.6 11.5±0.6 15.1±0.1 67.4 54.8

VaLSe 15.5±1.9 5.0±0.5 15.5±0.1 72.0 54.8 27.7±1.7 11.2±0.8 15.0±0.1 67.6 53.6

Table 2: Evaluation results on the CHAIR (Rohrbach et al., 2018), AMBER (Wang et al., 2023),
POPE (Li et al., 2023), MMHal (Sun et al., 2024b) and MMVP (Tong et al., 2022) datasets.

Model CHAIR AMBER POPE MMHal MMVP

CS↓ CI↓ F1 CH. ↓ Co. ↑ Hal. ↓ Cog. ↓ Acc. ↑ F1 ↑ Acc. F1 Score↑ Hal.↓ Score↑
LLaVA-1.5 50.4 14.6 76.5 7.2 50.6 32.5 3.7 71.9 74.8 81.4 79.7 2.6 60.4 26.7
VaLSe 30.8 9.1 77.2 4.9 48.5 23.8 2.4 74.6 78.8 82.7 84.1 2.7 56.3 31.3
Qwen2-VL 44.4 8.71 75.2 6.9 71.7 58.3 6.1 78.6 83.2 84.4 82.4 3.7 38.5 51.3
VaLSe 39.6 8.66 75.3 6.3 70.3 49.1 5.2 78.9 84.0 86.3 85.8 3.9 32.3 52.7

Results on Hallucination Benchmarks. We further evaluate the effectiveness of VaLSe in mit-
igating object hallucination (OH) by applying it to LLaVA-1.5 and Qwen2-VL across multiple
benchmarks, including CHAIR (512 max-token setting), AMBER, POPE, MMHal, and MMVP, as
presented in Table 2. The results show that integrating VaLSe consistently improves performance
compared to the original models on most benchmarks. For CHAIR, the F1 scores remain comparable
or even slightly higher than those of the original LVLMs, indicating that both object precision and re-
call are preserved. Notably, improvements on Qwen2-VL are more moderate compared to LLaVA-1.5.
This may be attributed to the multi-scale vision encoder and complex visual features in Qwen2-VL,
which make it more difficult to trace the influence of visual tokens on output tokens, thereby reducing
the effectiveness of latent steering. On the POPE benchmark, both models show clear improvements
with VaLSe. For MMHal-Bench, although the overall average score improvements are modest, VaLSe
significantly reduces hallucination rates. Specifically, LLaVA-1.5’s hallucination rate drops from
60.4 to 56.3, and Qwen2-VL’s rate decreases from 38.5 to 32.3. In contrast, VaLSe shows limited
improvement on MMVP, which may be due to the multiple-choice question format of the tasks.

Figure 3: Results on MME.

Table 3: Results on GQA and LLaVA-Bench.

Model GQA LLaVA-Bench

Binary Open Acc. Acc. Detail.

LLaVA-1.5 77.9 47.1 61.2 5.4 5.2
VaLSe 78.3 46.9 61.3 6.2 5.8

Qwen2-VL 83.1 45.1 62.5 7.0 6.5
VaLSe 82.6 45.3 62.4 7.3 6.5

General Task Performance. We evaluate the LVLMs and their VaLSe-enhanced counterparts on
MME, GQA, and LLaVA-Bench to assess whether VaLSe impacts the general capability (Figure 3).
LLaVA-1.5 exhibits improved performance in color and positional understanding, while Qwen2-VL
shows notable gains in OCR and code-related tasks. Additionally, Table 3 reports results on GQA and
LLaVA-Bench, demonstrating that model performance remains comparable to, or even surpasses, that
of the original baselines. These results suggest that VaLSe effectively mitigates object hallucination
without compromising the general reasoning or multimodal capabilities of the underlying LVLMs.

4.2 ARE THESE OHS INDEED HALLUCINATED OBJECTS?

We analyze the hallucinated words generated by LLaVA as identified by the CHAIR metric (Figure 4).
The figure is organized into four columns: (1) the original inputs, (2) the hallucinated word along
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Figure 4: The visualization and analysis results via VaLSe of four different types of hallucination
using LLaVA-1.5 on the CHAIR benchmark.

with its visual contribution map, (3) a zoomed-in crop region of hallucination, and (4) the response
using VaLSe. From the results, we identify and categorize four types of hallucination in CHAIR.
Truly hallucinated words. Figure 4 (a) presents a typical case of object hallucination, where the
model incorrectly identifies unseen animal toys as teddy bears. This hallucinated prediction is
effectively corrected by VaLSe, which steers the model’s attention more to the visual cues.
Factual hallucinated words. Figure 4 (b) illustrates a more interesting example. Here, the model
makes a factual hallucination, describing the presence of a cell phone due to the appearance of an
Apple logo in the image. While the logo is on a laptop and no phone is present, the hallucination
reflects a strong prior association within the LVLM, linking the Apple logo with the cell phone
concept. However, such a prediction could be viewed as reasonable in some way. After all, given an
Apple logo, the first word that comes to our mind can be “iPhone”, corresponding to a cell phone.
Unclear hallucinated words. CHAIR may also flag potentially correct answers as hallucinations. As
shown in the zoomed-in region of Figure 4 (c), there appears to be a vague object resembling a bench
on the grass. However, due to its small size and ambiguous appearance, it is difficult to definitively
determine whether the word bench constitutes a hallucination.
Probably false hallucination. Figure 4 (d) presents a case where the CHAIR metric flags a word
as hallucinated, despite it can be a correct prediction: The model identifies a handbag in the image.
However, because “handbag” is not included in the ground-truth annotations, the CHAIR metric
considers it as a hallucination. This case highlights a key limitation of CHAIR: its reliance on
incomplete or overly strict ground-truth labels, which can be a main limitation for CHAIR.
Despite the limitations of CHAIR, VaLSe still mitigates OH across all four identified types of
hallucination. By applying vision-aware latent steering, VaLSe guides LLaVA to focus more on the
main objects within the image, while avoiding unnecessary descriptions of ambiguous or visually
uncertain regions. As a result, we observe a consistent reduction in both CS and CI .
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4.3 ABLATION STUDIES AND FURTHER ANALYSIS

Selected Visual Tokens. We present an analytical study to examine which types of words are
identified as visual-based tokens, and how the selection threshold for LLR α influences the selection
process. The results are shown in Figure 5 (a). As expected, decreasing α results in more tokens being
selected as visual-based. Furthermore, we observe that object-related words and attribute-related
words, such as those describing color, are more likely to be selected, which meets our intuition.

Figure 5: Further analysis with visualization results using LLaVA-1.5.

A Case Study for Wider Applications of VaLSe. The example in Figure 5 (b) provides a case study
demonstrating how VaLSe can serve as an interpretability tool for analyzing typographic deception
attacks (Avrahami et al., 2022; Cheng et al., 2024). The results show that when the attack is successful,
the model’s attention is misdirected by the “Dog”. However, when prompted to describe the image,
the LVLM focuses on the stripe and the cat’s face, and produces the correct answer, even though it
still exhibits high attention on the deceptive word “Dog”. This case highlights that VaLSe is not only
effective for mitigating OH, but also generalizes to broader interpretability tasks for modern LVLMs.

Will the Selected Token be a Hallucinated One? Actually, Xing et al. (2025) suggests that
hallucination may arise from excessive reliance on the language prior, which leads to a low LLR. This
risk can largely be mitigated by adopting a relatively high α. To verify this, we computed the average
LLR values of the correct object tokens and hallucinated ones on a subset of CHAIR. The results show
that correct tokens consistently exhibit much higher LLRs than hallucinated tokens (5.63 v.s.1.06),
indicating that an appropriate choice of α ensures most selected ys are not hallucinations. Since
hallucinated tokens can still be chosen by chance, we manually increase the number of hallucinated
ys and test on CHAIR (Table 4). We observe that performance degradation occurs only with too
many hallucinated tokens; a small number of hallucinations does not cause significant error.

Table 4: Test results of using hallucinated tokens during steering and Artifacts elimination.

Hallu. Num. None 6 16 37 CS ↓ CI ↓ F1 IoU↑

CS ↓ 13.8 15.4 15.2 18.0 VaLSe with Artifacts 14.6 4.8 71.1 0.2706
CI ↓ 4.6 5.2 5.2 5.7 VaLSe 13.8 4.6 71.6 0.3012

Eliminating Artifacts. From Table 4, we can see that eliminating the artifacts improves the OH
mitigation performance. Moreover, we calculate the IoU between the high-activation areas and
the GT-bounding box (each sample has the GT-BBOX of objects in CHAIR), and we show that
eliminating artifacts enables the model to concentrate more on the target visual objects and, therefore,
achieve higher IoU scores. See more details and results in the supplementary materials.

More analytic results (interpretable visualization results, interpretable quantitative results, interaction
of different modalities, et al.) are present in the supplementary materials.

5 CONCLUSION

In this paper, we introduced VaLSe, which follows an interpretation-then-mitigation strategy, leverag-
ing visual contribution maps to trace how visual inputs influence token-level outputs, and performing
vision-aware latent space steering to enhance the model’s focus on vision-aware contents and reduce
OH. Our experiments demonstrate that VaLSe achieves superior OH mitigation performance while
maintaining general ability. Additionally, we highlight essential limitations in current OH benchmarks
that can identify false hallucinations during evaluation. These findings suggest a more comprehensive
evaluation benchmark for OH and that interpretability should play a more critical role in future
research on hallucination mitigation.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

The code is accessible via an anonymous link: https://anonymous.4open.science/r/
7Zt3P8xQ2m . It includes setup instructions, procedures for obtaining shift vectors, dataset evalua-
tion scripts, and a Gradio demo, as illustrated in Figure 9.
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LLMS USAGE STATEMENT

LLMs were used solely for grammar and language polishing; all ideas, analyses, and writing were
produced entirely by the authors.

A LIMITATIONS AND FUTURE WORKS

While VaLSe provides an effective, training-free approach for mitigating object hallucination and
interpreting visual-token interactions, it still has several limitations.

The quality of the visualization results heavily depends on how visual features from the encoder
are integrated into the language model. In LVLMs such as LLaVA (Liu et al., 2023b) and LLaVA-
Phi (Zhu et al., 2024b), visual features are directly aligned with the language model via modules (such
as linear layers) that preserve the spatial structure of the original visual inputs, allowing VaLSe to
effectively trace how visual inputs influence text token generation. In contrast, models like MiniGPT-
4 (Zhu et al., 2023) and Qwen2-VL (Wang et al., 2024) employ a Q-former to compress and blend
visual features, followed by operations such as pixel-shuffle (Shi et al., 2016) to reduce the number
of visual tokens. These transformations can destroy the original spatial relationships among tokens,
degrading the quality of the contribution maps generated by VaLSe. Moreover, Qwen2-VL (Wang
et al., 2024) further employs the multi-scale visual feature extraction in the vision encoder, making it
more difficult to interpret the generated visual contribution maps.

fin

Figure 6: Visualization results of different four LVLMs using VaLSe.

We further infer that the conclusion in Neo et al. (2025), which suggests that object information
is highly localized to token positions corresponding to their original spatial location in the image,
may only hold for models such as LLaVA and LLaVA-Phi. This is consistent with the authors’
discussion of limitations in their study. Moreover, we align with findings from prior work (Xing et al.,
2025), highlighting that many recent LVLMs adopt multi-resolution or multi-encoder architectures,
complicating the alignment of intermediate features with their original spatial regions. These
design choices pose inherent challenges for interpretability methods that rely on token-level spatial
correspondence.

Figure 6 provides a qualitative comparison across different LVLM architectures, illustrating notable
differences in visualization clarity. This may explain why the effectiveness of latent steering varies
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across models: improvements on Qwen2-VL and MiniGPT-4 are less pronounced than those observed
on LLaVA-1.5, likely due to reduced interpretability and weaker steering signals derived from less
spatially coherent features. Nevertheless, applying VaLSe to systematically study OH in LLaVA
yields several valuable insights into the limitations of current benchmark evaluations. These findings
underscore the need for more nuanced, visually grounded assessment methods, which can be an
important direction for future work.

B DATASETS

B.1 DATASETS FOR HALLUCINATION EVALUATION

CHAIR CHAIR (Rohrbach et al., 2018) introduces a set of caption-image relevance metrics de-
signed to evaluate the occurrence of object hallucinations (OH). This tool assesses image descriptions
by comparing them with reference captions from standard datasets such as MSCOCO. The met-
rics quantify hallucinations based on the proportion of mentioned objects that are absent from the
ground-truth object set, which is extracted from the reference captions.

Specifically, CHAIRS measures the proportion of generated captions that contain at least one
hallucinated object, while CHAIRI quantifies the proportion of hallucinated objects among all
generated objects. Lower scores indicate fewer hallucinations. In our experiments, we also report
BLEU to assess the overall quality of the generated text, and F1 score to evaluate the precision
and recall of the generated objects relative to the ground-truth object set. For implementation, we
randomly select 500 images from the MSCOCO 2014 validation set, repeating the evaluation three
times. All methods are prompted with: “Please describe this image in detail.”

AMBER AMBER (Wang et al., 2023) proposes an LLM-free, multi-dimensional benchmark
consisting of 1,004 images. It includes both generative and discriminative tasks, providing a compre-
hensive evaluation of object hallucination. Specifically, the dataset contains 1,004 generation prompts
and 14,216 discriminative prompts, which cover existence, attribute, and relation-based queries.

For evaluation, the generative task reports CHAIR and Hal scores to assess hallucinations in captions
and object proportion. The Cover metric measures the proportion of ground-truth objects included
in the generated outputs, while Cog evaluates the cognitive similarity between generated and target
hallucinated objects—lower Cog scores indicate that hallucinated objects are easier to distinguish
from real ones. The discriminative task reports accuracy and F1 score.

POPE POPE (Li et al., 2023) is a polling-based query framework for evaluating OH. It formulates
a discriminative task by directly asking an LVLM whether a specific object is present in an image.

For implementation, each evaluation run samples 500 images from MSCOCO 2014 validation set.
The method first extracts a set of candidate objects based on the segmentation results of the selected
images. It then generates polling prompts in the form of “Is there a/an {} in the image?”, where {}
is filled with sampled object names using various strategies (random, popular, and adversarial). The
evaluation focuses on the accuracy and F1 score of the model’s responses, computed based on the
statistical results of its positive and negative answers to the prompts.

MMHal-Bench MMHal-Bench (Sun et al., 2024b) is designed to evaluate response hallucinations
in realistic user–LVLM interactions. The benchmark consists of 96 image-question pairs, where all
questions are open-ended and span 8 question categories across 12 object-centric topics.

To assess hallucinations, GPT-4(Achiam et al., 2023) is employed to analyze and rate LVLM responses.
Each evaluation instance consists of the question, the corresponding model-generated response, the
image category, and a standard human-written answer. These elements are incorporated into the
prompt to support a more accurate evaluation.

MMVP The MMVP benchmark (Tong et al., 2024) contains 150 multiple-choice questions and
300 images, where each question is associated with a pair of images. These image pairs constitute
CLIP-Blind sets—constructed based on high similarity in CLIP embeddings but with clear visual
differences. The dataset is designed to evaluate hallucinations that potentially arise from such visual
representation ambiguities.
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B.2 DATASETS FOR GENERAL PERFORMANCE EVALUATION

MME MME (Fu et al., 2023) is a comprehensive benchmark consisting of 14 sub-tasks designed to
evaluate the perception and cognition abilities of LVLMs. Each sub-task has a full score of 200. For
each image, two manually constructed questions are provided, and the utility score for each sub-task
is determined by accuracy, calculated based on the correctness of individual question responses. In
our experiments, we evaluated model performance across the full set of tasks.

GQA GQA (Hudson & Manning, 2019) is a large-scale benchmark designed for real-world visual
reasoning and compositional question answering. In our experiments, we use the test-dev-balanced
split for evaluation, which includes both binary and open-ended question types.

LLaVA-Bench LLaVA-Bench (In-the-Wild) (Liu et al., 2024a) is a benchmark comprising 24
images from diverse real-world sources and 60 corresponding questions. Each image is accompanied
by a detailed, manually written description. This dataset is used to assess the ability of LVLMs to
handle challenging and open-ended tasks. Following (Leng et al., 2024), we leverage LLaVA-Bench
for qualitative evaluation using GPT-4V-aided assessment.

C EXPERIMENT SETTINGS

C.1 MODELS

We apply VaLSe to four representative LVLMs: LLaVA-v1.5-7b3, Qwen2-VL-7B-Instruct4,
MiniGPT4-llama2-7b5, and Mipha-3B6. The model weights are obtained from official reposito-
ries on GitHub or Hugging Face. All experiments involving LLaVA-1.5 are conducted on NVIDIA
RTX 4090 GPUs.

C.2 IMPLEMENTATION DETAILS OF LVLMS

Comparison of other methods For the comparison with other mitigation methods specifically
designed for OH mitigation, we build on the evaluation code provided by the public repository of
HALC7. Specifically, we adopt the hyperparameters for HALC, VCD, DoLa, and OPERA as provided
in their respective official implementations. For each baseline, we follow the authors’ official setups,
using their pre-trained models and default configurations from the corresponding repositories.

Paired Samples Construction. To generate visual token contribution maps for visual-based tokens,
we randomly select 200 images from the MSCOCO 2017 training set, following the image set
provided in the GitHub repository of (Neo et al., 2025). Each image is paired with its corresponding
response generated by an LVLM, which serves as the negative sample. To ensure the responses focus
primarily on the main objects within the scene, we use the prompt “Describe the image for short.”
and constrain the maximum output length to 64 tokens.

The construction of positive samples is guided by visual token selection and corresponding visu-
alizations, which are controlled by the LLR threshold α. In our experiments, we set α to 1.8 for
MiniGPT-4, and 3 for both LLaVA-1.5 and Qwen2-VL. All threshold values are empirically tuned
to reduce the inclusion of words that are irrelevant to object content, based on the global LLR
distribution.

Intervention Strength on the Shift Direction. Following VTI (Liu et al., 2025), we intervene in
the decoder of the LLM by shifting its latent states along the direction vedit

l at each layer, using a
layer-specific shift magnitude. When extracting features at the MLP layer for paired samples, we use
the propagated feature of the last token. The intervention strength, denoted by β, is set as follows:

3https://huggingface.co/liuhaotian/llava-v1.5-7b
4https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct
5https://github.com/Vision-CAIR/MiniGPT-4
6https://github.com/xmoanvaf/llava-phi
7https://github.com/BillChan226/HALC
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0.4 for MiniGPT-4; for LLaVA-1.5, 0.5 on CHAIR and AMBER, and 0.4 on other experiments; for
Qwen2-VL, 0.2 on MMVP and MME, and 0.5 on other experiments.

D COMPARED TO MORE BASELINE MODELS.

Here, we provide more evaluation results compared to steering-based or decoding-based OH mitiga-
tion methods to show the effectiveness of our method.

Table 5: CHAIR evaluation results. We use 64 as the max token number in this experiment.

Method LLaVA-1.5 MiniGPT-4

CS ↓ CI ↓ BLEU↑ F1 Len CS ↓ CI ↓ BLEU↑ F1 Len

Greedy 20.4±2.8 7.1±0.3 15.7±0.1 73.2 54.7 32.4±2.2 12.2±0.4 14.6±0.1 67.9 55.4
Beam Search 19.5±2.3 6.8±0.8 16.0±0.1 71.7 50.0 30.1±0.3 11.9±0.4 15.4±0.2 67.4 54.3
DoLa (Chuang et al., 2023) 20.2±2.8 6.8±0.5 15.7±0.1 72.5 52.1 31.9±3.3 12.2±0.9 14.5±0.1 68.1 55.8
OPERA (Huang et al., 2024) 17.5±0.5 6.1±0.3 16.0±0.1 72.6 53.1 29.7±0.3 12.0±0.3 14.8±0.1 67.1 54.6
VCD (Leng et al., 2024) 20.3±1.1 7.3±0.1 14.5±0.0 71.0 51.6 29.0±2.8 12.6±1.2 14.4±0.0 66.2 53.1
Woodpecker (Yin et al., 2023) 23.9±4.6 7.5±0.1 17.1±0.0 - - 28.9±2.2 10.2±0.9 15.3±0.0 - -
LURE (Zhou et al., 2024) 19.5±2.4 6.5±0.4 16.0±0.0 - - 27.9±2.3 10.2±0.9 15.0±0.1 - -
HALC (Chen et al., 2024c) 16.9±2.1 5.7±0.6 16.0±0.1 71.2 51.0 25.2±2.0 9.4±0.4 14.9±0.1 67.4 53.8
VTI-v (Liu et al., 2025) 17.4±2.0 6.0±0.6 15.5±0.1 73.3 54.8 30.4±1.6 11.5±0.6 15.1±0.1 67.4 54.8

VaLSe 15.5±1.9 5.0±0.5 15.5±0.1 72.0 54.8 27.7±1.7 11.2±0.8 15.0±0.1 67.6 53.6

E ANALYTIC STUDIES

We conduct analytic studies on key steps of the VaLSe framework. In all experiments, VaLSe is
applied to the LLaVA-1.5 model and evaluated on the CHAIR task. For each experiment, we report
CS and CI scores to assess hallucination, along with the F1 score to evaluate response quality. The
configuration that consistently achieves lower CS and CI scores while maintaining a competitive F1
score is selected as the final setting.

Table 6: Impact of different α thresholds for selecting visual-based tokens on performance

α
max=64 max=512

CS↓ CI↓ F1 CS↓ CI↓ F1

raw 20.2 6.4 73.4 47.8 13.4 78.0
1 16.4 5.3 72.8 38.0 10.7 77.9
3 15.4 5.2 73.3 36.2 10.2 78.6
5 16.6 5.2 73.2 36.6 10.0 78.6
7 16.6 5.1 73.1 37.2 10.2 78.2

Threshold α for Selection of Visual-Based Tokens in Positive Sample Construction Within
our framework, we use an LLR-based criterion with threshold α to guide the selection of tokens for
visualization. The effect of varying the threshold α is presented in Table 6.

Type of Masking Method Given the selected α values, we further investigate the impact of
different masking strategies. The approaches evaluated include: Gaussian noise (mean 0, standard
deviation 0.1), Gaussian blur (kernel size set to at least one-quarter of the image’s shorter side), zero
replacement (replacing the masked region with zero), and mean replacement (filling the masked
region with the mean value of the image tensor). As shown in Table 7, mean replacement consistently
achieves the best performance across both the 64-token and 512-token maximum output settings,
offering the most effective balance between hallucination suppression and answer quality.

Effectiveness of the Positive Sample Method Following the VTI method (Liu et al., 2025), we
adopt a steering approach. Instead of using contrastive responses as in (Liu et al., 2025), we employ
contrastive images to steer the LLM. To validate the necessity of relevance-guided masking, we
compare against a random masking baseline, replicating the image contrast setup in VTI-vision. For
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Table 7: Performance comparison of different replacement strategies for masked regions in the image
component of positive samples.

Mask Strategy
max=64 max=512

CS↓ CI↓ F1 CS↓ CI↓ F1

raw 20.2 6.4 73.4 47.8 13.4 78.0
Gauss noise 18.4 6.3 74.2 48.4 13.2 77.2
Gauss blur 18.2 5.7 73.1 35.8 10.7 77.7
zero 18.2 5.8 73.4 40.6 11.0 78.0
mean 15.4 5.2 73.3 36.2 10.2 78.6

a fair comparison, we substitute the mean-threshold masking of VaLSe with a token-ratio masking
strategy (at a mask ratio p), ensuring that both methods mask the same number of tokens. As shown
in Table 8, across various masking percentage settings, relevance-guided masking consistently yields
fewer object hallucinations, as evidenced by lower CS and CI scores. Moreover, at the optimal
masking percentage for both methods, the relevance-guided approach achieves a higher F1 score,
indicating superior overall performance in response generation.

Table 8: Results of random masking and relevancy-guided masking method

p
Random Relevancy-Guided (Ours)

CS↓ CI↓ F1 CS↓ CI↓ F1

raw 20.2 6.4 73.4 20.2 6.4 73.4
0.95 17.4 5.4 72.7 16.2 5.0 73.2
0.9 17.2 5.3 72.7 15.4 5.2 73.3
0.8 18.2 5.7 73.2 16.6 5.5 73.1
0.7 18.8 5.8 73.5 17.2 5.6 72.9

F QUANTITATIVE RESULTS OF VISUALIZATION

Following Chefer et al. (2021a), we conduct deletion and insertion studies using LLaVA-1.5, compar-
ing three visualization methods: attention maps, vision encoder Grad-CAM, and VaLSe, evaluated
on 8 samples. For attention maps, we extract the attention map from the last layer of the LLM in
LLaVA, averaging across all attention heads within the layer.

For vision encoder Grad-CAM, we compute saliency maps with respect to the attention output after
the layer normalization8 in the final layer, before features are passed into the LLM. We report and
compare results from all three visualization methods. The outcomes are illustrated in Figure 7. The
red words in the response correspond to the visualization tokens.

We briefly introduce the deletion and insertion experimental settings. Given visual inputs and
text prompts, the LVLM generates a response. We then apply various visualization methods to
produce visual contribution maps for a selected visual-based token. Ideally, if a contribution map
accurately reflects the relevance between the token and visual content in the image, then masking the
corresponding patch should significantly impact the token’s predicted probability.

In the insertion setting, we begin by masking the entire image with noise. Then, we gradually unmask
patches one by one, ranked by their visual contribution scores. A better visualization method will
reveal informative patches earlier, causing the token’s prediction probability to rise sooner in the
process.

In the deletion setting, we start with the original image and progressively mask patches in order of
highest visual contribution. A better visualization method will remove important patches earlier,
leading to a sharper drop in the token’s prediction probability early in the procedure.

8Implementation based on https://github.com/jacobgil/pytorch-grad-cam
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Prompt: Is the needle facing up or down from the 

camera's perspective?

Response: The needle is facing up from the camera's 

perspective.

Prompt: Are there any blueberries in the image or not?

Response: Yes, there are blueberries in the image.

Prompt: Does the image contain one eye or both eyes of the 

cat?

Response: The image contains both eyes of the cat.

Prompt: Is the dog's ears are erect or drooping?

Response: The dog's ears are erect.

Prompt: Please describe the image for short.

Response: The image features a living room with a blue 

couch, a chair, and a dining table. The room is decorated 
with a zebra print and has a large mirror on the wall. There 
are several books scattered around the room, and a vase 
with flowers is placed on the dining table.

Prompt: How many chests are in the image?

Response: There are two chests in the image.

Prompt: How many pillows are in the image?

Response: There are two pillows in the image.

Prompt: Which is the main topic of the image?

Response: The main topic of the image is a man surfing on 

a wave in the ocean.

Figure 7: Insertion and deletion curves on 8 samples using three different visualization methods on
LLaVA-1.5.

As Figure 7 shows, both VaLSe and the attention maps outperform Grad-CAM from the vision
encoder in the insertion setting, achieving higher area under the curve (AUC) values and earlier rises
in their respective curves. Notably, the curves do not exhibit a consistent trend when removing or
inducing patches, primarily due to the presence of tokens preceding the visualization token, and
possibly also due to the large number of parameters in the LLM. An opposite trend is observed in the
deletion setting, where lower probabilities indicate that more relevant regions are being removed.

Since VaLSe computes relevance maps by aggregating attention information across all layers, it
achieves more stable and often better performance than a single-layer attention map. This demon-
strates that VaLSe can effectively utilize internal attention signals in a model-agnostic manner.

Moreover, we incorporate the IoU metric to test the object-level precision of different visual interpre-
tation methods. We select the sample in the right column and the third row, which includes a man
surfing on a wave in the ocean, and test the IoU value calculated by the bbox of the labeled object
and the generated contribution maps. With an average deletion and insertion across all eight figures
in Figure 7. The results are shown in Table 9. The results show that our method achieves a higher
performance compared to others.
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Table 9: Quantitative comparison of interpretation methods in terms of Deletion, Insertion and IoU.

Method Deletion↓ Insertion↑ IoU

Attention map 0.4576 0.6436 0.1062
ViT-Gradcam 0.4241 0.5889 0.0412
Llama-GradCAM(Zhang et al., 2024a) 0.4153 0.6244 0.1178
LVLM-WLook(Xing et al., 2025) 0.4140 0.6003 0.1221
VaLSe 0.2795 0.8074 0.3012

F.1 THE EFFECT OF REMOVING ARTIFACTS IN VALSE

In this subsection, we present additional results to demonstrate the alignment between the explanations
and the actual object regions, particularly since the artifacts are regions unrelated to the object.

Based on previous results, we see that the proposed visual interpretation method indeed facilitates the
mitigation of OH. We have incorporated the IoU metric to evaluate how well the explanations align
with the actual object regions. Additionally, we incorporate metrics known as normalized deletion
and insertion scores, as described in (Petsiuk et al., 2018), to assess the quality of contribution maps.

Specifically, we compute the IoU between the bounding box of the target object and the generated
contribution maps with and without artifacts (Considering the CHAIR samples are selected from
COCO, the samples indeed have bounding boxes corresponding to the target objects in the image).
The results are shown in Table 10.

Since artifacts tend to have disproportionately high activations but are limited in number, their
presence does not result in significant changes to the IoU metric. Therefore, to provide a more
comprehensive assessment, we present all related evaluation metrics together here, including the
CHAIR score and the Deletion and Insertion scores, from which we see that removing artifacts indeed
improves the VaLSe.

Table 10: Evaluation for VaLSe with and without artifacts.

IoU↑ Deletion↓ Insertion↑ CS ↓ CI ↓ F1

VaLSe with Artifacts 0.2706 0.2841 0.8006 14.6 4.8 71.1
VaLSe 0.3012 0.2795 0.8074 13.8 4.6 71.6

F.2 USING HEATMAPS TO OBSERVE THE BLACK-BOX INTERACTION OF MODELS

To illustrate the information flow of internal model interactions across different layers in the VLM,
following Zhang et al. (2024a), we select a sample from the Figure 7, depicting a man surfing on a
wave in the ocean. We use the IoU to give a numerical result for the distribution of heatmaps with
LLaVA-1.5-7b. We extract the contribution maps to the target object, and calculate the corresponding
IoU values between the heatmaps and the ground truth labeled bbox.

As shown in Table 11, the high-relevance regions evolve across layers. From layer 0 to 15, the
focus gradually shifts from image tokens near the text prompt to the target objects, with layer 12
achieving the highest IoU with the ground-truth bounding box. Beyond this stage (layers 15–31), the
heatmaps condense to smaller regions, capturing the most discriminative features of the objects while
integrating visual and textual information. This progression is consistent with the pattern reported in
Zhang et al. (2024a), further highlighting the intra-model interactions between vision and language.

Table 11: The IoU of visualization heatmaps for a sample across different layers

Layer index 0 7 12 13 15 23 31

IoU(VaLSe with Artifacts) 0.0000 0.1437 0.3210 0.3178 0.2728 0.2801 0.2706
IoU(VaLSe) 0.0000 0.1740 0.3606 0.3566 0.2993 0.3071 0.3012
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G GRADIO DEMO FOR LVLM VISUALIZATION

To intuitively demonstrate our method, we develop an interactive Gradio9 demo for case studies, as
illustrated in Figure 9. The demo comprises three main components: a chatbot interface, a logits
viewer, and a visualization module.

The visualization module is divided into two sections. The upper section presents raw results
generated using a similar method to LVLM-Interpret (Stan et al., 2024b), including LLM layer
selection, visual relevance maps, and token-level text relevance scores.

The left part of the lower section shows a PCA-based analysis of hidden states corresponding to
image token indices across LLM layers. Empirically, in the middle-to-late layers, tokens with distinct
orientations in the PCA space are indicative of potential artifacts.

On the right side, two de-artifacting strategies from VaLSe are provided. These methods aim to revise
artifact-prone token regions by referencing non-semantic tokens (e.g., <s>, <|endoftext|>).
The first method allows users to control the number of tokens to be replaced, while the second adjusts
the replacement based on the cumulative relevance score ratio. To improve visual clarity when a large
number of tokens are modified, a Gaussian filter is applied.

We also include a demonstration video [Sample-1.mp4] in the supplementary material to showcase
the interface and its functionalities.

Real-world application. With the Gradio, our visualization system can be deployed in real-world
scenarios using a webcam. Figure 8 shows an example captured in our lab. Using the webcam, we
can perform visualization tests in open-world settings. A demonstration video [Sample-2.mp4] is
also provided to showcase this setup.

Figure 8: Real-world applications of the proposed system.

H ADDITIONAL VISUALIZATION EXAMPLES

We provide additional visualization examples for four LVLMs using VaLSe. As shown in Figure 10
and Figure 11, each model response contains three highlighted words (in red). Visualizations
corresponding to these words are presented in the images below the response, in the same order as
the highlighted words.

I CASES OF OH MITIGATION

Figure 12 presents representative examples from LLaVA-Bench where VaLSe effectively mitigates
object hallucinations (OH).

9https://www.gradio.app/
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Figure 9: Gradio Demo of VaLSe for LLaVA-v1.5-7b Visualization.
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Prompt: Describe the 

image for short.

MiniGPT-4: The image is a white sign with the words "one way" 

written on it in black letters. The sign is mounted on a brick wall 
next to a sidewalk. There are no other buildings or objects visible 
in the image.

LLaVA-Phi: The image features a one-way street sign with a 

drawing of a person pointing to the left. The sign is placed on a 
pole near a building, which is located in a grassy area. There is a 
bench situated close to the sign, and a car can be seen parked 
further back in the scene.

LLaVA-1.5: The image features a street sign with a pointing 

arrow, indicating a one-way street. The sign is located near a 
building, and there is a bench situated in the foreground. The 
scene also includes a car parked in the background, and a potted 
plant can be seen close to the bench.

Qwen2-VL: The image shows a "One Way" street sign pointing 

to the left, mounted on a pole. In the background, there is a 
building with a white brick wall and a red chimney. The building 
has large windows and a sign that reads "Design Copy Print 
World." There is also a bench and some greenery in the 
foreground.

Prompt: Describe the 

image for short.

MiniGPT-4: The image shows a street with a sign that says "no 

skateboarding" on it. There are also some palm trees in the 
background.

LLaVA-Phi: The image features a street with several no parking 

signs posted on a pole. There are three signs in total, with one 
sign specifically stating "No Skateboards." The street appears to 
be empty, and there are no cars visible in the scene. The 
presence of these signs indicates that skateboarding is not 
allowed in this area.

LLaVA-1.5: The image features a street scene with a no parking 

sign and a no skateboarding sign posted on a pole. The no 
parking sign is positioned above the no skateboarding sign. There 
are several cars parked along the street, with some closer to the 
foreground and others further away. 

Qwen2-VL: The image shows a street scene with a pole holding 

multiple signs. The signs include a "No Parking" sign with specific 
hours, a "No Skateboards" sign, and another sign with a symbol 
indicating a no littering rule. The street is lined with palm trees, 
and there are street lamps and a few cars in the background.

Figure 10: Additional visualization results for four different LVLMs using VaLSe.
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Prompt: Describe the image.

MiniGPT-4: The image shows a busy highway with cars, buses, 

and trucks driving on it. There are also pedestrians walking on 
the sidewalk and people riding bicycles on the road. The sky is 
clear and blue, with some clouds in the distance. The buildings on 
either side of the road are tall and modern, with large windows 
and balconies. There are also trees and greenery along the side of 
the road.

LLaVA-Phi: The image is a bird's eye view of a busy highway 

filled with traffic. There are numerous cars, buses, and trucks 
traveling in various directions, creating a congested scene. Some 
cars are positioned closer to the camera, while others are further 
away, giving a sense of depth to the image.
In addition to the vehicles, there are several pedestrians visible 
on the sidewalks, some of whom are carrying handbags. A few 
traffic lights can be seen along the highway, helping to manage 
the flow of traffic. The overall atmosphere of the image is one of 
bustling activity and heavy traffic.

LLaVA-1.5: The image depicts a busy city street filled with 

traffic, including cars, buses, and motorcycles. There are multiple 
traffic lights scattered throughout the scene, helping to manage 
the flow of vehicles. The street is bustling with activity, as people 
navigate through the congested area.
In addition to the vehicles, there are several pedestrians walking 
along the sidewalks, contributing to the lively atmosphere of the 
city. The scene captures the essence of urban life, with people 
and vehicles sharing the road and navigating through the 
bustling environment.

Qwen2-VL: The image depicts a busy urban road with multiple 

lanes of traffic. There are various types of vehicles, including cars, 
buses, and trucks, moving in both directions. The road is flanked 
by greenery and has several traffic lights and street signs. In the 
background, there is a bridge with additional traffic. The scene 
suggests a typical day in a bustling city.

Prompt: Describe the image.

MiniGPT-4: The image is a living room with a wooden floor, 

white walls, and a large window on the left side of the room. 
There is a dining table with chairs in the center of the room, 
and a fireplace with a mantle on the right side of the room. The 
room has a wooden ceiling and a large mirror hanging on the 
wall opposite the fireplace.

LLaVA-Phi: The image features a spacious dining room with a 

long wooden dining table in the center. The table is adorned 
with a vase of flowers, adding a touch of elegance to the room. 
There are several chairs surrounding the table, with one chair 
being particularly prominent in the foreground.

LLaVA-1.5: The image features a cozy living room with a dining 

table in the center. The table is surrounded by chairs, and there 
is a vase of flowers placed on it. The room also contains a couch 
and a chair, providing ample seating options. A refrigerator can 
be seen in the background, and a potted plant is placed near the 
table. The room is well-lit, creating a warm and inviting 
atmosphere.

Qwen2-VL: The image depicts a cozy living room with a wooden 

floor, a dining table with chairs, and a fireplace. There is a 
ceiling fan, a lamp, and a mirror on the wall. The room has a 
warm and inviting atmosphere.<|im_end|>

Figure 11: Additional visualization results for four different LVLMs using VaLSe.
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Figure 12: Cases of VaLSe on LLaVA-Bench.
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